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Weak Isodrasticity

Strong isodrasticity



Beyond omnigenity

>

Good conservation of L = f,y p”bb is not guaranteed when
bounce period T is large, so omnigenity might not guarantee
small (1) near marginal cases.

Also, change of ZGCM class can produce a large change in
region visited, or transition into a class whose trajectories are
not bounded (like ripple bouncers).

Equilibria with anisotropic pressure (but no flow) might not

have a flux function. Closest is ipdp; + |Blipd( p”ﬁ;'u) =0.
But for confinement, don't need all GC motion to stay close
to flux surfaces. Indeed, don't need flux surfaces: for B € C3,
approximate integrability of B suffices to confine circulating
GCs, and approximate conservation of L suffices for bouncing

GCs away from marginal cases.

Idea: Drop requirement for a flux function, prevent transitions
between classes of GC motion, and make some KAM tori in
each relevant class.



Isodrastic fields

>

>
>

Magnetic fields for which transitions in FGCM between differ-
ent types of ZGCM are prevented. Assume B € C", r > 2.
Can formulate without assuming a flux function.

Say B is weak isodrastic if marginal cases are never reached
from non-marginal ones by L-reduced FGCM (Cary &
Shasharina call it omnigenity for marginally trapped particles).
L-reduced dynamics in scaled variables h = E/u,j = L/\/mu:
reduced phase space Fj at given j € RT is the space of poss-
ible segments v for ZGCM with fw /2(h—|B]|) = j for some
h € R with |B| = h at the ends of 7y and |B| < h in between.
The reduced Hamiltonian H; is the value of h. The symplectic
form is B in any transverse section to the segments (it gives
the same value in any transverse section). Gives reduced
vector field X in scaled time 7 = %t by ix8 = —dH;.

Reduced dynamics not valid near marginal cases, but continue
nonetheless; later, treat transitions exactly (strong isodrastici-
ty), discover reduced dynamics gives correct 1st order answer.



continued

» In general, F; consists of several C" surfaces, limited by curves
of non-degenerate marginal cases (local maximum at an end
or interior point of ), which in turn possibly meet in doubly
marginal points (non-quadratic critical point or heteroclinic).
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continued

» H; is differentiable at all non-marginal points of F;: given
vector field on F;, extend to GC phase space by any smooth
vector field X that takes B-lines to B-lines with
%uﬁ + |B| = H;. Then a calculation gives

. 1
/Xde:_,_/(/de|B|+2( —|B))Q(X, b, c)) dt

with T = [ dt for ZGCM.

> So ixdH; = (ix, (d|B| +2(H; — |B|)x”)), with x curvature
vector of fieldlines.

» In particular, note that as a segment approaches (single)
marginality then dH; — d|B| at the point with igd|B| = 0,
because the period is dominated by time near that point.



Critical points of |B| along B

>

| 2

To address marginality, need the set ¥ of critical points of |B]|
along fieldlines, i.e. the zeroes of |B|" = ipd|B]|.
Subdivide ¥ into ¥ U X% U ¥~ according to the sign of |B|".

Marginality consists of having an endpoint in ¥ 0 = ¥~ U ¥°.
Bouncing segments have a point of ¥ U X0 in their interior.

Y is a C"! surface as long as d(|B|’) # 0, which is generic
on ¥. In particular, it is guaranteed on ¥* (where

ipd(|B|") # 0), so F are always C"~! surfaces.

Forr >3, Y0 is generically a C"2 curve forming common
boundary of ¥*: defined by |B|' = 0, |B|" = 0, so fails only if
d|B|',d|B|" parallel, which sums to 4 conditions in 3 variables.



Reformulation

> B is weak isodrastic iff marginal segments remain marginal.

> Define functions % and J= on £~ by H = |B||z- and
J? = fv" V2(H — |B]) |ds]| for the segment 77 from the
chosen point of £~ in direction o € {£} to the first point at
which |B| = H again (if exists).

> Note that for x € X7, Hzo()(x) = H(x), and as a segment
endpoint approaches >, dH; — dH.

» For AC 70 let A” be the subset without heteroclinic
connection in direction o.

» Theorem:

1. If B weak isodrastic & o € {£} then dH,dJ7 are linearly
dependent at each point of ¥~ 7;

2. If B weak isodrastic and X% smooth then H,J° are constant
on connected components of ¥°7;

3. If J* constant on components of level sets of H then B weak
isodrastic.

» Informally, B weak isodrastic iff contours of H, J* on 79 coincide.



Proof

1.

If d77,dH indpt at xo € Z~7, let jo = J7(x0). J *(jo) is locally a
smooth curve and the boundary of Fj. d#(xp) # 0 and tangent to
OFj, not in ker dH. dH;, — dH as xg is approached from IntFj. So
ker dHj, is transverse to the boundary near xp. So trajectories of the
reduced dynamics reach the boundary in finite positive time for one

sign of e. So B is not weak isodrastic.
Y%7 smooth curve and H not constant along it implies 3 xp € ¥
where dHv # 0 for a tangent v to ¥°. So v # ker dH. Let
Jo=J%(x). Then dHj, — dH as xg is approached from X~. Thus
ker dH;, is transverse to ¥° near xo. So trajectories of the reduced
dynamics reach X in finite positive time for one sign of e. So B is
not weak isodrastic. Thus weak isodrastic implies  constant along
smooth components of ¥°7. Since we proved in 1. that it also
implies dH A dJ7 = 0 up to the boundary of Fj then J7 is also
constant along the boundary.



continued

3. Suppose J? constant on level sets of H. Let  be a trajectory of
reduced dynamics for segments on side o of ¥~ s.t. 7(0) is not
marginal. If v(t) is marginal for some positive time, there is a first
such tp, because the set of non-marginal cases is open. The initial
value problem for xo = (o) has unique solution because the
reduced dynamics is a factor of the full GC dynamics. xp is not an
equilibrium point else it was not possible to reach it in finite time
from ~(0). So for j = J(x0), dH;j(x0) # 0. Thus dH(xp) # 0, so
the level set of H containing xp is locally a smooth curve I'. By
hypothesis, J is constant along it, so H; is constant along it. So I'
is locally invariant. But that implies that ty was not the first time
that ~(t) is marginal.

The case that a segment is split by an interior local maximum of |B|
can be treated the same way, replacing J° by J+ + 7. O



Transition flux

» Quantify failure of weak isodrasticity by dH A dJ?. Can
write it as M7 and quantify by the function M7 on X.
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Figure: The parts of X above [—2,2]? for a non-axisymmetric mirror
field of two circular coils with weaker field at top neck, contours of
H,J on upper X, and M there.

» Liouville volume A = %w ANw=eB A d(p”b") = eéHQ A dp
on GC phase space.
» Theorem: The transition flux-form for GCM corresponding to

segments in direction ¢ from ¥~ becoming marginal is
2Um1/2ﬂ3/2M06-



Proof & Consequences

» Phase-space volume-flux for a 2DoF Hamiltonian system
ixA = dH A w. So given an area A on ¥~ and a choice of
direction o from it, the corresponding transition flux is
f¢>(A) dH A w, where ¢(A) denotes the 3D volume produced by
flowing A x {p; = 0} along ZGCM in direction o and back.
» dH = pudH and integrating w along each homoclinic of
ZGCM gives 20d [. pyb* = 20dL = 20 /midJ. So
Jogy dH Nw =20p\/mpi [, dH A dJ, and the reduced
flux-form is 20m1/2u3/2Mﬁ. O
» For the rate of splitting of segments into two by >, add the
two transition fluxes.
» Liouville volume in the 3DoF phase space converts to
mB QA dpy AdpAdp="NAduAdg in gyro-coordinates.
» For particle number density p in the full 3DoF phase space,
obtain gyro-averaged density 277p wrt A A dpu.
» Then number flux transitioning is 47r%/20(ﬁ>/\/lﬁ A 3/ 2dpin
Y~ x {u}, for bounce-average (p) along marginal segment.



Perturbed tokamak example

» In cylindrical polars, BR = —% — £C0S ¢, B? = %,

Bzzl—%ﬁLs%cosgﬁ.

Figure: ¥, contours of 4 on ¥ and green for ¥+, red for ¥ .

» Remains to compute J*. Many branches, depending on
number of poloidal turns before bouncing. Separated by
heteroclinic cases.

» Note that contours of H crossing from green to red indicate
short bouncers that become unstable to long bouncing (left or
right or over the top).



Y for stellarators

» Distinguish three types for X in toroidal configurations.

1. ¥ T: The main component of X is an annulus making no
poloidal turns for one toroidal turn, subdivided into ¥+ by a
closed curve of ¥9; there may be additional components
corresponding to ripple.

2. X P: The main components are poloidal disks in a toroidal
sequence, alternating between ¥ *.

3. X H: The main component is a helical annulus making N
poloidal turns for 1 toroidal turn, subdivided into ¥+ by a
closed curve of ¥°. Could allow M # 1 toroidal turns with
self-intersection along ¥°, but not a generic case.

» Omnigenous fields are a special case of weak isodrastic.



Realisability of weak isodrasticity

| 2

>

We can make non-axisymmetric isodrastic mirror fields, including
ones that are not omnigenous, e.g.

Choose B(s, u,v) = c+r? — a(u,v)s® + b(u, v)s®, where

r? =2 —|— v2 a,b> 0, onan open neigbourhood of r < r,
0<s § and assume ¢ + r2 > 27b2 so that B > 0.

Field 885 has Y- ={s=0}, H(u,v) =c+r?

_ O/b 2(as? — bs?) ds = 4\{?22/2, So it is isodrastic if

a®/2b=2 is a function of r only.

The field has a flux function r?, but local minimum of B at s,, = %
has B(sm) —H = 27b2, so if we choose this not to be a function of
only r then the field is not omnigenous.

To realise in Euclidean space (x,y, z), want a diffeomorphism

¢ : (s,u,v) — (x,y,z) such that |¢.0s|?> = 1 and div B = 0 for

B = ¢.(B0s). Or let 8 = ¢.(du A dv) (closed), ask for ¢*|5| =

& |$+0s]> = 1 and define B by ig(dx A dy A dz) = 3. The
conditions for ¢ are 2 PDEs in first derivatives. If B is analytic then
3 local solution by Cauchy-Kovalevskaya theorem. Hence a solution
on the required domain if ¢ is large enough.



[[lustration

0.00

Figure: B-contours on a flux surface r = constant in polar angle 6 and
arclength s, for an isodrastic field that is not omnigenous.



Isodrastic stellarator fields?

> Want to make weak isodrastic stellarator fields that are not
omnigenous. In particular, try to make with all marginal
segments heteroclinic. Then H extends to a flux function. If
can specify |B| as function of arclength s from ¥~ then can
make J a function of only H, and By, not. But a priori
don’t know the length from one piece of X~ to the next.

» Using H as flux function, have local coordinate [ ig.A on flux
surfaces that is preserved by B, so can make a coordinate
system in which B-lines are straight.

» But what to specify in these coordinates and how to realise it
as image of a divergence-free field in Euclidean space?



Strong isodrastic fields
» There is an exact version of isodrasticity for FGCM: ¥~ is a
submanifold consisting of saddles for ZGCM, so persists to a
normally hyperbolic submanifold (NHS) for FGCM.
» Say field is (strong) isodrastic if forwards & backwards contr-
acting submanifolds of NHS coincide in relevant directions.
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Figure: Projection to physical space of a hyperbolic periodic orbit v
of FGCM with one direction of contracting manifolds W* up to
first bounce, for (a) an axisymmetric field, (b) a non-axisymmetric
one, (c) E/p close to minimum of |B| on X~. Brown is |B| = E/p.



Normal hyperbolicity theory

» Informally, an invariant submanifold N of a C" (r > 1) vector
field V on manifold M is normally hyperbolic if any forwards
“normal” contraction onto N is at faster rate than any
forwards contraction tangent to N, and same for backwards.

> eg X=—y,y=x,0=u$=—sinR* N={us=0}

» Contracting submanifolds: For o = +, let W7 (N) = set of
points in M whose trajectory in direction ¢ of time converges
to N. They are (injectively immersed) submanifolds of M,
containing N. Furthermore, they are the unions of submani-
folds W™ (x) (Arnol'd’s contracting whiskers) of points whose
trajectories converge together with that of a point x € .

» Persistence theorem: For C"-small change to V, an NHS
persists and is C* for any s < r and < ratios of normal to
tangential contraction rates in forwards and backwards time
(technical conditions if not compact or only locally invariant).

» So an approximately invariant submanifold with suitable
contraction estimates implies a true NHS nearby.



Scaled FGCM

>

Recall scaling to make @ = é[l(uné +dbx VI|B|),

u” = —BE . V’B‘, with é = B+5U||Cur1b, B” = é - b,
I

Hamiltonian with H = Ju? + [B|,w = § + d(u) ).

Then for § =0, N =X~ x {y| = 0} is invariant. It consists
entirely of equilibrium points. The linearised normal dynamics
is hyperbolic: § = vy, i) = —[B|"s. So it is an NHS.

So it persists to an NHS for all small enough §.

Dynamics on the NHS is Hamiltonian because wyy is non-
degenerate. 1 DoF & to leading order H = |B|. So to leading
order dynamics looks like vector field X given by ix3 = 0 d|B|
on L7, i.e. periodic orbits along the closed level sets of |B]x-.
Can compute it to any desired accuracy as a “symplectic slow
manifold”. RS MacKay, Slow manifolds, in T Dauxois, A
Litvak-Hinenzon, RS MacKay, A Spanoudaki (eds), Energy
localisation and transfer (World Sci, 2004), 149-192.



Contracting whiskers

» For § =0, the contracting whiskers are the marginal
trajectories of ZGCM approaching x € ¥~ in time-direction o.

> Those that bounce approach the same point of ¥~ in both
directions of time, so their union over x € ¥~ forms a
separatrix: a closed invariant submanifold (but not smooth at
N) of codimension one. It separates two classes of ZGCM.

» For § > 0, the local whiskers move smoothly, but in general
the separatrices are broken.

» Say B is isodrastic if the unions of the whiskers continue to
form separatrices for all § > 0 (perhaps too much to ask?).



Examples of separatrices without integrability

» de la Llave map: y' = y + h(x),x’ = x + y’ with h(x) =
g(x) + g7 1(x) — 2x for invertible degree-1 circle map g.

> Given S : R2 — R with S(x +m,y +n) = S(x,y) + mA+ nB
then H(q, p) = 3|p|2 — 3|VS(q)[? on T*T? has invariant
graph p = VS(q) in H71(0).



Visualisation of energy level
» WE(N)N H™1(E) is typically one or more periodic orbits.
~1(E) is a double cover of {|B| < E/u} glued along the

boundary (pﬁ = 2m(E — u|BJ)). Projection to physical space
identifies :|:pH

» Better to choose coordinates (X, Y, W) so that |B| = E/u is
flattened to W =0 and +p correspond to =W

P> e.g. if accessible region is the inside of an amphora, centre
(x,y) on the lowest point and find functions s, t such that
writing (x,y) = t(z)(X, Y) and p| = s(z)W then
0, (S(Z> W2 4 p|B|(t(2)X, t(2)Y, z)) £ 0 on HY(E). Then
H=Y(E) is a graph z = Z(X, Y, W) so eliminate z & plot

(X,Y,W). x



Dynamics

» In particular, get a hyperbolic periodic orbit near neck, with
contracting submanifolds (plotted using Wazewski principle).

And sketches of how they might continue:

detrapping

> |sodrastic is the case where the contracting submanifolds join.



Perturbed tokamak example
> Take scaling H = 1v2 + u|B|, w = B + d(vb).
» Axisymmetric case conserves py = 1) + |"—BC|, where
Y =3(r"+2%) withr=R— 1.
» Contours of reduced Hamiltonian Hp, for some value of py,

and set of critical points of Hp, in (r,v) (z=0).

1.260+00
6.680-02

3.550-03

—(uC)H? —2AuC)?

1.880-04

1.00e-05

» ¥~ x {v =0} perturbs to NHS N~. Get a normally elliptic
submanifold N too from X and a transverse submanifold of
circular periodic orbits in z = 0 whose vertical components of
parallel velocity and curvature drift cancel. [CHECK]



continued

» On breaking axisymmetry, ps no longer conserved, so best to
change view to level sets of py, given E. Axisymmetric case:

1.00e+00

31602

562603

» So expect righthand picture on perturbation.

» MacKay RS, On guiding centre motion, in: Transport, chaos
and plasma physics, eds Benkadda S, Doveil F, Elskens Y
(World Sci, 1994) 96-101.



Splitting of separatrices

>
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It is convenient to examine the splitting of the separatrices by
following the contracting submanifolds to the first bounce.

Let W*(x) be the contracting whiskers of x € N~ and =*(x)
be fieldline labels of their first points with v = 0. Can use
intersection with ¥~ as fieldline label. SKETCH

Isodrastic requires =" (x) = = (7(x)) for some 7(x) € N~
the same orbit as x.

Generically, x is on a periodic orbit ¥ C N~ and =*(x) trace
out closed curves 4+ in £.

7 enclose the same magnetic flux, equal to —1 f (use flux
of energy-surface volume = w).

Isodrastic requires ~* to coincide. Equivalent to 37 such that
=H(x) = = (6+(x)) for x € 7.

OtherW|se, they may intersect, forming lobes of transitioning
flux; or miss each other, forming disks of transitioning flux.
The flux for a lobe equals the difference in actions

i eA’ + prb between homoclinic orbits from the intersections.



Case of equilibria

» If x € N~ is an equilibrium point then in general =*(x) miss
each other. It is codimension-2 to coincide.

» If they miss then so do & for all small enough periodic orbits
~ around it.



Melnikov analysis

>
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v

Can compute the curves v& to first order in §: given a field-
line label ¢ (e.g. H extended along field from ¥ ) and a point
x € X7, let n(x) be the point of N~ on the same fieldline, &
a(s) be the covector at arclength s along ZGCM from x with
a(0) =d¢on TX~, a(0)b=0and & = —3,0;b/, & = b,
Then the first order change A¢ along W*(n(x)) to the first
bounce is given by +6 M¢, where Poincaré-Melnikov function

Mg = [ gacL + 4 (an — K) ds along the ZGCM from x,
Withn:ﬁxV\BL K = an at x and u = \/2(H — |B).

So the first-order difference between ¢ on = is 26 Me.
Tidier to compute a and M wrt fieldline time instead of s.
For £ = H it simplifies to My = [ ak‘%s‘ where k = curl(ub).
Can show dH A dJ = My, so deduce that weak
isodrasticity is the first-order condition for strong isodrasticity.

For equilibrium points on N~, choose two independent field-

line labels to compute first-order displacement between =*.



Behaviour near generic ¥.°

» For a C*-generic point of X0 there are fieldline labels x, y
nearby for which |B| = f(x,y) + ys + xs? + ks> + as* + o(s*)
for (k,a) # (0,0) and some function f.

» Then |B|' =y + 2xs + 3ks? + 4as® + o(s3), so T is locally
y = —2xs — 3ks? — 4as> 4 o(s3).

> |B|"” = 2x + 6ks + 12as% + o(s?), so £ is locally
x = —3ks — 6as® + o(s?), y = 3ks? + 8as® + o(s3).

> k#£0, k=0,a>0, k=0,a<0:




Melnikov near ¥°

» Define ¢ by 8 = c(x,y)dx A dy. Take k # 0. Use x,s as
coordinates on X~ (x + 3ks < 0). For short marginal

bouncers to =, M = —7V_3;;23k5(2xs + 3ks? + 2xf,, + 3kfy),

evaluated at (x, —2xs — 3ks®), to leading order in s.

» So weak isodrastic requires kf, = 0, which is equivalent to H
constant along ¥0.

» For long marginal bouncers, generic F; for k # 0 is

M/\W

T




Short bouncers around general "

» Bouncing GCs with short segment oscillate around ¥ .
» The limit j — 0 of the reduced motion X is given by
ixB = —dHy with Hy = |B| on T,
» So bounded components of level sets of |B| on £ can be
used for approximate confinement.
» There is a true periodic orbit of FGCM near to such a level set.
» The short bouncers nearby have linear approximation
H; = |B|+<./|B|" on T+.
» Generically for all small enough j > 0, there is a set of

invariant tori for FGCM.

> If level set of |B| on X crosses from £t to X~ then short
bouncers lose stability and become long bouncers to one side
or the other or both.
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