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Interaction of charges

I Charged particles exert Coulomb force e1e2
4πε0R2 on each other,

where R = |q1 − q2| (repulsive for same signs, attractive for
opposite signs). Corresponds to potential V (R) = e1e2

4πε0R
.

I Interaction of charges can lead to cross-field diffusion of
particles and of energy, also fusion!

I Generalise to any potential V (R). In particular, can model
effect of sea of other charges by Debye-shielded potential
V (R) = e1e2

4πε0R
e−R/λD , where Debye length λD =

√
ε0∑

j nje
2
j βj

,

with number density nj and coolness βj = 1
kBTj

of species j .

[but response to moving charge?]

I Might want to modify repulsive case to simulate fusion.

I Could allow any V (r , z) where z is separation along field and
r perpendicular to field.



Two charges in uniform magnetic field

I Treat non-relativistic motion of two charges in a uniform
magnetic field B = Bẑ .

I 6 DoF Hamiltonian dynamics: H = |p1|2
2m1

+ |p2|2
2m2

+V (|q1− q2|),
ω =

∑
i dqxi ∧ dpxi + dqyi ∧ dpyi + dqzi ∧ dpzi + kidqxi ∧ dqyi ,

where ki = −eiB. Note pi = mi q̇i . Let Ωi = ki/mi . Write
Coulomb case as V (R) = k1k2G

R with G = 1
4πε0B2 .

I D Pinheiro, RS MacKay, Interaction of two charges in a
uniform magnetic field: I. planar problem, Nonlinearity 19
(2006) 1713-45.
D Pinheiro, RS MacKay, Interaction of two charges in a
uniform magnetic field: II. spatial problem, J Nonlin Sci 18
(2008) 615–666.

I Could add a perpendicular electric field E , but can remove its
effect by going to frame with velocity E × B/|B|2
[contrast incorrect papers on atoms in crossed fields].



Symmetries

I Symmetries under all translations and rotation about z-axis.

I Conserved quantities: Pz =
∑

i pzi , P⊥ =
∑

i pi⊥ + kiJqi⊥,

L =
∑

i q
T
i⊥Jpi⊥ −

ki
2 |qi⊥|

2, where J =

[
0 1
−1 0

]
.

I Let gyroradius vector ρi = J pi⊥
ki

, gyrocentre Qi = qi − ρi .



Hidden symmetry for equal gyrofrequencies

I If Ω1 = Ω2, ∃ additional locomotive coupling-rod (LCR)
symmetry, conserving W = |(p1 + p2)⊥|2. The symmetry field
is Q ′i = 0, (ρ1 − ρ2)′ = 0, (p1 + p2)′ = −J(p1 + p2).

I The symmetry action on qi is qi (θ) = Q̃i + Rθρ̄, where

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, ρ̄ = J (p1+p2)⊥

k1+k2
= k1ρ1+k2ρ2

k1+k2
and

Q̃i = qi − ρ̄ (Q̃1 = Q1 + k2(ρ1−ρ2)
k1+k2

, Q̃2 = Q2 + k1(ρ2−ρ1)
k1+k2

).

Figure: Charges (equal) at B,D; GCs at E,F; LCR rotation about A,C



Reduction

I By Pz : Let M = m1 + m2, m = m1m2
M , qz = qz1 − qz2 ,

pz = (m2pz1 −m1pz2)/M, Qz = (m1qz1 + m2qz2)/M. Write
Qi for Qi⊥, e.g. R =

√
|Q1 + ρ1 − Q2 − ρ2|2 + q2

z . Then

H =
k1Ω1

2
|ρ1|2 +

k2Ω2

2
|ρ2|2 + V (R) +

p2
z

2m
+

P2
z

2M
,

ω =
∑
i

ki (dQxi ∧dQyi −dρxi ∧dρyi ) +dqz ∧dpz +dQz ∧dPz .

wlog Pz = 0.

I In gyro-variables, remaining integrals of motion are
P⊥ = J

∑
i kiQi , L =

∑
i
ki
2 (|ρi |2 − |Qi |2), W = |

∑
i kiρi |2.



Case k1 + k2 6= 0

I e.g. e−- e−, H+- H+ (H = p,D,T ), H+- He2+, He2+- e−

I Write K = k1 + k2, k = k1k2
K and

Q̄ = 1
K

∑
i kiQi , ρ̄ = 1

K

∑
i kiρi , S = Q1 − Q2, s = ρ1 − ρ2.

So ρ1 = ρ̄+ k2
K s, ρ2 = ρ̄− k1

K s and similar for Qj .

I Then L = K
2 (|ρ̄|2 − |Q̄|2) + k

2 (|s|2 − |S |2), W = K 2|ρ̄|2,

H = P2
z

2M + p2
z

2m + Ω̄K
2 |ρ̄|

2 + kδΩ ρ̄T s + k2

2m |s|
2 + V (R),

ω = dQz ∧ dPz + dqz ∧ dpz + K (dQ̄x ∧ dQ̄y − d ρ̄x ∧ d ρ̄y ) +
k(dSx ∧ dSy − dsx ∧ dsy ), where Ω̄ = 1

K

∑
i kiΩi ,

δΩ = Ω1 − Ω2, R =
√
|S + s|2 + q2

z .

I So Q̄ conserved (equivalent to P⊥ = JKQ̄), thus no nett
perpendicular displacement of charge. wlog Q̄ = 0.

I To reduce by L (simultaneous rotation of Q̄, ρ̄, s, S), let
q = (q1−q2)⊥, suppose r = |q| 6= 0 and use coordinates X ,Y
along and ⊥ to q, i.e. let φ be direction of q in (x , y) and
write (sx , sy ) = (sX cosφ− sY sinφ, sX sinφ+ sY cosφ), etc.



continued
I Then dsx ∧ dsy = dsX ∧ dsY + 1

2d |s|
2 ∧ dφ. Thus,

K (dQ̄x ∧ dQ̄y − d ρ̄x ∧ d ρ̄y ) + k(dSx ∧ dSy − dsx ∧ dsy ) =
K (dQ̄X ∧dQ̄Y −d ρ̄X ∧d ρ̄Y ) +k(dSX ∧dSY −dsX ∧dsY )−dL∧dφ.

I But q = S + s so eliminate S by SX = r − sX ,SY = −sY :
|S |2 = (sX − r)2 + s2

Y & dSX ∧ dSY − dsX ∧ dsY = −dr ∧ dsY .
Write pr = −ksY and use
r2 = |S + s|2 = |S |2 + 2ST s + |s|2 = |S |2 − |s|2 + 2rsX to write

sX = r
2 + L̃

kr with L̃ = L + K
2 (|Q̄|2 − |ρ̄|2).

I Thus, obtain ω =
dQz∧dPz+dqz∧dpz+K (dQ̄X∧dQ̄Y−d ρ̄X∧d ρ̄Y )+dr∧dpr−dL∧dφ,

H =
P2
z

2M +
p2
z

2m + Ω̄K
2 |ρ̄|

2 + δΩ k ρ̄T s + 1
2m ( kr

2 + L̃
r )2 +

p2
r

2m + V (R),

with k ρ̄T s = ρ̄X ( kr
2 + L̃

r )− ρ̄Y pr , R =
√
r2 + q2

z and L̃ as above.

I Family of 3DoF systems on (ρ̄, r , pr , qz , pz) param. by Pz , Q̄, L.
I Assumption r > 0 is automatic for A = 2L

K + |Q̄|2 < 0 because
r = 0 implies |S | = |s| implies A = |ρ̄|2 ≥ 0.

I But for other sign of A, should make another coordinate patch to

cover r = 0, e.g. take coordinates along and ⊥ to ρ̄, which would

produce a form closer to that for K = 0 to come.



Case δΩ = 0

I e.g. two of the same species, also D+- 4He2+.

I If δΩ = 0 then system is rotation-symmetric in ρ̄, so
|ρ̄|2 = W /K 2 is conserved and obtain reduction to 2DoF on
(r , pr , qz , pz), parametrised by Pz , Q̄, L̃, |ρ̄|2, with

H = P2
z

2M + p2
z

2m + Ω̄K
2 |ρ̄|

2 + 1
2m (kr2 + L̃

r )2 + p2
r

2m + V (R),

and ω = dr ∧ dpr + dqz ∧ dpz . Potential for L̃ 6= 0 below left.

I L̃ = k
2 (|s|2 − |S |2), so r = 0 (S = −s) implies L̃ = 0; treat

this as a special case, with r ∈ R replacing r > 0. Repulsive
potential bounds motion away from (0, 0) (right).
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Case K = 0

I e−- H+ or e−- e+ (positron).

I Write k = k1 = −k2, q = (q1 − q2)⊥, p = −k
2J(ρ1 + ρ2),

C = −1
2J(q1 + q2)⊥, Π = k(Q1 − Q2)⊥, α = m2−m1

2m1m2
.

I Then

H =
1

2m
|p|2 +

k2

8m
|q|2 − k

4m
ΠTq +

1

8m
|Π|2 + V (R)

+ α(kq − Π)T Jp +
p2
z

2m
+

P2
z

2M
,

with R =
√
|q|2 + q2

z , and
ω =

∑3
j=1 dqj ∧ dpj +

∑2
j=1 dCj ∧ dΠj + dQz ∧ dPz .

I So Π and Pz are conserved and (H, ω) reduces to 3DoF in
(q, p, qz , pz).

I L = qT Jp + CT JΠ also conserved but unless Π = 0, does not
constrain reduced variables nor commute with Π.



Subcase Π = 0

I Π = 0 means GCs on same fieldline

I By writing q = rer , p = prer + pθ
r eθ, pθ is conserved and

system reduces to 2DoF in (r , pr , qz , pz):

H = 1
2m (p2

r + p2
z +

p2
θ

r2 ) + k2

8m r2 + V (R) + P2
z

2M + αkpθ,

R =
√

r2 + q2
z , ω = dr ∧ dpr + dqz ∧ dpz .
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I If pθ = 0 (i.e. ρ1 + ρ2 ⊥ q1 − q2) then dynamics is singular at
(r , qz) = (0, 0) (V is attractive). wlog qy = 0 and

H = 1
2m (p2

x + p2
z ) + k2

8mq2
x + V (R), with R =

√
q2
x + q2

z ,
ω = dqx ∧ dpx + dqz ∧ dpz . Can Levi-Civita regularise.



Levi-Civita regularisation

I Write q = qx + iqz = w2, w ∈ C, p = px + ipz ∈ C, and set
π = 2w∗p ∈ C. Then p∗dq = π∗dw . Note k1k2 < 0.

I H = |p|2
2m + k2

8mq2
x + k1k2G

|q| = |π|2
8m|w |2 + k2

8m (w2
r − w2

i )2 + k1k2G
|w |2 .

I Scale to a new time s by ds
dt = 4m|w |2.

I Then the original dynamics on H = E transforms to that of
H̃ = 1

2 |π|
2 + 1

2k
2(w2

r − w2
i )2|w |2 − 4mE |w |2 + 4mk1k2G on

H̃ = 0 and continues smoothly through w = 0.

I Accessible region in w -plane for various E :
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I Copes with Debye shielding too.



Planar dynamics

I All cases have invariant subspace qz = pz = 0. Dynamics
reduces by 1 DoF.

I Case δΩ = 0: H = k2

8m r2 + L̃2

2mr2 + p2
r

2m +V (r) + cst. For L̃ 6= 0
or V (r)→ +∞ as r → 0, get periodic oscillations about
equilibrium r0 minimising H. Its energy

E0 = P2
z

2M + K Ω̄
2 |ρ̄|

2 + |Ω̄L̃|+ V
(

( 2|L̃|
|k| )

1
2

)
to first order in V .

Coulomb case V (r) = kKG
r gives elliptic functions. V = 0 has

r =
√
A + B sin Ωt with A = 4E

kΩ , B = 2
k

√
4E2

Ω2 − L̃2

(r = distance between two particles with same gyrofrequency).

I Case K = 0,Π = 0: same with pθ replacing L̃ and reinterpret-
ation of k . For pθ 6= 0 and (attractive) Coulomb potential
there is precisely one equilibrium and get oscillations about it.
But when pθ = 0, r reaches 0 in finite time (can restrict the
regularisation to q real to continue through).



General planar cases: K 6= 0

I INCOMPLETE NOTES IN PROGRESS FROM HERE ON

I Easiest studied in Q̄,S , ρ1, ρ2 coordinates.

H =
∑

j
kjΩj

2 |ρj |
2 + V (|S + ρ1 − ρ2|),

L =
∑

j kj |ρj |2 − K |Q̄|2 − k |S |2 and Q̄ conserved.

I Use coordinate system so that S + ρ1 − ρ2 is on positive
x-axis.

I Then for repulsive V , the dynamics oscillates around a unique
equilibrium (minimum). Call its energy E00.

I Can study conditions to reach fusion.



Opposite signs

I For opposite sign charges, have to consider r ∈ R and after
regularisation get oscillations about ρ̄X = 0, r = 0.

I Although extending after collision is fictitious, many regular-
ised trajectories continue for small L̃ to true trajectories with
repeated near-collisions, making a chaotic subshift. We proved
this for all high enough energies if Ω1 + Ω2 6= 0. [EXPLAIN?]



K = 0

I H = |p|2
2m + |q|2

8m + αkqT Jp − ΠT ( k
4mq + αJp) + V (|q|) + cst.

I Absorb the linear terms in p into the quadratic. Left with
positive-definite in q − q1, for some q1(Π), plus negative V .
Get oscillations about 0 (after regularisation) and possible
saddle to a potential well about some q0 (e.g. two widely
separated gyromotions).

I Get chaotic subshift again for all high enough energies if
Ω1 + Ω2 6= 0 (but excludes e−- e+) and Π 6= 0.

I Consequences for e−- e+ annihilation (α = 0).



Spatial dynamics

I Reduced z-dynamics is q̇z = pz
m , ṗz = −qz V ′(R)

R , coupled to the

other DoF via R =
√
q2
z + r2.

I Same signs of charge (Λ is 4D planar subspace):

634 J Nonlinear Sci (2008) 18: 615–666

Fig. 1 Signs of q̇z and ṗz for
the case of same-sign charges

Fig. 2 Sketch of the dynamics of (qz,pz) for charges of the same sign. Λ is the invariant set of coplanar
states. The invariant manifolds of Λ are 4D in each 5D energy level above the minimum energy on Λ for
the reduced system. They do not project to curves in (qz,pz) but the directions of motion of qz,pz are
correctly represented. They separate trajectories from qz = ±∞ into “bounce-back” and “pass-through”

In particular, every trajectory in the quadrant qz ≥ 0, pz ≤ 0, except those on Λ

(qz = pz = 0), has qz(t) decreasing, pz(t) increasing. Thus it has to do precisely one
of the following:

(1) Cross pz = 0, qz > 0.
(2) Cross qz = 0,pz < 0.
(3) Converge to Λ.

In the first case, qz(t) subsequently increases to +∞, so we say the gyrating par-
ticles “bounce-back”. In the second case, qz(t) decreases to −∞, so we say the gy-
rating particles “pass-through”. The third case can be called the stable set of Λ. Only

I For E < E00 all trajectories bounce back. For E > E00, subset ΛE

with energy E is an S3, it is ‘morally’ normally hyperbolic and its 4D
forward contracting submanifolds separate the 5D energy level into
points whose trajectories pass through and those that bounce back.

I For fusion, want to be on W+(Λ) with asymptotic trajectory on Λ
approaching r = 0.

I For δΩ = 0: extra integral |ρ̄|2, 2D lower, and critical energy E0.



Flux over a saddle
I For 3DoF Hamiltonian system (H, ω), vector field X is defined

by iXω = dH and energy-level volume µ by µ ∧ dH = 1
6ω
∧3.

Then flux of µ, iXµ = 1
2ω
∧2.

I Let SE = {x ∈ H−1(E ) : qz = 0}. It is an S4 that separates
H−1(E ) into qz < 0 and qz > 0 (“dividing surface”).

I Decompose SE = S±E ∪ ΛE according to the orientation of
iXµ: ± = sgn pz and ΛE forms the “equator” pz = 0.

Illustration for 2DoF:

Volume 145, number 8,9 PHYSICS LETTERS A 30 April 1990 

Fig. 2. The  energy surface ZE, for E> EC, with Lyapunov periodic 
orbit Ye, its  s table  and unstable  manifolds, and dividing surfaces  
S, and S_. 

3. The linearisa tion about a  saddle  has  a  family of 
periodic orbits  of period 21~10 for E> EC given by 

p:+q:= 2 (E-E,), pz=q2=o. 

Lyapunov proved (see , e .g. ref. [ 1 ] ) tha t the  full 
sys tem possesses  a  family of periodic orbits  yE tan- 
gent to this  family, parametrised by energy E> EC, of 
period approaching 2rr/w as  E+E,. They are  hy- 
perbolic with Ploquet multiplie rs  approaching 
exp( I! 2rro/w). yE has  s table  and uns table  mani- 
folds , which are  given approximately by p2= + q2. 
Hence we obta in a  picture  of CE like  fig. 2, showing 
yE and its  two-dimensional s table  and uns table  man- 
ifolds . This  picture  was  obta ined by Conley [ 41. 

4. Choose surfaces  S  + in I&, spanning YE on e ither 
s ide , locally lying between its  s table  and uns table  
manifolds , and transverse  to the  flow. They could 
approximate  the  two halves  p2> 0, p2 < 0, of the  
sphere  q2=0, for example , though except in specia l 
cases  the  Lyapunov orbits  do not exactly sa tis fy q2 = 0. 
S  + u S  _ u yE separa tes  XE into an inner region L and 
an outer region R, which roughly speaking corre- 
spond to q2 < 0 and q2 > 0, respectively (L and R for 
“left” and “right”). The invariant manifolds  of yE 
separa te  I& into points  whose  orbits  pass  close  to YE 
and cross  S , or cross  S_ or are  reflected back into 

R or L. To get from R to L an orbit mus t cross  S_, 
to get from L to R is  mus t cross  S ,. What is  the  ra te  
a t which orbits  cross  S+? 

5. Let us  ca lcula te  the  flux of energy-surface vol- 
ume across  a  surface  S  in an energy surface  &. This  
is  essentia lly the  same ca lcula tion a s  in ref. [ 9 1, and 
Toller e t a l. derived an ana logous  formula  for the  flux 
of the  canonical ensemble  [ 6 1. Phase  space  volume 
is  defined by the  four-form 

!&fWhW, 

where  w = dp, A dq, + dp2 A dq, is  the  fundamenta l 
two-form. The energy-surface volume ? ,r in CE is  de- 
fined by the  re la tion 

dHA+2. 

The Hamiltonian vector fie ld v is  defined by 

w(& v) =H(O 

for a ll tangent vectors  r, which can be written a s  
in = dH, where  ip for a  k-form (Y and vector fie ld 
v is  the  (k- 1 )-form defined by 

i,o(G, . . . . rk-l)=(Y(e,,...,~~--l,V) * 

The flux of energy-surface volume through any sur- 
face S  in & is  given by integra ting the  two-form 

I=0 

over S . To compute  q),, take  any vectors  &, r2 tangent 
to CE, and & arbitrary. A short ca lcula tion leads  to 

a ({,, Tz,C, u)=dff(&) w(rl,rz) 3 

~~rl(b,t2,&, V)=W&) rt(C,,tz, ~1. 

Hence, provided tha t dH# 0, (i.e . & does  not con- 
ta in any equilibrium points ), 

P(h,t-z)=W(rl~r2) * 

So the  flux of energy-surface volume across  a  surface  
S  in CE is  

p(S) = j V= j w= j p*dq, 
S S as  

the  action integra l round the  boundary of S . We s ta te  
this  a s  a  

Theorem [ 9 1. The flux of energy-surface volume 

426 

I Flux of µ from qz < 0 to qz > 0 is
∫
S+
E

1
2ω ∧ ω =

∫
ΛE
ω ∧ α,

where α is a primitive of ω. Same for other direction.

I RS MacKay, Flux over a saddle, Phys Lett A 145 (1990) 425-7



Opposite signs
I Let E∞ = P2

z
2M . For E < E∞, H−1(E ) is bounded.

I Regularise Ω± = {qz = ±∞, pz = 0} by setting qz = ±σ−2

locally and using new time s with ds/dt = σ3. Then
dσ
ds = − p

2m , dp
ds = k1k2Gσ

(1+r2σ4)3/2 , making Ω± ‘morally’ normally

hyperbolic.

636 J Nonlinear Sci (2008) 18: 615–666

Fig. 4 Sketch of the dynamics of (qz,pz) for charges of opposite sign. The horizontal coordinate η is
related to qz by qz = η

(1−η2)2 . Ω± are normally hyperbolic invariant sets at qz = ±∞, pz = 0, for a

regularised system with new time s related by ds/dt = (1 − η2)−3. The invariant manifolds for Ω± are
4D in each 5D energy level above the minimum energy on Ω± for the reduced system. They do not project
to curves in (qz,pz), but the directions of motion of qz,pz are correctly represented. They separate each
quadrant of (qz,pz) into free and trapped subsets. They intersect the 4D plane qz = 0 in 3-spheres. The
two 3-spheres with pz > 0 are expected to intersect but not to coincide, so there is flux from free qz < 0
to trapped qz > 0 and from trapped qz < 0 to free qz > 0. Similarly for pz < 0

are smooth submanifolds of codimension one (a modification of usual proofs should
work).

The stable and unstable manifolds of Ω±, extended to qz = 0, separate the state
space into a “trapped” region which reaches qz = ±∞ at only Ω± and two “free”
regions which extend to qz = ±∞ with pz > 0 and pz < 0, respectively. Although we
have not proved it, we expect that the stable and unstable manifolds intersect at qz = 0
but do not coincide. Then the intersections of the invariant manifolds with qz = 0
form 3D lobes in each energy level, consisting of the flux between free and trapped
motions. The fluxes are given by action integrals over the intersection submanifolds.
Any trajectory other than those on an invariant manifold of Ω± describes a sequence
of transitions in the graph below.

I Their 5D contracting submanifolds separate points which
bounce off Ω± from those that go through infinity (in s).

I Let Ω±(E ) be intersections with H−1(E ) for E > E∞.
I Their 4D contracting submanifolds intersect qz = 0 in non-

coincident 3-spheres; get fluxes between “bound” and “free”.
Can bind only once and unbind only once.

I 2D lower for the case K = 0,Π = 0 with extra integral pθ.



Reconstructed motion
I pz1 = m1

M Pz + pz , pz2 = m2
M Pz − pz , and get qzj by integrating

q̇zj = pzj/mj .

I Reconstructing the rest from reduced dynamics is more messy.

I But computation of full dynamics is easy:J Nonlinear Sci (2008) 18: 615–666 639

Fig. 5 Four distinct dynamical behaviours. For all the figures we fix the parameters e1 = m1 = 1,
B = 1 and ε0 = 0.1 (ε0 is really about 8.854 × 10−12 F m−1 but by choice of units/scaling
symmetry we can scale it to any convenient value for the numerics) and initial conditions
qx1 (0) = −qx2 (0) = 2, px1 (0) = px2 (0) = 1 (px1 (0) = −px2 (0) = 0.1 on the bottom right figure)
and qy1 (0) = qy2 (0) = py1 (0) = py2 (0) = 0. On the top left figure we set e2 = −4, m2 = 3 and
qz1 (0) = −qz2 (0) = 0.1, pz1 (0) = −pz2 (0) = −0.01 and obtain “atom-like” behaviour. On the top
right figure we set e2 = m2 = 3 and qz1 (0) = −qz2 (0) = 0.1, pz1 (0) = −pz2 (0) = −0.01 and obtain
“bouncing-back” behaviour. On the bottom left figure we set e2 = m2 = 3 and qz1 (0) = −qz2 (0) = 10,
pz1 (0) = −pz2 (0) = −0.85 and obtain “pass-through” behaviour. On the bottom right figure we set
e2 = −4, m2 = 3 and qz1 (0) = −qz2 (0) = 10, pz1 (0) = −pz2 (0) = −0.2 and obtain an orbit starting
and ending free but spending a finite time trapped

We will be considering the cases of Sect. 4.3 where the dynamics in the ver-
tical direction are unbounded: in the limits of t → ±∞ we have that |qz(t)| =
|qz1(t) − qz2(t)| → ∞. In such cases, the typical situation is the following: initially
the particles have a large vertical separation and their trajectories are just helices of
the form (5.1), as described for the zero-interaction case. As their vertical separation
reduces, the particles interact and their paths are no longer helices. The two particles
eventually separate again and their paths approach helices again. Due to the interac-
tion, the helices in which the particles move before and after interacting are different.
The scattering map describes such asymptotic changes to the helices.

We now rigorously introduce the scattering map. We assume that as |t | → ∞
the two particles have infinite vertical separation and the particles move in helices.
We would like the scattering map to map the main asymptotic properties of such
helices, i.e., the guiding centres and gyroradius as well as the vertical position and
momentum as the particles approach t = −∞, to the asymptotic properties of the
helices at t = +∞. We proceed as follows. First of all, we note that since Cz = Pz = 0

Figure: (a),(d) opposite signs; (b),(d) equal Ω



Scattering map
I Trajectories starting from |qz | =∞ at t = −∞ go to
|qz | =∞ at t = +∞ except for (same sign): those
asymptotic to Λ, (opposite sign): those that become bound
forever (does this have positive measure or not?).

I Define scattering map from state at t = −∞ to t = +∞.
Asymptotic gyroradii |ρi |, guiding centre fieldlines Qi , parallel
momenta pzi well-defined. For gyrophases θi , can define
φi = θi − Ωi t, which has asymptotic limits (possibly ±∞).

I Only problem is qzi : would like to claim qzi −
pzi
mi

t has
asymptotic limits but need screening for this, e.g. 1D case
H = 1

2p
2
z + G

z = E > 0 on z > 0 gives

z − pt = G
E

(
1− sgnG

√
1− G

Ez tanh−1(1− G
Ez )sgn(G)/2

)
∼

G
E (1− sgn(G ) 1

2 log 4Ez
|G | ). [CHECK G < 0] But not important.

I The conserved quantities constrain the scattering map.
I Change in pz leads to change in parallel KE:

∆E‖1 = ∆pz(p
+
z +p−z
2m1

+ Pz
M ) and similar.



Scattering map for same sign charges

I Except for trajectories in or asymptotic to Λ, scattering map is
well-defined and smooth. Subdivides into pass-through and
bounce-back.

I Case δΩ = 0: Pz , Q̄, |ρ̄|2, L̃, H conserved. Tidiest to write in

terms of pz ,S , s. kΩ
2 |s|

2 + p2
z

2m = cst, |S |2 − |s|2 = cst. So
there is an allowed interval I in pz and for each pz ∈ I there is
a unique |S |, |s|. One or other goes to 0 at the ends of I ,
depending on the sign of L̃. Except for L̃ = 0 the allowed
space is an S3. But given s there is also an S1 for (ρ1, ρ2). So
the scattering map is on S3 × S1. Change in S changes the
fieldlines for the GCs, change in |s| changes the gyroradii.
Both could lead to cross-field transfer of perpendicular KE.



continued

I Formulate using coordinates for the individual particles but in
centre of mass frame. Write ρi =

√
2νieθi (νi is scaled µi ).

I H = p2
z

2m +
∑

i kiΩiνi + V (R).



Weak interaction for δΩ = 0

I If helices are far apart there is another adiabatic invariant, for
(r , pr ). Write V = V (r , qz). Then for fixed qz ,

Hr = k2

8m r2 + L̃2

2mr2 + p2
r

2m + V (r , qz) performs oscillations at
frequency roughly Ω̄. So if effect of changing qz is small in a
gyroperiod then action I =

∫
prdr is an adiabatic invariant.

I When V negligible, Hr = 1
2 Ω̄k |s|2 & I = 1

2k |s|
2. So scattering

map preserves |s|, hence p2
z and |S | too. Thus no change in

magnetic moments. Ignoring the gyrophase, only changes are
a possible sign-change of pz and rotation of S about Q̄.

I Can compute the rotation of S . But it will produce no
transport of charge, nor mass nor KE in a cross-field gradient.
Only perpendicular to the gradient.

I Bouncing could produce parallel transport of parallel KE, but
is limited to a small fraction of encounters.



δΩ 6= 0

I If assume ratio between gyrofrequencies is not a low-order
rational, the helices are widely separated and pz not too large,
then can two-phase average, deduce conservation of the
magnetic moments again and compute the angle of rotation
of S . But produces transport perpendicular to gradient.



Opposite sign charges

I Scattering map defined for initial conditions that do not get
bound forever, but “chaotic” because the pair of GCs may
become bound temporarily. But perhaps irrelevant in plasma
because other particles interact too.

I Bound region is usually claimed to be negligible (“fully
ionised”) but I’m not so sure.

I Have to treat neutral case (k1 + k2 = 0) separately. In
averaging approximation, get a shift of guiding centres
perpendicular to their separation. But this produces flow
perpendicular to a density gradient.



Non-widely separated helices

I So I think we have to analyse the non-widely separated case
to find significant effects of encounters between particles.

I Usual mantra (e.g. Helander & Sigmar, Collisional transport
in magnetized plasmas, 2002) is that transport is dominated
by accumulation of small deflections from approaches b much
larger than bmin = e1e2

4πε0kBT
(for 90o deflection) but less than

λD . This applies to magnetised plasma for gyroradii larger
than λD . But ITER is planned to have gyroradii smaller than
λD . So needs a more refined analysis. Approximate
treatments by Psimopoulos&Li, Dubin&O’Neil. I think the
result will be roughly that the usual log Λ with Debye cutoff is
replaced by gyroradius cutoff.



Distribution function

I
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