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Interaction of charges

» Charged particles exert Coulomb force 4:;3?2 on each other,
where R = |q1 — 2| (repulsive for same signs, attractive for

opposite signs). Corresponds to potential V(R) = z21%5.

» Interaction of charges can lead to cross-field diffusion of
particles and of energy, also fusion!

» Generalise to any potential V(R). In particular, can model
effect of sea of other charges by Debye-shielded potential

V(R) = %e‘m’\’?, where Debye length \p = /ﬁoefﬁj
with number density n; and coolness 3; = ﬁ of species j.
[but response to moving charge?]

> Might want to modify repulsive case to simulate fusion.

» Could allow any V/(r,z) where z is separation along field and
r perpendicular to field.



Two charges in uniform magnetic field

» Treat non-relativistic motion of two charges in a uniform
magnetic field B = BZ.

» 6 DoF Hamiltonian dynamics: H = ‘2’11”‘1 + |2pfn‘2 + V(g1 — q2),
w =Y :dqy A dps + dqy,, A dpy, + dqz A dp,, + kidgx, A dqy,,
where k; = —e;B. Note p; = m;q;. Let Q; = k;/m;. Write
Coulomb case as V(R) = % with G = ﬁ.

» D Pinheiro, RS MacKay, Interaction of two charges in a
uniform magnetic field: I. planar problem, Nonlinearity 19
(2006) 1713-45.

D Pinheiro, RS MacKay, Interaction of two charges in a
uniform magnetic field: Il. spatial problem, J Nonlin Sci 18
(2008) 615—666.

» Could add a perpendicular electric field E, but can remove its
effect by going to frame with velocity E x B/|B|?

[contrast incorrect papers on atoms in crossed fields].



Symmetries

» Symmetries under all translations and rotation about z-axis.
» Conserved quantities: P, =), p;, PL =) ;piL + kiJgiL,

) 0 1
L= 0] o~ laus P where S = | % 0|

» Let gyroradius vector p; = JPLI%, gyrocentre Q; = q; — pj.




Hidden symmetry for equal gyrofrequencies

» If Q1 = 5, 3 additional locomotive coupling-rod (LCR)
symmetry, conserving W = |(p1 + p2)1|?. The symmetry field
is Q =0, (p1—p2) =0, (pr+p2) = —J(p1 + p2).

» The symmetry action on g; is g;(f) = Qi + Ryp, where
Ry = |: cost) —sinf ]’ _ J(p1+P2) _ kipitkops

sinf  cosf ki+ko kit - 2nd

Gi=qi—p (Gr=Q+ Rl G, =+ kleop)y

Pa—

Figure: Charges (equal) at B,D; GCs at E,F; LCR rotation about A,C



Reduction

| 2 By PZZ LetM:m1+m2,m_m}\/r,nQ|qz—qz1 Az,
pz = (M2pzy — M1pz)/M, Q; = (m1qz + Maqz,)/M. Write
Qi for @1, eg. R=1/|Q1+ p1 — Q2 — p2|? + g2. Then

ki 2., k292 > p: | P2
V4 rz _Z
B+ 52 Ry 2y D2

H =

w=Y_ ki(dQqNdQy, —dps, Ndpy,) + daz N dp. + dQ. A dP.
i
wlog P, = 0.
» In gyro-variables, remaining integrals of motion are

PL=JY kQi L=3%(pil2 = |Qi1?), W =3, kipil.



Case k1 + kp #0
> eg. e -e , H'- HY (H=p,D, T), H"- He®t, He*t- e~
> Write K = ky + ko, k:%and

__szleﬁ_KZklphS—Ql Q215:,01_102
Sopi=p+ KS pz—ﬁ—fs and similar for Q;.

> Then L= 5(|7* — Q%) + 5(Is]* — |SI?), W = K?|],

H=tz 4 Py 9K 152 4 k5057 s + 221512+ V(R),

W = sz/\sz+qu/\sz+K(ng/\de—d,Ox/\dﬁy)-i-
k(dSx N dS, — dsy A dsy), where Q = % > ki,

=0 —Q, R=+/|S+5s]°+q2.
> So Q conserved (equivalent to P, = JKQ), thus no nett
perpendicular displacement of charge. wlog @ = 0.

» To reduce by L (simultaneous rotation of @, 7,s,S), let
q = (91— q2) .1, suppose r = |g| # 0 and use coordinates X, Y
along and L to g, i.e. let ¢ be direction of g in (x,y) and
write (Sx,s,) = (sx cos ¢ — sy sin ¢, sx sin ¢ + sy cos @), etc.



continued

| 2

Then ds, A ds, = dsx A dsy + $d|s|> Ad¢. Thus,

(dQX A de —dpx ANdpy) + k(dSx N dS, — dsy A ds,) =

(dQX ANdQy — dpx N\ dpy) + k(dSX A dSy dsx N\ dSy) dLAdo.
But ¢ = S + s so eliminate S by Sx = r — sx, Sy = —sy:
|S|2 = (sx — r)? + 5% & dSx A dSy — dsx A dsy = —dr A dsy.
erte pr = —ksy and use

|S + s|2 |S|? +25Ts + |52 = |S|? — |s|> + 2rsx to write

sx = 5+ k with L=L+ & (|Q|2 1p?).
Thus, obtain w =
sz/\dP +dqz/\dpz+K(d@x/\d@y—d[)x/\dﬁy)+dr/\dp,—dL/\d¢,

- 2
H=gi+ 2 + 252 + 00 kpTs + A (% + D2+ £ + V(R),
with kpTs = px (& L)—pyp,, R = \/r2+q§ and [ as above.
Family of 3DoF systems on (p, r, p,, gz, p,) param. by P,, Q, L.

Assumption r > 0 is automatic for A = 35 4 |Q|?> < 0 because
r =0 implies |S| = |s| implies A = |p|?> > 0.

But for other sign of A, should make another coordinate patch to
cover r =0, e.g. take coordinates along and 1 to p, which would
produce a form closer to that for K = 0 to come.



Case 62 =0

> e.g. two of the same species, also D- *He?*.

» If 0Q = 0 then system is rotation-symmetric in g, so
|| = W/K? is conserved and obtain reduction to 2DoF on
(r, p,,qz,pz) parametrised by P, @, L,|5|?, with

H=Fe B2y QKge 1k L2y 22y ()
and w = dr A dp, + dg, A dpz. Potential for L 2 0 below left.
> [ = K(Is|> = |S?), so r =0 (S = —s) implies [ =0; treat

this as a special case, with r € R replacing r > 0. Repulsive
potential bounds motion away from (0, 0) (right).




Case K =0

» e - H' ore - e™ (positron).

> Write k = k1 = —ko, = (q1 — q2) L, p= —5J(p1 + p2),
C=—3J(qn+q)L N=kQ — @)L, a= 732"

» Then

1 k2 k 1

H:— 2L g2 — —NTg+ ——N%+ V(R

IpI* + g -lal” = - g + o N7 + V(R)
2 2

+ a(kq — H)TJp+ - + P

2/\//
with R = /|q|?> + ¢2, and

W= dg Adp;+ Y2, dG A dM; + dQ; A dP;.
» So Il and P, are conserved and (H,w) reduces to 3DoF in
(9,p, 9z, Pz).-

» L =g Jp+ CTJN also conserved but unless M = 0, does not
constrain reduced variables nor commute with [1.



Subcase 1 =0

» [1 =0 means GCs on same fieldline

» By writing g = re,, p= pre, + pT"eg, py is conserved and
system reduces to 2DoF in (r, p,, gz, pz):

2 2 2
H= b (p2+ P2+ )+ £+ V(R) + L2 + akpy,

R=+\/r*+q2, w=drAdp,+ dq, A dp;.
> If pp =0 (i.e. p1+ p2 L g1 — g2) then dynamics is singular at

(r,q2) = (0,0) (V is attractive). wlog g, = 0 and

H = 25 (p2 + P2) + 452 + V(R), with R = /a2 + G2,

w = dqgx A dpx + dq; A dp,. Can Levi-Civita regularise.



Levi-Civita regularisation

| 2

> H = |P| + 8qu+ kikoG __

Write g = g + iq, = w?, w € C, p = py + ip, € C, and set
m=2w*p € C. Then p*dg = n*dw. Note k1 ko < 0.

|72 _a2\2 4 kike G
SE = G + am (W7 — WP+ S

> Scale to a new time s by 9 = 4m|w|?.

Then the original dynamics on H = E transforms to that of
H= %7+ 1k2(wW? — w?)?|w|? — 4mE|w|? + 4mki koG on
A = 0 and continues smoothly through w = 0.

\\_,_//

Accessible region in w-plane for various E:
Copes with Debye shielding too.



Planar dynamics

>

| 2

All cases have invariant subspace g, = p, = 0. Dynamics
reduces by 1 DoF.

CaseéQzO:H:§r2+2mr2+ + V(r)+cst. For [#0
or V(r) = 400 as r — 0, get perlodlc oscillations about
equilibrium rp minimising H. Its energy

2 A — ~
Ey = 2P,\z/, + E21p12 + QL + v ((2‘|kL‘|) ) to first order in V.
Coulomb case V(r) = kKG gives elliptic functions. V =0 has

:mw.th/\_ﬁg,g 2./48 2

(r = distance between two particles with same gyrofrequency).

Case K = 0,11 = 0: same with pg replacing [ and reinterpret-
ation of k. For py # 0 and (attractive) Coulomb potential
there is precisely one equilibrium and get oscillations about it.
But when py = 0, r reaches 0 in finite time (can restrict the
regularisation to q real to continue through).



General planar cases: K # 0

» INCOMPLETE NOTES IN PROGRESS FROM HERE ON

> Easiest studied in Q, S, p1, p2 coordinates.
H =%, 5 o) + V(IS + pr = pa)
L= kilpjl> = K|Q> — k|S|* and Q conserved.

» Use coordinate system so that S + p; — p» is on positive
X-axis.

» Then for repulsive V/, the dynamics oscillates around a unique
equilibrium (minimum). Call its energy Eqp.

» Can study conditions to reach fusion.



Opposite signs

» For opposite sign charges, have to consider r € R and after
regularisation get oscillations about px =0, r = 0.

> Although extending after collision is fictitious, many regular-
ised trajectories continue for small [ to true trajectories with
repeated near-collisions, making a chaotic subshift. We proved
this for all high enough energies if Q; + Qy # 0. [EXPLAIN?]



H= ‘pl + 3 ‘ql +akqTJp — N7 (£ q+ adp) + V(|q|) + cst.
Absorb the Imear terms in p into the quadratic. Left with
positive-definite in g — g1, for some g1(I), plus negative V.
Get oscillations about 0 (after regularisation) and possible
saddle to a potential well about some qg (e.g. two widely
separated gyromotions).

Get chaotic subshift again for all high enough energies if
Q1 + Q2 # 0 (but excludes e~ e) and I # 0.

Consequences for e~ et annihilation (a = 0).



Spatial dynamics

» Reduced z-dynamics is g, = p—n;,p'z = —qZ@, coupled to the

other DoF via R = /q2 + r2.

P Same signs of charge (A is 4D planar subspace):

» For E < Ey all trajectories bounce back. For E > Eyg, subset Ag
with energy E is an S3, it is ‘morally’ normally hyperbolic and its 4D
forward contracting submanifolds separate the 5D energy level into
points whose trajectories pass through and those that bounce back.

» For fusion, want to be on W™ (A) with asymptotic trajectory on A
approaching r = 0.

» For §Q = 0: extra integral |5|?, 2D lower, and critical energy Ey.



Flux over a saddle

>

>

| 2

For 3DoF Hamiltonian system (H,w), vector field X is defined
by ixw = dH and energy-level volume p by p A dH = w3,

Then flux of y, ixp = w2

Let Sg = {x € H"Y(E) : q, = 0}. It is an S* that separates
H=Y(E) into q, < 0 and g, > 0 (“dividing surface”).
Decompose Sg = Sét U Ag according to the orientation of
ixp: £ =sgnp, and Ag forms the “equator’ p, = 0.

Illustration for 2DoF:

Flux of 4 from g, < 0to g, > 0is fsg %w/\w = fAEw/\a.
where « is a primitive of w. Same for other direction.

RS MacKay, Flux over a saddle, Phys Lett A 145 (1990) 425-7



Opposite signs
> Let Ex = 22 For E < Ex, H™Y(E) is bounded.
» Regularise Q1 = {q, = +00, p, = 0} by setting q, = +0 2
locally and using new time s with ds/dt = 3. Then

d d kiky Go . ‘ '
@ = 7%’ de; = (HlﬂZW making Q4 ‘morally’ normally
ipped . ipped N
W\ ipped ipped '
hyperbolic.

» Their 5D contracting submanifolds separate points which
bounce off Q24 from those that go through infinity (in s).

» Let Q4 (E) be intersections with H~1(E) for E > E.

» Their 4D contracting submanifolds intersect g, = 0 in non-
coincident 3-spheres; get fluxes between “bound” and “free”.
Can bind only once and unbind only once.

» 2D lower for the case K = 0,1 = 0 with extra integral py.



Reconstructed motion
» py = 3Pz + Pz, Pz, = F3 Pz — Pz, and get gz by integrating
Gz = Pz/mj.
» Reconstructing the rest from reduced dynamics is more messy.

» But computation of full dynamics is easy:

Figure: (a),(d) opposite signs; (b),(d) equal



Scattering map

>

Trajectories starting from |g,| = 0o at t = —o0 go to

|gz| = oo at t = 400 except for (same sign): those
asymptotic to A, (opposite sign): those that become bound
forever (does this have positive measure or not?).

Define scattering map from state at t = —oo to t = +oc.
Asymptotic gyroradii |p;|, guiding centre fieldlines Q;, parallel
momenta p,, well-defined. For gyrophases 6;, can define

¢i = 0; — Q;t, which has asymptotic limits (possibly +o0).
Only problem is g,: would like to claim g, — %t has
asymptotic limits but need screening for this, e.g. 1D case
H:%p§+g:E>Oonz>0gives

z—pt=2¢ (1 —sgnGy/1— £ tanh™1(1 - EGZ)Sgn(G)/2> ~

%(1 — sgn(G)3 log %) [CHECK G < 0] But not important.

The conserved quantities constrain the scattering map.
Change in p, leads to change in parallel KE:

AEjy = Dp,(P5 2 + B2 and similar.

2my



Scattering map for same sign charges

» Except for trajectories in or asymptotic to A, scattering map is
well-defined and smooth. Subdivides into pass-through and
bounce-back.

» Case 6Q=0: P,, Q, |p|?, L, H conserved. Tidiest to write in

terms of p,, S,s. &[s|? + % = cst, |S|2 — |s|> = cst. So
there is an allowed interval | in p, and for each p, € I there is
a unique |S],|s|. One or other goes to 0 at the ends of /,
depending on the sign of L. Except for [ = 0 the allowed
space is an S3. But given s there is also an St for (p1, p2). So
the scattering map is on S3 x S'. Change in S changes the
fieldlines for the GCs, change in |s| changes the gyroradii.
Both could lead to cross-field transfer of perpendicular KE.



continued

» Formulate using coordinates for the individual particles but in
centre of mass frame. Write p; = \/2v;ep, (v; is scaled p;).

> H=2 43 kQui+ V(R).



Weak interaction for 62 = 0

> If helices are far apart there is another adiabatic invariant, for

(r,pr). Write V V(r,qz). Then for fixed g,
2

H, = é‘rzn 2 4 2mr2 + 2=+ V(r, q;) performs oscillations at
frequency roughly Q. So if effect of changing g, is small in a
gyroperiod then action | = [ p,dr is an adiabatic invariant.

> When V negligible, H, = 3Qk|s|> & | = k|s|. So scattering
map preserves |s|, hence p2 and |S| too. Thus no change in
magnetic moments. Ignoring the gyrophase, only changes are
a possible sign-change of p, and rotation of S about Q.

» Can compute the rotation of S. But it will produce no
transport of charge, nor mass nor KE in a cross-field gradient.
Only perpendicular to the gradient.

» Bouncing could produce parallel transport of parallel KE, but
is limited to a small fraction of encounters.



5Q #£ 0

» If assume ratio between gyrofrequencies is not a low-order
rational, the helices are widely separated and p, not too large,
then can two-phase average, deduce conservation of the
magnetic moments again and compute the angle of rotation
of S. But produces transport perpendicular to gradient.



Opposite sign charges

» Scattering map defined for initial conditions that do not get
bound forever, but “chaotic” because the pair of GCs may
become bound temporarily. But perhaps irrelevant in plasma
because other particles interact too.

» Bound region is usually claimed to be negligible (“fully
ionised") but I'm not so sure.

» Have to treat neutral case (ki + ko = 0) separately. In
averaging approximation, get a shift of guiding centres
perpendicular to their separation. But this produces flow
perpendicular to a density gradient.



Non-widely separated helices

>

>

So | think we have to analyse the non-widely separated case
to find significant effects of encounters between particles.

Usual mantra (e.g. Helander & Sigmar, Collisional transport
in magnetized plasmas, 2002) is that transport is dominated
by accumulation of small deflections from approaches b much
larger than bpyin = % (for 90° deflection) but less than
Ap. This applies to magnetised plasma for gyroradii larger
than Ap. But ITER is planned to have gyroradii smaller than
Ap. So needs a more refined analysis. Approximate
treatments by Psimopoulos&Li, Dubin&O'Neil. | think the
result will be roughly that the usual log A with Debye cutoff is
replaced by gyroradius cutoff.



Distribution function
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