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A. Large Deviations Theory

W A ]QV/I C ] < B. Lagrange Multiplier and Exponentially Tilted Measures

A large deviation principle (LDP) : Let P< be a family of probability measures on a suitable measurable The problem of finding the rare event probability is now reduced to an optimization problem, i.e.

space (X, X), then it satisfies an LDP with a rate function I:X — R ifforall subsets Q C X, Zuggl (2), where the minimizer is called instanton. This constrained optimization problem
we have [4, 5], can be transformed into an unconstrained one using a Lagrange multiplier [ 8], i.e.,
P (Q) < exp ( e ! inf I(z)) : (1)
inf 1(2) & inf (I(z) ~ (A 2). 3)
where =< denotes log-asymptotic equivalence in the limit e — 0. Il. Recent Fluid Deformation S =
| (RFD) Model of Passive Scalar A probabilistic interpretation of Lagrange multiplier A is in the form
The Gdrtner-Ellis theorem : It the limiting behavior of a scaled CGF, e e Turbulence
Y - S o This statistical model of the gradient of of the exponentially tilted measure |9 |. If
G ()\) = lim elog E[e€ M=), (2) . 5 . |
e—0 a passive scalar,yp = V60 € R?, is given by [2,3]:
Dye in a turbulent jet (Source: Shraiman and Siggia. Scalar turbulence. Nature, 2000). — 1
exists for each X, thenits Legendre-Fenchel (LF) transform o . ( ) diy (t) = b(1p, A) dt + VedM (1), E, lexp (67 (A, 2))] < 0
I. Motivation \ Introduction
< function of the | DP of th = dA(t) = V(A)dt + e dW(t), o ,
IS the rate tunction ot the Of the process z-, I.€. *) In turbulence theory, one often Studies statistical . | then the exponentially tilted measure is defined as,
1 orobabilisti o in fluid ¢ | where the drift terms are: »
I(2) = Asulé)n (A 2)—G(N), z— 21_]% A€ and probabilistic properties in fluid dynamics. . A) = — AT (8) — tr(CH) (o) exp (€1 1, 2)
- . : *) In this poster, we investigate the probability of extreme , sty pz) = E, [exp (¢ L(\, 2)) p(z) - (4)
A geometric interpretation of the LF transform (2) gradients of a passive scalarin medium with a variety of V(A= A2+ % ~1 tTéCTT) A Tilted measure —— —— " Ol masi
is that the argument of one of G (A)and I (z) is Reynolds numbers Re, using LDT (section A). N ATr.( ) | 4 -
. . . . ANdC.(t) = e™* e™* is a stationary Cauchy-Green tensor, and
. *) The numerical algorithm for finding rare events is based on chan- Bs , , .
the slope of the other |7], i.e., . N | . . A(t) eR is the velocity gradient. The small parameter of the In order to use the described methodology
ging probability measures, and instanton equations (sections B & Q). | | | | |
Vi) =)\ VGO =z, system is €. Setting the integral times T’y and Ty to unity, the only to find the instanton (minimizer) for a rare
- Y o and 2 di tib] *) For a turbulent flow with heavy-tailed distributions, the standard remaining temporal scale is 7, which is the decorrelation time scale

when G (A)is a finite and a differentiable method fails (section C). Therefore, here we use a nonlinear after which any correlation of A is neglected. Figure (2) shows that outcome z, we must demand that the
function, and the rate function I (z2) is reparametrization (section D) which is a newly proposedin [ 1] the shorter time 7 is, the more turbulent is the system, where

(or you can scan the QR code). -~ R 5o o =Ty the mapping =z — \(z) is a bijection:

strictly convex.
For every outcome z there must be a

p(¢Y1(t1))
e 000 o 00e o0 s

Extreme Events Of Lagrangian ” : . : . unique tilt X, which holds only when

the rate function I is strictly convex.
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M.Algahtani@warwick.ac.uk P ()
dX; =0b(X{) dt + VeodWs, X{ = x0-(5)
D. Instantons of Nonlinear e _5 . . T_ mnxn
R terizati " Nowlin LDF, 7 = 0.08 I The noise covariance x =oco € R S
cparametlerizations Pun(t) Nren. i
E ituati here the tails of p(2) I — lll. Instantons of Extreme Gradients of a Passive Scalar assumed to be invertible. We are interested
very situation where the tails o are
. with (o funct Finding the maximum likelihood pathways, instantons, of achieving in the chance of trajectories X; departing
at correspond with non-convex rate functions, — )
f ° ' . T . extreme final configurations z := 1);(t1) can be done via instanton from an asymptotically stable fixed point z
and will break the above assumption of the IV. Modification: Nonlinearly Tilted Instantons . | ) S ’
equations (8), (section C). Figure (3) shows the distribution of | . |
mapping z — A(z) being a bijection. Optimizations algorithm is now done via instanton equations | | o | | | and eventually leaving D C R" that s attracted
| . o | end points of instantonic trajectories (dashed lines) against MC
The main contribution of [1]is the realization that with nonlinear final time tilting, I'(z) = sign(z) loglog |z, . L to z . These trajectories belong to the set:
results (solid lines), for a range of 7 that exhibits heavy-
- - : T n c R\ [-1,1], for which the reparametrized expectation , S | . _
the introduction of a nonlinear map F : R" — R 2 e RA| i | o Oher o ’ — bp " tailed distributions. It displays an excellent agreement A, ={p € Gy 1, (R")|p(t0) =7 p(t1) =2 ¢ D}. (6)
— . remains bounded. Other choices ot £ would be possible.
allows us to loosen the restriction of the convexity of | | | hetween the two. However, instantons are limited e DP -
Figure (4) compares the nonlinearly tilted instantons roIT! , WENAVE,
(2). In analogy to (4)and the description in section B, (dashed lines), with MC results (solid lines). It to small values of z due to the nonconvexity lim € log p(z) = — zlenf{ I(2) =—=5(¢%), (7)
we can now define the nonlinearly tilted measure; | ' ' ' . . . :
(e 1\ F)(, ) shows that the nonlinear instantons corre- of the rate function (see section B), which where ¥ is the minimizer (instanton), and
Foy _ _ SEPRE y 47(% . . e has b no th _ ty
Py (2) = p(z ctly predicts the far tail probilities, since as been overcome using the non 1 . . . .
3 () E,lexp(e=YA, F(2)))] (2) y P P S(p) = 5 |pr — b(gp(t))Hi dt is Freidlin-Wentzell rate function
to

_ 7 linear reparameterizations
— exp (e LN, F(2)) — Gr(N)) p(2), reparametrizing the observable P

' ' | ’ of system (5). The integrand of can be understood as a Lagrangian.
where the nonlinearly tilted CGF is given by via I convexities its rate (section D). system (5) nteg S UNAETS 5 &l iy,

Gr(\) = . s(u%g (A, y) —Io F1 (v)), vy=F(2), function. In Hamiltonian formulation, H (¢, ) = sup ({9, @) — L(p,9)) . where ¥ =0L/0¢
~1(y)eR" v

and is being bounded and differentiable. At the same time, the effective rate function s the conjugate momentum of @ [10]. Now, the minimizer ¢ can also be expressed as

Io F~' (y) is strictly convex. The conditions of the nonlinear reparametrization are; the solution of Hamilton’s equations, =0y H(p,V) =b(p) +x 9, (8)

0 _ T
1- F' is a diffeomorphism, and J = —0,H(p,0) = = (Vpb(p) 9,

2- Jo F~ 1 (y) isstrictly convex,i.e. (v Hess(Io F~Y(y)v) >0 Vv eR". with boundary conditions, ¢ (tg) = , ¥ (t1) = A-These quations are often termed instanton equations.
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