
II. Recent Fluid Deformation 

a passive scalar,                            , is given by [2,3]: 

where the drift terms are:

(RFD) Model of Passive Scalar  

And                                    is a stationary Cauchy-Green tensor, and 

is the velocity gradient. The small parameter of the 

system is    . Setting the integral times        and        to unity, the only

remaining temporal scale is   , which is the decorrelation time scale

 after which any correlation of      is neglected. Figure (2) shows that 

Turbulence 

This statistical model of the gradient of

I. Motivation \ Introduction

Dye in a turbulent jet (Source: Shraiman and Siggia. Scalar turbulence. Nature, 2000). 

*) In turbulence theory, one often Studies statistical   
and probabilistic properties in fluid dynamics.

*) In this poster, we investigate the probability of extreme

gradients of a passive scalar in medium with a variety of 

 Reynolds numbers       , using LDT (section A).

*) The numerical algorithm for finding rare events is based on chan-
ging probability measures, and instanton equations (sections B & C).

*) For a turbulent flow with heavy-tailed distributions, the standard 
method fails (section C). Therefore, here we use a nonlinear 

 reparametrization (section D) which is a newly proposed in [1]  
(or you can scan the QR code).

IV. Modification: Nonlinearly Tilted Instantons

Optimizations algorithm is now done via instanton equations  

 with nonlinear final time tilting, 

for which the reparametrized expectation 

remains bounded. Other choices of      would be possible. 

Figure (4) compares the nonlinearly tilted instantons

(dashed lines), with MC results (solid lines). It 

shows that the nonlinear instantons corre-

ctly predicts the far tail probilities, since

reparametrizing the observable

 via      convexifies its rate 

III. Instantons of Extreme Gradients of a Passive Scalar 

Finding the maximum likelihood pathways, instantons, of achieving  

extreme final configurations                        can be done via instanton  

equations (8), (section C). Figure (3) shows the distribution of   

end points of instantonic trajectories (dashed lines) against MC

results (solid lines), for a range of      that exhibits heavy‐ 

tailed distributions. It displays an excellent agreement  

between the two. However, instantons are limited 

to small values of      due to the nonconvexity 

of the rate function (see section B), which  

has been overcome using the non-

A.  Large Deviations Theory

A large deviation principle (LDP) : Let        be a family of probability measures on a suitable measurable  

space             , then it satisfies an LDP with a rate function                         if for all  subsets                , 

we have [4, 5],

The Gärtner‐Ellis theorem :  If the limiting behavior of a scaled CGF,                            

exists for each     , then its Legendre-Fenchel (LF) transform

 is the rate function of the LDP of the process       , i.e.

where        denotes log-asymptotic equivalence in the limit            .

A geometric interpretation of the LF transform (2) 

is that the argument of one of            and          is 

the slope of the other [7], i.e.,

when            is a finite and a differentiable 

function, and the rate function          is 

          (1)

strictly convex.

B.  Lagrange Multiplier and Exponentially Tilted Measures

The problem of finding the rare event probability is now reduced to an optimization problem, i.e.

, where the minimizer is called instanton. This constrained optimization problem

can be transformed into an unconstrained one using a Lagrange multiplier [8], i.e., 

A probabilistic interpretation of Lagrange multiplier       is in the form 

of the exponentially tilted measure [9]. If

then the exponentially tilted measure is defined as,

          (3)

In order to use the described methodology

to find the instanton (minimizer) for a rare  

 outcome     , we must demand that the 

the mapping                      is a bijection: 

For every outcome      there must be a 

unique tilt      ,  which holds only when  

the rate function      is  strictly convex.

.  (4)

C.  Instanton Equations

Consider a stochastic system,

The noise covariance                                  is 

assumed to be  invertible. We are interested 

in the chance of trajectories          departing

from an asymptotically stable fixed point     , 

and eventually leaving                   that is attracted 

to     . These trajectories belong to the set:

From LDP, we have,

where         is the minimizer (instanton), and

is Freidlin‐Wentzell rate function 

of system (5). The integrand of        can be understood as a Lagrangian. 

(5)

In Hamiltonian formulation,                                                                        where   

is the conjugate momentum of       [10]. Now, the minimizer       can also be expressed as

the solution of Hamilton’s equations,

with boundary conditions,                                            These quations are often termed instanton equations.

(6)

(7)

(8)

where        , which plays the role of the CGF, is being a bounded and differentiable function. At the same 

D.  Instantons of Nonlinear
Reparameterizations

Every situation where the tails of             are 

fat correspond with non-convex rate functions, 

and will break the above assumption of the                  

mapping                     being a bijection.

The main contribution of [1] is the realization that  

the introduction of a nonlinear map                              

allows us to loosen the restriction of the convexity of 

        . In analogy to  (4) and the description in section B, 

we can now define the nonlinearly tilted measure; 

where the nonlinearly tilted CGF is given by

and is being bounded and differentiable. At the same time, the effective rate function

                      is strictly convex. The conditions of the nonlinear reparametrization are;

2‐                         is strictly convex, i.e.
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1‐         is a diffeomorphism, and

.                                     (2)

linear reparameterizations

(section D). 

function.
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 the shorter time     is, the more turbulent is the system, where
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