Assignment 2 (part 1) for MA914 'Topics in PDEs'

Submission deadline: 17/03/2014

Problem 1: Consider the elliptic problem

$$-\nabla \cdot A(\nabla u) = f , \quad \text{in } \Omega , \qquad u = 0 , \quad \text{on } \partial \Omega$$

with $f \in L^2(\Omega)$ and with an operator A which satisfies the conditions for the existence of a unique solution given in the lecture. Prove that under the same conditions the general Dirichlet problem

$$-\nabla \cdot A(\nabla u) = f$$
, in Ω , $u = g$, on $\partial \Omega$

with $g \in H^1(\Omega)$ also has a unique solution in a suitable space V.

Hint: First consider the problem with an operator depending on x and verify that the existence proof from the lecture carries over to this case.

Problem 2: Given a continuous operator A and a bounded function f, rewrite the elliptic problem

$$-\nabla \cdot A(\nabla u(x)) = f(x)$$

as a minimization problem with $W = W(x, u, \chi)$ under the assumption that there exists a $G \in C^1$ such that

$$A(\chi) = \nabla G(\chi) \; .$$

Show that the simplified conditions given for existence of a minimizer used in the proof of Theorem 2.3.1 are equivalent to the assumptions made for existence of a solution to the non-linear PDE given in Theorem 3.4.4. Also show the equivalence of the corresponding conditions for uniqueess.

Problem 3: Consider the following *control problem*: minimize J_{λ} over the space $L^{2}(\Omega)$ with

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |S(u) - y_d|_{L^2}^2 + \frac{\lambda}{2} ||u||_{L^2}^2$$

with a continuous linear operator $S: L^2(\Omega) \to H^1_0(\Omega)$, a given target function $y_d \in L^2(\Omega)$ and $\lambda \ge 0$.

Part 1: prove that the problem has a unique solution for $\lambda > 0$.

Hint: show that J_{λ} is strictly convex and satisfies

$$J_{\lambda}(u_n) \to \infty$$
, $u_n \to \infty$ in Ω

then follow the ideas from the direct method from the calculus of variations.

Part 2:[Source control problem for elliptic pdes]:

Consider the solution operator $S: u \in L^2(\Omega) \mapsto y \in H^1_0(\Omega)$ of the elliptic problem

$$- \Delta y(x) = \beta u(x)$$
, in Ω $u = 0$ on $\partial \Omega$,

with $\beta > 0$ fixed.

Show that the existence result from part one can be applied here.

Show that the solution to the optimal control problem is given by

$$u = -\frac{1}{\lambda} S^* \left(S(u) - y_d \right)$$

where S^* is the dual operator of S w.r.t. the L^2 scalar product. What is the pde that $p = S^*(y - y_d)$ satisfies?

Problem 4: (Minty-Browder theory in classical spaces):

Consider the problem

(1)

$$F(\nabla^2 u) = f$$
, in Ω , $u = 0$, on $\partial \Omega$

where $F: S^{d \times d} \to \mathbb{R}$ is a given function from the space of symmetric matrices.

Now consider a sequence of smooth solutions

$$F(\nabla^2 u_k) = f_k$$
, in Ω , $u_k = 0$, on $\partial \Omega$

with $f_k \to f$ uniformly. Assume that $(u_k)_k$ satisfies a uniform a-priori bound in $W^{2,\infty}(\Omega)$. We want to show that $u_k \to u$ uniformly and that u satisfies (1) under "monotonicity" assumptions on F:

Assumption (M):

$$[F(\nabla^2 u) - F(\nabla^2 v), u - v] \ge 0 \quad \forall u, v \in C_0^2(\Omega)$$

where we define $C_0^2(\overline{\Omega}) = \{v \in C^2(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\}$. For a Banach space $(X, \|\cdot\|_X)$ we define for all $f, g \in X$:

.

$$[f,g] := \lim_{\lambda \to 0_+} \frac{\|g + \lambda f\|_X^2 - \|g\|_X^2}{2\lambda}$$

To prove the result we need to show the following (taking $X = C^0(\Omega)$):

- (1) [f,g] is well defined.
- (2) [f,g] is upper semicontinuous: for all $f,g \in X, f_n \to f, g_n \to g$ in X:

$$\lim_{n \to \infty} [f_n, g_n] \le [f, g]$$

- (3) $[f,g] = \max\{f(x_0)g(x_0) \colon x_0 \in \overline{\Omega}, |g(x_0)| = ||g||_X\}$
- (4) Under the given assumptions there is a $u \in X$ which is a.e. in C^2 and u = 0 on $\partial\Omega$ so that $u_k \to u$ uniformly and $\nabla^2 u \xrightarrow{*} \nabla^2 u$ in $L^{\infty}(\Omega, S^{d \times d})$.
- (5) u solves (1) almost everywhere.

You need only show the final point and can use that for $x_0 \in \Omega$ so that $\nabla^2 u(x_0)$ exists, there are functions $v, w \in C_0^2$ so that |u - v| and |u - w| have a unique maximum at x_0 and for x close enough to x_0 we have

$$v(x) = u(x_0) + \nabla u(x_0) \cdot (x - x_0) + \frac{1}{2}(x - x_0)\nabla^2 u(x_0)(x - x_0) + \varepsilon |x - x_0|^2 - 1 ,$$

$$w(x) = u(x_0) + \nabla u(x_0) \cdot (x - x_0) + \frac{1}{2}(x - x_0)\nabla^2 u(x_0)(x - x_0) - \varepsilon |x - x_0|^2 + 1 ,$$

for all small enough $\varepsilon > 0$.