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Problem 1: Consider the elliptic problem

−∇ ·A(∇u) = f , in Ω , u = 0 , on ∂Ω

with f ∈ L2(Ω) and with an operator A which satisfies the conditions for the existence of
a unique solution given in the lecture. Prove that under the same conditions the general
Dirichlet problem

−∇ ·A(∇u) = f , in Ω , u = g , on ∂Ω

with g ∈ H1(Ω) also has a unique solution in a suitable space V .
Hint: First consider the problem with an operator depending on x and verify that

the existence proof from the lecture carries over to this case.

Problem 2: Given a continuous operator A and a bounded function f , rewrite the elliptic
problem

−∇ ·A(∇u(x)) = f(x)

as a minimization problem with W = W (x, u, χ) under the assumption that there exists
a G ∈ C1 such that

A(χ) = ∇G(χ) .

Show that the simplified conditions given for existence of a minimizer used in the proof
of Theorem 2.3.1 are equivalent to the assumptions made for existence of a solution to the
non-linear PDE given in Theorem 3.4.4. Also show the equivalence of the corresponding
conditions for uniquness.

Problem 3: Consider the following control problem: minimize Jλ over the spsace L2(Ω)
with

Jλ(u) =
1

2

∫
Ω
|S(u)− yd|2L2 +

λ

2
‖u‖2L2

with a continuous linear operator S : L2(Ω)→ H1
0 (Ω), a given target function yd ∈ L2(Ω)

and λ ≥ 0.
Part 1: prove that the problem has a unique solution for λ > 0.
Hint: show that Jλ is strictly convex and satisfies

Jλ(un)→∞ , un →∞ in Ω

then follow the ideas from the direct method from the calculus of variations.
Part 2:[Source control problem for elliptic pdes]:

Consider the solution operator S : u ∈ L2(Ω) 7→ y ∈ H1
0 (Ω) of the elliptic problem

−4y(x) = βu(x) , in Ω u = 0 on ∂Ω ,

with β > 0 fixed.
Show that the existence result from part one can be applied here.
Show that the solution to the optimal control problem is given by

u = − 1

λ
S∗
(
S(u)− yd

)
where S∗ is the dual operator of S w.r.t. the L2 scalar product. What is the pde that
p = S∗(y − yd) satisfies?
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Problem 4: (Minty-Browder theory in classical spaces):
Consider the problem

(1) F (∇2u) = f , in Ω , u = 0 , on ∂Ω

where F : Sd×d → R is a given function from the space of symmetric matrices.
Now consider a sequence of smooth solutions

F (∇2uk) = fk , in Ω , uk = 0 , on ∂Ω

with fk → f uniformly. Assume that (uk)k satisfies a uniform a-priori bound inW 2,∞(Ω).
We want to show that uk → u uniformly and that u satisfies (1) under ”monotonicity”
assumptions on F :

Assumption (M):

[F (∇2u)− F (∇2v), u− v] ≥ 0 ∀u, v ∈ C2
0 (Ω)

where we define C2
0 (Ω̄) = {v ∈ C2(Ω̄) : u = 0 on ∂Ω}. For a Banach space (X, ‖ · ‖X) we

define for all f, g ∈ X:

[f, g] := lim
λ→0+

‖g + λf‖2X − ‖g‖2X
2λ

.

To prove the result we need to show the following (taking X = C0(Ω)):
(1) [f, g] is well defined.
(2) [f, g] is upper semicontinuous: for all f, g ∈ X, fn → f, gn → g in X:

lim
n→∞

[fn, gn] ≤ [f, g]

(3) [f, g] = max{f(x0)g(x0) : x0 ∈ Ω̄ , |g(x0)| = ‖g‖X}
(4) Under the given assumptions there is a u ∈ X which is a.e. in C2 and u = 0 on ∂Ω

so that uk → u uniformly and ∇2u
∗
⇀ ∇2u in L∞(Ω, Sd×d).

(5) u solves (1) almost everywhere.
You need only show the final point and can use that for x0 ∈ Ω so that ∇2u(x0) exists,
there are functions v, w ∈ C2

0 so that |u− v| and |u− w| have a unique maximum at x0

and for x close enough to x0 we have

v(x) = u(x0) +∇u(x0) · (x− x0) +
1

2
(x− x0)∇2u(x0)(x− x0) + ε|x− x0|2 − 1 ,

w(x) = u(x0) +∇u(x0) · (x− x0) +
1

2
(x− x0)∇2u(x0)(x− x0)− ε|x− x0|2 + 1 ,

for all small enough ε > 0.
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