Assignment 2 (part 1) for MA914 'Topics in PDEs'

Submission deadline: 17/03/2014
Problem 1: Consider the elliptic problem

$$
-\nabla \cdot A(\nabla u)=f, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega
$$

with $f \in L^{2}(\Omega)$ and with an operator A which satisfies the conditions for the existence of a unique solution given in the lecture. Prove that under the same conditions the general Dirichlet problem

$$
-\nabla \cdot A(\nabla u)=f, \quad \text { in } \Omega, \quad u=g, \quad \text { on } \partial \Omega
$$

with $g \in H^{1}(\Omega)$ also has a unique solution in a suitable space V.
Hint: First consider the problem with an operator depending on x and verify that the existence proof from the lecture carries over to this case.

Problem 2: Given a continuous operator A and a bounded function f, rewrite the elliptic problem

$$
-\nabla \cdot A(\nabla u(x))=f(x)
$$

as a minimization problem with $W=W(x, u, \chi)$ under the assumption that there exists a $G \in C^{1}$ such that

$$
A(\chi)=\nabla G(\chi)
$$

Show that the simplified conditions given for existence of a minimizer used in the proof of Theorem 2.3.1 are equivalent to the assumptions made for existence of a solution to the non-linear PDE given in Theorem 3.4.4. Also show the equivalence of the corresponding conditions for uniquness.

Problem 3: Consider the following control problem: minimize J_{λ} over the spsace $L^{2}(\Omega)$ with

$$
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left|S(u)-y_{d}\right|_{L^{2}}^{2}+\frac{\lambda}{2}\|u\|_{L^{2}}^{2}
$$

with a continuous linear operator $S: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$, a given target function $y_{d} \in L^{2}(\Omega)$ and $\lambda \geq 0$.

Part 1: prove that the problem has a unique solution for $\lambda>0$.
Hint: show that J_{λ} is strictly convex and satisfies

$$
J_{\lambda}\left(u_{n}\right) \rightarrow \infty, \quad u_{n} \rightarrow \infty \quad \text { in } \Omega
$$

then follow the ideas from the direct method from the calculus of variations.
Part 2:[Source control problem for elliptic pdes]:
Consider the solution operator $S: u \in L^{2}(\Omega) \mapsto y \in H_{0}^{1}(\Omega)$ of the elliptic problem

$$
-\triangle y(x)=\beta u(x), \text { in } \Omega \quad u=0 \text { on } \partial \Omega,
$$

with $\beta>0$ fixed.
Show that the existence result from part one can be applied here.
Show that the solution to the optimal control problem is given by

$$
u=-\frac{1}{\lambda} S^{*}\left(S(u)-y_{d}\right)
$$

where S^{*} is the dual operator of S w.r.t. the L^{2} scalar product. What is the pde that $p=S^{*}\left(y-y_{d}\right)$ satisfies?

Problem 4: (Minty-Browder theory in classical spaces):

Consider the problem

$$
\begin{equation*}
F\left(\nabla^{2} u\right)=f, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

where $F: S^{d \times d} \rightarrow \mathbb{R}$ is a given function from the space of symmetric matrices.
Now consider a sequence of smooth solutions

$$
F\left(\nabla^{2} u_{k}\right)=f_{k}, \quad \text { in } \Omega, \quad u_{k}=0, \quad \text { on } \partial \Omega
$$

with $f_{k} \rightarrow f$ uniformly. Assume that $\left(u_{k}\right)_{k}$ satisfies a uniform a-priori bound in $W^{2, \infty}(\Omega)$. We want to show that $u_{k} \rightarrow u$ uniformly and that u satisfies (1) under "monotonicity" assumptions on F :

Assumption (M):

$$
\left[F\left(\nabla^{2} u\right)-F\left(\nabla^{2} v\right), u-v\right] \geq 0 \quad \forall u, v \in C_{0}^{2}(\Omega)
$$

where we define $C_{0}^{2}(\bar{\Omega})=\left\{v \in C^{2}(\bar{\Omega}): u=0\right.$ on $\left.\partial \Omega\right\}$. For a Banach space $\left(X,\|\cdot\|_{X}\right)$ we define for all $f, g \in X$:

$$
[f, g]:=\lim _{\lambda \rightarrow 0_{+}} \frac{\|g+\lambda f\|_{X}^{2}-\|g\|_{X}^{2}}{2 \lambda} .
$$

To prove the result we need to show the following (taking $X=C^{0}(\Omega)$):
(1) $[f, g]$ is well defined.
(2) $[f, g]$ is upper semicontinuous: for all $f, g \in X, f_{n} \rightarrow f, g_{n} \rightarrow g$ in X:

$$
\lim _{n \rightarrow \infty}\left[f_{n}, g_{n}\right] \leq[f, g]
$$

(3) $[f, g]=\max \left\{f\left(x_{0}\right) g\left(x_{0}\right): x_{0} \in \bar{\Omega},\left|g\left(x_{0}\right)\right|=\|g\|_{X}\right\}$
(4) Under the given assumptions there is a $u \in X$ which is a.e. in C^{2} and $u=0$ on $\partial \Omega$ so that $u_{k} \rightarrow u$ uniformly and $\nabla^{2} u \stackrel{*}{\rightharpoonup} \nabla^{2} u$ in $L^{\infty}\left(\Omega, S^{d \times d}\right)$.
(5) u solves (1) almost everywhere.

You need only show the final point and can use that for $x_{0} \in \Omega$ so that $\nabla^{2} u\left(x_{0}\right)$ exists, there are functions $v, w \in C_{0}^{2}$ so that $|u-v|$ and $|u-w|$ have a unique maximum at x_{0} and for x close enough to x_{0} we have
$v(x)=u\left(x_{0}\right)+\nabla u\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right) \nabla^{2} u\left(x_{0}\right)\left(x-x_{0}\right)+\varepsilon\left|x-x_{0}\right|^{2}-1$,
$w(x)=u\left(x_{0}\right)+\nabla u\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right) \nabla^{2} u\left(x_{0}\right)\left(x-x_{0}\right)-\varepsilon\left|x-x_{0}\right|^{2}+1$,
for all small enough $\varepsilon>0$.

