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Chapter 1

Model Problems

1.1 Boundary Value Problems

We model the temperature distribution in a heat conducting material occu-
pying the volume Ω ⊂ R3 with boundary Γ. Let u : Ω → R denote the
temperature at a position x ∈ Ω and q : Ω→ Rd the heat flux in the direction
of increasing xi. The intensity of the heat source is given by f : Ω→ R and is
assumed to be known, while a > 0 denotes the heat capacity coefficient. The
total heat flux through the boundary S of any given part V ⊂ Ω in the outward
direction (given by the outward normal n) is equal to the heat produced in V
:
∫
S
q · n ds =

∫
V
f dx. By the divergence theorem,

∫
S
q · n ds =

∫
V

divq dx
and thus we arrive at

∫
V

divq dx =
∫
V
f dx. This equation holds for every V

so that we can conclude that divq(x) = f(x) pointwise in Ω. Another compo-
nent of our mathematical model is Fouriers law which states that heat flows
from warm to cold regions with the heat flow proportional to the temperature
gradient: q(x) = −a(x)∇u(x) which leads to the well know elliptic partial
differential equation for u:

−div
(
a(x)∇u(x)

)
= f(x) x ∈ Ω .

To obtain an unique solution to this problem conditions for u on the boundary
Γ have to be prescribed, so that we obtain a boundary value problem. Typical
boundary conditions are Dirichlet conditions where the temperature u is pre-
scribed and Neumann boundary conditions where the heat flux q ·n in normal
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direction is given:

u(x) = gD(x) x ∈ ΓD ,

a(x)∇u(x) · n(x) = gN(x) x ∈ ΓN ,

where ΓD ∪ ΓN = Γ, ΓN ∩ ΓD = ∅ and ΓD 6= ∅.

In this lecture we will study the following model problem which adds advec-
tion and reaction to the diffusion process described above: Let Ω ⊂ Rd be a
bounded open set. Let p, q, f ∈ C(Ω̄,R) and g ∈ C(∂Ω,R). We study the
elliptic equation

−∆u+ p.∇u+ qu = f, x ∈ Ω,
u = g, x ∈ ∂Ω.

In our study of finite difference methods we will study classical solutions of
this problem, where all derivatives appearing in the equation exist everywhere
in Ω and the equation holds pointwise.

Remark This equation arises as a simplified model in many different areas,
for example in linear elasticity : here the displacement field u : Ω → R3 of an
elastic material under some external force has to be found. The main equations
are Newton’s second law : ∂2

t u = ∇ · σ + F , the strain displacement relation
ε = 1

2
(∇u + (∇u)T ) and Hooke’s law : σ = C : ε. Neglecting any dependency

on time, leads to a an equation which is similar to our elliptic model problem.
This equation is now for a vector valued function but the methods derived in
this lecture can be applied to each component u1, u2, u3.

The model for elastic deformation can also be derived by studying the defor-
mation field minimizing some bending energy. Thus u is given as the function
with E(u) ≤ E(v) for all v ∈ V . With E(u) = 1

2

∫
Ω
Cε(u) : ε(u)−F · u we can

again derive an elliptic equation for u using the variational principals stating
that j(δ) := d

dδ
E(u + δv) has to satisfy j(0) = 0 for arbitrary v ∈ V , if u

minimizes the energy.
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1.2 Diffusion

The Poisson equation −4u = f models the stationary heat distribution in
some material. If we are interested in the evolution of the heat in time subject
to some time dependent heat source or boundary conditions, then we have
to study the solution u : Ω × (0,∞) → R of a parabolic partial differential
equation.

A suitable model problem is the heat equation with given data f, g ∈ C(Ω̄,R).
The equation for u on an open bounded set Ω ⊂ Rd is:

∂u
∂t

= ∆u+ f (x, t) ∈ Ω× (0,∞),
u = 0 (x, t) ∈ ∂Ω× (0,∞),
u = g (x, t) ∈ Ω̄× {0}.

(1.1)

In our study of finite difference methods we will study classical solutions of
this problem, where all derivatives appearing in the equation exist everywhere
in Ω× (0,∞) and the equation holds pointwise.

1.3 Wave motion

If we write down the model which we derived for linear elasticity in one space
dimension, we arrive at the model problem for a second order hyperbolic pde:

∂2
t u(x, t)− c2∂2

xu(x, t) = f(x, t) x ∈ (a, b)× (0,∞) .

Again we need to prescribe initial and boundary conditions for u. The wave
equation models the propagation of waves through some material, e.g., sound
waves in air. We will not be studying this equation in this lecture but the
methods derived for the other problems can also be applied to model the
evolution of waves.

1.4 Schrödinger equation

A further model problem is given by the periodic Schrödinger equation: For a
2−periodic function g ∈ C([−1, 1],R) the periodic Schrödinger equation
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on (−1, 1) is given by:

∂u
∂t

= i∂
2u
∂x2 (x, t) ∈ (−1, 1)× (0,∞),

u(−1, t) = u(1, t) t ∈ (0,∞),
∂u
∂x

(−1, t) = ∂u
∂x

(1, t) t ∈ (0,∞),
u = g (x, t) ∈ [−1, 1]× {0}.

(1.2)

In our study of finite difference methods we will study classical solutions of
this problem, where all derivatives appearing in the equation exist everywhere
in (−1, 1)× (0,∞) and the equation holds pointwise.

1.5 Conservation Laws

Many physical laws are based on the conservation of some quantity, e.g., mass.
The following equation states that the change of some quantity in some control
volume V is determined by some flux over the boundary: d

dt

∫
V
u =

∫
∂V
q · n.

If we can find some law connecting q to u, e.g., q = f(u), we can derive a first
order hyperbolic equation:

∂tu+∇ · f(u) = 0

Again we need to prescribe suitable initial and boundary condition to obtain
a well posed problem. This simplest case is given by the transport equation
with f(u) = au for some given a ∈ R. The periodic transport problem is
then:

∂u
∂t

+ c∂u
∂x

= 0 (x, t) ∈ (−1, 1)× (0,∞),
u(−1, t) = u(1, t) t ∈ (0,∞),

u = g (x, t) ∈ [−1, 1]× {0}.
(1.3)

for a 2− periodic function c ∈ C([−, 1, 1],R+).

1.6 Non-Linear problems

Note that in contrast to the model problems we looked at so far, the conserva-
tion law is a non-linear partial differential equation. The elliptic and parabolic
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problems also often have to be studied in non-linear form. So for example the
heat capacity a could depend not only on the position in the material but
also on the value of the heat itself: a = a(x, u(x)). Then the equation for u
becomes: ∇ · a(x, u(x))∇u(x) = f(x). Not only physics requires the solution
of pdes. Many techniques used in computational imaging is based on solving
pdes. Denoising of images can for example be based on solving a non-linear
equation of the form: ∂tI = ∇ ·

(
a∇I

a+‖∇I‖

)
.

Although the solution of non-linear problems presents many additional chal-
lenges, the schemes are often based on methods for the linear problems, so that
the study of these forms the central part of any computational pde lecture.

1.7 Numerical Schemes

In most practical applications it is impossible to solve a given PDE analytically,
instead some numerical approximation must be used. In general that means
reducing the continuous model to a finite dimensional one. This can then be
solved using some solver for systems of linear (or non-linear) equations. We
will discuss this last step in detail but will focus in this lecture on reformulating
a given analytical model as a finite dimensional problem.
There are a number of different approaches for numerically solving partial
differential equations. The main ones are finite difference (FD) and finite
element (FE) methods. The main difference between these methods is the
form of the mathematical model they use, while the FD method is based on the
classical pointwise formulation of the PDE (for example −4u(x) = f(x) for all
x ∈ Ω), the FE method is based on the variational formulation (in the example
above that would correspond to

∫
Ω
∇u · ∇φ =

∫
Ω
fφ for all ∀φ ∈ H1(Ω).

The FD are consequently based on the classical spaces Cm(Ω) of continuous
differentiable functions, while the FE methods make use of Sobolev spaces
Hm(Ω) which are subsets of L(Ω) 1. For their construction the FD require
a great deal of smoothness for both the data and the solutions, while for
the construction of the FE mehtods only minimal smoothness is required -
although for proofing convergence some additional smoothness is needed. We
will start of with FD methods and will cover FE method more briefly in this
lecture.

1we will not require any knowledge of their construction or properties for this lecture
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Chapter 2

Mathematical Basics

2.1 Linear Algebra

2.1.1 Matrix Norms and Spectral Radius

Let A ∈ Rn×n and let ‖ · ‖ denote a norm on Rn. The expression

‖A‖ = sup
x∈Rn\{0}

‖Ax‖
‖x‖

= sup
x∈Rn, ‖x‖=1

‖Ax‖

defines the matrix norm induced by the vector norm ‖ · ‖. Note that, for
induced norms,

‖Ax‖ ≤ ‖A‖‖x‖.

If A is normal, i.e. ATA = AAT , then we can find an orthonormal basis of
eigenvectors, {φ(k)}nk=1 for Rn. We denote the eigenvalues by λ(k) so that we
have

Aφ(k) = λ(k)φ(k).

Then the matrix norm induced by the 2-norm can be expressed as the spectral
radius:

‖A‖2 = ρ(A) = max
k∈{1,...,n}

|λ(k)| .
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Note that since Rn×n is finite dimensional, all matrix norms are equivalent.

2.1.2 Eigenvalues of Toeplitz and Related Matrices

We state and prove results about the eigenvalues of various Toeplitz matrices
(constant on diagonals) arising frequently in finite difference and finite element
approximations of PDEs, as well as for a related tridiagonal matrix, arising in
similar contexts.

Circulant Matrix

Let the circulant matrix A be defined as follows:

A =



a c 0 . . . 0 b
b a c 0 . . . 0

0
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 . . . 0 b a c
c 0 . . . 0 b a


∈ R2J×2J (2.1)

Theorem 2.1.1. Consider the eigenvalue problem

Aφ(k) = λ(k)φ(k)

Let ∆x = J−1. Then, writing φ(k) = (φ
(k)
−J , . . . , φ

(k)
J−1) ∈ C2J we have, for

k ∈ {0, . . . , 2J − 1}:

φ
(k)
j = exp(ikπj∆x),

λ(k) = b exp(−ikπ∆x) + a+ c exp(ikπ∆x).

Proof. In index form, the eigenvalue problem is, for φ = φ(k), λ = λ(k):

bφj−1 + aφj + cφj+1 = λφj, j ∈ {−J . . . , J − 1} (2.2)

with the convention
φ−J−1 = φJ−1, φJ = φ−J .
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It may be verified by substitution that choosing φj = exp(ikπj∆x) with ∆x =
J−1 solves the difference equation (2.2), provided k is an integer and

λ = b exp(−ikπ∆x) + a+ c exp(ikπ∆x).

Since taking k ∈ {0, . . . , 2J − 1} gives 2J distinct eigenvectors, the result
follows.

Remark Both λ(k) and φ(k) are 2J periodic in k.Hence choosing k /∈ {0, . . . , 2J−
1} does not yield any new information. The eigenfunctions φ(k), with k ∈
{0, · · · , 2J − 1}, form an orthogonal basis for C2J . Hence,

‖A‖2 = max
k∈{0,...,2J−1}

|λ(k)|.

Tridiagonal Matrices

Let 

a b 0 . . . . . . 0

b
. . . . . . 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 . . . 0
. . . . . . b

0 . . . . . . 0 b a


∈ Rl×l.

Theorem 2.1.2. Consider the eigenvalue problem

Aφ(k) = λ(k)φ(k)

Let ∆x = (l + 1)−1. Then, writing φ(k) = (φ
(k)
1 , . . . , φ

(k)
l ) ∈ Rl, we have for

k ∈ {1, . . . , l}:

φ
(k)
j = sin(kπj∆x),

λ(k) = a+ 2b cos(kπ∆x).

Proof. In index form the eigenvalue problem is, for φ = φ(k), λ = λ(k):

bφj−1 + aφj + bφj+1 = λφj, j ∈ {1, . . . , l},
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with the convention φ0 = φl+1 = 0. It may be verified by substitution that
choosing φj = sin(kπj∆x) with ∆x = (l + 1)−1 solves the difference equation
provided that k is an integer and

λ = a+ 2b cos(kπ∆x).

Since taking k ∈ {1, . . . , l} gives l distinct eigenvectors, the result follows.

Remark Both λ(k) and φ(k) are l periodic in k. Hence choosing k /∈ {1, . . . , l}
does not yield any new information. The eigenfunctions φ(k), with k ∈ {1, . . . , l},
form an orthogonal basis for C2J . The eigenfunctions φ(k) form an orthogonal
basis for Cl. Hence,

‖A‖2 = max
k∈{1,...,l}

|λ(k)|.

2.1.3 Rayleigh Coefficient

Given a square matrix A the Rayleigh coefficient is defined by

R(x) =
(x,Ax)

(x, x)
.

This function plays an important role in the analysis of eigenvalue problems.
Note that if x is an eigenvector of A for the eigenvalue λ, then R(x) = λ. If
A is hermitsch, i.e., A = A∗ then (x,Ax) = (A∗x, x) = (Ax, x) = (x,Ax). In
this case (x,Ax) is real and therefore R(x) is also a real valued function.

If A has a complete set of orthonormal eigenvectors xi with real eigenvalues
λi, then for each x we have the representation x =

∑
i αixi and (x,Ax) =∑

i αi(x, λixi) =
∑

ij αiαjλi(xj, xi) =
∑

i λiα
2
i . Furthermore (x, x) =

∑
i α

2
i .

Therefore we can conclude:

max
i
λi ≥ R(x) ≥ min

i
λi .

This result holds for example for symmetric matrices.
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2.1.4 Square Root of Matrices

Let A be a matrix with positive real eigenvalues λi and a complete set of
orthonormal eigenvectors xi, then A = U−1DU with some regular matrix T
and with D = diag(λ1, . . . , λn) being a diagonal matrix with the eigenvalues
on the diagonal. We can now define the square root of the matrix A using

A
1
2 = U−1D

1
2U

where the square root of a diagonal matrix is given byD
1
2 = diag(

√
(λ1), . . . ,

√
(λn)).

Note that with this definition we have A
1
2A

1
2 = A. This definition can for ex-

ample be applied to symmetric, positive definite matrices.

2.2 The Gronwall Lemma

In the numerical analysis of time discretizations the following Gronwall Lemma
plays a central role:

Lemma 2.2.1. Let zn ∈ R+ satisfy

zn+1 ≤ Czn +D, ∀n ≥ 0

for some C ≥ 0, D ≥ 0 and C 6= 1. Then

zn ≤ D
Cn − 1

C − 1
+ z0C

n. (2.3)

Proof. The proof proceeds by induction on n. Setting n = 0 in (2.3) yields

z0 ≤ z0

which is obviously satisfied. We now assume that (2.3) holds for a fixed n and
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prove that it is true for n+ 1. We have

zn+1 ≤ Czn +D

≤ C

[
D
Cn − 1

C − 1
+ z0C

n

]
+D

= D
Cn+1 − C
C − 1

+ z0C
n+1 +D

= D

[
Cn+1 − C
C − 1

+
C − 1

C − 1

]
+ z0C

n+1

= D
Cn+1 − 1

C − 1
+ z0C

n+1

and the induction is complete.

This lemma is a discrete analogue of the following continuous Gronwall lemma:

Lemma 2.2.2. Let z(t) satisfy

zt ≤ az + b, z(0) = z0,

for constants a, b. Then for t ≥ 0

z(t) ≤ eatz0 +
b

a
(eat − 1), a 6= 0

and
z(t) ≤ z0 + bt, a = 0.

Remark We will often use partial derivatives like zt, ∂tz, ux, or ∂xu even for
functions of only one variable, since the results are also to be applied to func-
tions with more than one argument.

2.3 Three underlying ideas

If faced with some partial differential equation of the form Lu = f (e.g.,
L = ∂t −4) a number of different problems have to be solved:
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• Find some function space V in which there exists a unique solution u to
the problem. Often finding the right function space to use can be the
most difficult part.

• Prove some properties of the solution u. Often these properties are
motivated by physical considerations, e.g., if u is the concentration of
some substance then any solution u to the problem should at least satisfy
u ≥ 0.

• Define some finite dimensional function space Vh and a discrete prob-
lem Lhuh = fh with a unique solution in Vh. The subscript h denotes
some measure of the quality of the discretization where it is understood
that the quality should increases if h is reduced - at the same time the
dimension of Vh increases.

• Prove that uh satisfies some suitable discrete version of the properties
derived for u. So for example we could be satisfied with uh ≥ −h. Or
we could only consider schemes with uh ≥ 0.

• Find a norm in which the difference between uh and u goes to zero as
the dimension of Vh goes to infinity (i.e. h tends to zero).

• Write a computer program to solve the finite dimension problem Lhuh =
fh. Here deriving efficient algorithms is a central task. This can involve
quite a bit of additional mathematical analysis.

In the following we will describe three main concepts which are used to prove
the convergence of a numerical scheme.

2.3.1 Consistency, Stability and Convergence

We outline an abstract framework in which many of the convergence proofs
that we study can be placed. It may be summarized thus:

Consistency + Stability =⇒ Convergence.
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Given an original problem

Φ(u) = 0

for which existence of a locally unique solution u is known, without necessarily
being known explicitly, we approximate the problem by a (finite dimensional)
problem:

Φh(uh) = 0. (2.4)

Again h denotes some measure for the quality of the approximation.

Consistency refers to the idea that the true solution almost satisfies the
approximate equations:

‖Φh(u)‖ −→ 0 as h −→ 0.

Stability refers to h-indendent well-posedness: there exists M independent of
h such that

‖v − w‖ ≤M‖Φh(v)− Φh(w)‖

for all v, w from a set B of functions containing u and uh. Note that stability
implies uniqueness of the approximate solution, within B. Note also that, if
(2.4) is a linear system Auh = f, then stability implies ‖w‖ ≤M‖Aw‖. Hence
A is invertible and ‖A−1‖ is bounded independently of h, in the induced matrix
norm. In general if Φh is invertible than stability corresponds to Lipschitz
continuity of Φ−1

h .

Convergence of the approximate solution, uh, to the solution of the original
problem, u, requires

‖u− uh‖ −→ 0 as h −→ 0

Consistency and stability together imply convergence:

‖u− uh‖ ≤ M‖Φh(u)− Φh(uh)‖
= M‖Φh(u)‖
−→ 0.

Of course the preceeding discussion is not at all precise; we have simply tried
to give a flavour of the proofs that will follow. In order to make such abstract
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ideas precise the following issues need addressing: (i) we have not defined
function spaces and appropriate norms; (ii) often the domain of Φ and Φh differ
(infinite dimensional versus finite dimensional for example) and it is necessary
to project between the two domains to make sense of certain expressions,
such as the definition of consistency; (iii) we have said nothing about rates of
convergence. Note that the right choice of norm in such analyzes is crucial
and affects the analysis in significant ways.

2.3.2 Qualitative Properties and Stability

The method for establishing that the approximation inherits a qualitative
property of the original problem is often the same as the method used to
prove stability. Hence we will follow the format:

• write down the PDE and a qualitative property;

• provide the approximation and show it maintains the qualitative prop-
erty;

• establish consistency and stability, implying convergence.

In the last two steps the methods of analysis will be closely related, and will
imply a choice of norm for the stability estimates.

2.3.3 Cost and Error

Usually, there is a tradeoff between computational cost and the error incurred
by approximation. The goal is to minimise cost per unit error.

One important aspect for the comparison of different numerical schemes is
given by the convergence rate of the scheme. Often convergence proofs do
not merely establish that ‖u − uh‖ → 0 but provide a rate of convergence:
‖u − uh‖ ≤ Chp for h small enough. Here C is some constant which can
depend on the data or even on the solution u but not on h. The higher p
is, the faster is the rate of convergence. We speak of a first order scheme if
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p = 1 of a second order scheme if p = 2 and so on. In general higher order
schemes require more regularity of the data and of the solution u and require
more computational time to obtain. Thus the convergence rate is only a first
crude tool for comparing numerical schemes. Also the constant C is often not
known and can differ greatly between numerical schemes so that a scheme with
a small p but also a small C can perform better than a higher order scheme
with large C for practically relevant values of h.
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Part II

Finite Differences
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Chapter 3

Introduction to Finite
Difference Methods

3.1 Finite Differences

The basic idea of finite difference methods is to seek approximations to solu-
tions of the PDE on a lattice. To approximate the derivatives appearing in
the PDE, differences between lattice values at neighbouring points are used.
We introduce the idea by considering functions of a single variable x.

Let xj = j∆x, ∆x � 1 and consider a smooth function u : I → R for some
open I ⊂ R. We set uj = u(xj). By Taylor expansion we have:

uj±1 = uj ±∆x
∂u

∂x
(xj) +

∆x2

2

∂2u

∂x2
(xj)±

∆x3

6

∂3u

∂x3
(xj) +O(∆x4) (3.1)

provided that u ∈ C4(I,R), xj ∈ I and ∆x is sufficiently small. From this we
see that

∂2u

∂x2
(xj) =

uj+1 − 2uj + uj−1

∆x2
+O(∆x2) (3.2)

:=
δ2uj
∆x2

+O(∆x2) (3.3)

provided that u ∈ C4(I,R), xj ∈ I and ∆x is sufficiently small.
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We can stop the Taylor expansion at different powers of ∆x and obtain similar
approximations for the first derivatives. For example

∂u

∂x
(xj) =

uj+1 − uj
∆x

+O(∆x), (3.4)

:=
∆+uj
∆x

+O(∆x) (3.5)

and

∂u

∂x
(xj) =

uj − uj−1

∆x
+O(∆x), (3.6)

:=
∆−uj
∆x

+O(∆x) (3.7)

provided that u ∈ C2(I,R), xj ∈ I and ∆x is sufficiently small. With the
assumption that u is three times continuously differentiable we can find an
improved approximation to the first derivative:

∂u

∂x
(xj) =

uj+1 − uj−1

2∆x
+O(∆x2), (3.8)

:=
∆0uj
2∆x

+O(∆x2) (3.9)

provided that u ∈ C3(I,R), xj ∈ I and ∆x is sufficiently small.

3.2 Time-stepping

We illustrate the idea of finite difference methods through time-stepping meth-
ods for ODEs. Consider the equation

du

dt
= f(u)

and let Un ≈ u(n∆t) denote an approximation. Such an approximation can
be computed by the following methods:

• Un+1−Un
∆t

= f(Un) – Forward Euler;

• Un+1−Un
∆t

= f(Un+1) – Backward Euler;
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• Un+1−Un
∆t

= θf(Un+1) + (1− θ)f(Un) – θ-method;

• Un+1−Un
∆t

= f(θUn+1 + (1− θ)Un) – one-leg θ-method;

• Un+1−Un−1

2∆t
= f(Un) – Leap-frog method.

3.3 Norms

Consider a function u : Ω→ R with Ω ⊂ Rd. When we discretize in space we
will obtain lattice approximations Uk where k is a multi-index ranging over a
lattice Ω∆. We use U to denote the vector obtained from this indexed set of
Uk. We use ∆ to denote the mesh-spacing. For simplicity we will always use
the same mesh-spacing in all dimensions.

When considering maximum principles our topology will be the supremum
norm in space and we use the notation

‖u‖∞ = sup
x∈Ω
|u(x))|, (3.10)

with Ω differing from example to example.

For the discretization we use the notation

‖U‖∞ = max
k∈Ω∆

|Uk|, (3.11)

with Ω∆ differing from example to example. No confusion should arise from
the dual use of the notation ‖·‖∞ since it will always be clear from the context
whether a function or a vector is being measured.

When considering energy methods our topology will be the L2 norm in space
and we use the notation

〈u, v〉 =
∫

Ω
u(x)v̄(x)dx,

‖u‖2 =
(∫

Ω
|u(x))|2dx

) 1
2 ,

(3.12)

with Ω differing from example to example, and the overbar denoting complex
conjugate. We will work almost exclusively in the reals, and the complex
conjugation will be redundant and then omitted. We will also use the notation

‖ · ‖L2 := ‖ · ‖2, ‖ · ‖H1 := {‖ · ‖2
L2 + ‖∇ · ‖2

L2}
1
2 .
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For the discretization we use the notation

〈U, V 〉 =
∑

k∈Ω∆
∆dUkV̄k,

‖U‖2 =
(∑

k∈Ω∆
∆d|Uk|2

) 1
2 ,

(3.13)

with Ω∆ differing from example to example, and the overbar denoting complex
conjugate. As in the continuous case, we will work almost exclusively in the
reals, and the complex conjugation will be redundant. No confusion should
arise from the dual use of the notation for the inner-product 〈·, ·〉 and the
induced norm ‖ · ‖2 since it will always be clear from the context whether a
function or a vector is being measured. The scaling of the discrete L2 norm
is chosen so that it looks, formally, like an integral in the limit of small mesh
spacing. This then implies that certain infinite dimensional norm inequalities
carry over to the finite dimensional setting, with constants which are mesh
independent. For example

‖U‖2
2 ≤ max

k∈Ω∆

|Uk|2
∑
k∈Ω∆

∆d.

Because of the scaling of the norm the constant
∑

k∈Ω∆
∆d behaves likes the

volume of Ω in the limit ∆→ 0 and hence may be bounded independently of
∆. This leads to the bound

‖U‖2
2 ≤ C(Ω)‖U‖2

∞. (3.14)
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Chapter 4

Boundary Value Problems and
the Maximum Principle

In this chapter we study elliptic problems in dimensions 1 and 2 and their
approximation by finite difference methods. We use the maximum principle,
and hence the notation (3.10),(3.11).

4.1 Two Point BVPs

4.1.1 The Differential Equation

To introduce ideas in a simple context we study the Elliptic Problem (1.1) in
dimension d = 1 with Ω = (a, b). We define

Lw(x) := −d
2w(x)

dx2
+ p(x)

dw(x)

dx
+ q(x)w(x) (4.1)

and then study the two point boundary value problem

Lu = f, x ∈ (a, b),
u(a)− α = u(b)− β = 0.

(4.2)

We use ideas related to the maximum principle in this chapter, and hence the
norm (3.10) with Ω = (a, b).
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We assume that p, q are continuous functions on the closed interval [a, b] and
hence that ‖p‖∞ = P ∗ < ∞. When discussing the consistency of the scheme,
further regularity of p, q will implicitly be required.

Theorem 4.1.1. Assume that q(x) ≥ Q∗ > 0. Then any solution of the
equation

Lw = f, x ∈ (a, b),
w(a) = w(b) = 0,

(4.3)

satisfies

‖w‖∞ ≤ 1

Q∗
‖f‖∞.

Proof. If |w(x)| attains its maximum at x = a or x = b then the proof is
complete. If it attains its maximum at c ∈ (a, b) then, without loss of general-
ity, we assume w(c) > 0 (otherwise consider −w(x) and modify the following
proof accordingly). Since w(c) is an interior maximum we have w′(c) = 0 and
w′′(c) ≤ 0. Hence,

Q∗‖w‖∞ = Q∗w(c)

≤ q(c)w(c)

= f(c)− p(c)w′(c) + w′′(c)

≤ f(c)

≤ ‖f‖∞.

The result follows.

Theorem 4.1.2. Assume that p, q, f ∈ C([a, b],R) and furthermore that q is
strictly positive on [a, b]. Then ∃P ∗, Q∗, Q∗ ∈ R such that

‖p‖∞ ≤ P ∗,

0 < Q∗ ≤ q(x) ≤ Q∗

and (4.2) has a unique solution.

Proof. Since the problem is elliptic, the Fredholm alternative shows that it
suffices to show uniqueness of the solution, for arbitrary continuous f . Unique-
ness follows by noting that, for two solutions u1(x), u2(x), the difference
w(x) = u2(x) − u1(x) solves (4.3) with f = 0. Hence Theorem 4.1.1 gives
that ‖w‖∞ = 0.
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4.1.2 The Approximation

Let Uj ≈ u(xj), xj = a+ jh, Jh = b−a. Set pj = p(xj), qj = q(xj) and define
the operator Lh by

LhWj = −δ
2Wj

h2
+ pj

Wj+1 −Wj−1

2h
+ qjWj. (4.4)

The discrete analog of (4.2) is

LhUj = f(xj), j ∈ {1, . . . , J − 1},
U0 − α = UJ − β = 0.

(4.5)

In matrix form we have
AU = F.

Here U = (U1, · · · , UJ−1)T and

A =
1

h2


b1 c1

a2
. . . . . .
. . . . . . cJ−2

aJ−1 bJ−1

 ,

where
aj = −[1 + hp(xj)/2], j = 1, . . . , J − 1,
bj = [2 + h2q(xj)], j = 1, . . . , J − 1,
cj = −[1− hp(xj)/2], j = 1, . . . , J − 1,
Fj = f(xj), j = 2, ..., J − 2
F1 = f(x1)− a1α/h

2, FJ−1 = f(xJ−1)− cJ−1β/h
2.

(4.6)

We use the norm (3.11) with Ω∆ = {1, . . . , J − 1} and ∆ = h. We have the
following existence result.

Theorem 4.1.3. Under the same conditions as Theorem 4.1.2, (4.5) has a
unique solution, provided h ≤ 2/P ∗.

Proof. Since the problem is finite dimensional it suffices, by the Fredholm
alternative, to show that, if f(x) = 0, α = β = 0, then (4.5) has the unique
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solution Uj = 0. We have, in this case,

ajUj−1 + bjUj + cjUj+1 = 0, j ∈ {1, . . . , J − 1},
U0 = UJ = 0.

Using h ≤ 2/P ∗ so that 1± hpj/2 ≥ 0 for j ∈ {1, . . . , J − 1}, we obtain

(2 + h2Q∗)|Uj| ≤ (2 + h2qj)|Uj|
= |bjUj|
≤ |ajUj−1|+ |cjUj+1|
≤ [1 + hpj/2]|Uj−1|+ [1− hpj/2]|Uj+1|.

Thus

(2 + h2Q∗)|Uj| ≤ 2‖U‖∞, j ∈ {1, . . . , J − 1}

and hence

‖U‖∞ ≤ 2

2 + h2Q∗
‖U‖∞

which implies ‖U‖∞ = 0 as required.

4.1.3 Convergence

Definition 4.1.4. The difference scheme (4.5) is stable in the ‖ · ‖∞ norm if
∃M ∈ R, independent of h and hc > 0, such that, for all w ∈ RJ−1

‖w‖∞ ≤ M‖Aw‖∞ ∀h ∈ (0, hc).

Definition 4.1.5. The difference scheme (4.5) is consistent of order m in
the ‖ · ‖∞-norm if ∃C ∈ R, independent of h, and hc > 0 such that:

‖Au− F‖∞ ≤ Chm ∀h ∈ (0, hc),

where

u = (u(x1), . . . , u(xJ−1))T ∈ RJ−1.
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Remarks

1. Note the slight abuse of notation in that we use u to denote both the
function u ∈ C([a, b],R) and the vector u ∈ RJ−1 found by sampling the
function on the finite difference grid. This abuse is something we will
repeat frequently in the following.

2. The quantity T = Au− F is known as the truncation error, found by
substituting the true solution into the approximation.

Lemma 4.1.6. Under the assumptions of Theorem 4.1.3, the difference ap-
proximation is stable in the ‖ · ‖∞-norm, with M = 1

Q∗
.

Proof. Let Aw = z. Then

ajwj−1 + bjwj + cjwj+1 = h2zj, j ∈ {1, . . . , J − 1},
w0 = wJ = 0.

Thus, using h ≤ 2/p∗,

(2 + h2Q∗)|wj| ≤ (2 + h2qj)|wj|
= |bjwj|
≤ |ajwj−1|+ |cjwj+1|+ h2|zj|
≤ (1 + hpj/2)|wj−1|+ (1− hpj/2)|wj+1|+ h2|zj|
≤ 2‖w‖∞ + h2‖z‖∞

Hence

(2 + h2Q∗)‖w‖∞ ≤ 2‖w‖∞ + h2‖z‖∞

and the result follows.

Lemma 4.1.7. If u ∈ C4([a, b],R) then (4.3) is consistent of order 2 in the
‖ · ‖∞-norm.

Note that this result requires further regularity of p, q, over and above what
has already been assumed, and can then be proved by Taylor series expansion,
as explained in Chapter 3.
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Theorem 4.1.8. If u ∈ C4([a, b],R) then ∃K independent of h, and hc > 0
such that:

‖U − u‖∞ ≤ Kh2 ∀h ∈ (0, hc).

Proof. Let

Au = F + T

and note that ‖T‖∞ ≤ Ch2 by consistency. Also

AU = F.

Thus e = u− U satisfies

Ae = T.

By stability we have

‖e‖∞ ≤M‖Ae‖∞ = M‖T‖∞ ≤MCh2

as required.

Remarks

1. Subsequent convergence proofs will all be basically repeating the struc-
ture of this proof, although the stability estimate may not be written
explicitly – for time-dependent problems it is often the least cubmerson
notationally to prove convergence directly from consistency.

2. Note that, for linear problems, stability implies the existence of a unique
solution to the finite differece equations, since it implies that A is in-
vertible. But it does much more than this: it gives a mesh-independent
bound on A−1 in the operator norm induced by the norm used in the
definition of stability (see section 2.3.1.)

3. By extending the stencil of the method, i.e., including more neighboring
values to discretize ∂xxu, it is possible to extend the order of consistency
of the scheme and thus the order of convergence. One possibility is a
5 point stencil: 1

12h2 (−u(x ± 2h) + 16u(x ± h) − 30u(x)). This finite
difference approximation is order four consistent but the different signs
used for the neighboring values leads to computationally unfavourable
properties so that it is not often used.
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4.2 The Laplace Equation

4.2.1 The PDE

Now we study finite difference methods for the Elliptic Problem (1.1) in dimen-
sion d = 2. For simplicity we set p and q to zero, and consider homogeneous
Dirichlet boundary conditions. We define

Lw = −∆w

and consider the Laplace equation

Lu = f, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(4.7)

We assume that f ∈ C(Ω,R).

Theorem 4.2.1. If for w ∈ C(Ω,R) we have Lw ≤ 0 ∀x ∈ Ω then

max
x∈Ω

w(x) ≤ max
x∈∂Ω

w(x).

Furthermore, if w attains its maximum M at x ∈ Ω then w = M on the whole
of Ω.

Remarks Taking u as the distribution of heat, the maximum principal states
that if in the domain only heat sinks are present (f ≤ 0) then the highest
temperature value is found on the boundary of the domain.

Corollary 4.2.2. Equation (4.7) has a unique solution.

Proof. By the preceeding theorem, the difference w of any two solutions sat-
isfies

max
x∈Ω

w(x) ≤ max
x∈∂Ω

w(x) = 0.

Similarly,

max
x∈Ω
−w(x) ≤ 0

and hence w = 0 on the whole of Ω.
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4.2.2 The Approximation

For simplicity we take the domain to be a unit square: Ω = (0, 1) × (0, 1).
We set x −→ (x, y) ∈ R2, and xj = j∆x, yj = j∆x. Let fj,k = f(xj, yk). If
Uj,k ≈ u(xj, yk) is desired, then a natural approximation to (4.7) is

− 1
∆x2 δ

2
xUj,k − 1

∆x2 δ
2
yUj,k = fj,k, (j, k) ∈ Ω∆x,
Uj,k = 0, (j, k) ∈ ∂Ω∆x,

(4.8)

where

δ2
xWj,k = Wj+1,k − 2Wj,k +Wj−1,k,
δ2
yWj,k = Wj,k+1 − 2Wj,k +Wj,k−1,
Ω∆x = {(j, k) ∈ {1, . . . , J − 1} × {1, . . . , J − 1}}
Ω∆x = {(j, k) ∈ {0, . . . , J} × {0, . . . , J}}\{(0, 0), (J, J), (0, J), (J, 0)},
∂Ω∆x = Ω∆x\Ω∆x.

(4.9)

Here, J∆x = 1. Defining

L∆xWj,k =
1

∆x2
[4Wj,k −Wj−1,k −Wj+1,k −Wj,k−1 −Wj,k+1] (4.10)

we obtain

L∆xUj,k = fj,k, (j, k) ∈ Ω∆x,
Uj,k = 0, (j, k) ∈ ∂Ω∆x.

(4.11)

We can write this as
AU = F (4.12)

with the obvious definitions of U and F .

Theorem 4.2.3. If L∆xWj,k ≤ 0, (j, k) ∈ Ω∆x then

max
(j,k)∈Ω∆x

Wj,k ≤ max
(j,k)∈∂Ω∆x

Wj,k.

Furthermore, if Wj,k attains its maximum M at (j, k) ∈ Ω∆x then Wj,k = M
on the whole of Ω∆x.

Proof. If the maximum is attained on the boundary and nowhere in the interior
then we are done. If not, then we must prove that, if the maximum if attained
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in the interior, wj,k ≡ M in Ω∆x. Let (j, k) ∈ Ω∆x and assume that the
maximum M is attained here. Then

M = Wj,k ≤
1

4
[Wj+1,k +Wj−1,k +Wj,k+1 +Wj,k−1] .

Since M is a maximum this can only hold if W takes the same value M at the
four neighbours of j, k ∈ Ω∆x, namely (j ± 1, k) and (j, k± 1). Repeating this
argument starting at each of these four neighbours, and recursing, shows that
Wj,k ≡M in Ω∆x.

Corollary 4.2.4. The problem (4.11) has a unique solution.

Proof. See Exercise 4.

4.2.3 Convergence

We use the norm (3.11) with Ω∆ = Ω∆x.

Definition 4.2.5. The difference scheme (4.11) is stable in the ‖ · ‖∞ norm
if ∃M , independent of ∆x, and ∆c > 0, such that, for all w ∈ R(J−1)2

,

‖w‖∞ ≤ M‖Aw‖∞ ∀∆x ∈ (0,∆xc).

Definition 4.2.6. The difference approximation is consistent of order m in
the ‖ · ‖∞-norm if ∃C, independent of ∆x, and ∆xc > 0 such that:

‖Au− F‖∞ ≤ C∆xm ∀∆x ∈ (0,∆xc)

where u = (. . . , u(xj, yk), . . .)
T ∈ R(J−1)2

.

Lemma 4.2.7. The difference approximation (4.11) is stable in the ‖ · ‖∞-
norm.

Proof. Let Φj,k = 1
4

[
(xj − 1

2
)2 + (yk − 1

2
)2
]
. Then

Φj,k ≥ 0 ∀(j, k) ∈ Ω∆x;

−L∆xΦj,k = 1 ∀(j, k) ∈ Ω∆x;

Φj,k ≤
1

8
∀(j, k) ∈ ∂Ω∆x.
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Let AW = Z, and R = ‖Z‖∞. We will show that

‖W‖∞ ≤
1

8
R,

which establishes stability.

Note that the linear system AW = Z is equivalent to

L∆xWj,k = Zj,k, (j, k) ∈ Ω∆x,
Wj,k = 0, (j, k) ∈ ∂Ω∆x.

(4.13)

In writing this lattice version of the linear system we extend Wj,k onto the
boundary ∂Ω∆x and set it to zero, in order to make sense of the application
of L∆x in the interior Ω∆x.

Now
L∆x(RΦj,k ±Wj,k) = −R± Zj,k ≤ 0.

Hence

max
(j,k)∈Ω∆x

(RΦj,k ±Wj,k) ≤ max
(j,k)∈∂Ω∆x

(RΦj,k ±Wj,k)

≤ R

8

But RΦj,k ≥ 0 in Ω∆x and hence

max
(j,k)∈Ω∆x

(±Wj,k) ≤
R

8
,

completing the proof.

Define the truncation error

Tj,k = L∆xuj,k − fj,k

for uj,k = u(j∆x, k∆x).

Lemma 4.2.8. If u ∈ C4(Ω,R) then, for some C independent of ∆x,

max
(j,k)∈Ω∆x

|Tj,k| ≤ C∆x2.
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This can be proved by means of Taylor series exapnsion as explained in the
previous chapter. If we define a vector T = (. . . , Tj,k, . . . )

T then T = AU − F
and the result implies consistency of order 2 in the ∞−norm:

‖T‖∞ ≤ C∆x2.

Theorem 4.2.9. If u ∈ C4(Ω,R) then ∃K independent of ∆x, and ∆xc > 0,
such that

||u− U‖∞ ≤ K
∆x2

8
∀∆x ∈ (0,∆xc).

Proof. We have

Ae = T,

with ‖T‖∞ ≤ C∆x2. But the previous lemma gives stability and hence

‖e‖∞ ≤
1

8
‖Ae‖∞ =

1

8
‖T‖∞ ≤

C

8
∆x2.

Remarks

1. By extending the stencil of the method, i.e., including more neighbor-
ing values to discretize ∂xxu + ∂yyu, it is possible to extend the order
of consistency of the scheme and thus the order of convergence. One
possibility is a compact nine point stencil: 1

60h2 (4u(x± h, y) + 4u(x, y ±
h) + u(x ± h, y ± h) − 20u(x, y)). In this form the scheme is still only
consistent of order two but a minimal change in the evaluation of the
right hand side leads to a scheme of order four. Instead of f(x, y) one
uses: fj,k = f(xj, yk) + 1

12
(f(xj±1, yk) + f(xj, yk±1) − 4f(xj, yk)). The

proof of this is left as exercise.
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Chapter 5

Boundary Value problems and
Energy Methods

We continue our study of the Elliptic Problem (1.1). We now use energy
methods to study the PDE, its approximation and convergence of the approx-
imation. We use inner-products and norms as given by (3.12), (3.13).

5.1 The Helmholtz Equation

5.1.1 The PDE

We consider (1.1) in the case d = 2, with Ω = (0, 1)×(0, 1), with homogeneous
Dirichlet boundary conditions. We consider the self-adjoint operator arising
when p ≡ 0 and q(x) = µ. a constant. This gives rise to the Helmholtz
equation

−∆u+ µu = f x ∈ Ω,
u = 0, x ∈ ∂Ω.

(5.1)

We will make use of the Poincaré inequality:

‖∇u‖2
2 ≥ C−1

p ‖u‖2
2. (5.2)
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which holds for functions u with zero boundary conditions. Here C−1
p is the

smallest eigenvalue of the Laplacian on Ω, subject to Dirichlet boundary con-
ditions. For the particular domain we are considering we have C−1

p = 2π2.
More details on this inequality will be given in the third part of the lecture.

Theorem 5.1.1. Let f ∈ L2(Ω) and µ > −C−1
p . Then (5.1) has a unique

solution u ∈ H2(Ω) satisfying

‖u‖2
2 ≤

‖f‖2

µ+ C−1
p

Proof. Existence follows from the Lax-Milgram lemma. Taking the inner prod-
uct of (5.1) with u yields:

〈u,−∆u〉+ µ〈u, u〉 = 〈f, u〉
=⇒ ‖∇u‖2

2 + µ‖u‖2
2 ≤ ‖f‖2‖u‖2.

Hence

(C−1
p + µ)‖u‖2

2 ≤ ‖f‖2‖u‖2

and the result follows.

Remarks In proofs using the energy method, the main idea is often to multiply
the pde with u or some derivative of u.

5.1.2 The Approximation

Using the notation (4.9) and (4.10) from the previous chapter, we consider the
following approximation to (5.1):

L∆xUj,k + µUj,k = fj,k, (j, k) ∈ Ω∆x,
Uj,k = 0, (j, k) ∈ ∂Ω∆x.

(5.3)

In matrix notation we have

(A+ µI)U = F.
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We use the inner product and norm on Ω∆x defined by (3.13) with d = 2 and
∆ = ∆x.

Exercise 3 shows that the eigenvalue problem

AΦ(k,l) = λ(k,l)Φ(k,l),

has solution

Φ(k,l) = sin(kπxm) sin(lπyn),

λ(k,l) =
4

∆x2
sin2(kπ∆x/2) +

4

∆x2
sin2(lπ∆x/2),

for (k, l) ∈ {1, . . . , J − 1}× {1, . . . , J − 1}. Thus A is positive-definite and has

a unique positive-definite square root A
1
2 . Hence

〈u,Au〉 = ‖A
1
2u‖2

2

so that
8

∆x2
‖u‖2

2 ≥ ‖A
1
2u‖2

2 ≥ C−1
p,∆x‖u‖

2
2 (5.4)

where C−1
p,∆x = λ(1,1) = 8

∆x2 sin2(π∆x/2). Note that Cp,∆x −→ Cp as ∆x −→ 0
and that the lower inequality is a discrete Poincaré inequality; this is
since, roughly, application of A corresponds to a discrete second derivative
and hence application of A

1
2 to a discrete first derivative. The upper inequal-

ity is an example of an inverse inequality: something with no counterpart
for continuous functions, and consequently with constants that blow-up with
shrinking mesh.

Theorem 5.1.2. Let µ > C−1
p,∆x. Then (5.3) has a unique solution satisfying

‖U‖2 ≤
1

µ+ C−1
p,∆x

‖F‖2

Proof. Multiplying the discrete equation with U , we have

〈U,AU〉+ µ〈U,U〉 = 〈F,U〉
=⇒ ‖A

1
2U‖2

2 + µ‖U‖2
2 ≤ ‖F‖2‖U‖2.

Hence

(C−1
p,∆x + µ)‖U‖2

2 ≤ ‖F‖2‖U‖2.
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The existence and uniqueness result follows because the bound implies

(C−1
p,∆x + µ)‖U‖2 ≤ ‖F‖2 = ‖(A+ µI)U‖2. (5.5)

This shows that (A + µI) is injective and thus invertible. The same formula,
in addition, gives the required bound on the solution.

5.1.3 Convergence

We define the true solution restricted to the grid by

uj,k = u(j∆x, k∆x),

u = (. . . , uj,k, . . .)
T ∈ R(J−1)2

and the truncation error T ∈ R(J−1)2
by

T = (A+ µI)u− F.

From truncation error analysis we have:

Lemma 5.1.3. If u ∈ C4(Ω̄,R) then, for some C independent of ∆x,

max
(j,k)∈Ω∆x

|Tj,k| ≤ C∆x2.

Thus, by (3.14), we have

‖T‖2 ≤ C(Ω)
1
2‖T‖∞ ≤ C(Ω)

1
2C∆x2.

Remark

We prove convergence directly from this consistency result. Of course we are
implicitly proving a stability result in the course of the proof; see Exercise 4.

Theorem 5.1.4. If u ∈ C4(Ω̄,R) then

‖u− U‖2 ≤
C∆x2

C−1
p,∆x + µ
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Proof. We have

(A+ µI)u− F = T,

(A+ µI)U − F = 0.

Hence, (A+ µI)e = T . By (5.5) we have, by taking U = (A+ µI)−1w,

‖(A+ µI)−1w‖2 ≤
‖w‖2

(C−1
p,∆x + µ)

.

Hence

‖(A+ µI)−1‖2 ≤
1

(C−1
p,∆x + µ)

and so

‖e‖2 = ‖(A+ µI)−1T‖
≤ ‖(A+ µI)−1‖2‖T‖2

≤ C(Ω)
1
2C∆x2

C−1
p,∆x + µ

.
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Chapter 6

Initial Value Problems and
Maximum Principles

In this chapter we study both the Transport Problem (1.3) and the Diffusion
Problem (1.1) by means of finite difference approximations. Our primary tool
of analysis is the maximum principle and we will use the norms (3.10) and
(3.11).

6.1 The Transport Problem

6.1.1 The PDE

Here we study the Transport Problem with constant wave speed c > 0 (see
(1.3) without the periodic assumption):

∂u
∂t

+ c∂u
∂x

= 0 (x, t) ∈ (0,∞)× (0,∞),
u = g (x, t) ∈ [0,∞)× {0},
u = h (x, t) ∈ {0} × (0,∞).

(6.1)

Assume for the moment that g, h ∈ C([0,∞),R) (further regularity conditions
will be implicit in later developments). Furthermore we assume that they sat-
isfy the compatibility condition h(0) = g(0). By the method of characteristics,
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there exists an exact solution:

u(x, t) =

{
h(t− x

c
) 0 ≤ x < ct

g(x− ct) ct ≤ x <∞ (6.2)

For computational purposes, the domain is restricted to (x, t) ∈ [0, 1]× [0, T ].

From the exact solution above, we infer:

Theorem 6.1.1.

sup
t∈[0,T ]

‖u(·, t)‖∞ ≤ max

{
sup
x∈[0,1]

|g(x)|, sup
t∈[0,T ]

|h(t)|

}
. (6.3)

This well-posedness result can be used to establish uniqueness and continuous
dependence of the solution on the data.

6.1.2 The Approximation

We introduce a spatial mesh through the points

xj = j∆x

J∆x = 1, J ∈ N

where ∆x� 1. We let Uj(t) denote our approximation to u(xj, t). Thus

Uj(t) ≈ u(xj, t).

The spatially approximated transport problem then reads:

dUj
dt

+ c
∆x

[Uj − Uj−1] = 0 (j, t) ∈ {1, . . . , J} × (0,∞),
Uj(t) = g(xj) (j, t) ∈ {0, . . . , J} × {0},
Uj(t) = h(t) (j, t) ∈ {0} × (0,∞).

(6.4)

If we denote the approximate solution by the vector U = (U1(t), . . . , UJ(t))T ,
and similarly H(t) = c

∆x
(h(t), 0, . . . , 0)T ∈ RJ and G = (g(x1), . . . , g(xJ))T

then the matrix form of the problem reads:

dU

dt
+ AU = H

U(0) = G
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where

A =
c

∆x


1 0 . . . . . . 0
−1 1 0 . . . 0

0
. . . . . . . . . 0

0 . . . −1 1 0
0 . . . . . . −1 1

 .

Remarks We have so far derived a semi discrete method by only discretizing in
space while still being continuous in time. This results in a system of ordinary
differential equations for the unknown functions Uj(t). This approach is often
called method of lines.

Now we discretise time, introducting a temporal mesh, tn = n∆t, N∆t =
T, N ∈ N, and apply the forward Euler method.

Un+1
j −Unj

∆t
+ c

∆x

(
Un
j − Un

j−1

)
= 0 (j, n) ∈ {1, . . . , J} × {0, . . . N − 1},

Un
j = g(xj) (j, n) ∈ {0, . . . , J} × {0},

Un
j = h(tn) (j, n) ∈ {0} × {1, . . . , N}.

From the matrix point of view this may be written as:

Un+1 = (I −∆tA)Un + ∆tH
U0 = G,

(6.5)

where Un = (Un
1 , . . . , U

n
J )T ∈ RJ . Here, we assume that h(0) = g(0) so that,

when the method requires knowledge of h(0), it is equal to the value of g(0).

Define the Courant number as follows:

λ =
c∆t

∆x
. (6.6)

We define the norm (3.11) with ∆ = ∆x and Ω∆ = {1, . . . , J}.

Theorem 6.1.2. If λ ∈ [0, 1] then

max
n∈{0,...,N}

‖Un‖∞ ≤ max

{
sup
x∈[0,1]

|g(x)|, sup
t∈[0,T ]

|h(t)|

}
. (6.7)
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Proof. First for all points which are not adjacent to the boundary we have:

Un+1
j = (1− λ)Un

j + λUn
j−1, (j, n) ∈ {1, . . . , J} × {0, . . . , N − 1}

Since λ ∈ [0, 1] we have 1− λ ∈ [0, 1] too. Thus, for these (j, n),

|Un+1
j | ≤ (1− λ)|Un

j |+ λ|Un
j−1|

≤ (1− λ) max
j∈{0,...,J}

|Un
j |+ λ max

j∈{0,...,J}
|Un

j |

= max
j∈{0,...,J}

|Un
j |.

Now this turns into a statement about the maximum norms. Taking account
of the boundary conditions we get:

‖Un+1‖∞ ≤ max

{
‖Un‖∞, sup

t∈[0,T ]

|h(t)|

}
.

It follows by induction that, for n ∈ {0, . . . , N},

‖Un‖∞ ≤ max

{
sup
x∈[0,1]

|g(x)|, sup
t∈[0,T ]

|h(t)|

}
since

‖U0‖∞ ≤ sup
x∈[0,1]

|g(x)|.

6.1.3 Convergence

Let unj = u(xj, tn), noting that Un
j is the computed approximation to unj . Let

T nj =

(
un+1
j − unj

∆t

)
+

c

∆x

(
unj − unj−1

)
(j, n) ∈ {1, . . . , J} × {0, . . . , N − 1}.

(6.8)
This is the truncation error found by substituting the true solution into the
method. If we define T n = (T n1 , . . . , T

n
J ) ∈ RJ then we have, by the techniques

of Chapter 3:
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Lemma 6.1.3. If u(x, t) ∈ C2 ([0, 1]× [0, T ],R) then

max
n∈{0,...,N−1}

‖T n‖∞ ≤ C(∆t+ ∆x)

for some constant C independent of ∆t and ∆x.

Remarks

1. By the exact solution (6.2), we see that the regularity assumption on
u requires that g, h ∈ C2([0, T ],R) as well as a C2-continuity condition
where h and g meet.

2. The previous lemma establishes consistency. The method used to prove
the next theorem implicitly relies on a stability estimate. See Exercise
6.

Theorem 6.1.4. If λ ∈ [0, 1] and u(x, t) ∈ C2 ([0, 1]× [0, T ],R) then

max
n∈{0,...,N}

‖un − Un‖∞ ≤ CT (∆t+ ∆x) (6.9)

for the constant C appearing in Lemma 6.1.3.

Proof. Let enj = unj − Un
j . Then, by linearity, we have:

en+1
j −enj

∆t
+ c

∆x

(
enj − enj−1

)
= T nj (j, n) ∈ {1, . . . , J} × {0, . . . , N − 1},

enj = 0 {0, . . . , J} × {0}s,
enj = 0 (j, n) ∈ {0} × {1, . . . , N}.

Thus, for (j, n) ∈ {1, . . . , J} × {0, . . . , N − 1}, we have:

en+1
j = (1− λ)enj + λenj−1 + ∆tT nj

=⇒ |en+1
j | ≤ (1− λ)|enj |+ λ|enj−1|+ ∆t|T nj |

≤ (1− λ) max
j∈{0,...,J}

|enj |+ λ max
j∈{0,...,J}

|enj |+ ∆t|T nj |

= max
j∈{0,...,J}

|enj |+ ∆t|T nj |

Since en0 = 0, n ∈ {0, . . . , N} we obtain, using Lemma 6.1.3:

‖en+1‖∞ ≤ ‖en‖∞ + C∆t(∆t+ ∆x)
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By induction, using e0 = 0, we obtain:

‖en‖∞ ≤ Cn∆t(∆t+ ∆x)

and hence that
max

n∈{0,...,N}
‖en‖∞ ≤ CT (∆t+ ∆x)

6.2 The Heat Equation

6.2.1 The PDE

Here we study the Diffusion Model Problem (1.1) in dimension d = 1, with
Ω = (0, 1) and with f = 0. Let g ∈ C([0, 1],R) and consider the problem:

∂u
∂t

= ∂2u
∂x2 (x, t) ∈ (0, 1)× (0,∞),

u = 0 (x, t) ∈ {0, 1} × (0,∞),
u = g (x, t) ∈ [0, 1]× {0}.

(6.10)

Theorem 6.2.1. Let t > s > 0. Then:

min
0≤y≤1

u(y, s) ≤ u(x, t) ≤ max
0≤y≤1

u(y, s) ∀x ∈ [0, 1] (6.11)

This well-posedness result can be used to establish uniqueness and continuous
dependence of the solution on the initial data.

6.2.2 The Approximation

Again, letting xj = j∆x and J∆x = 1, J ∈ N, we introduce Uj(t) as our
approximation to u(xj, t) and consider the approximation

dUj
dt

= 1
∆x2 δ

2Uj (j, t) ∈ {1, . . . , J − 1} × [0, T ],
Uj = 0, (j, t) ∈ {0, J} × [0, T ],
Uj = g(xj) (j, t) ∈ {0, J} × {0}.
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Adopting vector notation (U = (U1, . . . , UJ−1)T ), we have:

dU

dt
+ AU = 0,

U(0) = G

where

A =
−1

∆x2


−2 1

1
. . . . . .
. . . . . . . . .

. . . . . . 1
1 −2

 ,

G = (g(x1), . . . , g(xJ−1))T .

Letting tn = n∆t and N∆t = T, N ∈ N, we now apply the theta method
(with θ ∈ [0, 1]) in time to get:

Un+1
j −Unj

∆t
= θ

∆x2 δ
2Un+1

j + 1−θ
∆x2 δ

2Un
j (j, n) ∈ {1, . . . , J − 1} × {0, . . . , N − 1}

Un
j = 0 (j, n) ∈ {0, J} × {1, . . . , N}

Un
j = g(xj) (j, n) ∈ {0, . . . , J} × {0}

(6.12)
Vectorially, we have, for Un = (Un

1 , . . . , U
n
J−1)T

(I + ∆tθA)Un+1 = (I −∆t(1− θ)A)Un

U0 = G
(6.13)

Theorem 6.2.2. Let r = ∆t
∆x2 . If r(1− θ) ≤ 1

2
then, for j ∈ {0, . . . , J},

min
k∈{0,...,J}

Un
k ≤ Un+1

j ≤ max
k∈{0,...,J}

Un
k .

Proof. We have, in the interior (j, n) ∈ {1, . . . , J − 1} × {0, . . . , N − 1},

(1 + 2rθ)Un+1
j = rθ(Un+1

j−1 +Un+1
j+1 ) + r(1− θ)(Un

j−1 +Un
j+1) + [1− 2r(1− θ)]Un

j

Thus, define
Un

max = max
j∈{0,...,J}

Un
j .
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The upper inequality simply states that

Un+1
max ≤ Un

max

and it is this that we now prove.

Note that 1 − 2r(1 − θ) ≥ 0, (1 − θ) ≥ 0, θ ≥ 0 and r ≥ 0. For (j, n) in the
interior,

(1 + 2rθ)Un+1
j ≤ 2rθUn+1

max + 2r(1− θ)Un
max + [1− 2r(1− θ)]Un

max

= 2rθUn+1
max + Un

max

If Un+1
max occurs for j ∈ {1, . . . , J − 1} then

(1 + 2rθ)Un+1
max ≤ 2rθUmax + Un

max

=⇒ Un+1
max ≤ Un

max

If Un+1
max occurs for j ∈ {0, J} then

Un+1
max = 0 = Un

0 ≤ Un
max

Hence

Un+1
max ≤ Un

max n ∈ {0, . . . , N − 1}

and the upper inequality follows. The lower inequality is proved similarly, by
considering

Un
min = min

j∈{0,...,J}
Un
j

6.2.3 Convergence

Let unj = u(xj, tn), noting that Un
j is the computed approximation to unj . Let

T nj =
un+1
j − unj

∆t
− θ

∆x2
δ2Un+1

j −(1− θ)
∆x2

δ2Un
j (j, n) ∈ {1, . . . , J−1}×{0, . . . , N−1}

This is the truncation error. We define T n = (T n1 , . . . , T
n
J−1) ∈ RJ−1. By the

techniques in Chapter 3, expanding about tn+1+tn
2

, the following may be shown,
using the norm (3.11) with ∆x = ∆ and Ω∆x = {1, . . . , J − 1}.
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Lemma 6.2.3. If u(x, t) ∈ C4×2 ([0, 1]× [0, T ],R) then

max
n∈{0,...,(N−1)}

‖T n‖∞ ≤ C[∆t+ ∆x2]

for some constant C independent of ∆t and ∆x. Also, if θ = 1
2

and u(x, t) ∈
C4×3([0, 1]× [0, T ],R) then

max
n∈{0,...,(N−1)}

‖T n‖∞ ≤ C[∆t2 + ∆x2]

for some constant C independent of ∆t and ∆x.

Assumption For simplicity we assume that

max
n∈{0,...,(N−1)}

‖T n‖∞ ≤ C[∆t2 + (1− 2θ)∆t+ ∆x2]

in the following. The Lemma 6.2.3 gives conditions under which this holds.

Remark

We prove convergence directly from this consistency result. Of course we are
implicitly proving a stability result in the course of the proof; see Exercise 7.

Theorem 6.2.4. Let r(1− θ) ≤ 1
2

and make the above assumption. Then

max
n∈{0,...,N}

‖un − Un‖∞ ≤ CT
[
(1− 2θ)∆t+ ∆t2 + ∆x2

]
.

Proof. Let enj = unj − Un
j . Then, by linearity,

en+1
j − enj

∆t
=

θ

∆x2
δ2en+1

j +
1− θ
∆x2

δ2enj +T nj (j, n) ∈ {1, . . . , J−1}×{0, . . . , N−1}

Thus, for (j, n) ∈ {1, . . . , J − 1} × {0, . . . , N − 1} we get:

(1+2rθ)en+1
j = rθ(en+1

j−1 +en+1
j+1 )+r(1−θ)(enj−1 +enj+1)+[1−2r(1−θ)]enj +∆tT nj

with

en0 = enJ = 0,

e0
j = 0, j = 1, . . . , J − 1.
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We define
En = (en1 , . . . , e

n
J−1)T , T n = (T n1 , . . . , T

n
J−1)T .

Since 1− 2r(1− θ) ≥ 0, (1− θ) ≥ 0, θ ≥ 0 and r ≥ 0 we have

(1+2rθ)|en+1
j | ≤ 2rθ‖En+1‖∞+2r(1−θ)‖En‖∞+[1−2r(1−θ)]‖En‖∞+∆t‖T n‖∞

Hence, for j ∈ {1, . . . , J − 1}

(1 + 2rθ)|en+1
j | ≤ 2rθ‖En+1‖∞ + ‖En‖∞ + ∆t‖T n‖∞

which implies

(1 + 2rθ)‖En+1‖∞ ≤ 2rθ‖En+1‖∞ + ‖En‖∞ + ∆t‖T n‖∞
=⇒ ‖En+1‖∞ ≤ ‖En‖∞ + ∆t‖T n‖∞.

By induction, using ‖E0‖∞ = 0 and 0 ≤ n∆t ≤ T , we obtain

‖En‖∞ ≤ n∆t‖T n‖∞ ≤ T‖T n‖∞

as required.
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Chapter 7

Initial Value Problems and
Energy Methods

In this chapter we study the qualitative properties and then convergence of
discretizations of PDEs by means of energy methods. When studying specific
examples of PDEs and their approximations we use the notations (3.12) and
(3.13).

To introduce the main ideas consider an ODE in a Hilbert space H with inner
product (·, ·) and induced norm ‖ · ‖

du

dt
= f(u) (7.1)

where

(f(u), u) = 0 ∀u ∈ D(f) ⊂ H. (7.2)

Here, f is assumed to satisfy:

f : D(f) −→ H

where D(f) ⊂ H is the domain of f .

Assuming that the solution lies in D(f), this equation has the qualitative
property that

‖u(t)‖2 = ‖u(0)‖2 (7.3)
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since

1

2

d

dt
‖u‖2 =

1

2

d

dt
(u, u)

= (
du

dt
, u)

= (f(u), u)

= 0.

If (7.1) is a PDE then it may be important to replicate the property (7.2) under
spatial approximation; we address this on a case by case basis in subsequent
sections. Analogously, when discretizing in time, it may also be important to
preserve the property (7.3). Here we discuss briefly how time discretization
affects (7.3), which is a consequence of (7.3).

Applying the one-leg variant of the θ-method to (7.1) gives

Un+1 − Un

∆t
= f(θUn+1 + (1− θ)Un). (7.4)

Taking the inner product with

θUn+1 + (1− θ)Un =
1

2

(
Un+1 + Un

)
+ (θ − 1

2
)(Un+1 − Un) (7.5)

gives, by (7.2):

1

2∆t

{
‖Un+1‖2 − ‖Un‖2

}
+

1

∆t
(θ − 1

2
)‖Un+1 − Un‖2 = 0 (7.6)

Thus, ‖Un‖2 = ‖U0‖2 only when θ = 1
2
. If θ ∈ [0, 1

2
) then ‖Un‖2 is an

increasing sequence, and it is decreasing if θ ∈ (1
2
, 1].

Similar methods of analysis apply to problems for which (7.2) is replaced by

∃α, β ≥ 0 : (f(u), u) ≤ α− β‖u‖2 ∀u ∈ D(f) ⊂ H. (7.7)

Under (7.7) with α = β = 0 the norm of the true solution is non-increasing.
It is of interest to find discretizations which preserve this property, without
restriction on ∆t; this requires θ ∈ [1

2
, 1].
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Under (7.7) with α, β > 0 the true solution is ultimately bounded independent
of initial data. It is of interest to find discretizations which preserve this
property, without restriction on ∆t; this also requires θ ∈ [1

2
, 1].

For time-discrete problems we will frequently take the inner-product with (7.5)
in the following; this will help us to analyse discretizations of PDEs satisfying
(7.2) or (7.7).

7.1 The Transport Problem

7.1.1 The PDE

Here we study the Periodic Transport Problem (1.3) with constant wave speed
c > 0 :

∂u
∂t

+ c∂u
∂x

= 0 (x, t) ∈ (−1, 1)× (0,∞),
u(−1, t) = u(1, t) t ∈ (0,∞),
u(x, 0) = g (x, t) ∈ [−1, 1]× {0}.

(7.8)

We use the inner-product and norm given by (3.12) with Ω = (−1, 1).

Theorem 7.1.1.

‖u(t)‖2
2 = ‖u(0)‖2

2 ∀t > 0

Proof.

〈u, ∂u
∂t
〉+ c〈u, ∂u

∂x
〉 = 0

=⇒ 1

2

d

dt
‖u‖2

2 +
c

2

∫ 1

−1

∂

∂x
{u2}dx = 0

=⇒ 1

2

d

dt
‖u‖2

2 +
c

2

[
u2(1, t)− u2(−1, t)

]
= 0

=⇒ 1

2

d

dt
‖u‖2

2 = 0

and the result follows.
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7.1.2 A First Approximation

Now consider the upwind spatial finite difference approximation

dUj
dt

+
c

∆x
(Uj − Uj−1) = 0 (j, t) ∈ {−J, . . . , J − 1} × (0, T ],

U−J−1(t) = UJ−1(t) t ∈ (0, T ],

Uj(t) = g(xj) (j, t) ∈ {−J, . . . , J − 1} × {0}.

We assume that g is 2−periodic so that g(x−J−1) = g(xJ−1) which is needed
in the first time-step.

In matrix form we have:

dU

dt
+ AU = 0

U(0) = G

where U = (U−J , . . . , UJ−1)T ∈ R2J and G = (g(x−J), . . . , g(xJ−1))T ∈ R2J

and

A =
c

∆x


1 0 . . . . . . −1
−1 1 0 . . . 0

0
. . . . . . . . . 0

0 . . . −1 1 0
0 . . . . . . −1 1


Theorem 7.1.2.

‖U(t)− Ūe‖2
2 −→ 0 as t −→∞,

where Ū = ∆x
2

∑J−1
j=−J Uj(0) and e = (1, . . . , 1)T ∈ R2J−1.

Proof. By Theorem 2.1.1 A has a set of orthogonal eigenfunctions φ(k) and
eigenvalues λ(k) given by

φ(k) = (φ
(k)
−J , . . . , φ

(k)
J−1)T ∈ C2J

λ(k) = [1− exp(−ikπ∆x)]
c

∆x
φ(k) = exp(ikπj∆x),
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for k ∈ {0, · · · , 2J − 1}. Notice that

Re {λ(k)} = [1− cos(kπ∆x)] c
∆x

> 0 k 6= 0,
λ(0) = 0,
e = φ(0).

(7.9)

The result follows by expanding U in the orthogonal basis {φ(k)}2J−1
k=0 . To see

this let

U(t) =
2J−1∑
k=0

ak(t)φ
(k)

and observe that

dak
dt

+ λ(k)ak = 0.

By (7.9) we deduce that

ak(t) −→ 0 as t −→ 0 ∀k 6= 0

a0(t) = a0(0) ∀t ≥ 0

But

a0(0) =
〈U(0), φ(0)〉
‖φ(0)‖2

2

=

∑J−1
j=−J ∆xUj(0)∑J−1

j=−J ∆x
=

1

2J

J−1∑
j=−J

Uj(0) =
∆x

2

J−1∑
j=−J

Uj(0).

7.1.3 An Energy Conserving Approximation

The preceeding spatial approximation completely destroys the energy preserv-
ing property of the PDE. Here we describe a method which retains this prop-
erty. The key is to discretize the spatial derivative in a symmetric fashion.
Consider the scheme

dUj
dt

+ c
2∆x

(Uj+1 − Uj−1) = 0 (j, t) ∈ {−J, . . . , J − 1} × (0, T ],
U−J−1(t) = UJ−1(t) t ∈ (0, T ],

UJ(t) = U−J(t) t ∈ (0, T ],
Uj(t) = g(xj) (j, t) ∈ {−J, . . . , J − 1} × {0}.

(7.10)
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In matrix form we have

dU
dt

+ AU = 0
U(0) = G

(7.11)

with

A =
c

2∆x


0 1 . . . . . . −1
−1 0 1 . . . 0

0
. . . . . . . . . 0

0 . . . −1 0 1
1 . . . . . . −1 0

 (7.12)

In the following we use the norm and inner-product given by (3.13) with
∆ = ∆x and Ω∆ = {−J, . . . , J − 1}. With this inner-product A is skew-
symmetric: since A = −AT we have, for all v ∈ R2J ,

〈v,Av〉 = 〈ATv, v〉 = −〈Av, v〉 = −〈v, Av〉

and so

〈v,Av〉 = 0 ∀v ∈ R2J .

Theorem 7.1.3.

‖U(t)‖2
2 = ‖G‖2

2 ∀t > 0

Proof.

〈U, dU
dt
〉+ 〈U,AU〉 = 0

=⇒ 1

2

d

dt
‖U‖2

2 = 0

We now look at adding time discretization to this approximation. We employ
the θ method to obtain, in matrix notation,

Un+1−Un
∆t

+ A[θUn+1 + (1− θ)Un] = 0
U0 = G

(7.13)
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Theorem 7.1.4.

• If θ = 1
2

then ‖Un‖2
2 = ‖U0‖2

2 ∀n ∈ {1, . . . , N}.

• If θ ∈ [0, 1
2
) then ‖Un‖2

2 ≥ ‖U0‖2
2 ∀n ∈ {1, . . . N}.

• If θ ∈ (1
2
, 1] then ‖Un‖2

2 ≤ ‖U0‖2
2 ∀n ∈ {1, . . . , N}.

Proof. We are in the set-up (7.1) where f satisfies (7.2). Hence, taking the
inner product with θUn+1 + (1 − θ)Un written as in (7.5) gives the result by
(7.6).

7.1.4 Convergence

To illustrate ideas we consider the semi-discrete scheme (7.10). We set uj(t) =
u(xj, t) and define the truncation error by

Tj(t) =
duj
dt

+ c

{
uj+1(t)− uj−1(t)

2∆x

}
.

Let T (t) = (T−J(t), · · · , TJ−1(t))T . We assume that there is a constant C
independent ∆x and such that

sup
t∈[0,T ]

‖T (t)‖∞ ≤ C∆x2. (7.14)

This bound on the truncation error is satisfied if u ∈ C3([−1, 1] × [0, T ],R).
Under this assumption we deduce from (3.14) (noting C(Ω) = 2 here) that we
have consistency in the sense that

sup
t∈[0,T ]

‖T (t)‖2 ≤
√

2C∆x2.

Let u(t) = (u−J(t), . . . , , uJ−1(t))T ∈ R2J . Then:

Theorem 7.1.5. Assume that (7.14) holds. Then

sup
t∈[0,T ]

‖u− U‖2 ≤
√

2CT∆x2
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Proof. If e = u− U then, by linearity,

de

dt
+ Ae = T.

Taking the inner product with e gives, by the skew-symmetry of A,

1

2

d

dt
‖e‖2

2 = 〈e, T 〉

≤ ‖e‖2‖T‖2.

Let I ⊆ (0, T ] denote the set where e(t) 6= 0. Then

d

dt
‖e‖2 ≤ ‖T‖2 ∀t ∈ I.

But for t /∈ I we have ‖e‖ = 0 and hence

d

dt
‖e‖2 ≤ ‖T‖2 ∀t /∈ I.

Thus, for all t ∈ (0, T ],

d

dt
‖e‖2 ≤ ‖T‖2

≤ sup
t∈[0,T ]

‖T (t)‖2

≤
√

2C∆x2.

It follows that

‖e(t)‖2 ≤
√

2C∆x2 ∀t ∈ [0, T ],

since e(0) = 0.

Remark The preceeding proof implicitly uses a stability estimate. See Exer-
cise 6.
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7.2 The Heat Equation

7.2.1 The PDE

We again study the Diffusion Model Problem (1.1) in dimension d = 1, with
Ω = (0, 1) and with f = 0, namely (6.10):

∂u
∂t

= ∂2u
∂x2 (x, t) ∈ (0, 1)× (0,∞)

u = 0 (x, t) ∈ {0, 1} × (0,∞)
u = g (x, t) ∈ [0, 1]× {0}

We use the norms and inner-products defined by (3.12) with Ω = [0, 1].

Theorem 7.2.1.
‖u(x, t)‖2

2 ≤ e−2π2t‖g‖2
2 ∀t ≥ 0.

Proof.
1

2

d

dt
‖u‖2

2 =
1

2
〈u, ∂u

∂t
〉+

1

2
〈∂u
∂t
, u〉 = 〈u, ∂u

∂t
〉

= 〈u, ∂
2u

∂x2
〉 = −‖∂u

∂x
‖2

2 ≤ −π2‖u‖2
2.

In the last line we used the Poincaré inequality. Integrating and using u(x, 0) =
g(x) gives the result.

7.2.2 The Approximation

We use the norm (3.13) with ∆ = ∆x and Ω∆ = {1, . . . , J − 1}.

Define, for Uj(t) ≈ u(xj, t), xj = j∆x, J∆x = 1

A =
1

∆x2



2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0

0
. . . . . . . . . 0 0

0 0
. . . . . . . . . 0

0 . . . 0 −1 2 −1
0 . . . . . . 0 −1 2


,
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and

U(t) =


U1(t)
U2(t)

...

...
UJ−1(t)

 , G =


g1

g2
...
...

gJ−1

 .

A natural semi-discrete approximation is then

dU

dt
+ AU = 0, U(0) = G. (7.15)

By Theorem 2.1.2 we know that A has a complete set of orthogonal eigenvec-
tors with eigenvalues

λ(k) = 4 sin2(kπ∆x/2)/∆x2, k = 1, . . . J − 1. (7.16)

Note that λ(1) −→ π2 as ∆x −→ 0 and that λJ−1 ≤ 4
∆x2 . Hence for the given

inner product and norm, we have

4

∆x2
‖v‖2

2 ≥ 〈v,Av〉 = 〈A1/2v, A1/2v〉 ≥ λ(1)‖v‖2
2. (7.17)

The lower bound is a discrete Poincaré inequality, analogous to that appearing
in (5.4). The upper bound is another example of an inverse inequality, also
analogous to that appearing in (5.4).

Theorem 7.2.2. If U solves (7.15) then

‖U(t)‖2
2 ≤ e−2λ(1)t‖G‖2

2 ∀t ≥ 0.

Proof. By (7.17) we have

1

2

d

dt
‖U‖2

2 = 〈U, dU
dt
〉

= 〈U,−AU〉
≤ −λ(1)‖U‖2

2.

Hence ‖U‖2
2 ≤ e−2λ(1)t‖G‖2

2, this gives the desired result.
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7.2.3 Convergence

In the following it is useful to use the notation:

V n+θ = θV n+1 + (1− θ)V n

We now discretize (7.15) in time by the θ-method to obtain

Un+1 − Un

∆
+ AUn+θ = 0, U0 = G

for Un
j ≈ u(xj, tn) and Un = (Un

1 , . . . , U
n
J−1)T ∈ RJ−1. We define the trunca-

tion error by

T n =
un+1 − un

∆t
+ Aun+θ.

Fix r = ∆t
∆x2 . We assume that there exists C ∈ R independent of ∆t and ∆x

such that:

max
n∈{0,...,N−1}

‖T n‖2 ≤ C[(1− 2θ)∆t+ ∆t2 + ∆x2]. (7.18)

Lemma (6.2.3), combined with (3.14), gives conditions under which this holds.

Theorem 7.2.3. If (7.18) holds then for δ, ε ∈ R

• if θ ∈ [1
2
, 1] and δ2 < 2λ(1) ;

or

• if θ ∈ [0, 1
2
), 4(1− 2θ)r < 1− ε and δ2 < 2ελ(1)

then

sup
0≤n∆t≤T

‖un − Un‖2 ≤ C
√
T

(
1

2
+

1

δ2

) 1
2 [

(1− 2θ)∆t+ ∆t2 + ∆x2
]

Proof. By linearity we have

en+1 − en + ∆tAen+θ = ∆tT n.
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Taking the inner product with en+θ and noting that

en+θ =
1

2
(en+1 + en) + (θ − 1

2
)(en+1 − en)

we obtain

1

2
‖en+1‖2 −

1

2
‖en‖2

2 + (θ − 1

2
)‖en+1 − en‖2

2 = −∆t‖A
1
2 en+θ‖2

2 + ∆t〈en+θ, T n〉.

If θ ≥ 1
2

then, by Cauchy-Schwarz and (7.17),

‖en+1‖2
2 ≤ ‖en‖2

2 − 2∆tλ(1)‖en+θ‖2
2 + ∆tδ2‖en+θ‖2

2 +
∆t

δ2
‖T n‖2

2

Since 2λ(1) > δ2 we get

‖en+1‖2
2 ≤ ‖en‖2

2 +
∆t

δ2
‖T n‖2

2.

Hence

‖en‖2
2 ≤

n∆t

δ2
max

n∈{0,...,N−1}
‖T n‖2

2

≤ T

δ2
C2
[
(1− 2θ)∆t+ ∆t2 + ∆x2

]2
.

The result follows.

If θ ∈ [0, 1
2
) then

‖en+1‖2
2 ≤ ‖en‖2

2 + (1− 2θ)∆t2‖Aen+θ − T n‖2
2 − 2∆t‖A

1
2 en+θ‖2

2

+∆tδ2‖en+θ‖2
2 +

∆t

δ2
‖T n‖2

2.

But ‖a+ b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2 and, by (7.17) for w = A

1
2v,

‖Av‖2
2 = 〈Aw,w〉

≤ 4

∆x2
‖w‖2

2

=
4

∆x2
‖A

1
2v‖2

2.
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Hence

‖en+1‖2
2 ≤ ‖en‖2

2 + (1− 2θ)8r∆t‖A
1
2 en+θ‖2

2 + (1− 2θ)2∆t2‖T n‖2
2

−2∆t‖A
1
2 en+θ‖2

2 + ∆tδ2‖en+θ‖2
2 +

∆t

δ2
‖T n‖2

2.

But (1− 2θ)4r < 1− ε implies

‖en+1‖2
2 ≤ ‖en‖2

2 − 2∆tε‖A
1
2 en+θ‖2

2 + ∆tδ2‖en+θ‖2
2 + ∆t

(
1

2
+

1

δ2

)
‖T n‖2

2

≤ ‖en‖2
2 −∆t

[
2ελ(1) − δ2

]
‖en+θ‖2

2 + ∆t

(
1

2
+

1

δ2

)
‖T n‖2

2

≤ ‖en‖2
2 + ∆t

(
1

2
+

1

δ2

)
‖T n‖2

2.

The proof now follows as for θ ∈ [1
2
, 1].
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Chapter 8

Underlying Principles

We have cosidered two types of problems.

Problem BVP: boundary value problems on a square domain Ω ⊂ Rn with
n = 1, 2. Find for f, h given, a function u ∈ Ck(Ω) satisfying

L[u] = f in Ω ,

u = h on ∂Ω ,

where the spatial operator L was of the form L = −4u + p · ∇u + qu with
given functions p, q from Ω to R.

Problem IVP: initial value problems on a square domain Ω × (0,∞) ⊂
Rn×R+ with n = 1, 2. Find for h, g a function u ∈ Ck×l(Ω×(0,∞)) satisfying

∂tu = L[u] in Ω× (0,∞) ,

u = h on ∂Ω× (0,∞) ,

u = g on Ω× {0} .

with a spatial operator of the form L = −ε4u+p ·∇u+qu−f given functions
p, q from Ω to R.

In addition to Dirichlet boundary conditions u = h we also considered peri-
odic boundary conditions. In the following we will be considering Dirichlet
boundary conditions if not mentioned otherwise.
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To solve the BVP we set up a linear system of equation

AU = F

so that the solution U = (Uj)
J
j=1 ∈ RJ is an approximation of u(xj) for J

distinct points xj ∈ Ω. This is the method in matrix form.

We studied equidistant point sets which in one space dimension are of the form
a+jh with (J+1)h = b−a where Ω = (a, b) thus x0, xJ+1 lie on the boundary
of Ω and we can extend any vector U by defining U0 = h(a), UJ+1 = h(b). In
general to construct method in higher space dimension, methods from 1D are
applied for each coordinate direction.

To solve the IVP we use the same technique to approximate L as used for the
BVP. We thus obtained a semi discrete scheme for functions Uj(t) which
approximate u(xj, t). In matrix notation:

d

dt
U(t) = AU(t) , U(0) = G = (g(x1), . . . , g(xJ))T .

To obtain a fully discrete scheme we applied a time stepping scheme to for
ODEs. Again using matrix notation.

Bn+1Un+1 = AnUn , U0 = G

This is the method in matrix form. Here Un ≈ U(tn) with time steps
tn+1 = tn + ∆tn with ∆tn > 0 and t0 = 0. In general we used equidistant
points tn = n∆t.

In the following we discuss the different steps in more detail.

8.1 Time Stepping

To solve
d

dt
U(t) = AU(t) , U(0) = G ,

any solver for ODEs can be used. We only considered one step time dis-
cretization schemes, where Un+1 is computed using only the result from the
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previous time step Un. For example the Leap frog scheme mentioned in chapter
2 is not a one step method.

One step method are of the form

Bn+1Un+1 = AnUn , U0 = G

If Bn+1 = I we call the method explicit otherwise implicit.

We focused mainly on the θ-scheme, which is based on

Un+1 − Un

∆tn
= θAUn+1 + (1− θ)AUn .

Rearranging terms gives us

(I − θ∆tnA)Un+1 = (I + (1− θ)∆tnA)Un

so that we have

Bn+1 = I − θ∆tnA , An = I + (1− θ)∆tnA .

We always assumed that we have fixed time steps ∆tn = ∆t although the
analysis of the method only becomes slightly more technical if varying time
steps are allowed.

Convergence analysis for these schemes is mostly based on a truncation error
estimate and some discrete form of Gronwall’s lemma. Denote the norm of
the error with zn = ‖en‖ then if we can show

zn+1 ≤ Czn + ∆t‖T n‖

For C > 0 Gronwall’s lemma provides a bound for the norm of the error:

zn ≤
Cn − 1

C − 1
∆t max

k=0,...,n−1
Tk

for C 6= 1; for C = 1 we simply have zn ≤ n∆tmaxk=0,...,n−1 Tk. We have used
that z0 = ‖e0‖ = 0.

The factor T n stems from the truncation error and should satisfy maxn ‖T n‖ ≤
C̃(∆tp+∆xq) and we need C small enough (see below). This requirement leads
to some restriction on the time step.

The following two estimates for the exponential function play an important
role
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Lemma 8.1.1. For z ∈ R the following holds:

(1 + z)n ≤ exp(nz) ,

and
1

(1− z)n
≤ exp(

nz

1− z
) .

Proof. The first estimate follows from Taylor series expansion: exp(z) = 1 +
z + 1

2
χ2
z ≥ 1 + z. (1 + z)n ≤ exp(z)n = exp(nz).

Noting that 1 + z
1−z = 1

1−z provides the second estimate.

Example:

For C = 1, i.e., ‖en+1‖ ≤ ‖en‖+ ∆t‖T n‖ we can conclude

max
n,n∆t<T

zn ≤ Cnz0 + n∆tT n ≤ TC̃(∆tp + ∆xq) = TO(∆tp + ∆xq) .

In some cases one has C = 1 + c∆t. For example when applying the forward
Euler method to

d

dt
u(t) = cu(t)

leads to Un+1 = Un + ∆cUn and thus to the error equation en+1 = (1 +
c∆t)en + ∆tT n with T n = O(∆t). In this case Gronwall’s lemma gives us

zn ≤ ∆tC̃(∆tp + ∆xq)
Cn − 1

C − 1
+ z0C

n ≤ C̃

c
(∆tp + ∆xq)((1 + c∆t)n − 1) .

Using (1 + z)n ≤ exp(nz)

zn ≤
C̃

c
(∆tp + ∆xq)(exp(c∆tn)− 1) ≤ (exp(cT )− 1)O(∆tp + ∆xq) .

In both cases the method converges with the order of the truncation error.

The setting described above covers most explicit methods. For implicit schemes
the argument is slightly different. We demonstrate this for the non-linear ODE

d

dt
u(t) = f(u(t))
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with Lipschitz continuous function f with Lipschitz constant L. Consider the
implicit Euler method Un+1−∆tf(Un+1) = Un. We know that the truncation
error T n = un+1−un

∆t
− f(un+1) satisfies maxn |T n| ≤ C̃∆t. The error satisfies

en+1 = un+1−Un+1 = un + ∆tf(un+1)−Un−∆tf(Un+1) + ∆tT n . Taking the
absolute value on both sides leads to

|en+1| ≤ |en|+ ∆t|f(un+1)− f(Un+1)|+ ∆tT n ≤ |en|+ ∆tL|en+1|+ ∆tT n.

Thus if 1 − L∆t > 0 we have |en+1| ≤ 1
1−L∆t

|en| + ∆t
1−L∆t

|T n| . Defining zn =

|en| and C = 1
1−L∆t

, D = 1
1−L∆t

maxn ‖T n‖ we are in the situation covered

by Gronwall’s lemma if C > 0, i.e., L∆t < 1. Since C − 1 = L∆t
1−L∆t

and
Cn − 1 = ((1− L∆t)−n − 1) we have

zn ≤
1

L
max
n
‖T n‖((1− L∆t)−n − 1) .

Using (1− L∆t)−n ≤ exp( LT
1−L∆t

) we conclude that

‖en‖ ≤ 1

L
max
n
‖T n‖ exp

( LT

1− L∆t

)
if ∆t ≤ 1

L
.

8.2 Constructing Finite Difference Approxi-

mations

For both BVP and IVP the spatial discretizations we have studied were based
on the finite difference approach. Hereby the spatial operator L[u] is evaluated
in the points xj and the derivatives are replaced by linear combinations of the
values Uj. These approximations are obtained by Taylor expansion of u around
the point xj. The points used to discretize L[u](xj) are called the stencil of
the scheme. If we write down the scheme in matrix form then these give the
non-zero entries in the jth row of the matrix A.

We focus of the one dimensional setting since this provides the basis also for
higher dimensional discretizations.
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We use the approach

L[u](xj) ≈
k1∑

k=k0

αjkUj+k .

Where is general we have k0 ≤ 0 and k1 ≥ 0. The neighboring values
(Uj+k)

k1
k=k0

used in the discretization are the stencil of the method. The linear
system now is

k1∑
k=k0

αjkUj+k = f(xj)

for all j ∈ {1, . . . , J} with j + k0 > 0 and j + k1 ≤ J . For j with j + k0 = 0 or
j + k1 = J the Dirichlet boundary conditions can be used, e.g., for j + k0 = 0:

k1∑
k=k0+1

αjkUj+k = f(xj)− αjk0h(x0) .

If k0 < −1 some suitable discretization of derivatives in the point x1 has
to be used which is based on a stencil U0, . . . , Uk̃1

. Similar holds for the
right boundary. For higher space dimension the approach is applied to each
coordinate direction separately.

The main work is in obtaining the approximations of the derivatives. Let us
assume that the points are equidistant, i.e., xj+k = xj+kh. In this case Taylor
expansion of a function u ∈ Cp+1([a, b]) gives us:

u(xj+k) =

p∑
l=0

1

l!
(kh)l∂lxu(xj) + Ckh

p+1 .

Denote with δlj = ∂lxu(xj) then a linear combination of the u(xj+k) values gives
us:

k1∑
k=k0

akuj+k =

k1∑
k=k0

ak

p∑
l=0

1

l!
(kh)lδli+

k1∑
k=k0

akCkh
p+1 =

p∑
l=0

δlj
hl

l!

k1∑
k=k0

klak+

k1∑
k=k0

akCkh
p+1 .

Now we want to find an approximation δmj =
∑k1

k=k0
akuj+k +

∑k1

k=k0
akCkh

p+1.
This lead to

p∑
l=0,l 6=m

δlj
hl

l!

k1∑
k=k0

klak + δmj

(
hm

m!

k1∑
k=k0

kmak − 1

)
=

k1∑
k=k0

akCkh
p+1 .
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Assuming that the δli can attain arbitrary values this can only hold, if every
term in the sum is equal to zero, thus for l ∈ {0, . . . , p}, l 6= m we have the
equation

1

l!
hl

k1∑
k=k0

klak = 0

together with

1

m!
hm

k1∑
k=k0

kmak = 1 .

This leads to a linear system of equations of the form

Da = b

where D = (dlk) with dlk = kl and bl = 0 (for l 6= m) and bm = m!
hm

(k =

k0, . . . , k1). The approximation has the truncation error C
∑k1

k=k0
akh

p+1.

Example: Let us start with something well know. We want a stencil with
k0 = −1 and k1 = 1 to approximate ∂xu(xj). We take p = 2 (assuming u is
smooth enough) which gives us the linear system of equation for a−1, a0, a1:

a−1 + a0 + a1 = 0

−a−1 + a1 =
1

h
a−1 + a1 = 0

We have three equation with three unknown which imply a−1 = −a1 and
h(a1−a−1) = 1, so that we have a−1 = − 1

2h
, a1 = 1

2h
and a0 = −(a−1 +a1) = 0.

Thus we arrive at the central finite difference approximation

∂xu(xj) =
1

2h
(uxj+1

− uxj−1
) + h3(−C−1

2h
+
C1

2h
) =

1

2h
(uxj+1

− uxj−1
) +O(h2) .

Note that we can not increase the order with this stencil since the next equation
to solve would be −a−1 − a1 = 0 which can not hold.

Lets us try k0 = 0, k1 = 2 again with p = 3, we arrive at

a0 + a1 + a2 = 0

a1 + 2a2 =
1

h
a1 + 4a2 = 0 .
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Thus a1 = −4a2 and −2a2 = 1
h
. Thus a2 = − 1

2h
, a1 = 2

h
, and a0 = −a1 − a2 =

− 3
2h

. Again we get the order 2 and cannot increase the order because that
would require a1 + 8a2 = 0.

One can also obtain finite difference approximations on points which are not
equidistributed, e.g., for point (xj)

J
j=0 with x0 < x1 < · · · < xJ−1 < xJ with

δi = xi − xi−1 > 0 for j = 1, . . . , J satisfying ch ≤ δi ≤ h for some h > 0 and
c < 1 fixed. We cannot use the analysis presented above. But have to study
the Taylor expansion directly.

Example: we again want to approximate ∂xu(xj). First let us take the stencil
xj, xj+1: u(xj+1) = u(xj) + δj+1u

′(xj) + O(h2). We study the approximation
u′(xj) = au(xj+1) + bu(xj) = (a+ b)u(xj) + aδj+1u

′(xj) +O(h2). This requires
a + b = 0 and aδj+1 = 1, which is satisfied with a = 1

δj+1
, b = − 1

δj+1
. This

gives us the approximation u′(xj) = 1
δj+1

(uj+1 − uj) which is the same as for

equidistributed points. The second order scheme with error O(h2) is left as
exercise.

Example: higher order derivatives are discretize using the same ideas. An
example is given on the first exercise sheet for ∂4

xu(xi) .

8.3 Stability in L∞

The previous section shows how to obtain consistency in general. The second
cruical part of the convergence proof is stability. In addition to proving a
tool to prove convergence, the following also provides tools to show that the
matrix A arrising in the finite difference method has an inverse, and thus that
the discrete version for the BVP has a solution.

In most cases the matrices which appear in the finite difference methods have
a very special structure. We have already made use of there Toeplitz form to
obtain information on their eigenstructure and to prove L2 norm convergence
results.

A further observation is that they are sparse, i.e., only a few entries per line
have non-zero entries corresponding to the stencil used.
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In general they have a lot more structure on which the stability proofs in the
maximum norm are based.

Consider the matrix arising from the central difference discretization of −∂xu+
qu = f . With Dirichlet boundary conditions we have

A =
1

h2



2 + h2q −1 0 . . . 0 0
−1 2 + h2q −1 0 . . . 0

0
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 . . . 0 −1 2 + h2q −1
0 0 . . . 0 −1 2 + h2q


(8.1)

or with periodic boundary conditions:

A =
1

h2



2 + h2q −1 0 . . . 0 −1
−1 2 + h2q −1 0 . . . 0

0
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 . . . 0 −1 2 + h2q −1
−1 0 . . . 0 −1 2 + h2q


(8.2)

In both cases we have for q > 0

aij ≤ 0 for i 6= j, aii > 0 and
∑
j

aij > 0

The last inequality can also be written as

|aii| >
∑
j 6=i

|aij| .

In the case of Dirichlet boundary conditions and q = 0 the last inequality only
holds with strictly greater for the first and last row. For all other rows we
have

|aii| =
∑
j 6=i

|aij| .

But there is an additional property which we used for the proof of the maxi-
mum principle for the BVP in Chapter 3. That is that each interior point is
connected to some point on the boundary. For the matrix that means that
each row is “connected” with the first or last row in the following sense.
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Definition 8.3.1. A square matrix A = (aij) ∈ RN×N is called irreducible
if for all i, j ∈ {1, . . . , N} either aij 6= 0 or there exists a sequence i0, . . . , is ∈
{1, . . . , N} with i0 = i, is = j and aik−1ik 6= 0 for k = 1, . . . , s.

A square matrix which is not irreducible is called reducible.

An example is

A =
1

h2


2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 0

 (8.3)

Now taking for example i = 5 and j = 2 we can find a path through the matrix
starting in row i = 5 and ending in column j = 2 containing only non-zero
values: a54, a43, a32. Similar argument hold for any zero entry in the matrix so
that it is irreducible.

There are a few equivalent formulation for reducible matrices.

Lemma 8.3.2. Let A = (aij) ∈ RN×N be a square matrix.

A is reducible if and only if the indices 1, . . . , N can be divided into two disjoint
nonempty sets i1, i2, . . . , iµ and j1, . . . , jν with µ + ν = N such that aiαjβ = 0
for α = 1, . . . , µ and β = 1, . . . , ν.

A is reducible if and only if it can be placed into block upper-triangular form
by simultaneous row/column permutations.

Next we define special classes of matrices:

Definition 8.3.3. Let A = (aij) ∈ RN×N be given. We say that A is

• an L0 matrix if aij ≤ 0 for i 6= j.

• an L matrix if it is an L0 matrix with aii > 0.

• an M matrix if it is an L matrix, A−1 exists and A−1 ≥ 0.
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• strictly diagonal dominant if

|aii| >
∑
j 6=i

|aij| .

• irreducibly diagonal dominant if A is irreducible and

|aii| ≥
∑
j 6=i

|aij|,

and at least for one i we have

|aii| >
∑
j 6=i

|aij| .

Here we use the notation A ≥ 0 or u ≥ 0 if all entries of the matrix A or the
vector u are non-negative.

Remark: thus the matrices from (8.1) and (8.2) are L matrices which are
strictly diagonal dominant for q > 0 and (8.1) is irreducibly diagonal dominant
for q = 0. We will show next that these are in fact M matrices. Note that for
q = 0 the matrix (8.2) is an L matrix but neither strictly diagonal dominant
nor irreducibly diagonal dominant. This reflects the fact that the matrix is a
discretization for −∂xxu = f and u is periodic which does not have a unique
solution (thus it can not be an M matrix).

Theorem 8.3.4. Let A = (aij) ∈ RN×N be given. Then the following are
equivalent:

1. A−1 exists and A−1 ≥ 0 (A is regular and inverse monoton).

2. Ax ≤ 0 =⇒ x ≤ 0.

3. Ay ≤ Az =⇒ y ≤ z.

Proof. The equivalence of (2) and (3) is clear taking either z = 0 or x = y− z.
So we will show the equivalence of (1) and (2).

(2)→ (1): Let x ∈ RN with Ax = 0. Then since Ax ≤ 0 and A(−x) ≤ 0
we have x = 0. Therefore A is injective and thus bijective so that A−1 exists.
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Again using (2) we have that for y ≥ 0 that A−1y ≥ 0 since from 0 ≤ y = Ax
follows 0 ≤ x using x = A−1y. Taking the unit vector y = ei ≥ 0 for a fixed
i = 1, . . . , N we can conclude from 0 ≤ A−1 and thus 0 ≤ (A−1y)l = (A−1)li
which shows that A−1 ≥ 0.

(1)→ (2): For y ≥ 0 we have (A−1y)l =
∑N

j=1(A−1)ljyj ≥ 0 for all l =

1, . . . , N . For x ∈ RN with Ax ≤ 0 we have y = −Ax ≥ 0 and thus −xl =
(A−1y)l ≥ 0 which concludes the proof since x ≤ 0.

Some of the arguments used here can be found in the proof of Theorem
TODO.

Theorem 8.3.5. Let A ∈ RN×N be an L-matrix.

If A is strictly diagonal dominant then A is an M matrix.

If A is irreducible diagonal dominant then A is an M matrix.

Proof. We will only prove the first part.

We will show that an L-matrix which is strictly diagonal dominant satisfies
(2) from the previous theorem which proves that A is an M -matrix: Let for
all l = 1, . . . , N : 0 ≥ (Ax)l =

∑N
j=1 aljxj hold. Assume that xl ≥ xj for all

j = 1, . . . , L. We have to show that xl ≤ 0. Assume that this is not the case,
i.e., xl > 0:

Sine all > 0 we have Then xl ≤ − 1
all

∑
j 6=l aljxj = 1

|all|
∑

j 6=l |alj|xj ≤ xl
1
|all|
∑

j 6=l |alj| <
xl, the last inequality follows from |all| >

∑
j 6=l |alj| and xl > 0. Therefore we

arrive at the contradiction xl < xl so that xl must be non positive. That
concludes the proof.

Theorem 8.3.6. Let A ∈ RN×N be an M-matrix and assume there exists a
vector Φ ∈
bbRN with Φ > 0 and AΦ > 0. Then

‖x‖∞ ≤ CΦ‖Ax‖∞, with CΦ =
maxi

mini(AΦ)i
.
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Proof. Let Ax = y. We have

±xi =
N∑
j=1

(A−1)ij(±yj) ≤ ‖y‖∞
N∑
j=1

(A−1)ij

taking into account that (A−1)ij > 0 since A is an M matrix.

Define c = mini(AΦ)i. Thus AΦ ≥ ce with e = (1, . . . , 1)T ∈ RN . With
z = cA−1e we have AΦ ≥ Az and thus using the previous Theorem we have
Φ ≥ z = cA−1e, i.e., Φi ≥ c

∑N
j=1(A−1)lj.

Combining both results we obtain:

±xi ≤ ‖y‖∞
N∑
j=1

(A−1)ij ≤
Φi

c
‖y‖∞ ≤

maxi Φi

c
‖Ax‖∞ .

This concludes the proof.

Remark The last theorem shows stability in the ‖ · ‖∞ norm for the scheme
described by the matrix A. To fullfil the assumptions in the Theorem, the
matrix A has to be an L matrix which is diagonally dominant. Furthermore
one has to find a vector Φ ∈ RN with Φ > 0, AΦ > 0. In the case of a strictly
diagonal dominant matrix Φ = e = (1, . . . , 1)T can be used. The theorem hold
in this form also for irreducible diagonal dominant matrices and in this case
finding Φ can be difficult. We have used this approach in Chapter 3 using a
2d version of Φj = 1

2
(xj − 1

2
)2.

Example 8.3.7. Consider the BVP

−ε∂
2u

∂x2
+ a

∂u

∂x
+ pu = f

on Ω = [0, L] with periodic boundary conditions. Assume ε, a, p > 0. Consider
a equidistant point set {xi} with spacing h on Ω, a standard 2. order consistent
approximation for the second order derivative and consider for θ ∈ [0, 1]:

∂u

∂x
(xi) ≈

1

2

(
(1− 2θ)ui + (θ − 1)ui−1 + θui+1

)
.

State the resulting finite difference scheme in matrix form and show that A is
an M matrix under suitable restrictions on the spacing h. Prove convergence
of the scheme in the ‖ · ‖∞ norm.
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8.4 L2 Convergence Analysis

The properties of the matrix A presented above provide existence of the inverse
of A and thus prove that the discrete solution exists. Furthermore they provide
tools for proving maximum principles and thus stability and convergence in
L∞. To obtain results using the energy method other tools are more useful.

8.4.1 The discrete Poincaré inequality

We first revisit the continuous Pointcaré inequality in 1D:

Theorem 8.4.1. Let Ω = (a, b). For u ∈ C1(Ω) with u(a) = u(b) = 0 the
following inequality holds

Cp‖∇u‖2
2 ≥ ‖u‖2

2. (8.4)

Proof. Using
∫ x
a
u′(x) dx = u(x) − u(a) = u(x) and the Hölder inequality we

can conclude for x ∈ (a, b)

u2(x) =
( ∫ x

a

u′(x) dx
)2 ≤

∫ x

a

1 dx

∫ x

a

(u′(x))2 dx ≤ (b− a)

∫ b

a

(u′(x))2 dx

So that ∫ b

a

u2(x) dx ≤ (b− a)2

∫ b

a

(u′(x))2 dx

Therefore ‖u‖2
2 ≤ |Ω|2‖∇u‖2

2 with Cp = |Ω|2.

Remark: our estimate for the constant Cp is not optimal, i.e., it is too small.
But in contrast to previous chapters we are here only interested in the quali-
tative behavior of the estimates.

We have previously used discrete versions of the Pointcaré inequality to prove
estimates based on the energy methods.
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Theorem 8.4.2. Assume J∆x = (b − a) and let U = (Uj)
J
j=1 ∈ R be given

and extend the vector by defining U0 = UJ+1 = 0. Define Vj =
∆−Uj

∆x
then

Cp‖V |22 ≥ ‖U‖2
2 (8.5)

with Cp = (b− a)2.

The same estimate holds for the finite difference approximations
∆−Uj

∆x
and

∆0Uj
∆x

.

Proof. Using the properties of the telescope sum
∑k

j=1 ∆xVj =
∑k

j=1(Uj −
Uj−1) = Uk − U0 = Uk we obtain

U2
k =

( k∑
j=1

∆xVj
)2

=
( k∑
j=1

(
√

∆x)(
√

∆xVj)
)2

=
k∑
j=1

∆x
k∑
j=1

∆xV 2
j

≤ J∆x
J∑
j=1

∆xV 2
j = (b− a)‖V ‖2

2 .

So that

J∑
k=1

U2
k ≤ (b− a)2‖V ‖2

2 .

This concludes the proof for the backward difference. For the other finite
difference approximation to proof follows similarly.

Remark: Again we note that the bound is not optimal.

Not only the Pointcaré readily carries over from the continuous to the discrete;
a further often used formula is integration by parts:

Theorem 8.4.3. Assume J∆x = (b−a) and let U, V ∈ R be given and extend
the vectors by defining U0 = UJ+1 = V0 = VJ+1 = 0. Then

((
δ2Uj
∆x2

)j, V ) = −((
∆−Uj
∆x

)j, (
∆−Vj
∆x

)j)− UJVJ .
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The similar results holds using ∆+ or ∆0 if the additional term UJVJ is suitably
replaced.

Proof.

∆x
J∑
j=1

∆x
δ2Uj
∆x2

Vj =
J∑
j=1

(Uj−1 − 2Uj + Uj+1)Vj

=
J∑
j=1

(Uj−1 − Uj)Vj +
J∑
j=1

(Uj+1 − Uj)Vj

=
J∑
j=1

(Uj−1 − Uj)Vj +
J∑
j=2

(Uj − Uj−1)Vj−1 + UJ+1VJ − UJVJ

=
J∑
j=1

(Uj−1 − Uj)Vj +
J∑
j=1

(Uj − Uj−1)Vj−1 − UJVJ

Remark: From the continuous case we would expect ((
δ2Uj
∆x2 )j, V ) = −((

∆−Uj
∆x

)j, (
∆−Vj

∆x
)j).

With a slight change in the definition of the scalar product and the extension
of U, V for j 6∈ {1, . . . , J} we can even proof this result. To that end, extend
for any U ∈ RJ the domain of U by defining: Uj = 0 for j ∈ Z \ {1, . . . , J}
and define a corresponding scalar product (U, V ) =

∑
j∈Z UjVJ . With this

definition the result of the Theorem can shown without the additional term
UJVJ .

Corollary 8.4.4. Assume J∆x = (b− a) and let U ∈ R be given and extend
the vectors by defining U0 = UJ+1 = 0. Then

−((
δ2Uj
∆x2

)j, V ) ≥ ‖D−U‖2
2 ≥ Cp‖U‖2

2

The above also holds using ∆+ or ∆0.

Proof. Using the previous Theorem we have

−((
δ2Uj
∆x2

)j, U) = ‖D−U‖2
2 + U2

J ≥ ‖D−U‖2
2

Using the discrete Poincaré inequality we obtain the result.
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Note that we have proven stability in L2 (and H1) for the discretization of our
BVP. Consider for example the Helmholtz equation L[u] = −∂xxu + λu with
λ > 0.

Theorem 8.4.5. Let Fj = − δ2Uj
∆x2 + λUj for U ∈ RJ defining U0 = UJ = 0.

Then
‖U‖2 ≤ C‖F‖2

. Therefore the finite difference approximation based on the central difference
scheme in stable in the L2 norm.

Proof. Taking the scalar product of the discrete scheme with U leads to

(F,U) = −((
δ2Uj
∆x2

)j + λU,U) ≥ Cp‖U‖2
2 + λ(U,U)

using the previous results. Therefore

‖U‖2
2 ≤

1

1 + λ
(F,U) ≤ ‖F‖2‖U‖2 .

Dividing by ‖U‖2 prove the result.

Remark: The result above can be easily extended to higher dimensions.

8.4.2 Von Neumann Stability Analysis

This approach can be applied for problems which are periodic in space. Thus
we assume that our domain is [0, 2π] and we have lattice consisting of equidis-
tant points xj = jh (j = 0, . . . , J) with Jh = 2π. Our discrete solution vector
Un ∈ RJ−1 and we assume that Un

J = Un
0 . The van Neumann stability anal-

ysis uses a special form of perturbation based on Fourier modes to study the
stability of numerical schemes. We thus study initial conditions of the form
Hl =

∑J−1
k=0 α

0
kω

k
l with Here we use ωj = ei jh where i is the imaginary number√

−1. We define the vectors ωk = (ωkj )J−1
j=0 and use the abbreviation ω = ω1.

Note the following properties of the fourier modes ωj:

1. ω̄j = e−i jh
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2. ωj+l = ωlωj.

3. (ωk, ωl) =

{
J l ≡ k mod J

0 otherwise

4.
∑J−1

j=0 ω
j
kω

j
l = (ωk, ωl)

5. For a vector (Ul)
J−1
l=0 = (

∑J−1
k=0 αkω

k
l )J−1
l=0 we have ‖U‖2 = ‖α‖2

6. If (Ul)
J−1
l=0 = (

∑J−1
k=0 αkω

k
l )J−1
l=0 then αk = 1

J

∑J−1
l=0 Ulω̄

k
l

This properties show that the vectors (ωk)Jk=0 form a basis of RJ . Thus the
solution to the discrete evolution equation Un can be written in the form

Un
l =

J−1∑
k=0

αnkω
k
l .

Example 8.4.6. Consider the periodic transport equation on [0, 2π] × [0, T ]
with constant transport velocity c > 0:

∂u
∂t

+ c∂u
∂x

= 0 (x, t) ∈ (0, 2π)× (0, T ),
u(x, 0) = g(x) x ∈ [0, π]
u(π, t) = u(0, t) t ∈ (0, T ).

(8.6)

We use an explicit in time, backward difference in space discretization:

Un+1
j −Unj

∆t
+ c

h

(
Un
j − Un

j−1

)
= 0 (j, n) ∈ {0, . . . , J − 1} × {0, . . . N − 1},

U0
j = g(xj) j ∈ {0, . . . , J}

Un
J = Un

0 n ∈ {1, . . . , N}.

Inserting our ansatz (??) we arrive at∑J−1
k=0

(
1

∆t
(αn+1

k − αnk) + c
h
(αnk − αnk ω̄1

k)
)
ωkj = 0 j ∈ {0, . . . , J − 1}.

Since (ω1, . . . , ωJ−1 are linear independent the above equation implies that each
coefficint in the sum has to be zero:

1
∆t

(αn+1
k − αnk) + c

h
(αnk − αnk ω̄1

k) = 0 k ∈ {0, . . . , J − 1}.
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As in the last chapter we define r = c∆t
h

and defining Mk = 1 + r(ω̄1
k − 1) we

arrive at

αn+1
k = Mkα

n
k k ∈ {0, . . . , J − 1}.

The factor Mk describes the growth or decay of the k-th fourier mode during
one time step. We can iterate the argument to obtain

αNk = (Mk)
nα0

N k ∈ {0, . . . , J − 1}.

which describes how the each fourier mode of the perturbation in the initial
data grow during the evolution from t = 0 to t = T . A given fourier mode
will grow if |Mk| > 1 and decay for |Mk| < 1. In this example will can
compute |Mk|2 = 1 − 4r(1 − r) sin2(πk

J
) where we have used Euler’s formula

eiφ = cos(φ) + i sin(φ) and the half angle formula sin2(φ
2
) = 1

2
(1 − cos(φ)).

In this case we see that no fourier mode will grow if r ∈ [0, 1] - this was the
Courant restriction we used to prove Theorem ??.

We have computed UN
l =

∑J−1
k=0(Mk)

Nα0
kω

k
l and thus ‖UN‖2

2 = J
∑J−1

k=0 |Mk|2N |α0
k|2

using the identity (??). Since |Mk| ≤ 1 for all k if r ∈ [0, 1], we conclude that

‖UN‖2
2 ≤ J

J−1∑
k=0

α0
k|2 = ‖U0‖2

2 .

Which corresponds to the result from Theorem ??.

Example 8.4.7. Consider the periodic heat equation on [0, 2π]× [0, T ] using
an explicit in time, central difference in space discretization:

Un+1
j −Unj

∆t
− 1

h2

(
Un
j−1 − 2Un

j + Un
j−1

)
= 0 (j, n) ∈ {0, . . . , J − 1} × {0, . . . N − 1},

U0
j = g(xj) j ∈ {0, . . . , J}

Un
J = Un

0 n ∈ {1, . . . , N}.

Inserting our ansatz (??) and repeating the arguments from the previous ex-
ample we arrive at:

1
∆t

(αn+1
k − αnk)− c

h2 (αnkω
k
1 − 2αnk + αnk ω̄1

k) = 0 k ∈ {0, . . . , J − 1}.

As in the last chapter we define r = ∆t
h2 and defining Mk = 1+r(ωk1−2+ω̄1

k) =
1 + 2r(cos(kh)− 1) we arrive at

αn+1
k = Mkα

n
k k ∈ {0, . . . , J − 1}.

Note that 1 − 4r ≤ Mk ≤ 1 so that |Mk| ≤ 1 if r ≤ 1
2
. Thus we obtain

‖UN‖2 ≤ ‖U0‖2 under the restrictions used in Theorem ??.
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When applying the von Neumann method for a one step time discretization
scheme, we always arrive find a solution of the form

UN
j =

J−1∑
k=0

(Mk)
Nα0

kω
k
j . (8.7)

Initial perturbation grow if |Mk| > 1 and decay for ‖Mk‖ < 1. But note that
methods can be stable even if ‖Mk‖ > 1 as the next example shows.

Example 8.4.8. Study the forward in time, central in space finite difference
discretization of the periodic transport equation:

Un+1
j −Unj

∆t
+ c

2h

(
Un
j+1 − Un

j−1

)
= 0 (j, n) ∈ {0, . . . , J − 1} × {0, . . . N − 1},

U0
j = g(xj) j ∈ {0, . . . , J}

Un
J = Un

0 n ∈ {1, . . . , N}.

This implies that

1
∆t

(αn+1
k − αnk) + c

2h
(αnkω

k
1 − αnk ω̄1

k) = 0 k ∈ {0, . . . , J − 1}.

Thus αn+1
k = (1 − 1

2
r(ωk1 − ω̄1

k))αnk = Mkα
n
k with r = c∆t

h
and Mk = 1 −

ir cos(kh). As before we thus obtain the representation αNk = (Mk)
Nα0

k. A
simple computation shows |Mk|2 = 1 + r2 sin2(kh). Thus it is not possible to
chose r so that |Mk| remains bounded and thus all fourier modes will grow
during each time step. Note that to reach a fixed end time T we must increase
the number of time steps used if we decrease ∆t so that this growth will become
more dominant if we decrease ∆t. Nevertheless the method is stable as we have
shown in Theorem ?? under the condition r ≤ ∆t. Note that |Mk|2 ≤ 1 + r2.

If |Mk| ≤ 1 is a desirable property or not depends on the problem under
consideration. But is a limit to the amount that |Mk| may exceed unity:

Definition 8.4.9. A finite difference scheme satisfies the von Neumann con-
dition if there exists a positive constant c > 0 that is independent of ∆t,∆x,
and k, so that

|Mk| ≤ 1 + c∆t ∀∆t ≤ ∆t∗, h ≤ h∗ .

For a certain class of schemes, the von Neumann condition is a required and
sufficient condition for stability as expressed in the following Theorem:
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Theorem 8.4.10. A constant coefficient scalar one level finite difference scheme
is stable in the ‖·‖2-norm if and only if it satisfies the von Neumann conditions.

Proof. Suppose the von Neumann condition is satisfied. Using (??) we obtain

‖UN‖2
2 = J

J−1∑
k=0

|Mk|2N |α0
k|2 ≤ (1 + c∆t)2N‖U0‖2

2 ≤ e2cN∆t‖U0‖2
2 ≤ e2cT‖U0‖2

2

where we used (1 + z) ≤ ez. Thus we have ‖UN‖2 ≤ C‖U0‖2
2.

We conclude with an example using an implicit time discretization scheme.

Example 8.4.11. We perform the von Neumann stability analysis for the heat
equation with periodic boundary conditions using a backward Euler method in
time and a central method in space. Inserting the Fourier expansion into the
finite difference scheme and rearranging terms leads to αNk = (Mk)

Nα0
k with

Mk = 1− 2r(1− cos(kh))

1 + 2r(1− cos(kh))
= 1−

4r sin2(1
2
kh)

1 + 4r sin2(1
2
kh)

=
1

1 + 4r sin2(1
2
kh)

.

Here we used r = ∆t
h2 . Now if we require |Mk| < 1 (note that for the heat

equations Fourier modes should decay), we get the stability condition 1 ≤
|1 + 4r sin2(kh)| which is true for any choice of r. Therefore the method in
unconditionally stable (compare with Theorem 7.2.3).

Example 8.4.12. We conclude with an last example. Consider the transport
equation with c > 0 and the forward Euler method in time. Consider the
following discretization for the transport term

1

12h
(ui−2 − 8ui−1 + 8ui+1 − ui−2)

which is a fourthed order consistent approximation. The scheme is stable for
r = h

∆t
≤ 1.

One can show that |Mk|2 = 1 + r2mk with mk = − 1
36

(8 sin(kx) − sin(2kx))2.
The results follows from mk ∈ (−2, 0].
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Part III

Finite Element Methods

82



Chapter 9

Mathematical Background

When studying finite element methods we will study the weak or variational
form of the partial differential equation. For our elliptic problem (1.1) the
variation form is obtained by multiplying with some function v ∈ C1(Ω) having
compact support and then integrating over Ω. After using integration by parts
one obtains in the case g = 0 the following problem:∫

Ω

(∇u · ∇v + p · ∇uv + quv) =

∫
Ω

fv

for all v ∈ C1
0(Ω). If the solution u to this problem is in C2 then the variational

formulation is also the classical solution, i.e, satisfies the pde (1.1) pointwise.
Note that in modeling a problem based on the concept of energy minimization
(e.g. elasticity) the variation form is very natural.

It turns out that on general domains (1.1) does not have a classical solution
but does have a solution in the variational sense. This solution is an element
of the Sobolev space H1

0 (Ω) which is a subset of L2(Ω) containing function
which have a derivative and zero boundary conditions in a weak sense.

9.1 Sobolev Spaces

Note: the following only gives a brief overview of the Sobolev spaces Hm(Ω)
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and Hm
0 (Ω).

We will use L2(Ω) = {u : Ω → R : ‖u‖2 < ∞} which is a Hilbert space with
norm ‖u‖2

2 =
∫

Ω
u2(x) dx. The integral we use here is the Lebesque integral,

which corresponds to the Riemann integral in the case of continuous functions
but allows the integration of more general functions. For two function u, v ∈ L2

we have u = v if u(x) = v(x) for almost all x ∈ Ω, i.e., for all x ∈ Ω \N where
N is a set with measure zero. For example countable sets of points and lines
in 2D have zero measure. The evaluation of u ∈ L2(Ω) at some point x ∈ Ω
or on the boundary of Ω is thus not meaningful. For the following we will not
require a more formal definition of L2.

Definition 9.1.1 (Weak derivatives). A function u ∈ L2(Ω) has weak deriva-
tives if there are functions wi ∈ L2(Ω) for i = 1, . . . , d satisfying∫

Ω

wiϕ = −
∫

Ω

u∂iϕ

for all ϕ ∈ C1
0(Ω). In this case we use the notation ∂iu = wi. In a similar way

we define the gradient of u or the divergence of a vector valued function, e.g.,
the weak divergence of a function u ∈ [L2(Ω)]d, is a function ∇ · u ∈ L2(Ω)
satisfying

∫
Ω
∇ · uϕ = −

∫
Ω
u · ∇ϕ for all ϕ ∈ C1

0(Ω).

We now define the Sobolev space

H1(Ω) = {u ∈ L2(Ω) : u has a weak gradient ∇u ∈ [L2(Ω)]d}.

Similar we can define weak derivatives of higher order and corresponding spaces
Hm(Ω) with functions u having derivatives ∂αu ∈ L2(Ω) where α is a multiin-
dex with |α| ≤ m.

The space Hm(Ω) is a Hilbert space with scalar product given by

(u, v)Hm =
∑
|α|<m

∫
Ω

∂αu∂αv.

Note that H0(Ω) = L2(Ω) with the same scalar product (u, v)H0 = (u, v)2.

Theorem 9.1.2. For each u ∈ H1((a, b)) there is a function ū ∈ C∞((a, b))
with u = ū almost everywhere.
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For each u ∈ H2(Ω) with Ω ⊂ R2 there is a function ū ∈ C0(Ω) with u = ū
almost everywhere if Ω is a bounded domain with Lipschitz boundary.

This Theorem shows that functions in Hm can be thought of as being contin-
uous if m is high enough (depending on the space dimension). This type of
result is refered to as Sobolev embeddings.

Theorem 9.1.3. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary
and let Ω1,Ω2 be bounded domain with Lipschitz boundary which form a par-
tition of Ω, i.e., Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅. Then if u ∈ C0(Ω) and
u|Ωi ∈ C1(Ωi) for i = 1, 2 then u ∈ H1(Ω).

The following Theorem provides a different view of function in Hm:

Theorem 9.1.4. For each u ∈ Hm(Ω) there is a sequence (vi)i∈N ⊂ C∞(Ω)∩
Hm(Ω) with ‖u − vi‖Hm → 0 as i → ∞. Thus C∞(Ω) ∩ Hm(Ω) is dense in
Hm(Ω) with respect to the ‖ · ‖Hm norm.

Finally we need to define functions which have zero boundary conditions in a
weak sense.

Definition 9.1.5. We define Hm
0 (Ω) to be the set of all functions for which

there exists a sequence (vi)i∈N ⊂ C∞0 (Ω) ∩ Hm(Ω) with ‖u − vi‖m → 0 as
i→∞. Note that Hm

0 ⊂ Hm.

Note that in general some interpretation of u|∂Ω is not meaningful for function
in L2. But in 2D it is possible to give u ∈ H1(Ω) restricted to the boundary
some meaning as function in L2(Ω). In this sense we have for functions u ∈
H1

0 (Ω) that u = 0 almost everywhere on ∂Ω. The corresponding result is often
refered to as trace theorem.

We can summarize the relation between the Sobolev spaces with the following
diagram:

L(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ · · ·
∪ ∪ ∪

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ · · ·

We conclude with the Poincarre inequality which we already encountered in
chapter 5:
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Lemma 9.1.6. If v ∈ H1
0 (Ω) then there is a constant Cp > 0 such that

‖v‖2
2 ≤ Cp‖∇v‖2

2.

9.2 Introduction to Finite Element Methods

In this chapter we will again study our elliptic problem (1.1) with homogeneous
boundary conditions

−∆u+ p.∇u+ qu = f, x ∈ Ω,
u = 0, x ∈ ∂Ω.

The finite element method is based on the weak or variational form of this
problem: Let V = H1

0 (Ω) and define the bilinear form and L2 inner-product,
respectively, by

a(u, v) =
∫

Ω
[∇u · ∇v + (p · ∇u)v + quv] dx,

〈u, v〉 =
∫

Ω
uvdx.

(9.1)

Then the weak formulation of (1.1) is to find

u ∈ V : a(u, v) = 〈f, v〉 ∀v ∈ V . (9.2)

Under certain regularity assumptions on f this variational formulation is equiv-
alent to the original strong form of the problem for classical solutions.

9.3 Galerkin Method

Let V be a Hilbert space. Consider a weak formulation of a linear PDE speci-
fied via a bilinear form a : V ×V −→ R, and a linear form L : V −→ R to give
the problem of finding

u ∈ V : a(u, v) = L(v) ∀v ∈ V .

This problem can be approximated by specifying a finite dimensional subspace
Vh ⊂ V and seeking a solution in Vh instead. This leads to a finite dimensional
problem to be solved for the approximation uh:

uh ∈ Vh : a(uh, v) = L(v) ∀v ∈ Vh.
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This is known as the Galerkin method. For finite element methods, one
uses Vh = span{φj}Nj=1 where φj is locally supported on some mesh or grid.
The idea extends to problems which are time-dependent, with a variational
structure in space which is analogous to that outlined here.

Notice that for finite difference methods the domain of the unknown is approx-
imated by a finite lattice. In contrast, finite element methods approximate the
space where the unknown function lies, by restricting the solution to a finite
dimensional subspace.

9.4 Norms

Consider a function u : Ω → R with Ω ⊂ Rd. When studying finite element
methods we will use norms in the Sobolev spaces L2, H1 and H2, as well as
the corresponding semi-norms. We use the notation

‖ ·‖L2 := ‖ ·‖2, ‖ ·‖H1 := {‖ ·‖2
L2 +‖∇·‖2

L2}
1
2 , ‖ ·‖H2 := {‖ ·‖2

H1 +‖∇∇·‖2
L2}

1
2

(9.3)
for the norms, with the L2 norm defined through the standard inner-product
(3.12), and the notation

| · |H1 = ‖∇ · ‖L2 ≤ ‖ · ‖H1 , | · |H2 := ‖∇∇ · ‖L2 ≤ ‖ · ‖H2 (9.4)

for the corresponding semi-norms. When the bilinear form a(·, ·) defines an
inner-product then we use the notation

‖u‖a = {a(u, u)}
1
2 . (9.5)

9.5 Consistency and Stability

For finite difference methods all our proofs proceeded, either explicitly or im-
plicitly, via a consistency and a stability inequality. In finite element methods
there is an analogous structure which we will exploit and we outline it here
for time-independent problems.
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The analogue of stability is the Galerkin orthogonality property which
states that, for e = u− uh,

a(e, v) = 0 ∀v ∈ Vh. (9.6)

If the bilinear form a(·, ·) induces an inner-product, and then norm via (9.5),
then the orthogonlaity property states that the error is always orthogonal to
the subspace Vh, in that inner-product. From this we obtain the following
abstract result which underlies most proofs of convergence for finite element
methods.

Theorem 9.5.1. The approximation uh is the optimal appropximation to u
in Vh in the sense that

‖u− uh‖a ≤ ‖u− v‖a ∀v ∈ Vh. (9.7)

Proof. For any v ∈ Vh, the orthogonality property (9.6) gives

a(e, e) = a(e, e+ uh − v) (9.8)

= a(e, u− v) (9.9)

Thus, by Cauchy-Schwarz,

‖e‖2
a ≤ ‖e‖a‖u− v‖a ∀v ∈ Vh (9.10)

implying (9.7).

Let P h denote some projection from V to Vh. The analogue of consistency
is to bound

‖u− P hu‖a ≤ Chr (9.11)

where h is some measure of the fineness of the mesh underlying the finite
element method.

Combining (9.7) with v = P hu and (9.11) gives the convergence result

‖u− uh‖a ≤ ‖u− P hu‖a ≤ Chr. (9.12)

Analogous ideas hold for time-dependent problems, but then the Galerkin or-
thogonality property (9.6) is generalized to a time-dependent statement about
the error. Integrating this gives a stability estimate, and then a consistency
estimate like (9.11) gives convergence.
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Chapter 10

Boundary Value Problems

10.1 Introduction

In this chapter we study finite element methods and their application to the
Elliptic Problem (1.1) in arbitrary dimension. Our setting will be the weak
formulation of the problem (9.2). We use the norms and semi-norms given by
(9.3)–(9.5), as well as the standard L2 inner-product 〈·, ·〉 given by (3.12).

10.2 Laplace’s Equation

For simplicity we concentrate on Laplace’s equation. We start the development
in arbitrary dimension and with arbitrary apporixmation space, but specify to
d = 2 and piecewise linear approximation space in later developments.

10.2.1 The PDE

We consider the Elliptic Problem (1.1) in dimension d ≤ 2 with Ω ⊂ Rd

bounded and open. We also take p = 0 for simplicity, and assume that q ≥ 0
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in Ω̄. This gives
−∆u+ qu = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(10.1)

The weak form of this problem is defined from (9.2) as follows. Let V = H1
0 (Ω)

and

a(u, v) =

∫
Ω

{∇u · ∇v + quv}dx.

Then we have to find

u ∈ V : a(u, v) = 〈f, v〉 ∀v ∈ V . (10.2)

This can be obtained by multiplying (10.1) by V and using Green’s formula.
Classical solutions of (10.1) solve (10.2), and the converse is also true under
regularity conditions on f and Ω.

10.2.2 The Approximation

We let Vh ⊂ V be a finite dimensional approximating space. This gives rise to
the finite element method to find

uh ∈ Vh : a(uh, v) = 〈f, v〉 ∀v ∈ Vh (10.3)

Since Vh is finite-dimensional we may assume that

Vh = span{Ψj, j ∈ J }.

Let M = |J |, the cardinality of J . Then (10.3) is equivalent to

uh ∈ Vh : a(uh,Ψi) = 〈f,Ψi〉 ∀i ∈ J .

Furthermore, an arbitrary element of Vh can be expanded in terms of the Ψi;
in particular we may write

uh(x) =
∑
j∈J

UjΨj(x),
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noting that determination of U = (. . . , Uj, . . .) ∈ RM is equivalent to determi-
nation of uh. Thus we obtain the linear system

AU = F (10.4)

where

U = (U1, . . . , UM)T ,

F = (F1, . . . , FM)T ,

Fi =
1

hi
(f,Ψi),

Aij =
1

hi
a(Ψi,Ψj),

and

hi =
1

2
Vol{ssupp(Ψi)}.

The scaling of each equation by hi is chosen to make the relationship with
finite difference methods transparent.

One Dimensional Example

As a concrete example we consider (10.1) with q(x) ≡ µ ≥ 0 a constant. We
approximate V by piecewise linear continuous functions on an equi-partition
of Ω = (0, 1) so that

Vh = {v ∈ V : v is linear on Ij, j = 1, . . . , J}
⋂

C0(0, 1).

We set Ij = [xj−1, xj] for xl = l∆x, J∆x = 1.

If we define Ψj(x) to be the unique piecewise linear function satisfying

Ψj(xi) = δij,

Ψj|Ii is linear,

then

Vh = span{Ψj, j = 1, . . . , J − 1}.

The explicit form of the Ψj is given as:

Ψj(x) =


(x− xj−1)/∆x, x ∈ Ij,
(xj+1 − x)/∆x x ∈ Ij+1,
0, x /∈ Ij ∪ Ij+1
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If v(x) ∈ Vh is written as

v(x) =
J−1∑
j=1

VjΨj

then Vi = v(xi). Thus an expansion in the basis defined by the Ψj will lead
naturally to equations for nodal values of the approximation.

Now ∫ 1

0

Ψ2
j(x)dx = 2

∫ xj

xj−1

(x− xj−1)2

∆x2
dx

= 2

∫ 1

0

y2∆xdy

=
2

3
∆x

and ∫ 1

0

Ψj(x)Ψj−1(x)dx =

∫ xj

xj−1

(x− xj−1)(xj − x)

∆x2
dx

=

∫ 1

0

y(1− y)∆xdy

=
∆x

6
.

Also ∫ 1

0

(
dΨj

dx

)2

dx = 2

∫ xj

xj−1

1

∆x2
dx

=
2

∆x

and ∫ 1

0

dΨj

dx

dΨj−1

dx
=

∫ xj

xj−1

−1

∆x2

=
−1

∆x
.
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Finally

Fj =
1

∆x

∫ 1

0

Ψjfdx.

and introducing

A1 =
1

6


4 1

1
. . . . . .
. . . . . . 1

1 4

 , A0 =
−1

∆x2


−2 1

1
. . . . . .
. . . . . . 1

1 −2


we obtain from (10.4) the linear system

(A0 + µA1)U = F. (10.5)

Notice that the approximation (10.5) is very similar to a finite difference ap-
proximation of the heat equation: the matrix A0 is identical to the standard
approximation of the negative of the second derivative. However, the over-
all approximation differs in two ways: firstly, the term involving µ contains
the matrix A1 where the identity would naturally appear in a finite difference
approximation (replacing A1 by the identity is known as mass-lumping); sec-
ondly F is found by testing the function f against scaled basis functions, not
against delta functions.

Two Dimensional Example

We now study the case where Ω ⊂ R2 is bounded and polygonal, q ≡ 0 and
we write

Ω = ∪K∈ThK

where Th = {K1, . . . , Km} is a set of triangles satisfying Ki ∩ Kj = ∅. We
consider the approximation space to be made up of piecewise linear functions,
which are linear on each triangle and continuous across edges. This is encap-
sulated in the definition

Vh = {v ∈ V : v(·)|K is linear∀K ∈ Th}
⋂

C(Ω,R).

Here, v(·)|K denotes the restriction to K of v(·).
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Any v ∈ Vh is then uniquely specified by the values at the nodes {Ni}Mi=1 of
the triangles. Define {Ψj(x)}Mj=1, Ψj ∈ Vh by

Ψj(Ni) = δij

Then the Ψj span Vh and so, if

v(x) =
M∑
j=1

VjΨj(x) ∀v ∈ Vh,

then Vi = v(Ni).

Writing

uh(x) =
M∑
j=1

UjΨj(x)

we obtain the linear system (10.4) as above. For simple geometries Ω and
uniform partitions Th the matrix A is the same as that appearing in the finite
difference approximation (4.12). The right hand side, however, differs; in the
finite difference case it is found by integrating f against delta measures whereas
for finite elements a scaled basis functions is used.

10.2.3 Convergence

For the convergence analysis we concentrate on the preceeding two examples
if approximation by piecewise linear functions. In one or two dimensions we
let ∆h = {a family of triangulations Th of Ω}. with ”triangulation” refering
to writing Ω as the union of intervals in one dimension.

Definition 10.2.1. Given v ∈ C(Ω,R), P hv denotes the piecewise linear
interpolant of v on a given triangulation.

Thus

(P hv)(x) =
M∑
j=1

v(Nj)Ψj(x).

In the following we use the notation:
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• hK = longest side of a triangle in K ⊂ Th;

• ρK = diameter of the largest circle inscribing a triangle in K ⊂ Th;

• rK = ρK/hK for any triangle K ⊂ Th;

• h = maxK⊂Th hK .

In the one dimensional example we have hk = ρk = h = ∆x and rK = 1.
Notice that, for bounded Ω ⊂ Rd, d ≤ 2, v ∈ H2(Ω) is continuous and thus
we may apply P h to it. The following consistency result will be useful in what
follows.

Lemma 10.2.2. Let v ∈ H2(Ω). Assume that ∃β, hc : rK > β for all K ⊂ Th
and h ∈ (0, hc). Then ∃C > 0:

‖v − P hv‖L2 ≤ Ch2|v|H2 ,

|v − P hv|H1 ≤ C
h

β
|v|H2 .

Theorem 10.2.3. Consider u solving (10.2) and uh solving (10.3). If u ∈
H2(Ω) and ∃β, hc : rK > β for all K ⊂ Th and h ∈ (0, hc) then ∃C > 0:

‖u− uh‖H1 ≤ Ch|h|H2 ∀h ∈ (0, hc).

Proof. Let e = u = uh. From Theorem 9.5.1 and the definition of a we have
that

|e|H1 ≤ |u− v|H1 ∀v ∈ Vh.

Choosing v = P hu and applying Lemma 10.2.2 gives, by (9.4),

‖∇e‖L2 ≤ C

β
h|u|H2 . (10.6)

But, for v ∈ V , (9.3) and the Poincaré inequality (5.2) gives

‖e‖2
H1 ≤ (1 + Cp)‖∇e‖2

L2

and so the result follows.
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Theorem 10.2.4. Under the assumptions of the previous theorem, ∃C > 0:

‖u− uh‖L2 ≤ Ch2|u|H2 ∀h ∈ (0, hc).

Proof. As in the proof of Theorem 9.5.1 we start from the orthogonality prop-
erty for the error:

a(e, v) = 0 ∀v ∈ Vh.

Now let φ solve

a(φ, v) = 〈e, v〉 ∀v ∈ V .

By elliptic regularity we have

‖φ‖H2 ≤ Cstab‖e‖L2 .

Now

〈e, e〉 = a(e, φ)

= a(e, φ− P hφ).

Hence, by (10.6) and Lemma 10.2.2,

‖e‖2
L2 ≤ |e|H1|φ− P hφ|H1

= ‖∇e‖L2‖∇(φ− P hφ)‖L2

≤
(
C

β
h|u|H2

)(
C
h

β
|φ|H2

)
≤ Kh2|u|H2‖φ‖H2 .

Thus

‖e‖2
L2 ≤ KCstabh

2‖e‖L2

and the result follows.

96


	I Background
	Model Problems
	Boundary Value Problems
	Diffusion
	Wave motion
	Schrödinger equation
	Conservation Laws
	Non-Linear problems
	Numerical Schemes

	Mathematical Basics
	Linear Algebra
	Matrix Norms and Spectral Radius
	Eigenvalues of Toeplitz and Related Matrices
	Rayleigh Coefficient
	Square Root of Matrices

	The Gronwall Lemma
	Three underlying ideas
	Consistency, Stability and Convergence
	Qualitative Properties and Stability
	Cost and Error



	II Finite Differences
	Introduction to Finite Difference Methods
	Finite Differences
	Time-stepping
	Norms

	Boundary Value Problems and the Maximum Principle
	Two Point BVPs
	The Differential Equation
	The Approximation
	Convergence

	The Laplace Equation
	The PDE
	The Approximation
	Convergence


	Boundary Value problems and Energy Methods
	The Helmholtz Equation
	The PDE
	The Approximation
	Convergence


	Initial Value Problems and Maximum Principles
	The Transport Problem
	The PDE
	The Approximation
	Convergence

	The Heat Equation
	The PDE
	The Approximation
	Convergence


	Initial Value Problems and Energy Methods
	The Transport Problem
	The PDE
	A First Approximation
	An Energy Conserving Approximation
	Convergence

	The Heat Equation
	The PDE
	The Approximation
	Convergence


	Underlying Principles
	Time Stepping
	Constructing Finite Difference Approximations
	Stability in L
	L2 Convergence Analysis
	The discrete Poincaré inequality
	Von Neumann Stability Analysis



	III Finite Element Methods
	Mathematical Background
	Sobolev Spaces
	Introduction to Finite Element Methods
	Galerkin Method
	Norms
	Consistency and Stability

	Boundary Value Problems
	Introduction
	Laplace's Equation
	The PDE
	The Approximation
	Convergence




