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Introduction.

“This is not Mathematics; this is Theology!”
(Gordan in reply to a Hilbert’s paper)

The aim of this essay is to discuss a cohomological method for algebraic
projective curves, that is grounded on a important numeric invariant, called
Castelnuovo-Mumford regularity. In particular, we will provide a detailed
proof for a regularity upper bound, providing then some examples that ex-
plain its geometric significance.

Castelnuovo-Mumford regularity is a fundamental invariant in commu-
tative algebra and algebraic geometry. As a matter of fact, first outlines of
its existence have appeared since late XIXth century, very long time before
the proper and formal definition.

The starting argument in which regularity makes its appearance, either if
not clearly stated, can be found in the works of Guido Castelnuovo (1865−
1952), precisely in the celebrated paper [5], in which he deals with the
study of certain linear series over the projective space P3, dedicating much
of the discussion to their dimension. In particular, Castelnuovo directed
his interests towards the linear series over an algebraic curve X of given
degree d that are cut out by surfaces of degree f ; that is, they are obtained
intersecting X with degree f algebraic surfaces: such intersection clearly
contains df points, but computing the dimension of the generated linear
series is not an immediate task. In geometric terms, finding the dimension
equals to ask how many linear conditions a curve X imposes to a surface S
that contains X (postulation problem). Italian geometers were indeed aware
of the fact that the desired dimension rf , for sufficiently large f , must satisfy

rf = df − g(X)

if X is an algebraic smooth curve in the projective space P3; this result
was proved using techniques specialized by German geometry school. The
relation tells, in other words, that the linear series cut out on X by degree
f surfaces is complete and non special. Castelnuovo work aims, in this
context, to derive a lower bound ϕ such that the previous formula holds
for every f ≥ ϕ and, in the same time, an upper bound for the defect
fd−g(X)−rf , namely the error we make using the formula for some f < ϕ.
The concept of regularity arose from the discussion of the first problem:
indeed, completeness and non speciality of linear series can be translated
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INTRODUCTION. 5

in modern language with homological conditions concerning the surjectivity
of certain arrows between cohomology modules. Moreover, as we shall see
further, the fact that the formula holds definitively has a corresponding
analogy with the modern definition, which involves algebraic sheaves.

Another early, yet muted, glimpse of regularity can be found in the rev-
olutionary paper [16] by David Hilbert (1862 − 1943). The paper lays the
foundation of free ideal resolutions theory, of which the Syzygy Theorem
represents a remarkable example: it shows the finiteness of the free minimal
resolution associated to an ideal generated by a finite number of homoge-
neous polynomials. Hilbert’s work changed drastically the mathematics en-
vironment, promoting the gradual abandonment of outdated “constructive”
methods, sometimes giving rise to heated debates. For instance, an earlier
Hilbert’s paper was the object of a curious anecdote. The paper solves, in
a purely abstract way, a long-standing problem of invariant theory, a very
diffused branch of mathematics in the second half of the XIXth century;
professor Paul Gordan of Erlangen, a distinguished scholar of the time, read
the article and, having found his entire scientific research summarized in a
statement, wrote to Hilbert his complain, saying “this is not mathematics;
it’s theology!” ([21]).

Nevertheless, from the modern point of view, Hilbert’s work is highly
constructive: in fact, the Syzygy Theorem gives not only the finiteness of
free resolution, but also an explicit way to compute it (see the fifth chapter
of this document for more details). There was, however, a subtler question
that gave rise, in the following years, to various controversies: is it possi-
ble to bound from above the number of steps required to build up the free
minimal resolution of an arbitrary homogeneous ideal? In particular, it was
interesting to know if this number could be bound with numeric characters
associated to the only ideal, excluding, instead, that it could not be arbi-
trarily big. The affirmative answer came in 1926, thanks to the work of
Grete Hermann (1901 − 1984), who proved in [15] that the free minimal
resolution of a finitely generated homogeneous ideal can be computed in a
(finite) number of operations, that is bounded only by characters derived
from the number of indeterminates in the ambient ring and from the maxi-
mum degree of generators. It is quite surprising that Castelnuovo-Mumford
regularity provides exactly that upper bound; more precisely, the regularity
of a moduleM rules the behaviour of its Hilbert function, marking the inte-
ger from which the function equals the Hilbert polynomial. Hermann’s work
has been forgotten for decades, mostly because the lack of the technology
necessary to carry over computations heavy enough to require a significant
estimate of the necessary steps; the advent of the calculator and the devel-
opment of more and more efficient computational systems have made this
sort of argument a fundamental aspect, since it provides a true estimate of
algorithmic complexity.

It was only in 1966 that David Mumford gave the first formally correct
definition of regularity; inspired by the works of Castelnuovo, he proposed



INTRODUCTION. 6

the concept of m-regular sheaf in the sense of Castelnuovo, using coherent
ideal sheaves in the projective space: such a sheaf I over Pr

k is called m-
regular if H i(Pr

k,I (m − i)) = 0 for every i > 0 and the regularity of I is
the minimum, if it exists, among the integersm that make I be am-regular
sheaf. Mumford managed to prove a first upper bound for the regularity of
coherent sheaves, opening the road to a new “algorithmic approach” in the
study of classical topics in algebraic geometry. Indeed, even if the original
definitions rely on sheaf cohomology, there is a rather easy interpretation
that uses syzygies of an ideal; for this reason, regularity plays an important
role in the “classic” algebraic geometry, in which varieties are still defined
explicitly by their equations.

Regularity is a fundamental concept also in commutative algebra. In
1982, Akira Ooishi defined the regularity of a graded finitely generated
module by means of local cohomology, extensively introduced by Alexan-
der Grothendieck (1928 − 2014) in the Sixties. A few years later, David
Eisenbud and Shiro Goto carried out a major result, showing that the alge-
braic definition of regularity for a graded module over a polynomial ring is
closely related to characters coming from the free minimal resolution of the
module itself (Betti numbers).

In the same paper, Eisenbud and Goto expressed the following con-
jecture: what are the conditions on X such that the inequality reg(X) ≤
deg(X)−codim(X)+1 holds for a projective variety X? Castelnuovo, in its
1893 paper, proved precisely that the inequality holds if X is a smooth non
degenerate projective curve in P3; nearly a century after, in 1983, Gruson,
Lazarsfeld and Peskine proved in [17] that the same result holds for projec-
tive irreducible curves that are not degenerate over an algebraically closed
field. The result has been extended to smooth projective surfaces over a
characteristic 0 field by Lazarsfeld in 1987. Nevertheless, the conjecture is
still open in the other cases and makes object of a lively research.

We shall now review point to point the contents of the thesis; the work
was divided in two separate parts, the first one containing all the algebraic
and geometric preliminary tools required to understand the second one, in
which the crucial arguments are concentrated.

First chapter is a brief excursus of some notable topics of homological al-
gebra and dimension theory; depth, length of modules and Cohen-Macaulay
property are the most important subjects included.

The second chapter introduces the language of algebraic sheaves, with
particular respect to locally free and invertible sheaves, Weil and Cartier
divisors and their expression by invertible sheaves. Some outlines of linear
systems theory are given too. In the last section we introduce the concept
of vector bundle, with the essential purpose to show its equivalence with the
locally free sheaves language.

The following third chapter focuses deeper in the theory of algebraic
sheaves, analyzing the details of differential calculus over algebraic varieties.
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The discussion ranges from purely algebraic arguments, like Kähler relative
differentials over modules and their specialization in the case of field exten-
sions, to the application of sheaf theory in the introduction of the relative
differentials sheaf. Much emphasis is given presenting the homological prop-
erties of these sheaves, in particular deriving the important Euler sequence
3.2. The last section has a geometric flavour and introduces the concepts
of canonical sheaf and genus using the tools presented in the preceding two
chapters.

In the fourth chapter we study briefly some basic properties of algebraic
curves, with particular regard to the most important results in classical
theory, like Riemann-Roch theorem for smooth curves and some properties
of degree.

Finally, the last chapter of first part introduces us the language of com-
mutative algebra which we will need further. The prime sections are de-
voted to a broad exposition of syzygies and free resolutions theory, with a
pointed interest towards the graded case; the third section contains, instead,
some outlines of the vast theory of determinantal ideals, sealed at last by
Hilbert-Burch Theorem. The last two sections contain some simple geomet-
ric applications of the ideas exposed, showing a method to determine the
free resolutions of arbitrary sets of point in the projective plane.

The second part begins with two technical chapters. The first one is
dedicated to a systematic study of local cohomology and its multiple links
with other cohomology theories. Over the sections we introduce many differ-
ent definitions and computation methods, using extension functors, Koszul
complexes or Čech cohomology. The last section collects other notable re-
sults, amongst which a vanishing theorem involving depth and dimension.
The seventh chapter deals briefly with the construction of Eagon-Northcott
complex, together with a quick summary of symmetric algebra properties.

The eighth chapter is one of the central parts of the essay and contains a
detailed exposition of the modern theory of Castelnuovo-Mumford regularity
for graded finitely generated modules. In particular, the first section show a
characterization of regularity using local cohomology modules; the following
section interpolate the previous section’s result with some algebraic tools
and strengthens hypotheses over the modules in order to obtain a simpler
definition of regularity. The third section offers a first bound of regularity
in a geometrically significant case, the arithmetically Cohen-Macaulay vari-
eties; in the following chapter we will study the same inequality, but with
coarser hypothesis. The last section brings the major notions of the chap-
ter to the context of algebraic sheaves, bridging them with the traditional
Mumford’s definition of regularity. We present also a link theorem between
regularity of coherent sheaves and finitely generated modules.

The last chapter is completely devoted to the full proof of Gruson-
Lazarsfeld-Peskine Theorem, the fundamental result that proves Eisenbud-
Goto conjecture in the case of projective non degenerate curves. Our proof
treat only the smooth case, and a final summary of the proof is presented in
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the sixth section, while the previous sections compete to the reduction of the
problem, using powerful tools often borrowed from other chapters; amongst
them, let us name Fitting ideals, Koszul complex and Eagon-Northcott com-
plex. Finally, in the last section some computations over significant geomet-
ric objects are carried out, in order to show the power and the precision of
the above theorem.



Part 1

PRELIMINARY OUTLINES



CHAPTER 1

Homological algebra.

This chapter is exclusively devoted to recall some important homological
algebra concepts and theorems that will be used through the subsequent
parts of this essay.

1.1. Depth.

Let A be a noetherian ring and let M be a finitely generated A-module.
A sequence of elements a1, . . . , an ∈ A is called M-regular if

• a1 is not a zero-divisor of M ;
• for every i > 1, ai is not a zero-divisor in M/(a1, . . . , ai−1)M .

Amongst regular sequences, those who are contained in an ideal I ⊆ A
such that IM 6= M deserve a particular regard. Note that the noetherian
condition on A is essential to guarantee the finiteness of regular sequences.
We show in the next theorem how it is possible to characterize regular
sequences using extension functors.

Let us recall that the support of a finitely generated A-module M is the
set

supp(M) := {p ∈ Spec(A) |Mp 6= 0} = V (AnnA(M))
Recall also that a prime ideal p is an associated prime to M if there exist an
immersion A/p ↪→ M . The set of associated primes to M is usually called
AssA(M).

Theorem 1.1. (Grothendieck) Let A be a noetherian ring and M a
finitely generated A-module. Let I ⊆ A be an ideal such that IM 6= M and
let n > 0 be an integer. Then the following statements are equivalent:

(1) ExtkA(N,M) = 0 for every k < n and for every finitely generated
A-module N such that supp(N) ⊆ V (I);

(2) ExtkA(A/I,M) = 0 for every k < n;
(3) there exists a finitely generated A-module N such that supp(N) =

V (I) and ExtkA(N,M) = 0 for every k < n;
(4) there exists a finite M -regular sequence a1, . . . , an in I.

Proof. See [9, 20]. �

In particular, the Theorem assures that the following definition is well
posed.

10
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Definition 1.1. The depth depth(I,M) of an A-module M respect to
an ideal I ⊆ A is defined as following:

• if IM 6= M , then depth(I,M) is the maximal length of aM -regular
sequence contained in I;
• if IM = M , then depth(I,M) =∞.

If A is a local ring, we will write simply depth(M) to denote the number
depth(m,M), being m the maximal ideal in A. Here we show some notable
properties of depth.

Proposition 1.1. Let A be a noetherian ring:
(1) if I ⊆ A is an ideal and M = 0, then depth(I,M) = 0;
(2) if A is a local ring, depth(M) = 0 if and only if m ∈ AssA(M);
(3) if p ∈ Spec(A), then depth(Mp) = 0 if and only if p ∈ AssA(M);
(4) if p ∈ AssA(M), then depth(p,M) = 0;
(5) depth(Mp) ≥ depth(p,M) for every prime ideal p ⊆ A.

Proof. (Omitted) �

There exist remarkable relations that link depth, projective dimension
and Krull dimension.

Proposition 1.2. Let A be a local ring and M a finitely generated A-
module. Then

depth(M) ≤ dim(A/p)
for every associated prime p ∈ AssA(M).

Proof. See [20]. �

The most important formula, however, is stated in the following theorem.

Theorem 1.2. (Auslander-Buchsbaum formula) Let A be a local
ring andM a finitely generated A-module having finite projective dimension.
Then

depth(A) = depth(M) + dim(proj)(M)

Proof. See [2, 9, 20]. �

The greatest part of the arguments presented for local rings can be
rearranged to hold in the context of graded modules over graded rings. Let
S =

⊕
Sj be a graded ring such that S0 is a field and such that S acts as a

finitely generated S0-algebra. We set

m :=
⊕
j≥1

Sj

the irrelevant ideal. It is a maximal ideal in S, and many of its properties
can be paired with the properties of the maximal ideal in local rings. A
notable result is the following.
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Corollary 1.1. Let M be a graded S-module, with the above notations.
If M has finite projective dimension, therefore

depth(m, S) = depth(m,M) + dim(proj)(M)

A detailed exposition about homological methods for graded modules
and rings can be found in [13].

Definition 1.2. A local noetherian ring (A,m) is a regular local ring if
m can be generated by exactly dim(A) elements.

An equivalent definition can be arranged considering the vector space
m/m2 over the residue field k = A/m. Nakayama’s Lemma implies that A
is a regular local ring if dimk(m/m2) = dim(A).

1.2. Cohen-Macaulay rings.

Let A be a ring and I ⊆ A an ideal. The dimension of I is defined as
dim(I) := dim(A/I)

If M is an A-module, we set also
dimA(M) := dim(A/AnnA(M))

where AnnA(M) := {a ∈ A | am = 0 for some m ∈ M} is the annihilator
ideal.

Remark 1.1. If M = I, that is we think I endowed with its A-module
structure, we must state clearly the category in which we take dimension.
If indeed A is an integral domain, therefore AnnA(I) = (0), so dimA(I) =
dim(A) as A-module, but dim(I) = dim(A/I) as ideal, and this in general
differs from dim(A). For such reasons, to avoid any ambiguity, we will
always write dim(I) for the ideal dimension of I and dimA(I) for the A-
module dimension of I.

In the special case A is an integral domain acting as finitely generated
k-algebra over a field k, then for every ideal I ⊆ A the formula dim(R/I) =
dim(R)− dim(I) holds.

In the previous section, we remarked that, if A is a local ring, then we
have

depth(M) ≤ dim(Am)
In the case A is a regular local ring, we know that any set of generators
for the maximal ideal m defines a m-regular sequence of maximal length,
namely depth(A) = dim(Am). Indeed, this property holds in a more general
context.

Lemma 1.1. Let A be a ring such that depth(A) = dim(Am) for every
maximal ideal m ⊆ A. Therefore, for every proper ideal I ⊆ A, we have
depth(I, A) = min{dim(Ap) : p ∈ Spec(A/I)}.

Proof. See [9]. �
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Definition 1.3. A ring A such that depth(m, A) = dim(Am) holds for
every maximal ideal m ⊆ A is called Cohen-Macaulay ring.

Amongst Cohen-Macaulay rings, a significant position is owned by reg-
ular local rings. Here we show some of the most important properties of
Cohen-Macaulay rings.

Proposition 1.3. Let A be a ring. The following statements are equiv-
alent:

(1) A is a Coehn-Macaulay ring;
(2) Ap is a Cohen-Macaulay ring for every prime ideal p ⊆ A;
(3) Am is a Cohen-Macaulay ring for every maximal ideal m ⊆ A..

Proof. Let A be a Cohen-Macaulay ring and let be p ⊆ A a prime
ideal. Then, calling mp the maximal ideal in Ap,

dim((Ap)mp) = dim(Ap) = depth(p, A) ≤ depth(mp, Ap) ≤ dim((Ap)mp)
Therefore Ap is a Cohen-Macaulay ring. Property (3) follows straight-
forwardly. Let us finally assume that every localization Am is a Cohen-
Macaulay ring for every maximal ideal m ⊆ A. Then

depth(mm, Am) = depth(m, A)
Since we have dim((Am)mm) = dim(Am), hence we prove that A is a Cohen-
Macaulay ring. �

The next result shows a peculiar characterization of Cohen-Macaulay
rings that uses the associated polynomial rings; the non trivial proof can be
found [9], together with more detailed aspects of the question.

Proposition 1.4. A ring A is Cohen-Macaulay if and only if A[x] is
Cohen-Macaulay.

1.3. Length of modules.

Let A be a ring and M an A-module. A chain of submodules in M ,
namely

N0 ( N1 ( . . . ( Nr

is said to have length r.

Definition 1.4. Let A be a ring and M an A-module. The length
of M is the supremum length(M) amongst the lengths of every chain of
submodules in M .

Length measures the “size” of M in the same way Krull dimension does
for rings. Nevertheless, length and Krull dimension of modules usually do
not coincide. For example, let M = kn be a vector space, so that

dimk(M) = dim(k/Annk(M)) = dim(k) = 0
and this generally differs from length(M) = n.
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The following theorems characterize rings and modules of finite length.
Let us recall that every artinian ring is noetherian, but noetherianity does
not imply artinianity.

Proposition 1.5. Let A be a ring. The following statements are equiv-
alent:

(1) A is a noetherian ring and every prime ideal in A is maximal;
(2) A is an A-module of finite length;
(3) A is an artinian ring.

If, moreover, any on the above three conditions holds, A is a semi-local ring
(namely, has a finite number of maximal ideals).

This proposition leads also to an interesting geometric argument, allow-
ing us to characterize zero-dimensional varieties.

Corollary 1.2. Let X be an algebraic set over an algebraically closed
field k. The following statements are equivalent:

(1) X is a finite set;
(2) the coordinate ring A(X) is a vector k-space having finite dimension

that equals exactly the cardinality of X;
(3) A(X) is an artinian ring.

The following result deals with modules of finite length and offers their
characterization together with an useful relation between length and Krull
dimension.

Theorem 1.3. Let A be a noetherian ring and let M be a finitely gen-
erated A-module. The following statements are equivalent:

(1) M has finite length;
(2) dimA(M) = 0;
(3) every prime ideal containing AnnA(M) is maximal;
(4) A/AnnA(M) is an artinian ring.

More details of the facts exposed above can be found in [9], supplied
with the according proofs.



CHAPTER 2

Sheaves, divisors and vector bundles.

In this chapter some basic facts of algebraic geometry are proposed, with
the main purpose of fixing notations and terminology for the next chapters.

Let us recall that a scheme X is called noetherian if there exists an
affine finite open covering {Spec(Ai)}ni=1 such that every Ai is a noetherian
ring. Moreover, in order to avoid pathological behaviours, unless we state
differently, we will always assume that every scheme X is separated, namely
a scheme such that the diagonal map X −→ X ×X is a closed immersion.
More detailed information and facts about scheme theory can be retrieved
in [11, 12, 18].

2.1. Locally free sheaves.

Let X = (X,OX) be a scheme and let be F an algebraic sheaf over X.
We recall the following definitions.
(S1) F is a quasi-coherent sheaf if there exists an open covering

{Ui}i∈I of X such that every Ui is an affine open set in X and
F |Ui ' M̃i holds for some OX(Ui)-module Mi;

(S2) if X is a noetherian scheme, F is a coherent sheaf if it is quasi-
coherent and Mi are finitely generated modules.

Definitions (S1) and (S2) could be also expressed in a more general form
without the noetherian hypothesis on X; since we will take into account only
sheaves over noetherian schemes, no such degree of generality is required.

In the theory of algebraic sheaves the following theorem has great sig-
nificance.

Theorem 2.1. (Serre) Let k be a field, X a projective k-scheme and
F an algebraic coherent sheaf over X. Therefore

(1) Hp(X,F ) is a finitely generated vector k-space for every p ≥ 0;
(2) there exists an integer n0 > 0 such that Hp(X,F (n)) = 0 for every

p > 0 and for every n ≥ n0.

Proof. See [11, 12, 18]. �

Let us recall the following definition.

Definition 2.1. Let X be a (noetherian) scheme and F an algebraic
sheaf over X. We say that F is a locally free sheaf if there exists an open

15



2.2. DIVISORS AND LINEAR SYSTEMS. 16

covering {Ui}i∈Λ of X such that

F |Ui '
⊕
i∈Λ

OUi

Remark 2.1. It is worthy to remark that locally free sheaves are also
quasi-coherent; if moreover Λ is a finite set, they are also coherent. If X is
a connected scheme and Λ is a finite set, the concept of rank of a sheaf can
be defined: it is indeed the integer r > 0 such that F |Ui ' Or

Ui
. So, in the

coherent case, locally free sheaves have a well defined rank.

Proposition 2.1. A coherent algebraic sheaf F over a scheme X is
locally free if and only if the stalk Fp is a free OX,p-module for every p ∈ X.

Proof. Let F be locally free; then there exists a suitable open covering
{Ui}i∈I of X such that isomorphisms F |Ui ' Or

Ui
are induced. Hence, the

isomorphisms Fp ' (OX,p)r are induced in a natural way.
Conversely, let us assume F has free stalks and let us reduce to consider

an affine open set U = Spec(A) ⊆ X, where A is a noetherian ring, such
that F |U ' M̃ . The sheaf M̃ is locally free if and only if M is a projective
A-module, namely if and only if the localization Mp is a free Ap-module for
every p ∈ Spec(A). Calling p ∈ Spec(A) the schematic point corresponding
to the prime ideal p, therefore OX,p ' Ap holds, forcing Fp ' Mp and this
concludes the proof. �

Amongst the locally free sheaves with finite rank, those having unitary
rank deserve major attention.

Definition 2.2. An algebraic sheaf F over a scheme X is said an in-
vertible sheaf if it is a locally free sheaf of rank 1.

It is moreover practicable to arrange isomorphism classes of invertible
sheaves in an abelian group Pic(X), commonly called Picard group, with
the operation of tensor product. When we deal with integral k-schemes of
finite type (essentially, they are algebraic varieties over a field k), there is
an alternative description of the Picard group that involves Cartier divisor;
the latter has the advantage of having a geometric meaning.

2.2. Divisors and linear systems.

Let X be a noetherian integral scheme, such that it is regular in codi-
mension 1.

Definition 2.3. A prime divisor in X is an integral, closed subscheme
of codimension 1 in X. A Weil divisor is an element of the free abelian
group Z-generated over the set of prime divisors in X. We will call Div(X)
the group of Weil divisors.
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More explicitly, a Weil divisor D ∈ Div(X) owns a representation of the
following form:

D :=
∑
j

njYj

where nj ∈ Z, the Yj are prime divisors in X and the sum is finite. When
also nj ≥ 0 for every j, the divisor D is called effective.

Let now K := Quot(OX,η) be the field of rational functions over X,
where η is the generic point. It can be proved that, for every rational non-
zero function f ∈ K∗ := K\{0}, the following divisor is well defined:

(f) :=
∑
Y

νY (f)Y

where νY : K∗ −→ Z is the discrete valuation associated to the ring OY,η

(note that the codimension 1 regularity implies that OY,η is a discrete valu-
ation ring ring), and Y varies amongst all the prime divisors in X. Divisors
of the above form are called principal divisors and they form a subgroup
Prin(X).

Definition 2.4. Two divisors D,D′ are said to be linearly equivalent
if D − D′ ∈ Prin(X). The factor group Cl(X) := Div(X)/Prin(X) is then
called class group of X.

The following result introduces the notion of degree in divisors theory.
Theorem 2.2. Let k be a field and Pr := Pr

k a (schematic) projective
space. Let also D =

∑
njYj ∈ Div(Pr) be a generic divisor, where Yj =

V (fmj

j ) is a projective hypersurface of degree mj. Let us define the degree

deg(D) :=
∑
j

njmj

and let be H an hyperplane in Pr.
(1) If D has degree d, then D is linearly equivalent to d ·H.
(2) For every f ∈ K∗ we have deg(f) = 0.
(3) The induced morphism deg : Div(Pr) −→ Z quotients to an iso-

morphism Cl(Pr) ' Z.
Proof. [18, 24]. �

The main concern about Weil divisors is that the major part of the
interesting results holds only under very restrictive hypotheses regarding
the regularity of the underlying scheme. In future, we would like to use
divisors on arbitrary schemes.

Let us recall the construction of the rational functions sheaf. Let X be
a scheme and U = Spec(AU ) an open affine set. Let also SU be the set of
elements in AU that are not zero divisors; since SU forms a multiplicative
subset, we can define KU := S−1

U AU , namely the total quotient ring of AU .
Thus, for every U = Spec(AU ), setting

U 7→ S−1
U AU
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gives a presheaf of rings over X, whose associated sheaf K is the desired
sheaf of rational functions over X. Let us remark that, when X is an integral
scheme, the sheaf K is just the constant sheaf that for every open U gives
the rational function field K = Quot(OX,η), being η ∈ X the generic point.

Remark 2.2. Clearly, K ∗ e O∗X will respectively indicate the sheaves
of non-vanishing rational and regular functions over X; moreover, there is a
trivial sheaf immersion of O∗X into K ∗.

Definition 2.5. A Cartier divisor over X is a global section of the
quotient sheaf K ∗/O∗X .

To derive an explicit description of Cartier divisors, let us recall the
following exact sequence:
(2.2.1) 0 −→ O∗X −→ K ∗ −→ K ∗/O∗X −→ 0
A global section D ∈ Γ(X,K ∗/O∗X) is thus represented by an open covering
{Ui}i∈I of X together with a collection of rational functions fi ∈ K ∗(Ui)
for every i ∈ I; these must be chosen such that the exactness is respected,
namely fif−1

j ∈ O∗X(Ui∩Uj) for every pair of indices i, j ∈ I. For the sake of
brevity, we will write {(Ui, fi)}i∈I to mean such a representation of a Cartier
divisor over X.

Definition 2.6. A Cartier divisor D is called principal if it belongs
to the image of the natural map K ∗(X) −→ K ∗/O ∗X(X), namely if there
exists a global section f ∈ K ∗(X) such that the system {(X, f)} =: (X, f)
represents D.

We write Cart(X) to denote the Cartier divisors group: one could note
that, even if Γ(X,K ∗/O ∗X) is a multiplicative group, Cartier divisors are
usually written in additive notations, echoing the language of Weil divi-
sors. Principal divisors form themselves a subgroup of Cart(X) that will be
written as Pr(X).

Definition 2.7. Two divisors D1, D2 are said to be linearly equivalent
if D1 −D2 ∈ Pr(X).

The following theorem establishes the link between Cartier and Weil
divisors.

Theorem 2.3. Let X be a noetherian, separated, integral and locally
factorial scheme (namely, such that every local ring of X is an unique fac-
torization domain). Then Div(X) ' Cart(X). Moreover, this isomorphism
sends principal divisors in principal divisors.

Proof. See [18]. �

With the hypotheses of Theorem 2.3, the isomorphism descend to the
quotient and induces thus Cl(X) ' Cart(X)/Pr(X). The latter factor group
contains formally Cartier divisors modulo linear equivalence, but it can also
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be understood as group of isomorphism classes of invertible sheaves. One
could prove, in fact, that

Pic(X) ' H1(X,OX)
so from exact sequence (2.2.1) it follows Pic(X) ' Cart(X)/Pr(X). The
isomorphism can be defined explicitly too, at least in the case X is an
integral scheme. Let D = {(Ui, fi)}i∈I be a Cartier divisor over an integral
scheme X. It is immediate to see that D defines a system of transition
functions, defined as

ϕij = fif
−1
j

(namely, the multiplication for the element fif−1
j ∈ Γ(Ui∩Uj ,O ∗X)). In fact,

we have that ϕii = 1 and
ϕik = fif

−1
k = fif

−1
j fjf

−1
k = ϕij ◦ ϕjk

on the open set Ui∩Uj ∩Uk. Gluing these data, there exists an unique sheaf
OX(D) that is an invertible sheaf: for every i ∈ I the isomorphism ϕi is the
multiplication by the non-zero function fi and explicitly

Γ(Ui,OX(D)) = f−1
i · Γ(Ui,OX)

In fact, if σi ∈ Γ(Ui,OX(D)) and σj ∈ Γ(Uj ,OX(D)), therefore ϕi(σi) =
fiσi and ϕj(σj) = fjσj . In particular σj = fif

−1
j σi = ϕij(σi). For these

reasons, we will often use the language of divisors and invertible sheaves in
interchangeable way, when the context request one of them.

The concepts of effective divisor and linear system (or, formerly, linear
series) are heritage of classical algebraic geometry.

Definition 2.8. A Cartier divisor D over a k-scheme X is effective if
there exists a representing family {(Ui, fi)}i∈I such that fi ∈ O∗X(Ui).

One can show that the set of all effective divisors that belong to the
same linear equivalence class [L ] is in one-to-one correspondence with the
set Γ(X,L )∗/k∗ so own the structure of a projective space. This motivates
the following definition.

Definition 2.9. A complete linear system (also called linear series)
L over X is the set of divisors associated to global sections Γ(X,L )\{0},
where L is an invertible sheaf over X. By linear system |V | in general we
mean a linear subspace of a complete linear system.

If D = {(Ui, fi)}i∈I is an effective divisor over X, it is possible to asso-
ciate a closed subscheme of X to D, and it is called subscheme associated to
D. This is built from its own ideal sheaf ID: it is in fact enough to give

Γ(Ui,ID) := fi · Γ(Ui,OX)
In other words, one can establish an one-to-one correspondence between
Cartier effective divisors and ideal sheaves over X that are locally princi-
pal (namely, locally generated by a single element). In a more geometric
flavour, an effective divisor is set in correspondence with a 1-dimensional
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closed subscheme that is locally principal, namely locally defined by a single
equation.

Definition 2.10. A sheaf F of OX -modules is called generated in a
point x ∈ X if there exists a family of sections {si}i∈I ⊆ Γ(X,F ) such that
the corresponding germs (si)x are generators for the stalk Fx. One says
that F is globally generated if it is generated in every point of X.

In the special case F is an invertible sheaf, the definition can be also
stated asking that there exists σ ∈ Γ(X,F ) such that σ(x) 6= 0. In general,
every quasi-coherent sheaf is globally generated.

A remarkable example of globally generated sheaf is the twisted sheaf
OPr

k
(1), called sheaf of linear forms over Pr

k: one can consider homogeneous
coordinatesX0, . . . , Xr as global sections in Γ(X,OPr (1)) = k[X0, . . . , Xr]h,1.
Clearly, for every point x ∈ Pr

k there exists an index j ∈ {0, . . . , r} such that
Xj(x) 6= 0.

This peculiar generation property of the linear form sheaf allows us to
show a convenient way to define morphisms of the form f : X −→ Pr

k, where
X is a k-variety over an algebraic closed field. Let L := f∗OPn(1) be the
inverse image sheaf and let σi := f∗Xi be for every i = 0, . . . , r. Therefore
L is globally generated by sections σ0, . . . , σr: for every x ∈ X there exists
j ∈ {0, . . . , r} such that Xj(f(x)) 6= 0, that is σj(x) = f∗Xj(x) 6= 0. We
state, moreover, that the morphism f is uniquely determined by the pair
(L , {σ0, . . . , σr}). If, indeed, we fix an invertible sheaf L such that it is
globally generated by its section s0, . . . , sr over X, thus setting

f(x) := [s0(x) : . . . : sr(x)]
defines a morphism f : X −→ Pr

k. It is to be remarked that f is non
degenerate (namely. f(X) not contained in any hyperplane) if and only if
the sections sj are linearly independent.

The language of linear systems allows to express intrinsically the pre-
vious concepts, getting rid of projective coordinates. Let f : X −→ Pr be
a non degenerate morphism; we know so that f is uniquely determined by
the invertible sheaf L = f∗OPr (1) and by the global sections σi = f∗Xi

for i = 0, . . . , r. The linear map f∗ acts over the global section of L tak-
ing every homogeneous polynomial H = a0X0 + . . . + arXr in the section
f∗H = a0σ0 + . . .+ arσr; in other words, f∗ induces a map from the linear
system |OPr (1)| to |V |, being V = im(f∗). The subspace V is then iden-
tified to Γ(Pr,OPr(1)), hence Pr identifies with the dual projective space
P(V ∨) = Γ(Pr,OPr (1))∨. One then expects to translate f as a morphism
to P(V ∨): in fact, it suffices to set

f(x) := Hx = {σ ∈ V | σ(x) = 0}
and it is clear thatHx is a hyperplane, an element in P(V ∨). To see this, it is
enough to understand that the natural morphism V −→ Γ(X,L ⊗OX,x/mx)
acting as σ 7→ σ ⊗ σ(x) has kernel Hx. The significance of this formulation
resides in having removed every coordinate reference in the definition of f .
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2.3. Vector bundles.

The powerful language of locally free sheaves has a corresponding geo-
metric counterpart in the notion of vector bundle. Let X be a k-scheme,
where k is a fixed field. In the following, we will omit specifying that fiber
product is taken over Spec(k). We set, therefore

Ar
X := X ×Ar

k

and the following projection maps are defined: prX : Ar
X −→ X and prAr

k
:

Ar
X −→ Ar

k.

Definition 2.11. A pair (E, p) where E is a k-scheme and p : E −→ X
is a morphism is called vector bundle of rank r if there exists an open covering
U = {Ui}i∈I of X such that every Ui is an affine open set and

(1) for every Ui ∈ U there exists an isomorphism ψi : p−1(Ui) −→ Ar
Ui

such that the following diagram commutes:

Ar
Ui

prUi $$

p−1(Ui)
ψioo

��

Eoo

p

��
Ui Xoo

namely prUi
◦ ψi = p|p−1(Ui);

(2) for every i, j ∈ I, the map ψij = ψi ◦ ψ−1
j : Ar

Ui∩Uj
−→ Ar

Ui∩Uj

acts linearly on the fibers. That is to say, writing Ar
Ui∩Uj

=
Spec(A[x1, . . . , xn]), the morphism ψij descends from an A-linear
automorphism of A[x1, . . . , xn].

The open sets which belongs to U are called trivializations.

Definition 2.12. Let (E, p) and (F, q) be two vector bundles. An iso-
morphism of vector bundles is given by a scheme isomorphism g : E −→ F
such that p = q ◦ g.

For every scheme morphism f : X −→ Y , a section of f over an open
set U ⊆ Y is a morphism s : U −→ X such that f ◦ s = 1U . One can
easily argue that, assigning every open set U ⊆ Y the set Sf (U) made by
sections of f over U , defines a presheaf of sets over Y . Moreover, if {Uj}j∈I
is an open covering of Y and if sj ∈ Sf (Uj) are sections such that, for every
i, j ∈ I, the following property holds:

si|Ui∩Uj = sj |Ui∩Uj

Hence we can define a glued section s : Y −→ X setting s(p) = si(p) if
p ∈ Ui. This morphism is well defined thanks to the gluing properties and
it is also a section of f over Y : in fact, if p ∈ Ui for some i ∈ I, we have

f(s(p)) = f(si(p)) = p

Therefore Sf is a sheaf of sets over Y .
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In particular, if (E, p) is a rank n vector bundle over X, let us call SE

the sheaf of sections of p over the open sets of X. One can then prove that
SE inherits a natural structure of OX -module and, further, it is a rank n
locally free sheaf. Let us recall the following general statement:

Theorem 2.4. Let (X,OX) be a scheme and Y = Spec(A) an affine
scheme. Therefore, the natural map

Φ : HomSch(X,Y ) −→ HomCommR(A,OX(X))

(f, f ]) 7→ f ]Y

is a bijection.

Proof. See [12]. �

Tu set in an OX -module structure over the sheaf SE it suffices to de-
fine such a structure in a trivialization U ⊆ X, that is, an open set such
that p−1(U) ' Ar

U . So let us assume that, without loss of generality,
X = Spec(A) and E = Ar

Y . Thus, using Theorem 2.4, a section E −→ A
corresponds to an A-algebra morphism A[x1, . . . , xn] −→ OX(X) = A. In
other words,

SE(Spec(A)) = HomA(A[x1, . . . , x1], A)
and this has a natural A-module structure. In the general situation, the
OX -module structure of SE can be retrieved from a suitable affine open
covering made of trivializations. Moreover, let us remark that SE is a rank
n locally free sheaf: taking the same affine open cover made of trivializations
{Uj}j∈I , let j ∈ I be a fixed index and let us consider the following sections:

εi : Uj −→ An
Uj

p 7→ (p, ei)
where ei is the i-th coordinate corresponding point. Rather clearly, every
other section s : Uj −→ An

Uj
decomposes as the sum

s = a1ε1 + . . .+ anεn

Finally, we can define an isomorphism SE(Uj) ' OX(Uj)n simply setting
s 7→ (a1, . . . , an).

Theorem 2.5. There exists a one-to-one correspondence between vector
bundles and locally free sheaves.

Proof. Let (E, p) be a vector bundle; then there exists an open cover
{Ui}i∈I of X such that p−1(Ui) ' Ui × Ar

k ' Ui × kn and such that the
following diagram commutes

p−1(Uij)
' //

=
��

Uj × kn

p−1(Uij)
' // Uj × kn

ψ

OO
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The diagram is completed by an isomorphism ψ acting linearly on the fiber
(namely kn). Hence defining a vector bundle (E, p) is the same thing as
giving a system {(Ui)i∈I , (ψij)} made of an open cover of X and linear
isomorphisms ψij . But it is clear that these data defines a rank n locally
free sheaf. The converse correspondence is clear. �

The previous theorem allows us to cease any distinctions between the
notions of vector bundle and locally free sheaf; even if we will use the term
“vector bundle”, only historical importance of the expression is remarked,
since the methods employed will take inspiration mostly from the language
of sheaves.

More details about theory of vector bundles can be found in [23], to-
gether with an extensive essay on their topological properties.



CHAPTER 3

Differentials.

In this chapter we introduce some tools commonly used for differential
calculus, formalized so that they work in the context of rings, modules and
algebraic sheaves. A more exhaustive treatment of the subject can be found
in [18, 19]; the proofs of the greatest part of algebraic results appear in
[20].

3.1. Kähler differentials.

Let A be a (commutative unital) ring and let B be an A-algebra and M
a B-module.

Definition 3.1. An A-derivation over B in M is an additive map d :
B −→M such that

d(β1β2) = β1d(β2) + β2d(β1), d(aβ) = ad(β)
for every β, β1, β2 ∈ B and a ∈ A.

A-derivations are collected into a B-module DerA(B,M).
Definition 3.2. We define the relative differential forms module of B

over A as the B-module ΩB/A endowed with an A-derivation d : B −→ ΩB/A,
such that the following universal property holds: for every B-module M
and for every A-derivation δ : B −→M there exists a B-modules morphism
f : ΩB/A −→M such that δ = f ◦ d.

In category terms, the universal property states that
DerA(B,M) ' homA(ΩB/A,M)

namely, the functor DerA(B,−) : ModB −→ModB can be represented by
the object ΩB/A.

An explicit construction of the module ΩB/A can be obtained taking
the free B-module F generated over the set of symbols {dβ | β ∈ B} and
quotienting it with the submodule generated by elements

d(β1 + β2)− dβ1 − dβ2,

d(β1β2)− β1d(β2)− β1d(β1),
d(aβ)− a d(β)

for every β, β1, β2 ∈ B and a ∈ A. In such a way, the universal derivation
d : B −→ ΩB/A is obtained setting b 7→ db for every b ∈ B. Moreover, in
this description ΩB/A is generated by the set {dβ | β ∈ B} as a B-module.

24
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Proposition 3.1. Let B be an A-algebra, f : B⊗AB −→ B the diagonal
morphism β ⊗ β′ 7→ ββ′ and I = ker f . Let us consider B ⊗A B endowed
with the B-module structure inherited by left multiplication. Therefore I/I2

inherits a natural B-module structure. Let us define the map D : B −→ I/I2

setting
Dβ := (β ⊗ 1− 1⊗ β) + I2

Therefore, the couple (I/I2, D) defines a relative differential forms module
of B over A.

Proposition 3.2. Let A′ and B be two A-algebras, and C = B ⊗A A′.
Then ΩC/A′ ' ΩB/A ⊗B C. Moreover, if S ⊆ B is a multiplicative subset,
then ΩS−1B/A ' S−1ΩB/A.

Example 3.1. Let be B = A[X1, . . . , Xn] a polynomial ring. Then we
can see that ΩB/A is the rank n free module having the set {dX1, . . . ,dXn}
as a basis. In fact, let P1, . . . , Pn ∈ B be such that

n∑
i=1

Pi dXi = 0

and let ∂j ∈ DerA(B,B) be the canonical formal derivative respect to an
arbitrary index j. Therefore, since DerA(B,B) ' homA(ΩB/A, B), there
exists a B-modules morphism f : ΩB/A −→ B such that f(dXj) = ∂j . Then

0 = f

(
n∑
i=1

PidXi

)
= Pj

Since j has been chosen arbitrarily, it follows that dXi form a basis for ΩB/A.

Proposition 3.3. (First exact sequence) Let A −→ B and B −→
C be two ring morphisms. Therefore there exists a natural C-modules exact
sequence

ΩB/A ⊗B C −→ ΩC/A −→ ΩC/B −→ 0

Proposition 3.4. (Second exact sequence) Let B be an A-algebra,
I an ideal in B and C = B/I. Therefore there exists a natural C-modules
exact sequence

I/I2 δ−→ ΩB/A ⊗B C −→ ΩC/A −→ 0

where for every b ∈ I we have set δ(b+ I2) = (db)⊗ 1.

Corollary 3.1. If B is a finitely generated A-algebra, or if it obtained
localizing a finitely generated A-algebra, then ΩB/A is also a finitely gener-
ated B-module.

Proof. Let us assume that B = A[X1, . . . , Xn]/I, without loss of gen-
erality. Using the second exact sequence, if we call P = A[X1, . . . , Xn], it
holds that

I/I2 δ−→ ΩP/A ⊗P B −→ ΩB/A −→ 0
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Now, ΩP/A is finitely generated, as B is, so every quotient taken over
ΩP/A ⊗P B is finitely B-generated too. In particular, ΩB/A ' ΩP/A ⊗P
B/im(δ) is finitely B-generated. �

3.2. Differentials and field extensions.

Let us now restrict to consider differential modules defined over field
extensions or local rings. Recall that a field extensionK/k is called separably
generated if there exists a transcendence basis {xi} for K over k such that
K is a separable extension of k({xi}). Recall also that a field extension K/k
has a transcendence basis {xi} if and only if xi are algebraically independent
over k and K acts as an algebraic extension of k({xi}). One could prove
that every field extension admits a transcendence basis, and that every two
transcendence basis have the same cardinality trdeg(K/k), which is called
transcendence degree.

Theorem 3.1. Let K/k be a finitely generated field extension. Therefore
Ω:K/k is a finitely generated vector K-space and

dimK ΩK/k ≥ trdeg(K/k)
Equality holds if and only if K/k is a separably generated field extension.

Proof. See [20]. In particular, note that if K/k is a finite algebraic
field extension, then ΩK/k = 0 if and only if K/k is separable (namely,
every polynomial over k has distinct roots over K). �

Lemma 3.1. Let A be a noetherian local ring, k its residue field and K its
quotient field. If M is a finitely generated A-module and if dimk(M ⊗A k) =
dimK(M ⊗A K) = r, therefore M is a rank r free module.

Proposition 3.5. Let B be a local ring containing a field k, such that
k is isomorphic to the residue field B/m. Therefore the map δ : m/m2 −→
ΩB/k ⊗B k defined setting β + m2 7→ (dβ)⊗ 1 is an isomorphism.

Proof. Using the second exact sequence, the cokernel of δ is given by
Ωk/k = 0, so δ is a surjection. To show that δ is injective, it is enough to
show that the dual map

δ∨ : homk(ΩB/k ⊗B k, k) −→ homk(m/m2, k)
is surjective. Since

homk(ΩB/k ⊗B k, k) ' homB(ΩB/k, k) ' Derk(B, k)
if d : B −→ k is a k-derivation, δ∨(d) is thus the morphism obtained
restricting d to m, noting that d(m2) = 0: in fact, take x, y ∈ m, so
d(xy) = xd(y) + yd(x) ∈ m; this means that d(xy) = 0 ∈ k ' B/m. Let
us now prove that δ∨ is surjective. Take h ∈ homk(m/m2, k) and, for every
b ∈ B, consider the decomposition b = λ + c with λ ∈ k and c ∈ m. Let us
define d : B −→ k setting d(b) := h(c + m2). Therefore d is a k-derivation
in B and δ∨(d) = h. �
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Proposition 3.6. Let B be a local ring containing a field k, such that
k is isomorphic to the residue field B/m. Moreover, let k be a perfect field
and B the localization of a finitely generated k-algebra. Therefore ΩB/k is a
dim(B) rank free B-module if and only if B is a regular local ring.

Proof. Let us assume that ΩB/k ' Bdim(B). Then dimk(m/m2) =
dim(B) by the previous Proposition. Using the definition, this means straight-
forwardly that B is a regular local ring. Let us assume, conversely, that
B is a r-dimensional regular local ring. Using Proposition 3.1 we prove
that ΩB/k is finitely generated. Moreover, the regularity of B implies that
dimk(m/m2) = r and the previous Proposition implies that dimk(ΩB/k ⊗B
k) = r. On the other hand, let K be the quotient field of B. Then using
the formula from the Proposition 3.2 it follows that

ΩB/k ⊗B K ' ΩK/k

Since k is a perfect field, K/k is a separably generated extension ([9]) and
using Theorem 3.1 we find that dimK(ΩK/k) = trdeg(K/k) = r (this holds
because the dimension of a finitely generated algebra equals the transcen-
dence degree of its own quotient field over the ground field). It follows that,
since dimk(ΩB/k ⊗B k) = r = dimK(ΩK/k ⊗B k), we can use Lemma 3.1 to
conclude that ΩB/k is free and has rank r. �

3.3. Differentials sheaves.

Now, let X,Y be two separated schemes and let f : X −→ Y be a
schemes morphism. Let us assume Spec(A) = U ⊆ Y and Spec(B) = V ⊆ X
are open affine sets such that f(V ) ⊆ U . We therefore define the sheaf of
relative differentials for V over U setting

ΩV/U := Ω̃B/A

that is, the associated sheaf to the relative differential forms module of B
over A. Calling I the kernel of the diagonal morphism B ⊗A B −→ B, it is
clear that the ideal sheaf I associated to I is the ideal sheaf associated to
the diagonal subscheme ∆(X) on X⊗Y X. In other words, ΩB/A ' I/I2 and
ΩV/U is nothing more than the inverse image sheaf of the quotient I /I 2.
One then can give the following definition.

Definition 3.3. Let X,Y be two schemes and f : X −→ Y a schemes
morphism. Let us assume {Vi}i∈I and {Uj(i)}i∈I are two open covers of X
and Y , respectively, such that f(Vi) ⊆ Uj(i) for every i ∈ I. Define then
the sheaf of relative differentials of X over Y as the sheaf ΩX/Y over X,
obtained gluing the sheaves ΩVi/Uj(i) , for i ∈ I, along

ΩVi1∩Vj2/Uj(i1) ' ΩVi1∩Vi2/Uj(i2)

Remark 3.1. The formal definition is slightly more complicated: let
∆ : X −→ X ×Y X be the diagonal; in our hypotheses, ∆ is a closed
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immersion. If we call I its ideal sheaf, we can thus define
ΩX/Y := ∆∗(I /I 2)

Note that the quotient I /I 2 has a clear O∆(X)-module structure. Since ∆
induces an isomorphism over X, one can see that ΩX/Y inherits a natural
OX -module structure too. Moreover, ΩX/Y is a quasi-coherent by construc-
tion and, if Y is a noetherian scheme along with f a finite-type morphism,
therefore ΩX/Y is coherent too.

The following two results are the corresponding sheaf-theoretic sequences
for the two modules exact sequence previously stated.

Proposition 3.7. Let f : X −→ Y and g : Y −→ Z be two schemes
morphisms. Then there exists an exact sequence of sheaves over X

f∗ΩY/Z −→ ΩX/Z −→ ΩX/Y −→ 0

Proposition 3.8. Let f : X −→ Y be a scheme morphism and Z a
closed subscheme of X defined by an ideal sheaf I . Then there exists an
exact sequence of sheaves over Z

I /I 2 −→ ΩX/Y ⊗OX
OZ −→ ΩZ/Y −→ 0

Example 3.2. Let beX = An
Y := An

k×Y . Then ΩX/Y is simply the free
sheaf On

X , globally generated by sections dX1, . . . ,dXn, where X1, . . . , Xn

are affine coordinates for An
Y .

The following algebraic result has a remarkable relevance.

Theorem 3.2. (Euler sequence) Let A be a ring, Y = Spec(A) and
X = Pr

A. Then there exists an exact sequence of sheaves
0 −→ ΩX/Y −→ OX(−1)r+1 −→ OX −→ 0

Proof. Let S = A[X0, . . . , Xn] be the homogeneous coordinate ring of
X and E = S(−1)n+1, the graded S-module with basis e0, . . . , en in degree
1. Let us define a morphism E −→ S setting ei 7→ Xi and let M be its
kernel. Therefore, the sequence

0 −→M −→ E −→ S

is exact. Sheafifying the sequence, one obtains
0 −→ M̃ −→ OX(−1)n+1 −→ OX −→ 0

Now, note that E −→ S is not globally surjective, but it is surjective in
positive degree; so it gives rise to a surjective sheaves morphism. It remains
to show that M̃ ' ΩX/Y . Indeed, localizing at Xi we obtain the S-module
MXi which surjects onto SXi by means of the former map; hence M is a
rank n free module and it is generated by the set {ej − (Xj/Xi)ei | j 6= i}.
This implies, furthermore, that over the standard open cover {U0, . . . , Un} of
X the sheaf M̃(Ui) is a OX(Ui)-module generated by the family of sections
{ej/Xi − (Xj/X

2
i )ei | j 6= i}.
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Let us now recall that Ui ' Spec(A[X0/Xi, . . . , Xn/Xi]), hence

ΩX/Y (Ui) = 〈d(X0/Xi), . . . ,d(Xn/Xi)〉OX(Ui)

because X is smooth. Define a morphism ϕi : ΩX/Y (Ui) −→M∼(Ui) setting

ϕi(d(Xj/Xi)) = Xiej −Xjei
X2
i

We see ϕi is an isomorphism (it brings basis in basis); moreover, one can
show that, amongst the indices i, the previous morphisms ϕi do glue, giving
rise to a global sheaf isomorphism ϕ : ΩX/Y −→ M̃ . In fact, for every pair
of indices i, j such that Ui ∩Uj 6= ∅ we have Xk/Xi = (Xk/Xj)(Xj/Xi) for
every k. So, over ΩX/Y (Ui ∩ Uj) we shall have

d(Xk/Xi) = (Xk/Xj) d(Xj/Xi) + (Xj/Xi) d(Xk/Xj)

Hence

ϕi (d(Xk/Xi)− (Xk/Xj) d(Xj/Xi)) = Xjek −Xkej
XiXj

and furthermore

ϕj((Xj/Xi)d(Xk/Xj)) = Xj

Xi
· Xjek −Xkej

X2
j

= Xjek −Xkej
XiXj

proving that ϕj = ϕi over Ui ∩ Uj . This proves that isomorphisms glue
together, finishing the proof. �

Let us remark that in the case X is a k-variety, it is naturally given a
scheme morphism X −→ Spec(k). The relative differentials sheaf of X is
then defined as ΩX/k := ΩX/Spec(k).

Proposition 3.9. Let X be a k-variety over an algebraically closed field.
Therefore the sheaf ΩX/k is locally free and has n = dimX if and only if X
is smooth.

Proof. Let x ∈ X be a closed point. Then B = OX,x has dimension
n and can be viewed as localization of a reduce k-algebra of finite type.
Moreover, (ΩX/k)x = ΩB/k. Hence, using Proposition 3.6, ΩB/k is a rank n
free module if and only if B is a regular local ring, namely if and only if X
is smooth in x. Then, by Proposition 2.1 we know that ΩX/k is a rank n
locally free sheaf if and only if its all stalks is a rank n free sheaf. Thesis
follow immediately. �

In general, the characterization does not hold with coarser hypothesis.
There is however a remarkable related result.

Corollary 3.2. If X is a k-variety, then there exists a dense open set
U ⊆ X that is also a smooth k-subvariety.
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Proof. If η ∈ X is the generic point, then K = Quot(OX,η) is a field
having transcendence degree n = dimX over k and it acts as a finitely
generated field extension of k. Then K/k is separably generated. Hence,
by Proposition 3.6 again, it follows that ΩK/k is a n-dimensional vector
K-space: but ΩK/k = (ΩX/k)η so there exists an open neighborhood U
of η where ΩX/k|U is free of rank n by 3.9, namely U is a non singular
k-(sub)variety. It is clear, also, that every neighborhood of η is dense in
X. �

Theorem 3.3. Let X be a smooth k-variety and let be Y an irreducible
closed subscheme of X, defined by an ideal sheaf I . Then Y is smooth if
and only if

(1) ΩY/k is locally free;
(2) the sequence

(3.3.1) 0 −→ I /I 2 −→ ΩX/k ⊗OX
OY −→ ΩY/k −→ 0

is exact.
In this condition, I /I 2 is a locally free sheaf having rank r = dimX −
dimY .

Proof. See [18]. �

3.4. Canonical sheaf.

Let us recall that, given an A-moduleM , we can define the n-th exterior
power ofM in the following way. Let be Tn(M) = M⊗A . . .⊗AM (repeated
n times) and J the ideal in T (M) containing the elements m1 ⊗ . . . ⊗mn

such that mi = mj for some 1 ≤ i < j ≤ n. We define then the exterior
power A-module ∧n

M := Tn(M)/Jn
Every coset represented by a pure tensorm1⊗. . .⊗mn is writtenm1∧. . .∧mn.
For the sake of completeness, one sets

∧0M = A and
∧1M = M . It is easy

to see that, if M is a rank m finitely generated module, then
∧nM is also

finitely generated and has rank
(m
n

)
. In general, if F is a OX -modules sheaf,

we set
∧n F to define the associated sheaf to the presheaf such that, for

every U , (∧n
F
)

(U) :=
∧n

F (U)
If n is the rank of F , the maximum exterior power

∧n F is called determi-
nant sheaf of F .

Let us recall the following important property of right-exactness of ex-
terior powers.

Proposition 3.10. Let 0 −→ A
f−→ B

g−→ C −→ 0 be a finitely
generated free modules exact sequence, with A having rank 1. Therefore
there exists an exacts sequence

0 −→ A⊗
∧ p−1

C −→
∧ p

B −→
∧ p

C −→ 0
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Proof. Firstly, note that if we call r the rank of C, then B has rank
r+1. Moreover, if {b1, . . . , br+1} is a basis for B, we know that the elements
bi1∧ . . .∧bip generate

∧pB; hence there exists a natural map
∧pB −→ ∧pC

defined by
bi1 ∧ . . . ∧ bip 7→ f(bi1) ∧ . . . ∧ f(bip)

and it is clearly surjective. One could define, therefore, a mapA⊗
∧p−1B −→∧pB by means of a ⊗ (bi1 ∧ . . . ∧ bip−1) 7→ a ∧ bi1 ∧ . . . ∧ bip−1 , being a a

generator of A. This latter map vanishes over the kernel of the morphism
A⊗

∧p−1B −→ A⊗
∧p−1C obtained setting

a⊗ (bi1 ∧ . . . ∧ bip−1) 7→ a⊗ (f(bi1) ∧ . . . ∧ f(bip−1))

This means that a map A⊗
∧p−1C −→

∧pB is induced naturally. Further-
more, one sees that A ⊗

∧p−1C belongs to the kernel of
∧pB −→ ∧pC,

since A = ker(g). Switching to ranks and using Stiefel formula for binomial
coefficients, we find that(

r

p− 1

)
+
(
r

p

)
=
(
r + 1
p

)
Since every module considered is free, A⊗

∧p−1C is the desired kernel. �

Remark 3.2. The Proposition admits also a symmetric formulation,
assuming to deal with a free modules exact sequence 0 −→ E −→ F −→
G −→ 0, with G having rank 1. There is an exact sequence

0 −→
∧ p

E −→
∧ p

F −→ G⊗
∧ p−1

E −→ 0

The same results hold replacing free modules with vector bundles.

Definition 3.4. Let X be a smooth k-variety. We define the tangent
sheaf as the sheaf over X defined by

TX := Hom (ΩX/k,OX)
If Y ⊆ X is a smooth subvariety, we define also the normal sheaf of Y in X
as

NY/X := Hom (IY /I
2
Y ,OX)

Finally, we define the canonical sheaf of X setting

ωX :=
∧dimXΩX/k

Note that TX is a locally free sheaf and has rank dimX. In fact, when
X is a smooth variety, ΩX/k is locally free and has rank dimX, compelling
Hom (ΩX/k,OX) to be alike. Moreover,

∧dimX ΩX/k is invertible and in
particular, ωX is a coherent sheaf.

Let be Pr := Pr
k the schematic projective space and let us consider

the Euler sequence explained in Theorem 3.2, dualized accordingly to the
current notations:

0 −→ Ω1
Pr −→ OPr (−1)r+1 −→ OPr −→ 0
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Tensoring by OPr (1), we obtain the exact sequence
0 −→ Ω1

Pr (1) −→ Or+1
Pr −→ OPr (1) −→ 0

Let Ωp
Pr =

∧p ΩPr/k be the sheaf of differential p-forms over Pr; let us recall
that Ωr

Pr = ωPr . Taking p-th exterior power and using Proposition 3.10, we
find the sequence

0 −→
∧ pΩ1

Pr (1) −→
∧ p

O r+1
Pr −→ OPr (1)⊗

∧ pΩ1
Pr (1) −→ 0

Note that
∧p Ω1

Pr (1) = Ωp
Pr (p). Hence setting p = r + 1 forces Ωr+1

Pr = 0
because Ω1

Pr ' (TPr )∨ has rank r, giving the isomorphism

OPr =
∧ r+1

Or+1
Pr+1 ' OPr (1)⊗ ωPr (r)

It follows then ωPr ' OPr (−r − 1).
Definition 3.5. The geometric genus of a projective variety X is the

integer pg(X) := dimk(Γ(X,ωX)).
The definition is well posed: in fact, if X is a projective variety, Serre’s

theorem shows that every module Hp(X,ωX) is a finitely generated vector
k-space. Let us recall also that, for a projective scheme X over a field k, the
arithmetic genus is defined setting ([18])

pa(X) : = (−1)dimX+1 (1− χ(X,OX)) =

= (−1)dimX+1

1−
dimX∑
j=0

(−1)j dimkH
j(X,OX)


At the conclusion of the chapter, we want to recall the following notable

results.
Theorem 3.4. (Serre duality) Let X be a n-dimensional k-scheme

and let be F a vector bundle over X. Therefore
Hp(X,F )∨ ' Hn−p(X,F∨ ⊗ ωX)

where F∨ := Hom (F ,OX).
Proof. See [18]. �

Theorem 3.5. (Adjunction formula) Let Y be a r-codimensional
smooth subvariety in a smooth k-variety X. Then ωY ' ωX ⊗OX

∧r NY/X .
If r = 1, let us consider Y as a divisor over X and let be L the invertible
sheaf over X that is associated to Y . Then ωY ' ωX ⊗OX

L ⊗OX
OY .

Proof. See [18]. �

Remark 3.3. Note that the differentials sheaf and the canonical sheaf
are both implicitly defined over the variety X. This means that themselves,
together with their numeric invariants, are invariant under isomorphism of
varieties. In general, birational invariance does not hold, except for geo-
metric genus. Useful references for these arguments are, amongst others,
[1, 11, 24].



CHAPTER 4

Curves.

In these pages, a curve is a k-scheme X, where k is an assigned field,
with the following properties:
(C1) X is integral (namely OX,p is a reduced ring for every p ∈ X and

X is an irreducible topological space);
(C2) X has dimension 1 (namely, Krull dimension of each OX,p is 1);
(C3) X is a projective variety (namely, there exists a closed immersion

X ⊆ Pr
k for some r > 0).

We will often assume also
(C4) X is smooth (namely, OX,p is a local regular ring for every p ∈

X).

Remark 4.1. With hypotheses (C1)−(C4), if X is a curve we know
that

pa(X) = 1− dimkH
0(X,OX) + dimkH

1(X,OX) = dimkH
1(X,OX)

Moreover ωX = ΩX/κ is an invertible sheaf. Therefore H1(X,OX) and
H0(X,ΩX/κ) are one the dual of the other; and this means that for a pro-
jective smooth curve pa = pg holds. Cleared that, in our usual hypotheses,
geometric and arithmetic genus coincide, so we will talk only about “the
genus” of a curve.

For a complete study about algebraic curves, one can see [18].

4.1. Riemann-Roch theorem.

In our hypotheses, Weil and Cartier divisors coincide over smooth curves.
A divisor can thus be seen as a finite formal sum of integral multiples of
points belonging to the curve. In particular, there is an isomorphism be-
tween the class group Cl(X) of divisor modulo linear equivalence and the
Picard group Pic(X), containing isomorphism classes of invertible sheaves
over X. We will write OX(D) for an invertible sheaf associated to a divisor
D over X (up to isomorphism).

The set of effective divisor linearly equivalent to a given divisor D forms
the complete linear system |OX(D)|, which we will denote |D|. Its dimension
is l(D) = dimk Γ(X,OX(D)).

33
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Lemma 4.1. Let D be a divisor over a curve X. Then, if l(D) 6= 0,
necessarily deg(D) ≥ 0. Moreover, if l(D) 6= 0 and deg(D) = 0 then D is
linearly equivalent to the zero divisor, that is OX(D) ' OX .

Proof. If l(D) 6= 0, the linear system |D| is not empty, so D is linearly
equivalent to some effective divisor having necessarily non negative degree.
Since degree does not depend from the linear equivalence class, we can claim
that deg(D) ≥ 0. Let us also suppose that deg(D) = 0. Then D is linearly
equivalent to an effective divisor of zero degree, which is necessarily the zero
divisor. �

Let ΩX/k be the relative differentials sheaf over X. Since X is 1-
dimensional, ΩX/k is invertible and is isomorphic to the canonical sheaf
ωX over X. Every divisor belonging to the linear equivalence class of ωX
(that is to say, every D such that OX(D) ' ωX) is called a canonical divisor
over X and it is denoted KX , if no ambiguity arises.

Theorem 4.1. (Riemann, Roch) Let D be a divisor over a curve X
of genus g. Therefore

l(D)− l(KX −D) = deg(D) + 1− g
Proof. We know that the divisor KX−D corresponds to the invertible

sheaf ωX ⊗ OX(D)−1. Using Serre’s duality, we have
H0(X,ωX ⊗ OX(D)−1) ' H1(X,O(D))∨

For this reason, we can compute
χ(X,OX(D)) = dimkH

0(X,OX(D))− dimkH
1(X,OX(D)) =

= dimkH
0(X,OX(D))− dimkH

0(X,ωX ⊗OX
OX(D)−1) =

= l(D)− l(KX −D)
and it is sufficient to prove that

χ(X,OX(D)) = deg(D) + 1− g
We may separate the proof in two cases.

(1) Let us assume D = 0. Then it is straightforward that
χ(X,OX(D)) = χ(X,OX) = dimkH

0(X,OX)− dimkH
1(X,OX) = 1− g

as we wished, being H0(X,OX) ' k for every projective variety X.
(2) Let D be now an arbitrary divisor and let be p a point. Therefore

p and D + p are divisors over the curve. We will show that the
theorem holds for D if and only if it holds for D + p. Proceeding
this way, we reduce the proof to the previous point, since every
divisor D can be obtained from 0 adding or subtracting a point
step by step. Let us consider P = {p} as a closed subscheme of X:
its structure sheaf is the skyscraper sheaf concentrated in p, that is

k(P ) := OP (U) =
{
κ if p ∈ U
0 otherwise
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Moreover, the ideal sheaf is I = OX(−p). The following exact
sequence holds

0 −→ OX(−p) −→ OX −→ k(P ) −→ 0
Tensoring with OX(D + p), we keep the exactness without acting
on k(P ), and we find

0 −→ OX(D) −→ OX(D + p) −→ κ(P ) −→ 0
Switching to Euler-Poincaré characteristic, it follows that

χ(X,OX(D + p)) = χ(X,OX(D)) + χ(κ(P )) = χ(X,OX(D)) + 1
On the other hand, deg(D+p) = deg(D)+1, therefore the formula
holds for D if and only if it holds for D + p.

�

Remark 4.2. Let X be a curve of genus g. One can prove that the
canonical divisor has genus 2g−2. In fact, using the Riemann-Roch theorem
for D = KX , since

l(KX) = dimkH
0(X,ωX) = pg(X) = g

and l(0) = 1, we find
g − 1 = degKX + 1− g

and thus degKX = 2g − 2.

4.2. Degree of projective varieties.

In this section we will introduce the concept of degree for an algebraic
variety, as a natural generalization of degree for algebraic hypersurfaces.

Let X ⊆ Pr := Pr
k be a projective variety, IX ⊆ k[X0, . . . , Xr] its

homogeneous ideal and SX = k[X0, . . . , Xr]/IX its homogeneous coordinate
ring. Therefore, Hilbert’s function and polynomial of SX are, respectively,
the Hilbert’s function HilbX(t) ofX and the Hilbert’s polynomial PX(t) ofX.
The following results gives a characterization for the dimension of projective
varieties.

Theorem 4.2. Hilbert’s polynomial of a projective variety X ⊆ Pr has
degree dim(X).

Proof. It is know that

PPr (t) =
(
t+ r

r

)
which has degree r, so the thesis holds for X = Pr. If X reduces to a point,
then PX is a constant and has zero degree. If X is a projective variety, there
exists a chain of subvarieties

X0 ⊆ X1 ⊆ . . . ⊆ Xr−1 ⊆ Xr = Pr

such that dim(Xi) = i and Xd = X for some d = dim(X). Therefore, it is
enough to prove that, for every strict inclusion Y ⊂ X of projective varieties,
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deg(PY ) < deg(PX) holds. We can assume, without loss of generality, that
Y ⊆ X ∩H, being H a degree s hypersurface, that is H = V (h) for some
homogeneous polynomial h of degree s. Let R = SX be the algebra of
functions of X. Thus we have a graded modules exact sequence

0 −→ R(−s) −→ R −→ R/(h) −→ 0

where the first arrow represents multiplication by h. Let us assume that

PR(t) = a0

(
t

d

)
+ a1

(
t

d− 1

)
+ . . .+ ad

Since PR(−s)(t) = PR(t− s), we have

PR/(h)(t) = PR(t)− PR(t− s) = a0

[(
t

d

)
−
(
t− s
d

)]
+ . . . =

= sa0

(
t

d

)
+ . . .

where dots hide terms of degree ≤ d. On the other hand, HilbR/(h)(t) ≥
HilbY (t) since SY is a quotient of R/(h); therefore

deg(PY ) ≤ deg(PR/(h)) < deg(PX)

finishing the proof. �

Let d = dim(X). Then one could write PX in the form

PX(t) = deg(X)
d! td + . . .

where deg(X) is a integer, called degree of X. In other words, deg(X) is the
leading coefficient of PX multiplied by dim(X)!

The following theorem shows some of the most relevant properties of
degree.

Theorem 4.3. Degree of varieties has the following properties:
(1) deg(X) > 0 for every variety X 6= ∅;
(2) a linear subspace in Pr has degree 1;
(3) a degree m hypersurface in Pr has degree m as variety;
(4) if X ⊆ Pr is a projective d-dimensional variety, with d ≥ 2, and

H is a hyperplane defined by an equation h = 0, such that (h)
is a prime ideal in SX , then Y = X ∩ H is a projective (d − 1)-
dimensional variety and deg(Y ) = deg(X).

Proof. Statement (1) is straightforward, since PX(n) > 0 for every
n� 0.

(2) If L ⊆ Pr is a linear subspace, then SL = k[X0, . . . , Xdim(L)], so
PL(t) =

(t+dim(L)
dim(L)

)
, thus µ(X) = 1.
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(3) Let us assume that X is a hypersurface V (f), with f ∈ k[X0, . . . , Xr]
a degree m homogeneous polynomial. If we set S = k[X0, . . . , Xr], we have
an exact sequence

0 −→ S(−m) −→ S −→ SX = S/(f) −→ 0
where the first arrow represents multiplication by f . Then we have

PX(t) = PS(t)− PS(t−m) =
(
t+ r

r

)
−
(
t+ r −m

r

)
=

= m

(
t+ r − 1
r − 1

)
+ . . .

hence
deg(X) = m

(r − 1)! dim(X)! = m

(4) With the given hypotheses, Y ⊆ H is a projective (d − 1)-variety
having SY = SX/(h) as coordinate ring. One has, then, the following exact
sequence

0 −→ SX(−1) −→ SX −→ SY −→ 0
being h a homogeneous polynomial. It follows that

PY (t) = PX(t)− PX(t− 1) = µ(X)
[(
t+ d

d

)
−
(
t+ d− 1

d

)]
+ . . . =

= deg(X)
(
t+ d− 1
d− 1

)
+ . . .

hence thesis. �

Remark 4.3. A hyperplane H satisfying hypotheses stated in point (4)
is often called general hyperplane and the intersection X∩H takes the name
of general hyperplane section.

Moreover, we have the following notable inequality.

Corollary 4.1. Let X ⊆ Pr be an irreducible non degenerate projective
curve over an algebraically closed field. Then we have deg(X) ≥ r.

Proof. Let us assume by contradiction that X has degree strictly lower
than r. Then, for every choice of points p1, . . . , pr ∈ X, it should exists a
hyperplane H ' Pr−1 containing all of then; since, however, we assumed
deg(X) < r, the hyperplane section X ∩ H contains at least r points and
can not be general, namely dim(H ∩ X) = 1; this would lead to say that
X ⊆ H and this is a contradiction. �

Lastly, we show an important result that we will need further in this
document; a general form can be found in [10]. Let us call hi(X,−) =
dim(H i(X,−)) for every i ≥ 0 and let us recall the following notation: for
every invertible sheaf L over X and for every point p ∈ X we shall denote
with L (p) the invertible sheaf L ⊗ OX(p), corresponding to the divisor
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L + p. In other words, tensoring an invertible sheaf with OX(p) means
adding the point p to the corresponding divisor.

Definition 4.1. A line bundle L over X is called general if L =
OX(p1 + . . .+ pm − q1 − . . .− qn) for some pi, qj ∈ X general points.

The useful properties of generic bundles are collected in the following
couple of results.

Lemma 4.2. Let L be a line bundle such that h0(X,L ) ≥ n, for some
n ∈ N. Then, for every choice of general points p1, . . . , pn ∈ X, we have
h0(L (−p1 − . . .− pn)) = h0(L )− n.

Proof. We proceed inducting on n. For n = 0, there is nothing to
prove; let us suppose that the thesis holds for n−1 and let us prove it for n.
Since h0(L ) > 0, then h0(L (−pn)) = h0(L )− 1. By inductive hypothesis

h0(L (−p1 − . . .− pn)) = h0(L (−pn))− (n− 1) = h0(L )− n
�

Theorem 4.4. Let X be a smooth curve of genus g over an algebraically
closed field k. If L is a generic line bundle having degree d ≥ g − 1, then
L is non special, that is h1(X,L ) = 0.

Proof. Let us note that the thesis equals the fact that, for every general
line bundle L having degree d ≥ g−1, we have h0(L ) = d−g+1. Moreover,
if d ≥ 2g − 1, then deg(ωX ⊗L −1) = 2g − 2− 2g + 1 = −1 < 0, hence

h1(L ) = h0(ωX ⊗L −1) = 0
and the result holds. Let us now fix g − 1 ≤ d < 2g − 1 and consider a
general line bundle M having degree 2g − 1; for every p1, . . . , p2g−1−d ∈ X
general points, one can write

L = M (−p1 − . . .− p2g−1−d)
Therefore h0(M ) = h1(M ) + 2g − 1 + 1 − g = 2g − 1 + 1 − g = g. In
particular, h0(M ) ≥ 2g − 1− d > 0 holds, and using the previous Lemma
h0(L ) = h0(M (−p1− . . .− p2g−1−d)) = h0(M )− (2g− 1− d) = g− (d− 1)
that is the thesis. �

A different, yet equivalent, definition of degree can be given. Since X is
a projective variety, there exists a closed immersion i : X ↪→ Pr

k, depending
uniquely by the sheaf i∗OPr (1) and by the section which generate it, precisely

si := i∗Xi

where Xi are homogeneous coordinates for Pr
k. One then sets

deg(X) := deg(i∗OPr (1))
Let us remark that the definition is well posed, for i∗OPr (1) is an invertible
sheaf. More formally, since fixing a projective variety means giving a pair
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(X,L ), where L is a very ample invertible sheaf, one could define deg(X)
as the (divisor) degree of L . More details can be found in [1].



CHAPTER 5

Free resolutions.

In this chapter, we will assume that k is a fixed field and we will study
the projective space Pr

k as a classical algebraic variety. We recall that the
homogeneous coordinate ring of Pr

k is the ring S = k[x0, . . . , xr]. It has a
natural graduation, which turns it into a graded ring giving degree 1 to each
variable.

Let us recall that a graded modules morphism is a modules morphism
preserving degrees. In general, if a morphism shifts degree by a fixed
integerp, we call it a degree p morphism.

5.1. Syzygies.

Let M be a finitely generated S-module, endowed with a grading M =⊕
d∈Z

Md. SinceM is finitely generated, everyMd is a finitely generated vector

k-space, and
HilbM (d) := dimkMd

defines the Hilbert’s function ofM . Hilbert’s idea was to compute HilbM (d)
comparing M and its graded parts with certain free modules, by means of
a free resolution. For every graded module M , let be M(a) the twisted
module, having homogeneous parts

M(a)d := Md+a

Given homogeneous elements mi ∈M , each having degree ai and generating
M as S-module, one can define a morphism from the free module F0 =⊕
S(−ai) to M , sending the i-th generator in mi. Twisting F0 is necessary

to guarantee the morphism preserves degrees. Let M1 ⊆ F0 be the kernel of
such morphism; by Hilbert’s Basis Theorem, M1 is also finitely generated,
and its elements are called linear syzygies over the generators mi, or simply
syzygies over M .

Choosing a finite number of generators for M1, one can also define a
map from a free module F1 in F0, having image M1. Going on this way, one
builds an exact sequence of graded free modules, that is called a free graded
resolution of M :

· · · −→ Fi
ϕi−→ Fi−1 −→ · · · −→ F1

ϕ1−→ F0

This sequence contains degree 0 morphisms ϕi, with the additional property
M = coker(ϕ1). Since the ϕi are degree-preserving, taking any homogeneous

40



5.1. SYZYGIES. 41

part of degree d we obtain also many exact sequences of finitely generated
vector k-spaces. Therefore, we determine

HilbM (d) =
∞∑
i=0

(−1)iHilbFi(d)

Theorem 5.1. (Hilbert’s syzygy theorem) Every graded finitely
generated S-moduleM has a free graded resolution of finite length m ≤ r+1.

Proof. See [9, 10, 16]. �

Actually, one can concretely compute Hilbert’s function by means of
degrees of a free resolution.

Corollary 5.1. Let S = k[x0, . . . , xr] be a polynomial ring. If the
graded S-module M has the following finite free resolution

0 −→ Fm
ϕm−→ Fm−1 −→ · · · −→ F1

ϕ1−→ F0

in a way that Fi is a finitely generated free S-module of the form Fi =⊕
j
S(−ai,j), then

HilbM (d) =
m∑
i=0

(−1)i
∑
j

(
r + d− ai,j

r

)

Proof. Using the preceding remarks, it is enough to prove that

HilbFi(d) =
∑
j

(
r + d− ai,j

r

)
In particular, decomposing Fi as a direct sum, it suffices to prove that
HilbS(−a)(d) =

(r+d−a
r

)
, and, removing twists, it suffices to prove that

HilbS(d) =
(r+d
r

)
. This is straightforward: a degree d monomial is uniquely

determined by the sequence of exponents of each degree 1 one element; one
can choose a particular monomial order such that the sequence of exponents
is an increasing sequence of d integers, each one between 0 and r. Adding
i to the i-th element of this sequence, causes the monomial to be identified
with a sequence of d elements in {1, 3, . . . , r + d}, so we can enumerate(

r + d

d

)
= (r + d)!

d!r! =
(
r + d

r

)
�

Corollary 5.2. In the previous hypotheses, there exists a polynomial
PM (d), the Hilbert’s polynomial of M , such that PM (d) = HilbM (d) for
d ≥ max{ai,j − r}.

Proof. Note that, if d+ r − a ≥ 0, we have(
d+ r − a

r

)
= (d+ r − a)(d+ r − a− 1) · · · (d+ 1− a)

r!
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and it is a degree d polynomial in r; so, if the condition holds, Hilbert’s
function is a polynomial by means of its binomial expression. �

5.2. Minimal resolutions.

Every graded finitely generated S-module owns a free graded minimal
resolution, and it is unique up to isomorphism. The degree of generators
of its free modules not only determines Hilbert’s function, like every other
free resolution, but gives rise to an other much finer invariant that we will
discuss further.

Intuitively, minimal resolutions can be defined in this way. Let M be a
graded finitely generated S-module M and choose a minimal set of gener-
ators mi; define then a map from a free module F0 to M , sending a basis
for F0 in the set of mi. Let then M1 be the kernel of this map; it will be
finitely generated too. Choosing again a minimal set of generators for M1,
we determine a map F1 −→ F0 whose image is M1. Continuing this way,
one builds the desired minimal resolution.

Nevertheless, many properties of these peculiar resolution can be derived
with more ease by a characterizing property, that we will assume as the
leading definition. To simplify notations, let us call m the homogeneous
maximal ideal (x0, . . . , xr) ⊆ S = k[x0, . . . , xr].

Definition 5.1. A graded S-module complex

· · · −→ Fi
δi−→ Fi−1 −→ · · ·

is called minimal if im(δi) ⊆ mFi−1 for every i.

Heuristically, a complex is minimal if every coboundary operator can be
represented by a matrix, whose entries belong in the maximal ideal. The
link between this definition and the concept of minimality is discovered via
Nakayama’s lemma.

Lemma 5.1. (Nakayama) LetM be a graded finitely generated S-module
and m1, . . . ,mn ∈ M elements representing generators for M/mM . There-
fore m1, . . . ,mn generate M .

It follows, then, the full characterization of minimal free graded resolu-
tions.

Proposition 5.1. A free graded resolution

F : · · · −→ Fi
δi−→ Fi−1 −→ · · ·

is a minimal complex if and only if δi takes a basis for Fi in a minimal set
of generators for im(δi), for every choice of i ∈ N.

Proof. Let us consider the right-exact sequence

(5.2.1) Fi+1
δi+1−→ Fi −→ im(δi) −→ 0
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The complex F is minimal if and only if the quotient map δ′i+1 : Fi+1/mFi+1 −→
Fi/mFi is the zero map for every i. In fact, if F is minimal, then δi+1(Fi+1) ⊆
mFi and δ′i+1 vanishes. The converse is straightforward. However, this holds,
by means of (5.2.1), if and only if the map Fi/mFi −→ im(δi)/m(im(δi)) is
an isomorphism. By Nakayama’s Lemma, this happens if and only if a basis
for Fi is brought into a minimal set of generators for im(δi). �

The following results guarantees that the construction does not depend
from the choices we made.

Theorem 5.2. Let M be a graded finitely generated S-module. If F and
G are two minimal free graded resolution for M , then there exists a graded
isomorphism of complexes F −→ G inducing the identity overM . Moreover,
every free resolution of M contains the minimal free graded resolution of M
as direct summand.

Proof. See [9]. �

The most significant aspect of uniqueness of minimal resolutions is that,
if F : . . . . −→ F1 −→ F0 is a such resolution for M , then the number of
generators required for Fi in every degree depends only by M . The simplest
way to express this property in a precise statement is to use the torsion
functor. Let us recall that, for every S-module N , the functor TorSn(N,M)
is the n-th homology group of the complex N ⊗S PrM , being PrM any
projective resolution for M .

Proposition 5.2. If F : · · · −→ F1 −→ F0 is the minimal free resolu-
tion of a graded finitely generated S-module M , then every minimal set of
generators for Fi contains exactly dimk TorSi (k,M)j degree j generators.

Proof. The vector space TorSi (k,M)j is the degree j homogeneous part
of the i-th homology module taken on the complex k ⊗S F, as F is also a
projective resolution of M . Since F is minimal, every map in k ⊗ F is zero
(recall that k ⊗ Fi = (S/m) ⊗ Fi = Fi/mFi), hence we have TorSi (k,M) =
k ⊗S Fi and by Nakayama Lemma, Fi requires exactly dimk TorSi (k,M)j
generators of degree j. �

Corollary 5.3. IfM is a graded finitely generated S-module, projective
dimension of M equals the length of its minimal free graded resolution.

Proof. By definition, projective dimension is the least length of a pro-
jective resolution of M ; since minimal free resolution is a projective resolu-
tion, one inequality is trivial; it remains to prove that the length of minimal
free resolution is at most dim(proj)

S (M). Let us note that TorSi (k,M) = 0
if i > dim(proj)

S (M), then over that integer the terms in the minimal free
resolution have zero generators. This means exactly that its length is ≤
dim(proj)

S (M), as we wished. �
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Let

F : · · · −→ Fi −→ · · · −→ F1 −→ F0

be a free S-modules complex such that Fi =
⊕
j
S(−j)βi,j , that is Fi requires

βi,j minimal generators of degree j. If F is the minimal free resolution
of a graded finitely generated S-module M and has length m, then the
integers βi,j , sometimes written βi,j(M), are called graded Betti numbers.
The previous arguments show clearly that βi,j(M) = dimk TorSi (k,M)j .

For example, the number β0,j is the number of degree j elements required
to generate M ; since we will often take M as the projective coordinate
ring SX of some non-empty projective algebraic variety X, it is convenient
to show related examples. With its S-module structure, the ring SX is
generated by unity, so β0,0 = 1 and β0,j = 0 for j 6= 1. Also, the β1,j is
the number of independent elements required to generate the ideal IX of
X. If SX 6= 0 (that is to say, X 6= ∅), the ideal does not contain degree 0
elements, so β1,0 = 0. In general, we can prove the following result.

Proposition 5.3. Let {βi,j} be the graded Betti number of a graded
finitely generated S-module. If, for a given i, there exists d such that βi,j = 0
for every j < d, then we have βi+1,j+1 = 0 for every j < d.

Proof. Let · · · δ2−→ F1
δ1−→ F0 be the minimal free resolution. By

minimality condition, every generator for Fi+1 must be mapped in a non-
zero element of the same degree in mFi. Claiming that βi,j = 0 for every
j < d means that every generator for Fi (and then every non-zero element)
has degree at least d. So, every non-zero element in mFi has degree at least
d + 1. It follows that, Fi+1 has only generators of degree at least d + 1.
Hence it follows that βi+1,j+1 = 0 for every j < d. �

Corollary 5.4. If {βi,j} are the graded Betti number of a graded finitely
generated S-module M , the alternating sum

Bj :=
∞∑
i=0

(−1)iβi,j

determines Hilbert’s function of M by means of the following formula:

HilbM (d) =
∑
j

Bj

(
r + d− j

r

)

Moreover, the values of Bj can be deduced inductively from HilbM (d), that
is to say

Bj = HilbM (j)−
∑
n<j

Bn

(
r + j − n

r

)
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5.3. Determinantal ideals.

Assume that S = k[x0, x1, x2] is the graded polynomial ring; we will deal
with graded and finitely generated S-modules only. Such modules have a
minimal free resolution. Moreover, by Corollary 5.3, we know also that the
minimal free resolution has length dim(proj)

S (M).

Proposition 5.4. Let I ⊆ S be the homogeneous ideal defining a finite
set of points in P2. Therefore I has a minimal free resolution of length 1.

Proof. Because of the previous arguments, it is enough to show that
S/I has projective dimension 1. By Auslander-Buchsbaum formula in the
graded cases, one has

depth(m, S/I) + dim(proj)(S/I) = depth(m, S)
But depth(m, S/I) ≤ dim(S/I) = 1 and the irrelevant ideal m of S is not
associated to I: in fact I can be viewed as intersection of prime ideals px,
each one containing polynomials vanishing on the point x, where x varies
among the finite set given; hence, I can not contain a copy of k = S/m
and this leads to say that depth(m, S/I) > 0. Moreover, the indeterminates
x0, x1, x2 form a maximal regular sequence in S, so depth(m, S) = 3. It
follows that dim(proj)S/I = 2, but in a free resolution for S/I, the ideal I is
the first module of syzygies for S/I, hence dim(proj)I = 1. �

In the following, we will settle in a more general context, assuming that
R is a general noetherian ring; for every matrix Ψ with coefficients in R and
arbitrary dimensions, we will write It(Ψ) for the ideal in R generated by
determinants of order t submatrices taken from Ψ. Such ideals are called
determinantal ideals and own very remarkable properties: in the following
classical theorem we show how they relate to free resolutions.

Theorem 5.3. (Hilbert-Burch) Let us assume that an ideal I in a
noetherian ring R has a free resolution of length 1, precisely

0 −→ Rm
Ψ−→ Rn −→ I −→ 0

Therefore:
(1) n = m+ 1;
(2) I = a · It(Ψ), for some non zero-divisor a ∈ R;
(3) depth(It(Ψ), R) = 2.

Conversely, given a non zero-divisor a ∈ R and a (t + 1) × t-dimensional
matrix Ψ with coefficients in R, such that depth(It(Ψ), R) ≥ 2, the ideal
I = a · It(Ψ) admits a free resolution of length 1 like the above. Moreover,
depth(I,R) = 2 if and only if a is an unit in R.

Let us call i-th order t minor t the number (−1)i det Ψi, where Ψi is
a the submatrix taken from Ψ removing the i-th row; therefore, we claim
that the generator for I corresponding to the i-th of the chosen basis for
G is a times the i-th order t minor of Ψ. We postpone the Hilbert-Burch
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Theorem’s proof to the end of the section, in order to derive some important
tools and results regarding free resolutions.

If ϕ is a R-modules morphisms, we write rk(ϕ) for the rank of ϕ, that
is to say the order of the maximal non-zero minor, and I(ϕ) for the deter-
minantal ideal Irk(ϕ)(Φ), where Φ is an arbitrary matrix representation for
ϕ. Conventionally, we put I0(ϕ) := R, in line with the characteristics of
zero morphisms. Finally, we put also depth(R,R) = ∞, in order to obtain
depth(I0(ϕ), R) =∞.

Theorem 5.4. (Buchsbaum-Eisenbud) A free modules complex

F : 0 −→ Fm
ϕm−→ Fm−1 −→ · · · −→ F1

ϕ1−→ F0

over a noetherian ring R is a resolution if and only if for every i ≥ 0 the
following conditions hold:

(1) rk(ϕi+1) + rk(ϕi) = rk(Fi);
(2) depth(I(ϕi), R) ≥ i.
Proof. See [9], or [4] for further details. �

In the remarkable case in which R = k[x0, . . . , xr] for an algebraically
closed field k, Buchsbaum-Eisenbud’s Theorem has geometric meaning. We
can think R as the function ring of Ar+1

k (= kr+1) (in the graded case, one
could think to Pr in similar fashion) and, being p ∈ Ar+1

k a point, we let be
I(p) the ideal in R of functions vanishing in p. Let be F a complex satisfying
the above hypotheses and let be

F(p) : 0 −→ Fm(p) ϕm,p−→ Fm−1(p) −→ · · · −→ F1(p) ϕ1,p−→ F0(p)
the complex obtained tensoring with the residue field k(p) := R/I(p); F(p)
could be understood as a finitely generated vector k(p)-spaces complex. A
matrix representation for each ϕi,p can be obtained evaluating in p the co-
efficient of the corresponding matrix representation for ϕi. Buchsbaum-
Eisenbud’s Theorem explains the relation between exactness of F and ex-
actness of F(p).

Corollary 5.5. Let
F : 0 −→ Fm

ϕm−→ Fm−1 −→ · · · −→ F1
ϕ1−→ F0

be a free R-modules complex, with R = k[x0, . . . , xr] and k algebraically
closed. Let Xi ⊆ Ar+1

k be the set of points such that the complex F(p) :=
F⊗R κ(p) fails to be exact in Fi(p). Therefore F is exact if and only if Xi

is empty for every i or codim(Xi) ≥ i for every i.
Proof. Let us assume F is exact and let us define

ri :=
m∑
j=i

(−1)jrk(Fj)

Note that, since every Fi is a free module,
rk(ϕi) = rk(Fi)− rk(kerϕi) = rk(Fi)− rk(ϕi+1)
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where the last equality holds by exactness. Inductively, one shows that
rk(ϕi) = ri. Hence, the second condition in Buchbaum-Eisenbud’s Theorem
equals asking that depth(Iri(ϕi), R) ≥ i. Conversely, let us suppose that
depth(Iri(ϕi), R) ≥ i for every i ∈ I. In general, we know that

rk(ϕi) = rk(Fi)− rk(ker(ϕi)) ≥ rk(Fi)− rk(ϕi+1)
hence rk(ϕi) ≥ ri. Moreover, also rk(ϕi) ≤ rk(Fi) holds, so again ri = rk(ϕi)
and Buchsbaum-Eisenbud’s Theorem can be used.

Let us define, now,
Yi = {p ∈ kr+1 | rk(ϕi) < ri}

namely, the algebraic affine set defined by the ideal Iri(ϕi). SinceR is Cohen-
Macaulay, depth and codimension coincide, hence depth(Iri(ϕi), R) = dim(AIri (ϕi)) =
codim(Yi). By Buchsbaum-Eisenbud’s Theorem, it follows that F is exact
if and only if codim(Yi) ≥ i for every i ≥ 1.

On the other hand, the complex F(p) is a complex of finitely gener-
ated vector k-space, and it is exact if and only if rk(ϕj,p) + rk(ϕj+1,p) =
dimk(Fj(p)) holds for every j; this the same to ask rk(ϕj,p) + rk(ϕj+1,p) ≥
dimk(Fj(p)) and this holds for every j ≥ i if and only if rk(ϕj) ≥ rj for
every j ≥ i. Therefore F(p) is exact in Fj(p) for every j ≥ i if and only
if p /∈

⋃
j≥i
Yj = Y(i). Now, codimension of Y(i) is the minimum among codi-

mensions of Yj for j ≥ i, hence codim(Y(i)) ≥ i for every i if and only if
codim(Yi) ≥ i for every i. By the previous arguments, we can conclude the
proof. �

A consequence of Hilbert-Burch’s Theorem is that every ideal having a
length 1 free resolution contains a non zero-divisor. Buchsbaum-Eisenbud’s
Theorem allows us a more general statement.

Theorem 5.5. (Auslander-Buchsbaum) If an ideal I has a finite
length free resolution, therefore it contains a non zero-divisor.

Proof. Let us consider the free resolution
0 −→ Fm

ϕm−→ Fm−1 −→ · · · −→ F1
ϕ1−→ R −→ R/I −→ 0

Now, determinantal ideal I(ϕ1) equals exactly I. Hence, by Buchsbaum-
Eisenbud’s Theorem, we have depth(I,R) = depth(I(ϕ1), R) ≥ 1, that is to
say I contains a non zero-divisor. �

Before we begin the proof of Hilbert-Burch’s Theorem, a preliminary
linear algebra result is needed.

Lemma 5.2. Let Φ be a (t+1)×t-dimensional matrix having coefficients
in a commutative ring R and let a ∈ R. Therefore the composite map

Rt
Φ−→ Rt+1 ∆−→ R

is the zero map, where ∆ is defined by row matrix (a∆1 · · · a∆t+1), calling
∆i the i-th order t minor taken from the matrix Φ.
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Proof. Let Φ = (aij). Therefore ∆Φ has coefficients of the form

a ·
∑
j

∆jaij

and this equals the Laplace expansion for the determinant of a (t + 1) ×
(t + 1)-dimensional matrix, obtained repeating twice the i-th column. By
determinant theory, it follows readily that ∆Φ = 0. �

Now we can prove Hilbert-Burch’s Theorem.

Proof. (Hilbert-Burch’s Theorem) We prove the last statement first;
let us assume It(Ψ) has depth at least 2 and let a be a non zero-divisor. We
have to show that I = a·It(Ψ) has a length 1 free resolution. Since It(Ψ) has
depth at least 2, the matrix Ψ has rank t (because Ψ can not have greater
rank) and the map ∆ defined in the above Lemma 5.2 has necessarily rank
1. Therefore I(∆) = I1(∆) = a · I(Ψ) and I(∆) has depth at least 1. By
Buchsbaum-Eisenbud’s Theorem, we conclude that the exact sequence

(5.3.1) 0 −→ F
Ψ−→ G −→ I −→ 0

is the desired resolution of I = a · I(Ψ).
Now let us prove the first part. Using inclusion I ⊆ R we can state that

there is a free resolution of R/I such that

0 −→ F
Ψ−→ G

A−→ R

where A is a non-zero map of rank 1. By Buchsbaum-Eisenbud’s Theorem,
it must follow that rk(M) = t and rk(G) = t + 1. Similarly, it must hold
that depth(It(Ψ), R) = depth(I(Ψ), R) ≥ 2. Moreover, one could prove that
for every prime ideal p ∈ Spec(R/It(Ψ))

dim(Rp) ≤ 2
holds, hence depth(It(Ψ), R) ≤ dim(Rp) ≤ 2; finally, depth(It(Ψ), R) = 2.
Let ∆ = (∆1, . . . ,∆t+1) be the map defined in Lemma 5.2; dualizing the
sequence (5.3.1) and restricting, we find that

0 −→ hom(R,R) ∆∨−→ hom(G,R) Ψ∨−→ hom(F,R)
is a complex since Ψ∨∆∨ = (∆Ψ)∨ = 0. Moreover, by Buchsbaum-Eisenbud’s
Theorem, the above complex is exact: in fact rk(hom(G,R)) = rk(G) =
rk(Ψ) + rk(A) = rk(Ψ∨) + rk(A∨) and depths respect to ideals are compat-
ible. On the other hand, the range of Ψ is contained in the kernel of A,
hence im(A∨) ⊆ ker(Ψ∨), inducing thus a map a : R −→ R which makes
the following diagram to commute:

hom(R,R) A∨ //

a

��

hom(G,R) Ψ∨ //

=
��

hom(F,R)

=
��

hom(R,R) ∆∨ // hom(G,R) Ψ∨ // hom(F,R)
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The arrow a is represented by a 1 × 1 matrix, and we will call a its only
coefficient, with a slight abuse of notation. By Corollary 5.5, the ideal I
contains a non zero-divisor element; but looking at the previous diagram, it
is clear that I = a · It(M) is contained in (a), so a is not a zero-divisor.

It remains to show the last sentence. For It(Ψ) has depth 2, the ideal
a · It(Ψ) keeps having depth 2 if and only if a is an unit in R. �

5.4. Invariants in resolutions.

Hilbert Burch’s Theorem is an useful tool to study certain invariants
that arise when we deal with resolutions of finite sets of points in the plane
P2. In the following discussion, we will write IX ⊆ S for the defining ideal
of a set X ⊆ P2 containing a finite number of points, and we will write
SX = S/IX for the homogeneous coordinate ring of X. By Proposition 5.3,
we know that IX has projective dimension 1 and that SX has projective
dimension 2. Let us assume that the minimal free resolution of SX has the
form

F : 0 −→ F
Ψ−→ G −→ S

where G is a t+1 rank free S-module; by Hilbert-Burch’s Theorem it follows
that F has rank t. One could write explicitly

G =
t+1⊕
i=1

S(−ai), F =
t⊕
i=1

S(−bi)

where S(−a) means the rank 1 free S-module generated by degree a ele-
ments; in other words, the numbers ai are the degree of minimal generators
for I = It(Ψ). Hence, the degree of the (i, j)-th elements of matrix Ψ is
bj −ai. As we will explain later, we are interested in the elements belonging
to the main diagonals of M : then write ei := bi − ai and fi = bi − ai+1 to
indicate their degrees.

To avoid any confusion, let us assume that the basis chosen for F and
G are ordered, that is a1 ≥ . . . ≥ at+1 and b1 ≥ . . . ≥ bt, hence fi ≥ ei,
fi ≥ ei+1. Since minimal free resolutions are unique up to isomorphism, the
number ai, bi, ei and fi are thus invariant up to isomorphism; however, they
can not assume arbitrary integer values, being determined by ei and fi.

Proposition 5.5. If I is the defining ideal for a finite set of points in
P2 and

F : · · · −→
t⊕
i=1

S(−bi)
Ψ−→

t+1⊕
i=1

S(−ai) −→ S

is the minimal free resolution for S/I, and ei, fi denote the degrees of ele-
ments of Ψ belonging to the two main diagonals, therefore, for every i the
following properties hold:

• ei ≥ 1, fi ≥ 1;
• ai =

∑
j<i

ei +
∑
j≥i

fi;
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• bi = ai + ei and also
t∑
i=1

bi =
t+1∑
i=1

ai.

If, moreover, the basis are ordered in a way such that a1 ≥ . . . ≥ at+1 and
b1 ≥ . . . ≥ bt, therefore fi ≥ ei and fi ≥ ei+1.

Proof. The ideal I has codimension 2 and S is Cohen-Macaulay, hence
I has depth 2. Therefore, using Hilbert-Burch’s Theorem, the non zero-
divisor a ∈ S associated to the resolution F is an unit in S; for S is a
polynomial ring, a is a constant and ai are actually the degrees of minors of
Ψ.

Let us assume, without loss of generality, that basis are ordered as in
hypothesis. We will prove that ei ≥ 1 (by order this will also imply that
fi ≥ 1). Let Ψ = (mi,j); by minimality of F, no mi,j can be a non-zero
constant (recall that δ(Fi) ⊆ mFi−1 where m is the irrelevant ideal in S),
hence if ei ≤ 0 then mi,i = 0. Moreover, if p ≤ i and q ≥ i we have

deg(mp,q) = bq − ap ≤ bi − ai = ei

by the order chosen. Thus, if ei ≤ 0, we have mp,q = 0 for every pair (p, q)
such that p ≤ i and q ≥ i. In this way, one can prove that at least one among
the order t minors in Ψ vanishes; since by Hilbert-Burch’s Theorem it should
be a minimal generator for I, we find a contradiction. Hence ei ≥ 1.

The identity
ai =

∑
j<i

ei +
∑
j≥i

fi

follows from Buchsbaum-Eisenbud’s Theorem. In fact ai is the degree of the
determinant ∆i obtained from Ψ removing the i-th row and a term in the
expansion of such determinant is∏

j<i

mj,j ·
∏
j≥i

mj+1,j

Finally, since ei = bi − ai, we find
t∑
i=1

bi =
t∑
i=1

ai +
t∑
i=1

ei =
t+1∑
i=1

ai

finishing the proof. �

Above Proposition 5.5 gives an upper bound to the minimal number of
generators required for the ideal of points lying over a curve of given degree.
Such a bound was known even before the introduction of free resolution and
can actually be proved separately.

Corollary 5.6. If I is the defining ideal of a finite set of point in P2

lying over a curve of degree d, therefore it can be generated by d+1 elements.

Proof. Let t + 1 be the least number of generators for I; then, by
Proposition 5.5, the degree ai of the i-th minimal generator is the sum of t
numbers, each one being ≥ 1, so t ≤ ai. Since the curve has degree d, the
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ideal I must contain a polynomial of degree d, hence we have ai ≤ d for
some i. It follows t+ 1 ≤ d+ 1 as we wished. �

Computing Hilbert’s function of a finite set X of points in P2 (namely,
of its S-module of coordinates) using information collected from a free res-
olution, we can use the properties of invariants ei, fi. Function HilbX(d) is
constant when d � 0, and its definitive value is the cardinality of the set
X, that is to say, its degree degX.

If X is obtained as a complete intersection (namely, IX has t + 1 = 2
minimal generators) of two distinct curves having respectively degree e and
f , therefore with previous notations one has t = 1, e1 = e, f1 = f . By
Bézout’s Theorem, the degree of X thus should be ef = e1f1. Indeed, we
have the following generalization.

Corollary 5.7. Let X be a finite set of points in P2. Therefore, with
the previous notations,

degX =
∑
i≤j

eifj

Proof. See [6]. �

5.5. Examples.

In this section we’ll discuss some examples regarding the theory shown
in the above sections.

Firstly, we may determine the possible free resolutions for a finite set of
points lying over an irreducible conic curve. Let us assume that X ⊆ P2 is a
finite set of points lying over an irreducible conic, defined by a quadratic form
q. With the previous notations, we have at+1 = 2 and, since at+1 =

t∑
i=1
ei,

only two possibilities are allowed: if t = 1, then e1 = 2 and if t = 2, then
e1 = e2 = 1.

• In the case t = 1, therefore X is the complete intersection between
an irreducible conic and a curve of degree a1 = d, defined by a
polynomial g. One knows that degX = 2d by Bézout’s Theorem
(or even by the above formula). Moreover, b1 = d + 2 and the
desired resolution has the form:

0 −→ S(−d− 2) ϕ2−→ S(−2)⊕ S(−d) ϕ1−→ S −→ SX

where ϕ2 = (g − q) and ϕ1 = (q, g).
• If, instead, one has t = 2, we have e1 = e2 = 1; let us assume that
the conic q = 0 is irreducible. By Proposition 5.5, the resolution
shall have the following form:

0 −→ S(−1− f1 − f2)⊕ S(−2− f2) Ψ−→ S(−f1 − f2)⊕ S(−1− f2) −→ S

where we clearly assumed that f1 ≥ e1 = 1 and f1 ≥ e2 = 1 and
f2 ≥ e2 = 1. By Hilbert-Burch’s Theorem, q is multiple of the
order 2 minor obtained from Ψ deleting the third row; since q is
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irreducible, each of the four entries in the such submatrix obtained
from Ψ must be non zero. Moreover, the element of M placed in
the above right corner has degree e1 +e2−f1 ≤ 1 and if it had zero
degree then it should be equal to zero, contradicting the minimality
of resolution. Therefor e1 + e2 − f1 = 1, that is f1 = 1. Moreover,
a3 =

∑
j<3

ej = 2 and we have

a1 = a2 = 1 + f2, b1 = b2 = 2 + f2

Hebe, one can argue that the resolution has the following form:

0 −→ S2(−2− f2) −→ S2(−1− f2)⊕ S(−2) −→ S

Using the above formula for degree, we find that degX = 2f2 + 1.
The two cases in this situation are hence distinguished by the parity
of degree.

Let us now concentrate on points over conics with more detail. We know
that vector space of quadratic forms in 3 indeterminates has dimension 5;
it follows that 5 distinct points lie over an unique conic, since imposing the
passage from a point lead to a single linear condition. We can thus use the
ideas developed in the above in order to study resolution of sets containing
up to 5 points. The most interesting case is to consider 4 non collinear
points, X = {p1, . . . , p4}.

Imposing the 4 passage condition over a conic leaves two free parameters;
hence two distinct conics containing X must exist.

Let us assume firstly that no triple of points in X lies over a line. In
this case, the only possibility is that X is contained in the intersection of
the following conics, each one composed by the union of two lines:

C1 := p1 − p2 ∪ p3 − p4, C2 = p1 − p3 ∪ p2 − p4

In this case X is complete intersection of C1 and C2 and resolution has the
form

0 −→ S(−4) −→ S2(−2) −→ S

with Betti numbers β0,1 = 1, β1,2 = 2, β2,4 = 1.
Let us suppose, instead, that p1, p2, p3 lie over a line L, without loss of

generality. So let be L1 and L2 two lines by p4 containing none of p1, p2, p3.
It follows that X is contained in the intersection of

C1 = L ∪ L1, C2 = L ∪ L2

Since L belongs to both C1, C2, the set X is not obtained as complete
intersection of conics C1, C2 and, by Corollary 5.6, the ideal of X requires
exactly 3 generators. Hence, by Proposition 5.5,

a1 = f1 + f2, a2 = e1 + f2, a3 = e1 + e2

Since a3 = 2, we have e1 = e2 = 1. By degree formula, we find that

4 = e1f1 + e1f2 + e2f2 = f1 + 2f2
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that is to say, f1 = 2 and f2 = 1. Degrees of generators are, thus,
a1 = 3, a2 = a3 = 2, b1 = 4, b2 = 3

Therefore, the ideal of X is generated by quadric equations for C1 and
C2, plus a cubic equation. In fact, the previous numbers mean that the
resolution has the form

S(−3)⊕ S(−4) −→ S2(−2)⊕ S(−3) −→ S

From a geometric point of view, we discover the following statement: any
set of 4 non collinear points, 3 of which lying over a line, belongs to the
intersection of two conics and a cubic curve.
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CHAPTER 6

Local cohomology.

The following dissertation about local cohomology and about the many
ways to link it with other cohomology theories can be found, in a condensed
synthesis, in [10] or [9]. The most complete reference about local cohomol-
ogy theory, however, rests [14].

6.1. Main definitions.

We can state a quite general definition. Let (X,OX) be a ringed space,
Z ⊆ X a closed subscheme and let F be a OX -modules sheaf. We define
the functor ΓZ : Sh(X) −→ CRings setting

ΓZ(F ) = ker(ρXX\Z)

where ρXX\Z : Γ(X,F ) −→ Γ(X\Z,F ) is the standard restriction map.
Clearly, we have too

ΓZ(F ) = {s ∈ Γ(X,F ) | supp(s) ⊆ Z} =
= {s ∈ Γ(X,F ) | sx = 0 for every x ∈ X\Z}

Lemma 6.1. The functor ΓZ is left exact.

Proof. Let 0 −→ F1
f−→ F2

f−→ F3 −→ 0 be a OX -modules sheaves
exact sequence. Therefore, we have a diagram

0

��

0

��

0

��
ΓZ(F1)

i1
��

p // ΓZ(F2)

i2
��

q // ΓZ(F3)

i3
��

0 // Γ(X,F1) fX //

ρX
X\Z
��

Γ(X,F2)

ρX
X\Z
��

gX // Γ(X,F3)

ρX
X\Z
��

Γ(X\Z,F1)
fX\Z // Γ(X\Z,F2)

gX\Z // Γ(X\Z,F3)

commuting because f, g are sheaves morphisms. Now, we have straightfor-
wardly

ker(p) = ker(i2 ◦ p) = ker(fX ◦ i1) = 0
hence ΓZ is left exact. �

55
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Thanks to Lemma, the functor ΓZ admits right derived functors, that we
will call H i

Z(−); in particular, for every sheaf of OX -modules, let us define
H i
Z(F ) the i-th local cohomology group of F with support in Z. The same

definition, in particular, can be arranged in the category of quasi-coherent
sheaves over a general scheme X.

Let us suppose that X = Spec(A) is an affine scheme, with A any ring,
and let Z = V (I) for some ideal I ⊆ A. We know, hence, that F = M∼

for some A-module M . We can give the following explicit definition of local
cohomology. Define

H0
I (M) := {m ∈M | mIr = 0 for some r ∈ N} =

⋃
n≥0

(0 :M In)

An equivalent definition of the 0-th module can be given in the following way:
note that every m ∈ (0 : In) gives rise to a linear morphism A/In −→ M ,
setting 1 + In 7→ m; it is well defined, because if a + In = b + In then
a− b ∈ In and

a+ In = am, b+ In 7→ bm

but (b− a)m = 0, since m is annihilated by In. Conversely, it is clear that
every linear morphism f : A/In −→ M sets an element f(1 + In) ∈ (0 :M
In). More remarkably, if n ≤ m, it is clear that A/In ⊆ A/Im. Since
(0 :M In) ' homA(A/In,M), we can thus write

H0
I (M) ' lim

n→∞
homA(A/In,M)

where the inductive limit is trivial, every arrow being an injection. We ob-
tain, this way, a left exact functor ModA −→ModA setting M 7→ H0

I (M),
and it gives rise to right derived functors H i

I(−); the i-th right derived func-
tor H i

I(M) is the i-th module of local cohomology of M with support in
V (I). If (A,m) is a local ring, then one simply calls H i

m(M) the i-th local
cohomology module of M . It is rather clear that

H0
I (M) = ker(M −→ Γ(Spec(A)\V (I), M̃))

so actually we have H0
I (M) = ΓV (I)(M̃), accordingly with the previous

definition.
Now one could note that the i-th right derived functor of homA(A/In,M)

is exactly ExtiA(A/In,M) namely
H i
I(M) ' lim

n→∞
ExtiA(A/In,M)

Because of this description, local cohomology modules preserve many of
the properties typical of ExtiA functors; amongst them, the long sequence
property seems one of the most significant.

Lemma 6.2. Every element in H i
I(M) is annihilated by a power of I.

Proof. By definition of H i
I(M), each one of its elements belongs to

the homomorphic image of some ExtiA(R/In,M), and this whole module is
annihilated by In. �
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Lemma 6.3. Assume that {Jn}n≥0 is a decreasing sequence of ideals, and
that it is cofinal with {In} (namely, for every In there exists a Jα(n) such
that In ⊆ Jα(n)). Therefore

H i
I(M) = lim

n→∞
ExtiA(A/Jn,M)

Proof. Cofinal sets have the same inductive limit. �

Proposition 6.1. If two ideals I, J ⊆ A have the same radical, therefore
H i
I(M) ' H i

J(M) for every i ≥ 0. Moreover, if I = (x1, . . . , xn) and
Is = (xs1, . . . , xsn), then H i

I(M) = H i
Is

(M) for every i ≥ 0 and for every
s > 0.

Proof. Since
√
I =
√
J , any power of I is contained in some power of

J , hence the sequences {Jn} and {In} are each other cofinal. By Lemma
6.3, local cohomology does not change:

H i
I(M) = lim

n→∞
ExtiA(A/Jn) = H i

J(M)

Moreover, one see that
√
Is =

√
I, so the last statements follows readily. �

The following theorem contains the relevant property.

Theorem 6.1. Let M ′,M,M ′′ be three finitely generated A-modules and
let I ⊆ A be an ideal. Let us assume that

0 −→M ′ −→M −→M ′′ −→ 0

is an exact sequence. Therefore, there exists a long exact sequence of local
cohomology modules:

· · · −→ Hn
I (M ′) −→ Hn

I (M) −→ Hn
I (M ′′) −→ Hn+1

I (M ′) −→ · · ·

Proof. Given the above short exact sequence of modules, it is known
that there exists a long exact sequence involving extension functors, for every
n ∈ N:

· · · −→ ExtpA(A/In,M ′) −→ ExtpA(A/In,M) −→ ExtpA(A/In,M ′′) −→

−→ Extp+1
A (A/In,M) −→ · · ·

Because inductive limits are exact functors, one can readily take to limit for
n→∞, like above; then the desired exact sequence is found. �

One could prove that local cohomology relates to depth, in the following
way.

Proposition 6.2. Let A be a noetherian ring andM a finitely generated
A-module. If I ⊆ A is an ideal such that IM 6= M , therefore

depth(I,M) = min{i ∈ N | H i
I(M) 6= 0}
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Proof. Proceed by induction over s = min{i ∈ N | H i
I(M) 6= 0}. If

s = 0, then for some n > 0 the module homA(A/In,M) is not trivial, hence
In contains at least a nonM -regular element, that is to say that there exists
x ∈ In such that xM = 0. Hence In ⊆ p for some associated prime ideal
p ∈ Ass(M). Then, by primality, we have also I ⊆ p and

0 6= homA(A/p,M) ⊆ homA(A/I,M)
This proves depth(I,M) = 0. Conversely, if depth(I,M) = 0, then

0 6= homA(A/I,M) ⊆ lim
n→∞

homA(A/In,M) = H0
I (M)

and this proves the claim.
Now suppose s > 0; so necessarily depth(I,M) > 0, by the above con-

siderations. Let x ∈ I be a M -regular element (namely, a non zero-divisor);
we have thus the following exact sequence

0 −→M
x−→M −→M/xM −→ 0

and this leads the long sequence
· · · −→ H i−1

I (M) −→ H i−1
I (M/xM) −→ H i

I(M) −→ · · ·

By inductive hypothesis, H i−1
I (M/xM) = 0, so we have the exact sequence

0 −→ Hs−1
I (M/xM) −→ Hs

I (M) x−→ Hs
I (M) −→ · · ·

Since Hs
I (M) 6= 0, the map acting as multiplication by x can not be injec-

tive; in fact, xn annihilates ExtsA(A/In,M) so also H i
I(M). It follows that

Hs−1
I (M/xM) 6= 0. Using again inductive hypothesis, we find depth(I,M/xM) =

s− 1 and, since x is a M -regular element, depth(I,M) = s. �

Remark 6.1. Recall that, with above hypotheses,
depth(I,M) = min{i ∈ N | ExtiA(A/I,M) 6= 0}

holds. This allows us to transform the most part of theorems involving local
cohomology in equivalent results involving extension functors.

6.2. Local cohomology, Čech complex and sheaf cohomology.

This section is devoted to explain how it is possible to express local
cohomology modules using a Čech-like complex, in order to show the relation
with coherent sheaf cohomology. Let A be a noetherian ring and let M be
a finitely generated A-module. If I = (x1, . . . , xn) is an ideal and s > 0 is
an integer, let us write xs• for the sequence xs1, . . . , xsn and let us consider
the Koszul complex Kosz(xs•,M) := Kosz(xs•) ⊗A M as a cohomological
complex. For every s > 0, we have

H0(Kosz(xs•,M)) = (0 :M (xs•))
Moreover, the Koszul complexes built in this way can be organized in an
inductive system, using the natural maps

Kosz(xs•) −→ Kosz(xs+1
• )
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induced in degree 0 by the linear map An −→ An which acts multiplicating
the i-th entry by xi. In the 0-th cohomology module, these maps induce an
inclusion

(0 :M (xs•)) ⊆ (0 :M (xs+1
• ))

Let now
Kosz(x∞• ) := lim

s→∞
Kosz(xs•)

and let Kosz(x∞• ,M) := Kosz(x∞• )⊗AM . Therefore we obtain
(6.2.1) H0

I (M) = lim
s→∞

H0(Kosz(xs•,M)) = H0(Kosz(x∞• ,M))

using the definition of 0-th local cohomology module. Hence we have iso-
morphisms for every i ≥ 0:

H i
I(M) ' H i(Kosz(x∞• ,M))

since both members are the right derived functor of the same functor, as
shown in (6.2.1). It is not difficult to prove that Kosz(x∞• ) coincide actually
with the Čech complex that follows ([9]):

Č(x) : 0 −→ A −→
⊕

1≤i≤n
Axi −→

⊕
1≤i1<i2≤n

Axi1xi2
−→ · · ·

One has, therefore
(6.2.2) H i

I(M) = H i(Č(x)⊗AM)
Now, let us explain how these ideas are used to characterize local coho-

mology using sheaf cohomology.
If we take the graded polynomial ring A = k[x0, . . . , xr] and I = m the

irrelevant ideal, let M be an A-module and M̃ the usual coherent sheaf over
X = Pr

k. It is therefore possible to establish a relation between cohomology
of M̃ as a sheaf over X and local cohomology of M , as A-module. Let U =
{Ui} be the open cover of X made up by the open subsets Ui := X\V (xi);
hence, we can build the Čech chain complex for the sheaf M̃ and relative to
U, namely

Č(U, M̃) : 0 −→
⊕

0≤i1≤r
M(xi1 ) −→

⊕
0≤i1<i2≤r

M(xi1xi2 ) −→ · · ·

Clearly, this complex is the degree 0 part taken out of the complex Č(x)tr⊗A
M , where

(Č(x)tr)i := (Č(x))i+1

is the truncated Čech complex. Hence, using additivity of cohomology,
H i(Č(U, M̃)) ' H i(Č(x)tr ⊗AM)0

Since also
H i(Pr

k, M̃) ' H i(Č(U, M̃)) ' H i(Č(x)tr ⊗AM)0 ' H i+1
m (M)0

twisting the modules we find
H i(Pr

k, M̃(n)) ' H i+1
m (M)n
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It follows, therefore, that
(6.2.3) H i+1

m (M) '
⊕
n∈Z

H i(Pr
k, M̃(n))

holds for every i ≥ 1.
Note that the above isomorphism fails for i = 0; in fact, note that the

functor
QCohSh(Pr

k) −→ModA
F 7→

⊕
n∈Z

H0(Pr
k,F (n))

and the functor
ModA −→ QCohSh(Pr

k)

M 7→ M̃

are not each the inverse of the other, since in general⊕
n∈Z

H0(Pr
k, M̃(n)) 6= M

Anyway, one could prove that the behaviour in degree 0 is ruled by the
following exact sequence:
(6.2.4) 0 −→ H0

m(M) −→M −→
⊕
n∈Z

H0(Pr
k, M̃(n)) −→ H1

m(M) −→ 0

6.3. Further results.

The most part of what follows here is essentially obtained as application
of the previous results.

Corollary 6.1. If I = (x1, . . . , xt) therefore H i
I(M) = 0 for i > t.

Proof. We know that H i
I(M) = H i(Č(x)⊗AM) if i > 0 and the Čech

complex has length t > 0. �

Corollary 6.2. Let M be a graded S-module of finite length, with S =
k[x0, . . . , xr]. Then H0

I (M) = M and H i
I(M) = 0 for every i > 0.

Remark 6.2. (Change of ring) Let ϕ : A −→ B be a rings morphism
and let I ⊆ A be an ideal. Recall that the extension of I under ϕ is the ideal
e(I) generated by ϕ(A) in B. Now, ifM is a B-module, it can be understood
as an A-module by means of ϕ. However, the relation of change of ring
(or basis) behave in a more cumbersome way than expected: in fact, is not
clear how to establish a link between ExtiA(A/In,M) and ExtiB(B/e(I)n,M)
without the use of spectral sequences. Surprisingly everything get fixed when
taking the inductive limit for n→∞.

Proposition 6.3. Let ϕ : A −→ B be a noetherian rings morphism.
With the above notation, the isomorphism H i

I(M) ' H i
e(I)(M) holds for

every i ≥ 0.
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Proof. If x ∈ A is an arbitrary element, therefore the localization Mx

does not change under change of rings: in fact, Mx is the set of ordered
pairs (m,xn) modulo the equivalence relation that identifies (m,xn) with
(m′, xn′) if and only if xr(mxn′ −m′xn) = 0 for some r ≥ 0. Hence, without
touching the module structure, the Čech complex rests unchanged and the
local cohomology does. �

Quite remarkable are certain results of local duality for local cohomology
(see [10]).

Proposition 6.4. Let S = k[x0, . . . , xr] and let m = (x0, . . . , xs) be the
irrelevant ideal. Therefore we have H i

m(S) = 0 for i < r+ 1 and Hr+1
m (S) '

S(−r − 1)∨, where ∨ means the graded dual module.

Theorem 6.2. Let S = k[x0, . . . , xr] and let m = (x0, . . . , xr) be the
irrelevant ideal. If M is a graded finitely generated S-module, therefore
H i

m(M) is (as a S-module) a vector k-space dual to Extr+1−i
S (M,S(−r−1)).

Finally, we present a vanishing result that involves depth and Krull
dimension of modules.

Theorem 6.3. Let M be a graded finitely generated S-module. Then
(1) (Grothendieck) if i < depth(m,M) or i > dimS(M), therefore

H i
m(M) = 0;

(2) if i = depth(m,M) or i = dim(M), therefore H i
m(M) 6= 0.

Proof. Since
H i

m(M) = lim
n→∞

ExtiS(S/mn,M)

and since ExtiS(S/mn,M) = 0 for every i > depth(m,M) with Extdepth(m,M)
S (S/mn,M) 6=

0, the depth part is straightforward. The dimension part, instead, can
be proved noting that S is Cohen-Macaulay ring, hence codimS(M) :=
dim(SAnnS(M)) = depth(AnnS(M), S) holds. �



CHAPTER 7

Eagon-Northcott complex.

7.1. Symmetric algebra.

This section briefly recalls the introductory aspects of symmetric alge-
bra, the symmetric counterpart of exterior algebra used before. Details can
be found in [3].

Let us recall that, given a ring A and an A-module M , one defines the
tensor algebra of M setting the A-module

T (M) :=
⊕
n≥0

Tn(M)

which indeed acts as a graded A-algebra with Tn(M) :=
⊗n
AM .

Definition 7.1. The symmetric algebra of M is the quotient algebra⊙
M obtained by T (M) modulo the ideal I generated by elements of the

form x⊗ y − y ⊗ x ∈ T (M), for every x, y ∈M .

We will set x � y for the equivalence class of symbols x ⊗ y ∈ T (M).
Since the ideal I is generated by homogeneous elements, it is a graded ideal;
in fact, setting Ip := I ∩ T p(M) for every p ≥ 0, one determines a grading
for

⊙
M , called canonical grading; explicitly, the degree p term is⊙ p

M := T p(M)/Ip

Since I0 = I1 = {0}, we can set, formally,
⊙0M ' A and

⊙1M ' T 1(M) =
M . There exists also a canonical mapping ϕM = ϕ : M −→

⊙
M defined

as a consequence of the construction.
Since we have ϕ(x) � ϕ(y) = ϕ(y) � ϕ(x) for every x, y ∈ M and since

elements ϕ(x) generate
⊙
M , we are allowed to claim that the symmetric

algebra is a commutative algebra. Moreover, the construction is universal
in the following sense.

Proposition 7.1. (Universal property of symmetric algebra)
Let G be an A-algebra and let f : M −→ G be an A-linear morphism such
that f(x)f(y) = f(y)f(x) for every x, y ∈ M . Then there exists an unique
A-algebras morphism g :

⊙
M −→ G such that f = g ◦ ϕM .

Remark 7.1. Let us suppose that G is a graded A-algebra and let us
suppose that f : M −→ G is a morphism such that f(M) ⊆ G1. Therefore,
the identity

g(x1 � . . .� xp) = f(x1) · · · f(xp)
62
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for every xi ∈ M shows that g (
⊙pM) ⊆ Gp for every p ≥ 0; that is, in

other words, g is a graded algebras morphism.

As a matter of fact, one could also show that⊙
: Mod(A) −→ Alg(A)

set by M 7→
⊙
M extends to a (covariant) functor, in the sense that for

every A-modules morphism f there exists an unique A-algebras morphism⊙
f satisfying the standard functorial properties.
In the significant case M is a finitely generated module, it can easily

be shown that
⊙
M is finitely generated too; in particular, given a set

of generator {m1, . . . ,mr} for M , every homogeneous part
⊙pM can be

generated by products xi1 � . . . � xip for every 1 ≤ i1 ≤ . . . ≤ ip ≤ r. It
follows that the rank of

⊙pM can be computed as(
r + p− 1

p

)
where r is the rank of M .

Finally, we show the behaviour of symmetric algebra when paired to a
direct sum. Let

M :=
⊕
n≥0

Mn

be a A-module defined as direct sum of A-modules Mn and let jn : Mn −→
M be the canonical injections. There are thus functorially induced A-
algebras morphisms Jn :

⊙
Mn −→

⊙
M ; since

⊙
M is commutative, we

can use universal property of symmetric algebra to claim the existence of an
unique map

g :
⊗
n≥0

(⊙
Mn

)
−→

⊙
M

such that Jn = g ◦ fn where

fn :
⊙

Mn −→
⊗
n≥0

(⊙
Mn

)
is the canonical morphism. Furthermore, one can also show that g is a
graded isomorphism, that is to say⊙(⊕

n≥0
Mn

)
'
⊗
n≥0

(⊙
Mn

)

7.2. Construction of the complex.

Let R be a ring and let F = Rn, G = Rm be two free R-modules, where
n ≥ m. Let f : F −→ G be a R-modules morphism. The Eagon-Northcott
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complex for f (indeed, for each one of its matrix representations) is the
R-modules sequence

EN(f) : 0 −→
(⊙ n−m

G
)∨
⊗R

(∧ n
F
)

∂−→

∂−→
(⊙ n−m−1

G
)∨
⊗R

(∧ n−1
F
)
−→

−→ · · · −→
(⊙ 2

G
)∨
⊗R

(∧m+2
F
)

∂−→

−→ G∨ ⊗R
(∧m+1

F
)

∂−→
∧m

F

∧m
f

−→
∧m

G ' R

where M∨ := HomR(M,R); the coboundary maps are defined as following:
set firstly a diagonal map

∆ :
(⊙ p

G
)
−→ G∨ ⊗R

(⊙ p−1
G
)∨

as the dual of the natural map

G⊗R
(⊙ p−1

G
)
−→

⊙ p
G

u⊗ (u1 � . . .� up−1) 7→ u� u1 � . . .� up−1

Then we define a similar map

∇ :
∧ p

F −→ F ⊗
(∧ p−1

F
)

dualizing the multiplication map

F∨ ⊗R
(∧ p−1

F
)∨
−→

(∧ p
F
)∨

u∗ ⊗ (u∗1 ∧ . . . ∧ u∗p−1) 7→ u∗ ∧ u∗1 ∧ . . . ∧ u∗p−1

The action of two maps can be expressed cleanly in components:

∆(u) :=
∑
i

u′i ⊗ u′′i , ∇(v) :=
∑
i

v′i ⊗ v′′i

where u′i ∈ G∨, u′′i ∈
(⊙p−1G

)∨ and v′j ∈ F, v′′j ∈
∧p−1 F . These notations

allow us to define the p-th differential as the morphism

∂p :
(⊙ p−1

G
)∨
⊗R

∧ n+p−1
F −→

(⊙ p−2
G
)∨
⊗R

∧ n+p−2
F

ξ ⊗ ω 7→
∑
i

(
f∨u′i

(v′i)u′′i
)
⊗ v′′i

where f∨ : G∨ −→ F∨ is induced by f and f∨u′′i : F −→ R is the image of
u′i in F∨ under f∨. Carrying out explicit calculations, we can prove that
EN(f) is a complex of R-modules.

Let us note that the Eagon-Northcott complex deals with the same kind
of information that Koszul complex does, namely the cokernel of the map
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∧m F −→ ∧mG. The subtlety is to recognize that Koszul com-

plex deals with sequences of elements in R because it can be obtained as a
particular case of the Eagon-Northcott complex, setting m = 1.

The above arguments can be replicated in the class of vector bundles
over a scheme X. In particular, given a morphism ϕ : F −→ G of vector
bundles, one can define the Eagon-Northcott complex EN(ϕ) setting

EN(ϕ)p :=
(⊙ p−1

G
)∨
⊗OX

∧ rk(G )+p−1
F

for every p > 0 and EN(ϕ)0 := OX , where M ∨ := Hom OX
(M ,OX) is

intended.
Further details can be found in [8].



CHAPTER 8

Regularity for modules and sheaves.

8.1. Regularity and local cohomology for modules.

Let us give the following algebraic definition.

Definition 8.1. Let M be a graded finitely generated S-module and
let us consider the minimal free resolution for M :

F : · · · −→ Fi −→ Fi+1 −→ · · · −→ F0

where we have set
Fi =

⊕
j

S(−ai,j)βi,j

Therefore, we define the Castelnuovo-Mumford regularity of M as
reg(M) := max{ai,j − i | i ≥ 0, j ≥ 0}

By Betti numbers properties, we can express reg(M) as the greatest
integer q such that βi,i+q(M) 6= 0, with i ≥ 0. In the following we will carry
over a characterization of this algebraic version of regularity, by means of
local cohomology. Some first application are also presented.

Theorem 8.1. Let M be a graded finitely generated S-module and let d
be an integer. Let m = (x0, . . . , xr) be the irrelevant ideal. Therefore, the
following statements are equivalent:

(1) d ≥ reg(M);
(2) d ≥ max{e | H i

m(M)e 6= 0}+ i for every i ≥ 0;
(3) d ≥ max{e | H0

m(M)e 6= 0} and H i
m(M)d−i+1 = 0 for every i > 0.

Let us introduce the following terminology: a S-module M is weakly d-
regular if H i

m(M)d−i+1 = 0 for every i > 0 and it is d-regular if it is weakly
d-regular and d ≥ reg(H0

m(M)).

Remark 8.1. With the new terminology, the Theorem states that M is
d-regular if and only if d ≥ reg(M). In fact, we know that M is d-regular if
and only if {

H i
m(M)d−i+1 = 0 i > 0

d ≥ reg(H0
m(M))

On the other hand, by definition, one has d ≥ reg(H0
m(M)) if and only if

H0
m(M)e = 0 for every e > d. So, d ≥ max{e | H i

m(M)e 6= 0}+i for every i ≥
0 if and only ifH i

m(M)d−i+1 = 0 for every i > 0 andH0
m(M)d+1 = 0, and this

66
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holds if and only if M is d-regular. This remark will help us understanding
the importance of such a characterization. In fact, the theorem allows us to
define regularity as

reg(M) = min{d |M is d-regular}
and this is a much simpler definition to work with, being completely de-
termined by local cohomology. However, before we use this definition it is
required to check that it bears no ambiguity. In other terms, we need to
show that d-regularity does not really involve the definition of Castelnuovo-
Mumford regularity itself; this is achieved proving that regularity for local
cohomology modules can be obtained in a “sufficiently trivial way”. This will
follow by the Artin property of these modules, which we will see involved in
the next section.

Recall that, for every x ∈ S, one defines
(0 :M x) := {m ∈M | xm = 0}

as a S-submodule in M ; it becomes trivial when x is a regular element for
M . More generally, if (0 :M x) has finite length, the element x is called
quasi-regular.

Lemma 8.1. Let M be a graded finitely generated S-module, and let
us suppose that the ground field k in S is infinite. Then, there exists an
homogeneous polynomial f having degree d that is a quasi-regular element
for M .

Proof. The module (0 :M f) has finite length if and only if the anni-
hilator AnnS((0 :M f)) is not contained in any relevant prime ideal p ⊆ S
(see Theorem 1.3). This is the same to ask (0 :M f)p = 0 for every prime
ideal p 6= m, namely x is regular for Mp. To show this, it suffice to prove
that f is not contained in any associated prime, except m.

Every relevant prime p in S meets Sd in a proper subspace, otherwise
p ⊇ md and we should have m = p by maximality. Since the number of
associated primes for M is finite (for M is finitely generated), the element
f has the required property if it avoids a certain finite number of proper
subspaces. �

Proposition 8.1. Let M be a graded finitely generated S-module and
let x ∈ S be a linear homogeneous polynomial that is quasi-regular for M .
Therefore

(1) if M is weakly d-regular, M/xM is weakly d-regular too;
(2) if M is (weakly) d-regular, M is (weakly) (d+ 1)-regular too;
(3) M is d-regular if and only if M/xM and H0

m(M) are d-regular.
Proof. (1) Lemma 8.1 shows that a linear homogeneous polynomial

x sufficiently general forces (0 :M x) to have finite length. Then we set
M ′ = M/(0 :M x) and we consider the following exact sequence

0 −→ (0 :M x) −→M −→M ′ −→ 0
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Switching to the long sequence in local cohomology, one finds
· · · −→ H i

m((0 :M x)) −→ H i
m(M) −→ H i

m(M ′) −→ H i+1
m ((0 :M x)) −→ · · ·

But (0 :M x) has finite length, so by Corollary 6.2 its local cohomology
vanishes in degree i > 0; this shows that H i

m(M) ' H i
m(M ′) for every i > 0.

Let us now consider the following exact sequence

(8.1.1) 0 −→M ′(−1) x−→M −→M/xM −→ 0
where the first non-trivial arrow represents multiplication by x. Local co-
homology long exact sequence is thus made up by sequences of the form
(8.1.2)
· · · −→ H i

m(M)d−i+1 −→ H i
m(M/xM)d−i+1 −→ H i+1

m (M ′(−1)d+i−1 −→ · · ·
By definition, one has also

H i+1
m (M ′(−1))d+i−1 ' H i+1(M)d+i

Hence, if M is weakly d-regular, in exact sequence (8.1.2) the first module
vanishes for i > 0, and the third vanishes for i > 0 by above isomorphism; it
follows then H i

m(M/xM)d−i+1 = 0 for every i > 0, and this means M/xM
is weakly d-regular.

(2) Let us assume M is weakly d-regular and let us prove that M is
weakly (d + 1)-regular by induction over dimSM . If dimSM = 0, then M
has finite length by Theorem 1.3, hence H i

m(M) = 0 for every i > 0; is this
case, M is weakly p-regular for every p and there is nothing to be proved.
Now let us assume that dimSM > 0. Since (0 :M x) has finite length, it
follows that Hilbert’s polynomial of M/xM can be obtained subtracting 1
by the Hilbert’s polynomial of M ; on the other hand, by Krull’s principal
ideal theorem, one finds that dimS(M/xM) = dimSM − 1. The previous
point shows that M/xM is already weakly d-regular; now, by inductive
hypothesis, we know also that it is weakly (d+1)-regular. Finally, the exact
sequence (8.1.1) induces the long sequence in local cohomology

· · · −→ H i
m(M ′(−1))(d+1)−i+1 −→ H i

m(M)(d+1)−i+1 −→ H i
m(M/xM)(d+1)−i+1 −→ · · ·

For every i ≥ 1 we know that H i
m(M ′(−1)) = H i

m(M); the first term thus
vanishes, since M is weakly d-regular, while the third one vanishes because
M/xM is weakly (d + 1)-regular. It follows that H i

m(M)(d+1)−i+1 = 0 and
M is weakly (d+ 1)-regular.

Moreover, if M is d-regular too, therefore by above arguments M is
weakly (d+ 1)-regular. But one has also

d+ 1 > d ≥ regH0
m(M)

hence M is (d+ 1)-regular too.
(3) Firstly, let us assume that M is d-regular; therefore d ≥ regH0

m(M).
From this inequality, it follows that H0

m(M)p = 0 for every p > d, that is
H0

m(M) is d-regular. It remains to show that M/xM is d-regular. By point
(1) we already know that M/xM is weakly d-regular, so it suffices to prove



8.1. REGULARITY AND LOCAL COHOMOLOGY FOR MODULES. 69

that H0
m(M/xM)p = 0 for every p > d. Using again the exact sequence

(8.1.1), one studies the long cohomology sequence

· · · −→ H0
m(M)e −→ H0

m(M/xM)e −→ H1
m(M ′(−1))e −→ · · ·

But, assuming e > d, the leftmost term vanishes by hypothesis, while
H1

m(M ′(−1))e = H1
m(M)e−1. Since point (2) claims M is weakly e-regular

for every e ≥ d, the rightmost term vanishes too. Hence,M/xM is d-regular.
Conversely, let us assume that M/xM is d-regular and H0

m(M)p = 0
for every p > d. In order to prove that M is d-regular, it suffices to prove
that H i

m(M)d−i+1 = 0 for every i > 0. Again, using (8.1.1) we obtain the
sequence

· · · −→ H i−1
m (M/xM)p+1 −→ H i

m(M ′)p
fp−→ H i

m(M)p+1 −→ · · ·

where we used H i
m(M ′(−1))p+1 = H i

m(M ′)p. Since M/xM is d-regular by
hypothesis, point (2) shows that it is p-regular for every p ≥ d too, hence the
first term vanishes for every p ≥ d−i+1, forcing the arrow fp to be injective.
Recalling that H i

m(M ′) ' H i
m(M), we obtain a sequence of monomorphisms

H i
m(M)d−i+1 −→ H i

m(M)d−i+2 −→ · · ·

induced by multiplication by x on H i
m(M). But by Lemma 6.2, every ele-

ments inH i
m(M) is annihilated by some power of x, hence the composition of

these maps vanishes definitively; by injectivity, it follows H i
m(M)d−i+1 = 0

for every i > 0. This finishes the proof. �

Now we are able to produce a proof of the characterization theorem.

Proof. (of Theorem 8.1) We need to prove that d ≥ reg(M) if and only
ifM is d-regular, as we noted in Remark 8.1, linking the various statements.

We start proving that (1) ⇒ (2), by induction on projective dimension
dim(proj)(M) of M . Let dim(proj)(M) = 0: indeed in this case one has

M =
⊕
j

S(−aj)

namely, M is a graded free S-module, and the thesis follows readily: by
definition, reg(M) = max{aj | j ≥ 0} (since M has trivial free resolution).
Moreover, M is d-regular if and only if d ≥ aj for every j, by Proposition
6.4. This suffices to prove that d ≥ reg(M) in this case.

Let us suppose, now, that dim(proj)(M) > 0 and let us assume M has
the following minimal free resolution

· · · −→ L1
ϕ1−→ L0 −→M −→ 0

Call M ′ = im(ϕ1) the first syzygy module for M ; by definition of regularity,
it is clear that reg(M ′) ≤ reg(M) + 1: in fact, if

Li =
⊕
j

S(−ai,j)βi,j
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therefore reg(M) = max{ai,j − i | i, j ≥ 0} while
reg(M ′) = max{ai,j − i | i ≥ 1, j ≥ 0} ≤ 1 + reg(M)

Inducting on projective dimension, we claim thus that M ′ is (d+ 1)-regular;
in fact, being dim(proj)(M ′) < dim(proj)(M), one notes that if e ≥ reg(M ′),
then M ′ is e-regular. But by above inequality

d ≥ reg(M) ≥ reg(M ′)− 1
so M ′ is (e + 1)-regular for every e ≥ d. Now let us consider the following
exact sequence

0 −→M ′ −→ L0 −→M −→ 0
and let us switch to degree e ≥ d part of the long local cohomology sequence:
we have

· · · −→ H i
m(L0)e−i+1 −→ H i

m(M)e−i+1 −→ H i+1
m (M ′)e−i+1 −→ 0

It is already known that L0 is e-regular by first step, so the first term vanishes
for every i ≥ 0; moreover, also H i

m(M ′)(e+1)−i+1 = 0 holds for every i ≥ 0,
hence 0 = H i+1

m (M ′)(e+1)−(i+1)+1 = H i+1
m (M ′)e−i+1. This proves that M

is e-regular for every e ≥ d, then d ≥ max{e | H i
m(M)e = 0} + i for every

i ≥ 0, and this is what we need.
The (2) ⇒ (3) is straightforward: if (2) holds, one has in particular

d ≥ max{e | H0
m(M)e 6= 0} and H i

m(M)d−i+1 = 0 for every i > 0.
It remains to show that (3)⇒ (1). Let us assume (3) holds, namely M

is d-regular. Then it suffices to prove that d ≥ reg(M). Since field extension
commute with local cohomology, we can assume without loss of generality
that k is an infinite field. Let us assume also that M has the following
minimal free resolution:

· · · −→ L1
ϕ1−→ L0 −→M −→ 0

We prove first that every generator for L0 has degree at most d (that is to
say, a0,j ≤ d for every j). This is the same to prove that M is generated by
elements of degree at most d; hence, we proceed by induction on dimS(M).
If dimS(M) = 0, then the thesis is trivial: M has finite length, so by d-
regularity if follows that Me = H0

m(M)e = 0 for every e > d.
Now let us assume that dimS(M) > 0 and set M ′ = M/H0

m(M); by
short exact sequence

0 −→ H0
m(M) −→M −→M ′ −→ 0

we note that it is enough to show that generators for H0
m(M) and M ′ have

degree at most d. By d-regularity thus we can claim that H0
m(M)e = 0 for

every e > d. By Lemma 8.1 we can choose a linear homogeneous polynomial
x such that it is not a zero-divisor inM ′ and by Proposition 8.1 it follows that
M ′/xM ′ is d-regular. Since dimS(M ′/xM ′) < dimS(M ′) holds, inductive
hypothesis shows that M ′/xM ′ is generated by elements having degree at
most d; the same follows readily also for M ′/mM ′. By Nakayama’s Lemma
in the graded case, the generators for M ′ have degree at most d too.



8.2. ARTINIAN MODULES CASE. 71

Now return to the main proof. If M is free, the above arguments con-
clude the proof. Otherwise, we proceed by induction on projective dimension
dim(proj)(M). Let be M ′ = im(ϕ1) the first syzygy module for M and let us
consider the same exact sequence as before:

0 −→M ′ −→ L0 −→M −→ 0

Switching to long local cohomology sequence, one shows that M ′ is (d+ 1)-
regular. Since dimS(M ′) < dimS(M), we can apply inductive hypothesis
and it follows that reg(M ′) ≤ d + 1. This means, indeed, that the part of
the minimal free resolution for M beginning with L1 satisfies the conditions
under which, if completed, we have reg(M) ≤ d. �

We are now ready to carry out some results that will help us study-
ing regularity; they are all achieved as consequences of the characterization
theorem. The first one provides a different formula for regularity.

Corollary 8.1. Let M be a graded finitely generated S-module and let
x ∈M be a quasi-regular element. Therefore

reg(M) = max{reg(H0
m(M)), reg(M/xM)}

Proof. We know that reg(M) ≤ d if and only if M is d-regular, and
this happens if and only if H0

m(M) and M/xM are d-regular; indeed, this
holds if and only if d ≥ reg(H0

m(M)) and reg(M/xM). �

8.2. Artinian modules case.

This case is particularly simple to treat, so it deserves a deeper expla-
nation.

Corollary 8.2. If M is a graded finitely generated S-module having
finite length, therefore we have reg(M) = max{d |Md 6= 0}.

Proof. It is known that, in these hypotheses,H0
m(M) = M andH i

m(M) =
0 holds for every i > 0; by Theorem 8.1, reg(M) ≤ d if and only if
M is d-regular, that is H0

m(M)e = 0 for every e > d. It follows that
reg(M) = max{d |Md 6= 0}. �

Corollary above suggests a new definition for regularity, at least in some
nice cases. In fact, let M be a graded artinian S-module; we set

reg(M) := max{d |Md 6= 0}

Note that this definition does not contrast with the former one; in fact a
finitely generated artinian module over a noetherian ring has finite length
(by Theorem 1.3) and thus satisfies formula by Corollary 8.2. Moreover, by
local duality Theorem 6.2, local cohomology module for a graded finitely
generated S-moduleM act all as graded artinian S-modules of finite length;
this makes the following theorems sensible.
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Corollary 8.3. Let M be a graded finitely generated S-module. There-
fore

reg(M) = max{reg TorSi (M,k)− i | i ≥ 0} =
= max{regH i

m(M) + i | i ≥ 0}

Proof. The formula reg(M) = max{regH i
m(M) + i | i ≥ 0} follows im-

mediately by point (2) of Theorem 8.1. In order to prove the other formula,
let F : · · · −→ Fi −→ Fi−1 −→ · · · be the minimal free resolution for M .
Then modules ToriS(M,k) = Fi ⊗S k = Fi/mFi are finitely generated vec-
tor k-spaces, in particular finite length modules. By Nakayama’s Lemma,
Betti numbers βi,j , namely the degrees of generators for Fi, are also the de-
grees of non-zero generators for ToriS(M,k). Therefore, reg ToriS(M,k)−i =
max{βi,j | i, j ≥ 0} − i ≤ reg(M). Taking maximum on both parts, thesis
follows. �

Looking more deeply at Corollary 8.2 we deduce a remarkable property:
regularity for finite length modules does not depend on their S-modules
structure, that is to say it does not depend on the ring S but only on its
grading. We can state this property in a precise way, in the following result.
We will write regS(M) to mean regularity of M as a S-module.

Corollary 8.4. Let M be a graded finitely generated S-module and let
ϕ : S′ −→ S be a graded rings morphism, where S′, S are generated in degree
1. If M acts as a finitely generated S′-module too (by means of ϕ), therefore
regS(M) = regS′(M).

Proof. A very well known results in commutative algebra claims that
M is a finitely generated S′-module if and only if S if a finitely generated S′-
module (by means of scalar restriction), and this happens if and only if the
irrelevant ideal in S is nilpotent module the ideal generated by the irrelevant
ideal in S′ and the annihilator of M . But by change of ring property, local
cohomology of M does not change upon this operation; it follows then by
characterization theorem that neither regularity changes. �

8.3. Regularity for arithmetically Cohen-Macaulay varieties.

Let M be a graded finitely generated S-module. Assume that x ∈ S is a
regular element for M , that is to say x is not a zero-divisor in M . Therefore
depth(M) ≥ 1, and by means of Proposition 6.2 one has H0

m(M) = 0. Using
part (3) of Proposition 8.1 and the characterization Theorem 8.1, one proves
then that reg(M) = reg(M/xM).

Furthermore, dealing with Cohen-Macaulay modules, a similar property
holds for any regular sequence.

Proposition 8.2. Let M be a graded finitely generated S-module sat-
isfying the Cohen-Macaulay property. Let moreover y1, . . . , yt be a maximal
regular M -sequence of linear polynomials. Therefore
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reg(M) = max{d | (M/(y1, . . . , yt)M)d 6= 0}

Proof. If dimS(M) = 0 the result is obvious: M has finite length and
there are no regular M -sequences (since M has depth 0) hence by Corollary
8.2 the formula is obtained. Now suppose that dimS(M) > 0 and proceed by
induction. Let y1, . . . , yt be a regularM -sequence and, up to rearranging the
terms, let us assume that y1 is M -regular, namely it is not a zero-divisor.
Hence by previous arguments, reg(M) = reg(M/y1M) holds and, being
dimS(M/y1M) < dimS(M), we can use induction. Calling M1 = M/y1M ,
inductive hypothesis forces

reg(M) = reg(M1) = max{d | (M1/(y2, . . . , yt)M1)d 6= 0}
= max{d | (M/(y1, . . . , yt)M)d 6= 0}

�

If X ⊆ Pr
k is a projective variety, we define its regularity as the regularity

of its defining ideal IX ; sometimes is useful to remember that regularity of
IX can be calculated by means of regularity of SX := S/IX . Now we will
show that, if X is arithmetically Cohen-Macaulay (namely, SX is a Cohen-
Macaulay module) there exists an upper bound for its regularity that can
be derived with geometric techniques.

Corollary 8.5. Let X ⊆ Pr
k be an arithmetically Cohen-Macauly va-

riety not contained in a hyperplane. Therefore

reg(SX) ≤ deg(X)− codim(X)

Proof. Let t = dim(X), such that t + 1 is the dimension of SX as
S-module. Up to field extensions, it is possible (without changing local co-
homology modules) to suppose k is an infinite algebraically closed field.
Hence one can assume there exists a regular SX -sequence of linear ho-
mogeneous polynomials y0, . . . , yt. Let S′X := SX/(y0, . . . , yt) and note
that dimk(SX)1 = r + 1 since X is not contained in a hyperplane; hence
dimk(S′X)1 = r − t = codim(X).

If we call d = reg(SX), by Proposition 8.2 we have that

HilbS′X (d) 6= 0

and this implies HilbS′X (e) 6= 0 for every e ∈ {0, . . . , d}. On the other
hand, deg(X) can be thought as the number of points X meets a general t-
codimensional linear subspace. Let us consider the following exact sequence

0 −→ SX/(y1, . . . , yt)(−1) y0−→ SX/(y1, . . . , yt) −→ S′X −→ 0

and compute by induction

HilbSX/(y1,...,yt)(e) =
e∑

p=0
HilbS′X (p)
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Therefore, for very large e,

deg(X) =
e∑

p=0
HilbS′X (p) ≥ 1 + codim(X) + (reg(X)− 1)

since there are at least reg(X) − 1 non-zero terms of HilbS′X (e) 6= 0 for
e ∈ {2, . . . , e}. �

Unfortunately, the above proof won’t work loosening the arithmetic hy-
pothesis over X, neither this results has deep consequences: in fact, arith-
metic Cohen-Macaulay property is very much stronger that the equivalent
“geometric” property (that is to say, every local ring over a closed point is
Cohen-Macaulay), and this is satisfied by a large class of algebraic curves
(for example, every smooth curve is a Cohen-Macaulay variety, but not
necessarily arithmetically). As a matter of fact, one can determine ideals
I ⊆ S such that regularity of S/I is arbitrarily bigger than the degrees of
generators for I.

As we will explain in the next chapter, in the case X is a smooth irre-
ducible curve over an algebraically closed field, the upper bound still holds.

8.4. Regularity for coherent sheaves.

In this section we summarize the main topics about original regularity
theory, that Mumford developed exclusively for coherent algebraic sheaves;
further, we discuss how it’s possible to link this “geometric” notion of reg-
ularity with the preceding arguments.

Let Pr = Pr
k be a (schematic) projective space over a field k and let F

be an algebraic coherent sheaf over Pr. For every integer m ∈ Z, we say
that F is m-regular if

H i(Pr,F (m− i)) = 0
for every i > 0. Recall that F (p) := F ⊗OPr OPr (p) for every integer p.
In general, the definition of m-regularity can be extended to any variety
endowed with a very ample line bundle; in particular, it can be applied in
the case of a projective k-variety X.

By Serre’s vanishing theorem, every coherent sheaf is m-regular for some
m: we know, in fact, there exists an integer n0 such that H i(X,F (n)) = 0
for every i > 0, n ≥ n0 and such that H i(X,F (n)) = 0 for every i > dimX
and n ∈ Z. Therefore it is enough to put m = n0 + dimX to obtain
H i(X,F (m− i)) = 0 for every i > 0.

In order to simplify notations, let us reduce to the case X = Pr; if
an arbitrary projective variety is involved, similar results can be obtained
by pulling back the corresponding over Pr. We are now able to give the
following definition.

Definition 8.2. Let F be an algebraic coherent sheaf over Pr. The
minimum, if it exists, amongst integers m such that F is m-regular is called
Castelnuovo-Mumford regularity of F and it’s written reg(F ).
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The following result shows the connection between the above definition of
regularity and the regularity for graded modules introduced in the previous
sections.

Proposition 8.3. Let M be a graded finitely generated S-module and
let M̃ be the associated coherent sheaf over Pr

k. Therefore, the module M is
d-regular if and only if:

(1) M̃ is a d-regular sheaf;
(2) H0

m(M)e = 0 for every e > d;
(3) the canonical mapping Md −→ H0(M̃(d)) is a surjection.

Proof. We know that H i
m(M)e = H i−1(Pr

k, M̃(e)) for every i ≥ 2.
ThenM is d-regular if and only if it satisfies conditions (1), (2) andH1

m(M)e =
0 holds for every e ≥ d. But using the exact sequence (6.2.4) in degree e
part we have

0 −→ H0
m(M)e −→Me −→ H0(Pr

k, M̃(e)) −→ H1
m(M)e −→ 0

and this implies that H0(M)e = 0 for every e > d if and only if H1(M)e = 0
for every e ≥ d. �

Corollary 8.6. If M is a graded finitely generated S-module, therefore
reg(M) ≥ reg(M̃); in particular, equality holds if and only if

M =
⊕
n∈Z

H0(X, M̃(n))

Proof. The second statement follows straightforwardly by the exact
sequence 6.2.4 and by the first one. To prove reg(M) ≥ reg(M̃), it is enough
to prove that M̃ is reg(M)-regular, that is

Hp(Pr
k, M̃(reg(M)− p)) = 0

for every p > 0. Now, for every p ≥ 2 we have

Hp−1(Pr
k, M̃(reg(M)− p+ 1)) ' Hp

m(M)reg(M)−p+1

by isomorphism 6.2.3. But using Theorem 8.1 we know also that

Hp(M)reg(M)−p+1 = 0

for every p ≥ 1. Hence it follows that Hp(Pr
k, M̃(reg(M)− p)) = 0 for every

p ≥ 1, that is the thesis. �

The main results proven by Mumford in its early papers was attributed
to Castelnuovo. We state it here in the Mumford’s modern terminology.

Theorem 8.2. Let F be a coherent sheaf over Pr
k and let us assume F

is m-regular. Therefore
(1) F is n-regular for every n ≥ m;
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(2) there exists a surjection
H0(Pr

k,F (p− 1))⊗H0(Pr
k,OPr

k
(1)) −→ H0(Pr

k,F (p))
for every p > m.

Proof. The results follows from characterization 8.1, together with the
above considerations about sheaf regularity. A more direct proof can be
found in [22]. �



CHAPTER 9

Regularity of projective curves.

The whole chapter is devoted to the detailed proof of a Theorem by
Gruson, Lazarsfeld and Peskine, treated in the paper [17]; its purpose is
to establish an upper bound for the regularity of a projective curve in a
similar way we did in Corollary 8.5, assuming the curve is irreducible over
an algebraically closed field.

We will discuss the proof restricting to smooth curves only. The gener-
alization can be carried over with some technical tools and remains available
in the original paper.

9.1. Preamble.

The result we are going to prove is the following.

Theorem 9.1. (Gruson, Lazarsfeld, Peskine) Let k be an alge-
braically closed field and let X ⊆ Pr

k be a projective smooth k-curve that is
irreducible and non degenerate. Therefore reg(X) ≤ deg(X)−codim(X)+1.

Let us recall that, with our terminology, by reg(X) we mean the regu-
larity of the homogeneous saturated ideal of X, namely

IX :=
⊕
n≥0

H0(Pr
k,IX(n))

being IX the ideal sheaf of X. In such hypotheses, reg(X) = reg(IX) holds
by Corollary 8.6.

9.2. Fitting ideals.

The first reduction we will make to prove the result is about the ideal
of X, or equivalently its ideal sheaf.

Let X ⊆ Pr := Pr
k be an irreducible, non degenerate, smooth curve

and let L be a line bundle over X. Let us consider the following finitely
generated S-module

F :=
⊕
n≥0

H0(X,L (n))

It has a minimal free presentation, that is the beginning of the minimal free
resolution for F :

L1
ψ−→ L0 −→ F −→ 0

Call t the rank of L0 and call I(ψ) the ideal generated by order t minors
taken out of some matrix representation of ψ. Therefore I(ψ) is by definition

77
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the 0-th Fitting ideal for ψ and does not depend on the presentation of F .
Since Fitting ideal commute with localization, we can sheafify and, setting
I (ψ) := Ĩ(ψ), we obtain the sheaf of Fitting ideals for L . More precisely,
if we sheafify the minimal free presentation of F we obtain

s⊕
i=1

OPr (−hi)
ψ̃−→

t⊕
j=1

OPr (−kj) −→ L −→ 0

and the sheaf of Fitting ideals for ψ̃ is exactly I (ψ).
Lemma 9.1. With the above notations, reg(I (ψ)) ≥ reg(IX).
Proof. Let us note that support of L is contained in X, hence the

ideal sheaf I (ψ) has support in X and is forced to be a sub-sheaf of IX .
Now, one has the following exact sequence

0 −→ I (ψ) −→ IX −→ IX/I (ψ) −→ 0
that, up to twist, induces the following long exact sequence

· · · −→ H i(Pr,IX/I (ψ)(m− i)) −→ H i+1(Pr,I (ψ)(m− i)) −→
−→ H i+1(Pr,IX(m− i)) −→ · · ·

Indeed, the support of IX/I (ψ) is 0-dimensional, soH i(Pr,IX/I (ψ)(m−
i)) = 0 for every i > 0 and for every m ∈ Z, proving thus H i(Pr,I (ψ)(m−
i)) ' H i(Pr,IX(m− i)) for every m and for every i > 1. For i = 1 one has

· · · −→ H0(Pr,IX/I (ψ)(m)) −→ H1(Pr,I (ψ)(m− 1)) −→
−→ H1(Pr,IX(m− 1)) −→ 0

hence the obstruction H0(Pr,IX/I (ψ)(m)) 6= 0 suffices to to claim that
reg(IX) ≤ reg(I (ψ)). �

Lemma 9.1, allows us to study regularity of the sheaf I (ψ), generated
by maximal minors obtained by a minimal free presentation associated to
an invertible sheaf L in the above way.

9.3. Linear presentations.

Let A be a graded ring and let M be a graded A-module. Recall that
M is said to be generated in degree j if, for every i, one has Mi+j = AiMj .

Definition 9.1. Let M be a graded finitely generated S-module. We
say that M has a free linear presentation if the minimal free resolution

· · · −→ L1
ϕ1−→ L0 −→M −→ 0

has the property that Li is generated in degree i, for i = 0, 1.
Equivalently, one says M has a free linear presentation if L0 = Sb0

and L1 = S(−1)b1 , namely if and only if M is generated in degree zero
and the arrow ϕ1 can be represented with a matrix of linear homogeneous
polynomials.
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Remark 9.1. If M has a free linear presentation, of course Md = 0
holds for d < 0. Conversely, if M is a graded finitely generated S-module
such that Md = 0 for every d < 0 and the minimal free presentation for
M is L1 −→ L0 −→ M −→ 0, therefore L0 is generated in degree at least
zero. By Nakayama’s Lemma, the kernel of the arrow L0 −→ F is contained
in (x0, . . . , xr)L0, so it is generated in degree at least 1; by minimality of
presentation, even L1 must be generated in degree at least 1. Hence, a S-
module M generated in degree at least 0 admits a free linear presentation
if and only if Li does not need generators having degree greater than i, for
i = 0, 1.

In the following, we will make use of the notion of tautological rank r
sub-bundle over Pr := Pr

k; it is defined as the sub-bundle M of Or+1
Pr that

makes Euler’s sequence to be exact:

0 −→M −→ Or+1
Pr −→ OPr (1) −→ 0

The second map is induced by the homogeneous coordinated that generate
globally OPr (1), the sheaf of linear form. We already established that M
can be identified with the cotangent sheaf Ω1

Pr (1).
Let us introduce some machinery involving exterior powers. Let

K : 0 −→ Kr+1 −→ · · · −→ K0

be the minimal free resolution of the residue field k = S/(x0, . . . , xr) thought
as S-module. By self-duality properties of Koszul complexes, K can be
identified, as a non-graded complex, with the Koszul dual complex for
(x0, . . . , xr) ∈ (Sr+1)∨. To take into account grading we shall set

Ki :=
∧ i(Sr+1(−1)) =

(∧ i
Sr+1

)
(−i)

in order to obtain the following complex

K : · · · ϕ3−→
(∧ 2

Sr+1
)
(−2) ϕ2−→ Sr+1(−1) ϕ1−→ S

where ϕ1 is again represented by the row matrix (x0 . . . xr). Let be Mi =
(kerϕi)(i) the kernel, twisted in a way such that it can be seen as a sub-
module in

∧i Sr+1. Note that the tautological sub-bundle M over Pr is the
sheafification of M1: this can be proved sheafifying the sequence

0 −→M1(−1) −→ Sr+1(−1) −→ S −→ 0

and comparing with Euler’s sequence. In fact, sheafification is given by

0 −→ M̃1(−1) −→ Or+1
Pr (−1) −→ OPr −→ 0

so we must have M̃1 'M . This fact has a relevant generalization.

Lemma 9.2. With above notations, the sheaf
∧i M is the sheafification

of Mi.



9.3. LINEAR PRESENTATIONS. 80

Proof. Since sheafification of Koszul complex is exact, everyMi sheafi-
fies in a vector bundle, hence it suffices to show that (M̃i)∨ ' (

∧i M )∨. Now,
duality functor is left exact, so Mi is dual to Ni := (cokerϕ∨i )(−i), which
sheafifies in a vector bundle; in particular, in a reflexive sheaf1 so

(M̃i)∨ ' (Ñi)∨∨ ' Ñi

Therefore it is enough to show that

Ni '
∧ i

N1

Now, Koszul complex K is dual to Koszul complex for the element x =
(x0, . . . , xr) ∈ (Sr+1)∨(1) and the arrow ϕ∨i is induced by exterior product
by x, so that grading is preserved. Since we have

N1 = (Sr+1)∨(1)
Sx

one deduces that∧ i
N1 = (

∧ i
Sr+1)∨(1)

x ∧ (
∧ i−1Sr+1)∨(1)

= cokerϕ∨i

and this suffices to prove the thesis. �

We need one more technical result.

Lemma 9.3. Let F be a coherent sheaf over Pr and

F =
⊕
n≥0

H0(Pr,F (n))

Let M be the rank r tautological sub-bundle over Prand fix an integer i. If
d ≥ i+ 1 there exists an exact sequence of the form

0 −→ TorSi (F, k)d −→ H1
(
Pr,

∧ i+1
M ⊗F (d− i− 1)

)
α−→

α−→ H1
(
Pr,

∧ i+1
Or+1

Pr ⊗F (d− i− 1)
)
−→ · · ·

where α is induced by immersion M ↪→ Or+1
Pr .

Proof. TorSi (F, k) is the i-th homology group of the extended Koszul
complex K ⊗S F ; in fact K is a projective resolution for k. Concretely,
TorSi (F, k)d is computed as the i-th homology group of the sequence

· · · −→
(∧ i+1

Sr+1(−i− 1)⊗ F
)
d
−→

(∧ i
Sr+1(−i)⊗ F

)
d
−→

−→
(∧ i−1

Sr+1(−i+ 1)⊗ F
)
d
−→ · · ·

1A coherent sheaf F is reflexive if Hom (Hom (F , OX)) ' F . Locally free sheaves
are all reflexive sheaves.
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Now, for every t the module
∧t Sr+1(−t) ⊗ F is direct sum of copies of

F (−t) = F ⊗S(−t), hence recalling that Fd−t = H0(Pr,F (d− t)) for every
d ≥ t, we find(∧ t

Sr+1(−t)⊗ F
)
d

=
(∧ t

Sr+1 ⊗ F
)
d−t

= H0
(
Pr,

∧ t
Or+1

Pr ⊗F (d− t)
)

By this identity, we can calculate torsion functors using sheaf cohomology.
Since the sheafification of K is locally split, it remains exact if tensored with
any sheaf, for example F (d). Recalling Lemma 9.2, the following short exact
sequence is obtained

0 −→
∧ t

M⊗F (d−t) −→
∧ t

Or+1
Pr ⊗F (d−t) −→

∧ t−1
M⊗F (d−t+1) −→ 0

and it has the property to be compatible with Koszul complex. Switching
to cohomology and integrating the sequence obtained with Koszul complex
cohomology, we find that TorSi (F, k)d is the cokernel of the diagonal map,
so thesis follows. �

We are now ready to prove the main result of the section.

Theorem 9.2. Let F be a coherent sheaf over Pr, for r ≥ 2, and M
the rank r tautological sub-bundle over Pr. If F has support in dimension
at most 1 and if

H1
(
Pr,

∧2
M ⊗F

)
= 0

holds, therefore the graded S-module

F :=
⊕
n≥0

H0(Pr,F (n))

has a free linear presentation.

Proof. Let L : · · · −→ L1
ϕ1−→ L0 −→ F −→ 0 be the minimal free

resolution of F . By definition of F , it is clear that L0 has no generators
with negative degree. With a similar argument to Remark 9.1, one can
easily show thus that L1 does not have generators of degree less than 1.
Since F has support of dimension at most 1, the support of

∧2 M ⊗F has
dimension at most 1 too, so Hp

(
Pr,

∧2 M ⊗F (1− p)
)

= 0 for every p ≥ 2.
Since hypothesis guarantee that identity holds for p = 1 too, it follows that∧2 M ⊗F is a 1-regular sheaf. Therefore it also is s-regular for every s ≥ 2,
and in particular this means that

H1
(
Pr,

∧ 2
M ⊗F (t)

)
= 0

for every t ≥ 0. Therefore, by Lemma 9.3 we can state that TorS1 (F, k)d = 0
for every d ≥ 2 and TorSi (F, k) can be computed looking at the homology
of complex L ⊗ k; by minimality of L, the boundary operators in L ⊗ k
are zero maps, hence TorSi (F, k) = Li ⊗ k for every i. Because of that, L1
can not have generators of degree greater than 2. Hence, using the previous
arguments, generators for L1 have necessarily degree 1.
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Now, F is a torsion S-module, so it has no free summands; this implies
that, for every summand L′0 of L0, the composite arrow L1 −→ L0 −→ L′0
is not zero, otherwise L′0 should be the cokernel for L1 −→ L0, namely F
up to isomorphism. Hence, being L1 generated in degree 1, it follows that
L0 can not have generators of degree greater than 1. Using the above argu-
ments, L0’s generators are necessarily of zero degree; since F is generated
in degree zero, by Remark 9.1, we are able to prove that F has a free linear
presentation. �

9.4. Evaluation of regularity.

Let us firstly recall that, given a complex E of algebraic sheaves over a
ringed spaceX, we can define its homology H•(E) in the category CC(Sh(X))
of (co)chain complexes with values in the category of sheaves over X. Such
homology, thus, is by all means a functor CC(Sh(X)) −→ Sh(X) and every
H i(E) is a sheaf, so it makes sense to compute its cohomologyH•(X,Hi(E)).

Lemma 9.4. Let E : 0 −→ Et
ϕt−→ Et−1 −→ . . . −→ E0 be a complex of

algebraic sheaves over Pr
k and fix an integer d. Let us assume that, for every

i > 0, homology Hi(E) is supported in dimension at most 1. Therefore, if
reg(Es)− s ≤ d for every s ≥ 0 , one has

reg(cokerϕ1) ≤ d, reg(imϕ1) ≤ d+ 1
Proof. Let us proceed by induction on t. The case t = 0 is trivial so

let us assume t > 0 and let us consider the following exact sequence, for
every integers d, i

0 −→ imϕ1(d− i) −→ E0(d− i) −→ cokerϕ1(d− i) −→ 0
from which we can determine the long cohomology sequence:

· · · −→ H i(Pr, E0(d− i)) −→ H i(Pr, cokerϕ1(d− i)) −→
−→ H i+1(Pr, imϕ1(d− i)) −→ · · ·

Thus, if we have reg(imϕ1) ≤ d+ 1 it follows that
H i+1(Pr, imϕ1(d− i)) = H i+1(Pr, imϕ1(d+ 1− i− 1)) = 0

for every i > 0; moreover, since by hypothesis reg(E0) ≤ d, one has also
H i(Pr, E0(d− i)) = 0

for every i > 0. Combining the two identities, we obtain
H i(Pr, cokerϕ1(d− i)) = 0

for every i < 0, so that reg(cokerϕ1) ≤ d. This implies that the inequality
for reg(imϕ1) implies the one for reg(cokerϕ1).

Since H1(E) has support in dimension at most 1, we can claim that
H i(Pr, H1(E)(p)) = 0 for every i > 1 and for every p ∈ Z. So, considering
the short exact sequence

0 −→ H1(E) −→ cokerϕ2 −→ imϕ1 −→ 0
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and its associated long cohomology sequence, we can determine reg(imϕ1) ≤
reg(cokerϕ2). But by inductive hypothesis we find that reg(cokerϕ2) ≤
d+ 1, and the thesis is proved. �

The above result is useful to derive an appropriate estimate for the
regularity of an ideal sheaf.

Proposition 9.1. Let us assume that ϕ : F1 −→ F0 is a vector bundles
morphism over Pr := Pr

k, and that

F0 =
m⊕
i=1

OPr
k
, F1 =

n⊕
i=1

OPr
k
(−1)

If the ideal sheaf Im(ϕ) generated by order m minors taken out of ϕ defines
a closed subscheme in Pr

k with dimension at most 1, therefore
reg(Im(ϕ)) ≤ m

Proof. Let us consider the Eagon-Northcott complex EN(ϕ) := (Ep)p≥0
relatively to the morphism ϕ: the zeroth term is isomorphic to OPr while
for p > 0 the general term has the form

Ep =
(⊙ p−1

F0
)∨
⊗
∧m+p−1

F1

Because both symmetric algebra and exterior algebra are free over free ob-
jects, we have that ⊙ p−1

O m
Pr ' O

(m+p−2
p−1 )

Pr

and∧m+p−1
OPr (−1)n '

(∧m+p−1
On

Pr

)
(−m− p+ 1) '

' OPr (−m− p+ 1)(
n

m+p−1)

That is to say, the p-th term of the complex EN(ϕ) is direct sum of copies
of OPr (−m− p+ 1), which has regularity m+ p− 1. Hence, by Lemma 9.4
with d = m− 1, one finds that

reg(coker ∂1) = reg(Im(ϕ)) ≤ m− 1 < m

�

The next result unites the progress made until now. Let us call hj(F ) :=
dimkH

j(X,F ).

Theorem 9.3. Let X ⊆ Pr := Pr
k be an irreducible smooth curve, with

r ≥ 3, and let L be a line bundle over X; let also M be the rank r tauto-
logical sub-bundle over Pr. If

H1
(
X,
∧2

M ⊗L
)

= 0

therefore reg(IX) ≤ h0(L ).
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Proof. Using the stated hypotheses, by Theorem 9.2 the S-module

F =
⊕
n≥0

H0(X,L (n))

has a free presentation, say S(−1)n −→ Sm −→ F −→ 0, proving that L is
the cokernel of a locally linear morphism ϕ : On

Pr (−1) −→ Om
Pr . Hence, by

Proposition 9.1 it follows that reg(Im(ϕ)) ≤ h0(L ). Finally, Lemma 9.1
shows readily that reg(IX) ≤ reg(Im(ϕ)). �

9.5. Filtering the tautological sub-bundle.

Thanks to the reduction made in Theorem 9.3, the main result is proved
exhibiting an invertible sheaf L that satisfies the conditions required by
the Theorem and such that h0(L ) is accurately controlled. To obtain the
vanishing of cohomology of

∧2 M⊗L we have to use some specific properties
of vector bundles over smooth curves.

Lemma 9.5. Let N be a vector bundle over a smooth curve C, over an
algebraically closed field k. If N is contained in the direct sum of copies of
OC and if H0(C,N ) = 0, there exists a filtration

N = N0 ⊃ N1 ⊃ . . . ⊃ Nr+1 = 0
whose factorials Ni/Ni+1 = Li are line bundles of strictly negative degree.

Proof. It is enough, and necessary, to determine a morphism N −→
L1, where L1 is a line bundle of strictly negative degree. In this condition,
the kernel N ′ satisfies immediately the hypothesis and a filtration can be
hence produced by induction.

Now, we know there exists an immersion N −→ On
C for some n. Let

us prove that one can choose n as the rank r of N . Since N is a locally
free sheaf, it suffices to show this locally; that is to say, given an integral
domain A, if M is an A-module contained in some direct sum An, then n
can be chosen exactly the rank of M . In fact, calling K the quotient field
of A, we know M ⊗A K is a vector K-space having exactly dimension r,
the rank of M . Now, let {b1, . . . , br} be a basis for M ⊗A K over K: since
M ⊗A K ' Kr, we can write also bi = (xi,1/yi,1, . . . , xi,r/yi,r). Hence the
morphismKr −→ Ar set by bi 7→ (xi,1, . . . , xi,r) for every i is an isomorphism
and gives an immersion M ⊆ Ar, as we wished.

Now, let us consider the following diagram

0 // N
f // Or

C

π

��
OC

��
0
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where π is the canonical projection. The arrow f fails to be an isomorphism,
since H0(C,Or

C) 6= 0; moreover N is not contained in ker(π) = Or−1
C , or it

would contradict the fact that rk(N ) = r. So the sheaf J := im(π ◦ f)
is a non-zero algebraic coherent subsheaf in OC , and it makes the following
diagram to commute:

0 // N
f //

��

Or
C

π

��
0 //J //

��

OC

��
0 0

Necessarily, J is an ideal sheaf of rank at most 1. It remains to show that
J is locally free. Since C is a smooth curve, for every p ∈ C the local
ring OC,p is a regular local ring of dimension 1. By Auslander-Buchsbaum
formula, it follows that

dim(proj)(Jp) + depth(Jp) = dim(OC,p) = 1

Since Jp ⊆ OC,p, every OC,p-regular element must be Jp-regular too, hence
Jp admits a regular element in mp. This proves depth(Jp) = 1 so Jp is
projective. But a projective module over a local ring is compelled to be a
free module, hence Jp is free for every p ∈ C. By Proposition 2.1, this is
enough to show that J is locally free of rank 1. �

Lemma 9.6. If N is a vector bundle over a variety X, such that there
exists a filtration

N = N0 ⊃ N1 ⊃ . . . ⊃ Nr+1 = 0

whose factorials are line bundles Li, therefore the bundle
∧2 N has a similar

filtration, and its factorials are isomorphic to the line bundles Li ⊗Lj for
1 ≤ i < j ≤ r.

Proof. Let us proceed by induction on the rank r of N . If r = 1,
therefore

∧2 N = 0 so there is nothing to prove. Let r > 1 and let us
assume N has a filtration like in hypothesis. Therefore, by short exact
sequence

0 −→ Nr −→ N −→ N /Nr −→ 0
one can find the following exact sequence with exterior powers, obtained
using 3.10:

0 −→ (N /Nr)⊗Nr −→
∧ 2

N −→
∧ 2

N /Nr −→ 0

Bundles (Ni/Nr)⊗Nr make a filtration of (N /Nr)⊗Nr with factorials
Ni/Nr ⊗Nr

Ni+1/Nr ⊗Nr
' Li ⊗Nr
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Similarly, since bundles Ni/Nr make a filtration for N /Nr with factorials
Ni/Nr

Ni+1/Nr
' Ni/Ni+1 ' Li

the bundle
∧2 N /Nr has a filtration with factorials Li ⊗Lj , for 1 ≤ i <

j ≤ r − 1. �

9.6. Summary of the proof.

We are finally able to glue together all the various parts in order to
arrange a complete proof for Theorem 9.1.

Proof. Call d = degX and let M be the rank r tautological sub-bundle
over Pr; we know that M is contained in the direct sum of r + 1 copies of
OX so fulfills the hypotheses required to apply Lemma 9.6; therefore, we
can claim that

∧2 M has a finite filtration, whose factorial are isomorphic
to vector bundles Li ⊗ Lj , for i, j ∈ {1, . . . , r}. Moreover, every Lj has
strictly negative degree.

To obtain the vanishing of H1(X,∧2 M ⊗ L
)
, one can note that it

suffices to obtain the vanishing of every H1(X,Li ⊗ Lj ⊗ L ). But by
Theorem 4.4, this is achieved choosing a general line bundle L of degree e
and such that

g − 1 ≤ deg(Li ⊗Lj ⊗L ) = deg Li + deg Lj + e

Now, it is known that ∧ r
M ' OPr (−1)

so restricting to X one has that∑
i

deg(Li) = deg(M ) = deg(OX(−1)) = −d

Hence, for every distinct i, j we have
deg Li + deg Lj = −d−

∑
p 6=i,j

deg Lp ≥ −d+ r − 2

since deg Lj ≤ −1 for every j = 1, . . . , r. Therefore, it is enough to choose
e = g − 1 + d− r + 2 = g + d− (r − 1)

We have proved that, if L is a general line bundle of degree g+ d− (r− 1),
therefore Theorem 9.3 holds, that is to say reg(IX) ≤ h0(L ). By Riemann-
Roch’s Theorem, one has

h0(L ) = h0(KX −L ) + deg(L ) + 1− g =
= h1(L ) + (g − 1 + d− r + 2) + 1− g =
= h1(L ) + d− r + 2

Recalling Corollary 4.1 we find that deg(X) ≥ r = 1 + codim(X), hence we
may choose L such that deg(L ) ≥ g+ 1, so that Theorem 4.4 holds; hence
L is a non special bundle and we can claim h0(L ) = d − (r − 1) + 1 =
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deg(X)−codim(X)+1. This, together with the above considerations, brings
directly to the thesis. �

9.7. Examples.

We may try to show the results of Theorem 9.1 in a more geometric
context.

Let X ⊆ Pr := Pr
k be a smooth, irreducible and non degenerate curve

and let s = reg(X), d = deg(X). By definition, this means that the ideal
sheaf IX of X is s-regular, namely

H i(Pr,IX(s− i)) = 0
for every i ≥ 1, and that H i(Pr,IX(t − i0)) 6= 0 for some t < s, i0 ≥ 1.
Therefore, let us consider the following exact sequence:

0 −→ IX(s− i) −→ OPr (s− i) −→ OX(s− i) −→ 0
Taking cohomology, the resulting long exact sequence shows that IX is
s-regular if and only if

H1(Pr,IX(p)) = 0, p ≥ s− 1(9.7.1)
H1(Pr,OX(s− 2)) = 0

Hence, by these considerations, Theorem 9.1 states that
H1(Pr,IX(s+ 1)) = 0, H1(Pr,OX(s)) = 0

for every s ≥ d− r. By Theorem 8.2, it is not necessary to verify the state-
ment for big s, since the regularity property holds definitively; essentially,
Theorem shows that
(9.7.2) H1(Pr,IX(d− r + 1)) = 0, H1(Pr,OX(d− r)) = 0
Let us investigate some remarkable concrete cases in which this can be
achieved; the depth of the results varies together with dimension r of the
underlying projective space.

For the ground case, let us consider a smooth curve X over the plane P2;
calling d = deg(X), the theorem claims simply that IX is d-regular (the
other condition is trivial). Let us prove the theorem actually holds: first
condition in (9.7.1) is trivial, since the ideal sheaf of X is OP2(−d). The
second relation is the most interesting: by adjunction formula 3.5 we know
that ωX ' ωP2(d) ' OP2(d− 3), hence

H1(Pr,OX(d− 2)) = 0
agreeing perfectly with Theorem 9.1. Let us remark that, even if the result
is not very significant, the Theorem still makes a very neat prediction.

The first non trivial case shows for r = 3. Theorem claims that
H1(P3,IX(d− 2)) = 0, H1(P3,OX(d− 3)) = 0

These conditions are not easily double-checked in the general case; let us
verify them in some significant additional hypotheses on X. Recall that
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a projective curve X ⊆ Pr is said complete intersection is its ideal IX is
generated by exactly r−1 elements. In particular, there exists hypersurfaces
Fd1 , . . . , Fdr−1 ⊆ Pr such that X = Fd1 ∩ . . .∩ Fdr−1 . If, moreover, one calls
d = deg(X), it is clear that d = deg(Fd1) · · · deg(Fdr−1) = d1 · · · dr−1.

Thus, ifX ⊆ P3 is complete intersection of hypersurfaces Fd1 , Fd2 having
degrees d1, d2 respectively, therefore by Hilbert Burch’s Theorem, the ideal
IX has a free resolution of the following form:

0 −→ OP3(−d1 − d2) −→ OP3(−d1)⊕ OP3(−d2) ψ−→ IX −→ 0

where the arrow ψ is induced by multiplication by matrix (Fd1 , Fd2), where
Fdi

= V (Fi). Taking cohomology over P3, this implies that

H1(P3,IX(s)) = 0

for every s, and in particular for s = d−2. To show the other condition, let us
note that ωX ' ωP3(d1+d2) ' OP3(d1+d2−4); thereforeH1(P3,OX(p)) = 0
if p ≥ d1 + d2 − 3. But if d1, d2 ≥ 1 it is easy to obtain the inequality over
integers

d = d1d2 ≥ d1 + d2 − 1
even more so H1(P3,OX(p)) = 0 holds if p ≥ d− 3.

An other case in which it is not difficult to check the theorem is the case
of a rational normal curve X ⊆ P3 of degree d = 3. We know that X is
birationally equivalent to P1 and that it could be identified with the closed
immersion P1 ↪→ P3 defined by complete linear system |OP1(3)|. Moreover,
one has the identifications

(9.7.3) Hp(P3,OX(s)) ' Hp(P1,OP1(3s))

for every p ≥ 0 and for every s. In particular

H1(P3,OX(d− 3)) = H1(P3,OX) ' H1(P1,OP1) = 0

holds. To show the other condition, let us consider the exact sequence

0 −→ IX(1) −→ OP3(1) −→ OX(1) −→ 0

Taking cohomology over P3, the long exact sequence shows that

H0(P3,OP3(1)) −→ H0(P3,OX(1)) −→ H1(P3,IX(1)) −→ 0

Recalling isomorphisms (9.7.3) and that H0(P3,OP3(1)) ' H0(P1,OP1(3))
holds by definition of curve, one proves thatH1(P3,IX(d−2)) = H1(P3,IX(1)) =
0.

The last interesting case we treat is a rational quartic over P3, namely
a degree 4 curve X that is birationally equivalent to P1. In this case, the
theorem claims that

H1(P3,IX(2)) = 0, H1(P3,OX(1)) = 0
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One can identify X with the linear system |V | associated to a 4-dimensional
vector subspace V ⊆ Γ(P1,OP1(4)). In particular, this leads immediately
that

H1(P3,OX(1)) ' H1(P1,OP1(4)) = 0
To obtain the other condition, let us note that the following short exact
sequence

0 −→ IX(2) −→ OP3(2) −→ OX(2) −→ 0
induces the following long exact sequence in cohomology:

0 −→ H0(P3,IX(2)) −→ H0(P3,OP3(2)) f−→
f−→ H0(P3,OX(2)) −→ H1(P3,IX(2)) −→ 0

So it is enough to show that the arrow f is a surjection; since

h0(P3,OP3(2)) =
(

5
2

)
= 10, h0(P3,OX(2)) = h0(P1,OP1(8)) = 9

it suffices to show that h0(P3,IX(2)) = 1. Let us assume by contradiction
that h0(P3,IX(2)) ≥ 2; in this case, X is contained in the intersection
Q1 ∩Q2 of two smooth quadrics. Therefore, using adjunction formula

ωQj = ωP3 ⊗ OP3(2)⊗ OQj = OQj (−2),
ωQ1∩Q2 = ωQj ⊗ OQj (2)⊗ OX = OX

that is g(Q1 ∩ Q2) = h0(X,OX) = 1. Comparing Euler-Poincaré’s char-
acteristics, it should hold that χ(OX(p)) ≤ χ(OQ1∩Q2(p)), but the above
arguments show instead that

χ(OX(p)) = 4p+ 1 > 4p = χ(OQ1∩Q2(p))
and this is a contradiction.
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