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Abstract

In this thesis, an introduction to Skolem’s p-adic method for solving Diophantine equa-
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f(x, y) = 1, where f ∈ Z[x, y] is an irreducible form of degree 3 or 4 such that the ring
of integers of the associated number field has one fundamental unit. In the first chapter,
an introduction to algebraic number theory is presented, which includes Minkovski’s
theorem and Dirichlet’s unit theorem. An introduction to p-adic numbers is given in the
second chapter, ending with the proof of the p-adic Weierstrass preparation theorem.
The theory of the first two chapters is then used to apply Skolem’s method in Chapter
3.
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Introduction

One of the greatest recent achievements of a single mathematician may well have been
Andrew Wiles’ proof of Fermat’s Last Theorem. In 1995 Wiles published his final paper,
after having devoted seven years of his life to the problem. The theorem states that for
any integer n > 2, there are no non-trivial integer solutions (x, y, z) to the equation

xn + yn = zn.

Of course, for n = 2 solving the Fermat equation is nothing else than finding Pythagorean
triples, of which we know there exist infinitely many. How should one prove such a fact?
In the case of finding infinitely many Pythagorean triples, it suffices to notice that
(3, 4, 5) is a solution, which implies that (3n, 4n, 5n) is also a solution for every integer
n ≥ 1. Wiles, however, had much more difficulty proving the non-existence of non-trivial
solutions for n > 2. In general, if n is a natural number, A ∈ Z and f ∈ Z[x1, . . . , xn],
then an equation of the kind

f(x1, . . . , xn) = A

for which integer solutions (x1, . . . , xn) are searched, is called a Diophantine equation.
In particular, Fermat’s equation is Diophantine for every natural number n. The word
Diophantine is derived from the Hellenistic mathematician Diophantus, who studied
such equations in the third century AD. It was inside the margin of Diophantus’ book
Arithmetica that Pierre de Fermat scribbled his famous words

“If an integer n is greater than 2, then xn+yn = zn has no solutions in non-
zero integers x, y, and z. I have a truly marvelous proof of this proposition
which this margin is too narrow to contain.”

Mathematicians have tried to find Fermat’s “marvelous proof” ever since, without
any success. Though Wiles did eventually prove the theorem in 1995, his proof uses
techniques that could not have been known by Fermat in 1621. Therefore, most math-
ematicians agree that Fermat had likely made a mistake in his proof. Avoiding the
details, one could say that Wiles used a modern number theoretic approach to his class
of Diophantine equations. Ever since Diophantus, and probably long before that as
well, mathematicians have been occupied by Diophantine equations. In the past, this
amounted to solving one such equation at a time. However, in the 20th century, new
techniques allowed mathematicians to successfully solve entire classes of Diophantine
equations.

In this thesis one such technique, called Skolem’s p-adic method, is investigated. This
is done in Chapter 3, while the required prerequisite knowledge is studied in Chapters
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1 and 2. In Chapter 1, an introduction to algebraic number theory is presented, while
Chapter 2 is devoted to p-adic numbers. Algebraic number theory can be viewed as a
foundation for most modern methods for solving Diophantine equations. Also, many
recent methods, including Wiles’ proof of Fermat’s Last Theorem, use p-adic numbers.

In Chapter 1, the prerequisites and introductory theory are presented in the first two
sections. The latter sections focus on proving the unique decomposition of ideals of the
ring of integers into prime ideals, Minkowski’s theorem and Dirichlet’s unit theorem.

Furthermore, in Chapter 2 the p-adic numbers are defined and an algebraically closed
complete extension is. The main result of this chapter is the p-adic Weierstrass prepa-
ration theorem, of which Strassmann’s theorem is found to be an immediate corollary.
Together with Dirichlet’s unit theorem, one could say that Strassmann’s theorem is at
the heart of Skolem’s method described in Chapter 3.

Motivations

Parts of my own motivations for choosing the subjects of my thesis have been very well
described by the German mathematician Richard Dedekind:

“The greatest and most fruitful progress in mathematics and other sciences
is through the creation and introduction of new concepts; those to which we
are impelled by the frequent recurrence of compound phenomena which are
only understood with great difficulty in the older view.”

In other words, I wanted to learn many new concepts and ideas. Therefore, I chose
not to follow the shortest path towards solving Diophantine equations. Instead, I first
dug deep into the algebraic and p-adic number theory, without continuously keeping
their applications to Diophantine equations in mind. Section 2.3 is an example of a
piece of theory that is not strictly necessary prerequisite knowledge for the methods
applied in Chapter 3, while in my opinion the information contributes significantly to
the understanding of the p-adic numbers.

The idea of studying Skolem’s p-adic method for solving Diophantine equations was
proposed by my supervisor, who focuses on Diophantine equations in his own research as
well. What fascinated me about Diophantine equations is that they are so accessible that
I would be able to explain their meaning to, say, my grandmother, while mathematicians
are often only able to say something about them using very advanced mathematics.
To me it seemed a challenge to be able to understand such a sophisticated technique.
Moreover, I had already enjoyed studying the first three chapters of Algebraic Number
Theory and Fermat’s Last Theorem by Stewart and Tall [16] in the honours extension of
the course Algebra 2 and was therefore eager to learn more algebraic number theory as
well. Furthermore, the theory of p-adic numbers was exactly one of those new concepts
and ideas that Dedekind spoke of and it fascinated me that such an extraordinary idea
had had such far-reaching implications.
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1 Number theory

In this chapter we will explore the number theory that is necessary for studying Diophan-
tine equations in Chapter 3. Also, some examples of direct applications of the theory
to suitable Diophantine equations are given in this chapter. Number theory is one of
the oldest fields of mathematics and studies, in essence, the integers. The language in
which the integers and its generalizations are studied is that of algebra. Therefore,the
reader should have prerequisite knowledge of ring and field theory, group theory and
some Galois theory. The theory as described in [4], [5] and [6] should be sufficient for
understanding this chapter.

1.1 Prerequisite knowledge

In this section, the important theory for understanding this chapter that the reader will
be least likely to have come across is explained. Most of these facts are related to free
abelian groups. We will frequently encounter such groups throughout this chapter.

Definition 1.1. If G is an abelian group such that there exist g1, . . . , gn ∈ G that
generate G and are linearly independent over Z, then G is called free abelian of rank n.

The rank of a free abelian group is, similar to the dimension of a vector space in
linear algebra, well-defined and any g ∈ G can be expressed in a unique way as g =
a1g1 + . . . + angn, where ai ∈ Z for each i. A Z- linearly independent set generating G
is also called a basis.

Lemma 1.2. If G is free abelian of rank n with basis {x1, . . . , xn} and A = (aij) is an
n× n Z-matrix, then the elements yi =

∑
j aijxj form a basis for G if and only if A is

unimodular, i.e. detA = ±1.

Proof. Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . Suppose that the yi form a basis.
Then there exist matrices B and C such that x = By and y = Cx, so BC = In and the
result follows.

If A is unimodular, we can write ±A−1 = det(A) · A−1 = Ã, the adjoint matrix of A
which has integer coefficients. Hence A−1 has integer entries and we are done.

Theorem 1.3. If H is a subgroup of a free abelian group G of rank n, then H is free
abelian of rank s ≤ n and there exists a basis {v1, . . . , vn} for G and positive integers
α1, . . . , αs ∈ Z>0 such that {α1v1, . . . αsvs} is a basis for H.

A proof by induction on n can be found in [16].
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Theorem 1.4. If G is free abelian of rank r with a subgroup H, then G/H is finite
if and only if the rank of H equals r. Moreover, if this is the case and we have Z-
bases {x1, . . . , xr} for G and {y1, . . . , yr} for H such that yi =

∑
j aijxj, then |G/H| =

| det(aij)|.

Proof. If the rank of H is s then we can use Theorem 1.3 to find a basis {v1, . . . , vn}
of G and α1, . . . , αs ∈ Z such that the ui = αivi (1 ≤ i ≤ s) form a basis for H. Then
G/H is the direct product of s cyclic groups of orders αi and r− s infinite cyclic groups
and we have r = s if and only if G/H is finite.

In that case, |G/H| = α1 · · ·αr. Define u = (u1, . . . , ur)
T , v = (v1, . . . , vr)

T and the
vectors x and y likewise. By writing the different elements into the different bases, we
find matrices A,B,C,D such that y = Ax, u = Bx, v = Cu and y = Dv. By Lemma
1.2, B and D are unimodular. Also, C is diagonal with cii = αi and A = BCD by
consecutive ‘writing out on the basis’, hence

detA = detB detC detD = ±1 · α1 · · ·αr · ±1 = ±|G/H|,

which completes the proof.

This theorem finishes the theory we need to understand free abelian groups. We now
focus our attention to symmetric polynomials.

Definition 1.5. Let n be an integer and R a ring. The k-th symmetric polynomial

σk :=
∑

i1<···<ik

xi1 · · ·xik ∈ R[x1, . . . , xn].

Symmetric polynomials arise naturally when computing the coefficients of a polyno-
mial in terms of its roots. If f = a0 + a1x+ . . .+ an−1x

n−1 + xn = (x− α1) · · · (x− αn),
then an−i = (−1)iσi(α1, . . . , αn).

Theorem 1.6 (Fundamental theorem of symmetric polynomials). Every symmetric
polynomial in R[x1, . . . , xn] can be written as a polynomial over R in the elementary sym-
metric polynomials. As a corollary, if K ⊂ L are fields and f ∈ K[x] has roots α1, . . . αm,
then for any symmetric polynomial S ∈ K[x1, . . . , xm] we have S[α1, . . . , αm] ∈ K.

Very important for studying finite field extensions of Q is the following theorem.

Theorem 1.7 (Theorem of the primitive element). Let F be a field of characteristic 0
and L ⊃ F a finite extension. Then there exists a θ ∈ L such that L = F (θ).

The element θ is called a primitive element for the field extension. Proofs of Theorems
1.6 and 1.7 can be found in [6].
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1.2 Algebraic numbers

In this section, we study the basics of algebraic number theory. We start by introducing
the language and notation.

Definition 1.8. (i) A finite extension field of Q is called a number field.

(ii) If α is a root of a polynomial f ∈ Q[x], then α is called an algebraic number.

(iii) If α is a root of a monic polynomial f ∈ Z[x], then α is called an algebraic integer.
The sets of algebraic numbers and algebraic integers will be denoted as A and B

respectively.

Lemma 1.9. The set A of algebraic numbers is a subfield of C.

Proof. Remember that α is algebraic if and only if [Q(α) : Q] <∞. So if α, β ∈ A, then
α± β, α · β ∈ Q(α, β) and α is clearly also algebraic over Q(β), so

[Q(α, β) : Q] = [Q(α, β) : Q(β)][Q(β) : Q] <∞.

Lastly, note that Q(α) = Q(1/α).

Also note that the primitive element of a finite extension is always algebraic, since the
extension is finite. Recall the following fact from Galois theory.

Lemma 1.10. If K = Q(θ) is a number field with [Q(θ) : Q] = n, then there exist
precisely n monomorphisms σi : Q(θ) −→ C and the elements σi(θ) are the roots of the
minimum polynomial of θ over Q.

From now on, Let K = Q(θ) be a number field of degree n with monomorphisms
σ1, . . . , σn into C.

Definition 1.11. With the same notation as in the previous lemma, the field polynomial
of α ∈ Q(θ) is defined as fα = (x− σ1(α)) · · · (x− σn(α)).

Lemma 1.12. The field polynomial fα ∈ Q[x].

Proof. We can write α = p(θ) for some p ∈ Q[x]. Then

fα =
n∏
i=1

(x− p(σi(θ)))

and by expanding this product we see that the coefficients of fα are symmetric polyno-
mials in the σi(θ). By Theorem 1.6, they are now in Q.

Lemma 1.13. The field polynomial fα is a power of the minimum polynomial pα of α
over Q.
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Proof. Since pα(σ(α)) = σ(p(α)) = 0, we see that the Galois conjugates σi(α) are the
zeros of pα. Also, since α is a zero of fα, pα divides fα. Let m be the degree of pα. If
fα = pkα · h for some non-constant h ∈ C[x], then some σi(α) is a root of h. But then all
conjugates σi(α) are roots of h and pα divides h. We conclude that h = 1.

Corollary 1.14. An element α ∈ Q(θ) is in Q if and only if all of its conjugates are
equal and Q(α) = Q(θ) if and only if all of its conjugates are distinct.

Theorem 1.15. The following statements are equivalent:

(a) α is an algebraic integer,

(b) α is an eigenvalue of a matrix with integer coefficients and

(c) the additive group generated by 1, α, α2, . . . is finitely generated.

Proof. Clearly, if α is an eigenvalue of a matrix with integer coefficients, then it is a
zero of the characteristic polynomial, which has integer coefficients. For the converse,
note that α is a zero of f = xn + an−1x

n−1 + . . . + a1x + a0 ∈ Z[x] if and only if
αn = −an−1αn−1 − an−2αn−2 − . . .− a1α− a0. Hence we see that

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 · · · 0 1
−an −an−1 · · · · · · −a1




1
α
α2

...
αn−1

 = α


1
α
α2

...
αn−1

 ,

where the matrix has integer coefficients. Note that in this way we can prove an analo-
gous statement for algebraic numbers.

Clearly, if α is an algebraic integer, the additive group G =< 1, α, α2, . . . > is finitely
generated. Now suppose G is finitely generated and let v1, . . . , vn be the generators.
Then we can write αvi = bi1v1 + . . . + binvn for integers bij ∈ Z. With B = (bij) and
v = (v1, . . . , vn)T , we then see that αv = Bv, so α is an eigenvalue of a matrix with
integer coefficients.

Lemma 1.16. The set B of algebraic integers is a ring.

Proof. Using the previous lemma, we see that α, β ∈ B means that α is an eigenvalue
of some matrix M with eigenvector v and β is an eigenvalue of some matrix N with
eigenvector w, both with integer coefficients. But then α + β is an eigenvalue of M ⊗
I + I ⊗N and α · β is an eigenvalue of M ⊗N , both with eigenvector v⊗w. Also, both
matrices clearly have integer coefficients, so by the previous lemma, we are done.

The following lemma describes a very useful property of algebraic integers.

Lemma 1.17. If α is a complex number satisfying a monic polynomial equation with
coefficients that are algebraic integers, then α is an algebraic integer as well.
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Proof. Suppose that αn + γn−1α
n−1 + . . .+ γ0 = 0, with γi ∈ B for each i. Then each γi

lies in a finitely generated group generated by elements that we call vi1, . . . , vini
. Thus

the group G =< 1, α, α2, . . . > lies within the group generated by

{v0j0 , v1j1α, . . . , vn−1,jn−1α
n−1 | 1 ≤ ji ≤ ni, 0 ≤ i ≤ n− 1, },

which is a finite set.

Definition 1.18. If K is a number field, we define the ring of integers of K to be
OK = K ∩ B.

This is indeed a ring since it is the intersection of two rings. Also, we see that
Z ⊂ OK ⊂ K. The ring of integers of a number field K can be seen as a generalization
of the integers Z ⊂ Q, as will become clear in Theorem 1.21.

Lemma 1.19. If α ∈ K, there exists a k ∈ Z such that kα ∈ OK.

Proof. Since α satisfies some monic polynomial equation over Q, we can smartly choose
a k ∈ Z such that cα satisfies a monic polynomial over Z.

From the previous lemma together with the theorem of the primitive element, we may
conclude that we can write any number field K as K = Q(θ) for some algebraic integer
θ. Therefore, from now on we write K = Q(θ), where θ ∈ B.

The following useful property follows immediately from Gauss’ lemma.

Lemma 1.20. An algebraic number is an algebraic integer if and only if its minimum
polynomial over Q has coefficients in Z.

Theorem 1.21. B ∩Q = Z

Proof. If α ∈ B ∩Q, its minimum polynomial is x− α, which must be in Z[x].

We now define the discriminant, which will turn out to be a very useful invariant later
on.

Definition 1.22. The discriminant of a basis A = {α1, . . . , αn} of Q(θ) is defined as
∆(A) = (det σi(αj))

2.

Lemma 1.23. The discriminant of any basis for Q(θ) is rational and non-zero.

Proof. Suppose A = {α1, . . . , αn} and B = {β1, . . . , βn} are two bases. Then there
exists an invertible basis transformation matrix C = (cik) such that for each k βk =
c1ka1 + . . . + cnkan and hence σj(βk) = c1kσj(α1) + . . . + cnkσj(αn). We thus find that
for A = (σi(αj)) and B = (σi(βj)) we have B = CA, so in particular

∆(B) = (det(C))2∆(A),
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where det(C) is a rational number. Hence we can reduce the statement to proving that
the specific basis {1, θ, . . . , θn−1} has a rational discriminant. But a matrix of the form
(aji )ij has a known determinant, which is called the Vandermonde determinant. It equals∏

i<j

(αi − αj),

which can be seen by comparison of the roots, the degree and one coefficient. Then we
see that (det((σi(θ))

j))2 is a symmetric expression in the σi(θ) and hence rational by
Theorem 1.6. Any discriminant is non-zero since the σi(θ) are non-zero and the basis
transformation matrix is invertible.

Using our knowledge of algebraic integers, we can show more.

Lemma 1.24. Let A be a basis for K = Q(θ) consisting of algebraic integers. Then the
discriminant ∆(A) ∈ Z.

Proof. By Lemma 1.23, ∆(A) ∈ Q. But since A consists of algebraic integers, ∆(A) ∈ B
as well, so ∆(A) ∈ Z by Theorem 1.21.

We already saw that OK is an abelian group under addition. Hence we can define
an integral basis for OK as a basis for the free abelian group (OK ,+). Sometimes we
refer to an integral basis for OK as an integral basis for K. Despite the fact that this is
incorrect, no confusion should arise from this. The first question one might ask is: does
every number field have an integral basis? The answer is yes.

Theorem 1.25. Every number field K = Q(θ) has an integral basis consisting of n =
[K : Q] elements.

Proof. Firstly, from Lemma 1.19, we see that any integral basis is also a Q-basis for
K, i.e. a basis for K such that every element is expressible in the basis elements with
coefficients in Q. Hence they must consist of n elements. Surely we can find a basis for K
consisting of algebraic integers, for example {1, θ, . . . , θn−1}. The basis A = {α1, . . . , αn}
of algebraic integers that minimalizes |∆(A)| will be an integral basis. If not, then there
exists an α ∈ OK such that α = a1α1 + . . .+ anαn, but a1 ∈ Q \ Z (after renumbering).
However, if a1 = a+r with a ∈ Z and 0 < r < 1, then replacing α1 by β1 = α−aα1 gives
a new basis of algebraic integers with determinant r2∆(A), contradicting the minimality
of ∆.

Lemma 1.26. If X and Y are two integral bases for K, then ∆(X ) = ∆(Y).

Proof. By Lemma’s 1.25 and 1.2, we can write ∆(X ) = (detC)2∆(Y) for some Z-matrix
C = (cij) that is unimodular.

When X is an integral basis for K, we may now of speak of ∆ = ∆(X ) as the
discriminant of K. This shows the role of the discriminant as a useful invariant of a
number field.
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Definition 1.27. If K/F is a finite field extension of degree n and α ∈ K, we define the
norm NK/F (α) = σ1(α) · · ·σn(α) and the trace TK/F (α) = σ1(α) + . . . + σn(α), where
the σi are the distinct homomorphisms K → C that are the identity on F . If F = Q,
we just write NK/Q = N and TK/Q = T.

The following observations follow immediately from the definitions and will be useful
in Chapter 2.

Lemma 1.28. If K/F is a field extension of degree n and α ∈ K, then

(i) the norm NK/F is multiplicative and the trace TK/F is linear over F ;

(ii) NK/F (α) = (−1)na0, where a0 is the constant coefficient of the minimum polyno-
mial of α over F ;

(iii) NK/F (α) is the determinant of the matrix of multiplication by α and

(iv) if [K : F (α)] = k, then NF (α)/F (α)k = NK/F (α).

Lemma 1.29. If α ∈ OK, both the norm N(α) ∈ Z and the trace T(α) ∈ Z.

Proof. The field polynomial is a power of the minimum polynomial and the latter is in
Z[x] if and only if α ∈ OK . Hence the field polynomial is in Z[x] when α ∈ OK . But
N(α) is the constant coefficient of the field polynomial and T(α) is the coefficient of
xn−1.

Example 1.30. In order to get a feeling for the theory, let us study the quadratic
number fields. Let θ be an algebraic integer. If [Q(θ) : Q] = 2, then θ is a zero of
x2 + ax+ b for some a, b ∈ Z and hence

θ =
−a±

√
a2 − 4b2

2
.

If we divide out the squares of a2−4b2, we conclude that Q(θ) = Q(
√
d) for a squarefree

integer d. Also, for any squarefree d ∈ Z, [Q(
√
d) : Q] clearly equals 2.

We can also compute the set of algebraic integers of Q(
√
d). Since {1,

√
d} is a basis

for Q(θ) over Q, any element can be written as α = (a + b
√
d)/c for a, b, c ∈ Z and

c > 0 and a, b, c not all divisible by the same prime. We know that α ∈ OK if and only
if the coefficients of its minimum polynomial are in Z. If α ∈ Q, then we know that
α ∈ OK if and only if α ∈ Z. But if α /∈ Q, then we know its minimum polynomial is
(x − α)(x + α). If we carefully compute its coefficients in terms of a, b and c, we find
that

OK = Z[
√
d] if d 6≡ 1 (mod 4) and OK = Z[

1

2
+

1

2

√
d] if d ≡ 1 (mod 4).

14



1.3 Unique factorization

We already know three ways of generalizing prime numbers in Z: irreducible elements,
prime ideals and maximal ideals. Since Z is a principal ideal ring, we see that p is prime
if and only if p is irreducible if and only if (p) is prime if and only if (p) is maximal.
However, in other number fields such equivalences do not hold. So what is the best way
to generalize prime numbers in a number field?

The most important property we want prime numbers to have is that any number
can be uniquely factorized into primes and that is why we defined irreducible elements.
In Z[

√
−6], the elements 2, 3 and

√
−6 are all irreducible. However, 6 = 2 · 3 =

√
−6 ·√

−6, so unique factorization does not hold in general for irreducible elements. But
factorization need not even exist at all. If we consider the ring of algebraic integers B,
then α ∈ B implies

√
α ∈ B, so α =

√
α
√
α, which implies that B does not even have

irreducible elements. However, 2 ∈ B, but 1/2 /∈ B, so there do exist non-zero non-units.
In this section we will take a closer look at (unique) factorizations in order to find a

satisfactory way of generalizing prime numbers. The following example illustrates how
unique factorization in a number field can be used to solve Diophantine equations.

Example 1.31. Consider the Diophantine equation

x2 − 4y2 = 21.

We can write this as (x−2y)(x+2y) = 21 and 21 can be factorized only as 21 = 1 ·21 =
−1 · −21 = 3 · 7 = −3 · −7. By the uniqueness of factorization into prime numbers in Z,
we conclude that

(x−2y, x+2y) ∈ {(1, 21), (−1,−21), (21, 1), (−21,−1), (3, 7), (−3,−7), (7, 3), (−7,−3)}.

This yields eight solutions, of which all are integers:

(x, y) ∈ {(11, 5), (−11,−5), (11,−5), (−11, 5), (5, 1), (−5,−1), (5,−1), (−5, 1)}.

This example is, of course, very simple. But what if the equation was x2 + 3y2 = 21?
If we want to apply the same idea, we get (x −

√
−3y)(x +

√
−3y) = 21 and we need

to consider the number field Q(
√
−3). In order to apply arguments similar to those in

Example 1.31, we would like to have unique factorization in the ring of integers Z[
√
−3].

In this section, we assume that the reader is familiar with the basic notions regarding
(unique) factorization into irreducible elements, as described in chapter 6 of [5].

Lemma 1.32. For x, y ∈ OK, we have

(i) x is a unit if and only if N(x) = ±1,

(ii) if x is associate to y, then N(x) = ±N(y) and

(iii) if N(x) is a prime number, then x is irreducible.
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The following definition of a Noetherian ring will help us to prove that factorization
into irreducibles is possible in OK .

Definition 1.33. (i) A domain D is called noetherian is every ideal in D is finitely
generated. This generalizes the idea of principal ideal rings.

(ii) A domain D obeys the ascending chain condition if every chain I0 ⊂ I1 ⊂ I2 . . . of
ideals stops, i.e. there always exists an N such that In = IN for all n ≥ N .

(iii) A domain D satisfies the maximal condition if every non-empty set of ideals con-
tains a maximal element, i.e. an element which is not contained in any other
element.

Lemma 1.34. The three definitions (i), (ii) and (iii) are equivalent.

Proof. Suppose (i) holds and consider an ascending chain (In). Then ∪∞n=0In is a finitely
generated ideal and (b) follows.

Suppose that (ii) holds and consider a non-empty set S of ideals. If S does not have
a maximal element, we can pick I0 ⊂ I1 ⊂ I2 ⊂ . . ., giving a chain that does not stop,
which contradicts (iii).

Now suppose that (iii) holds and let I be an ideal and M the set of finitely generated
ideals contained in I. Since {0} ∈M , it is non-empty and thus it has a maximal element
J . If J 6= I, then for x ∈ I \ J , (J, x) is finitely generated and strictly larger than J , so
J = I.

Theorem 1.35. If K is a number field, then OK is noetherian.

Proof. We already saw that OK is free abelian of rank n = [K : Q]. Any ideal I ⊂ OK is
a subgroup, so by Theorem 1.3, I is free abelian of rank s ≤ n and hence I is generated
by s <∞ elements.

Theorem 1.36. In a noetherian domain D, factorization into irreducibles is possible.

Proof. Suppose there existed a non-zero element that could not be factorized into irre-
ducibles. By the previous lemma, we can use the maximal condition to find that there ex-
ists an x ∈ D such that (x) is the maximum of {(y) | y cannot be factorized into irreducibles}.
This x cannot be irreducible, so say x = yz for non-units y and z. Then (x) ⊂ (y), but
(x) 6= (y) since x and y are not associates. The same goes for z, so since x was maximal,
we can factorize y and z into irreducibles giving a factorization of x, a contradiction.

We conclude that factorization into irreducibles is at least possible in the integers of a
number field, so our hope of finding some generalization of the prime numbers remains
vivid. We now study the role that prime elements play in this story.

Definition 1.37. Let D be a domain. An element x 6= 0 is called prime when x | ab
implies x | a of x | b.
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Equivalently, we could say that p is prime whenever (p) is prime. Note that this
notion of a prime element is for D = Z indeed equivalent to the classical notion of a
prime number. Moreover, being prime is stronger than irreducibility.

Lemma 1.38. Any prime in a domain D is irreducible.

Proof. Suppose x, a, b ∈ D such that x = ab and x is prime. Then x | ab, so x | a or
x | b. Say wlog that x | a. We find that b is a unit, since x = xcb for some c ∈ D.

It is important to realize that this is a one-way street. In the example at the beginning
of this section, we saw that 2 and

√
−6 were irreducible in Z[

√
−6], the ring of integers

of Q[
√
−6]. But then 2 cannot divide

√
−6, while 2 | 6 and 6 =

√
−6
√
−6. This

difference between the definitions of a prime element and an irreducible element turns
out to characterize precisely when factorization into irreducibles is unique.

Theorem 1.39. If D is a domain in which factorization into irreducibles is possible,
then this factorization is unique if and only if all irreducible elements are prime.

Proof. Suppose factorization is unique and let a, b, p ∈ D with p irreducible such that
p | ab. If we write pc = ab and a = u · p1 · · · pn, b = v · q1 · · · qm and c = w · r1 · · · rk for
units u, v, w ∈ D and irreducible elements pi, qj, rl ∈ D for each i, j and l, then we have

w · r1 · · · rk · p = (uv) · p1 · · · pn · q1 · · · qm,

and by uniqueness, there either exists an i such that p is associate to pi or there exists
a j such that p is associate to qj. Hence either p | a or p | b.

Now suppose that all irreducible elements are prime. Write a = u · p1 · · · pn = v ·
q1 · · · qm with m ≤ n into irreducibles in two ways. We will use induction on n. For
n = 0, a is a unit and the factorization is unique. Suppose that any two factorizations
consisting of a maximum of ≤ n − 1 elements are equal. We see that pn | a and since
pn is prime, there exists a j, say wlog that j = m, such that pn | qm. Since both are
irreducible, we find that pn is associate to qm and since both must be non-zero, we get

u · p1 · · · pn−1 = w · q1 · · · qm−1

for some unit w. The induction hypothesis now gives that these factorizations are the
same, so we are done.

Remember that any Euclidian ring is a principal ideal ring and that any principal ideal
ring is a unique factorization domain (see [5]). Hence we conclude that in Euclidian and
in principal ideal rings, the definitions of prime and irreducible elements coincide.

If D is a domain with unique factorization into irreducibles, then many intuitive ideas
about division remain true. For example, the greatest common divisor and the smallest
common multiple of two elements are well-defined up to units. We can then say that
two elements a, b ∈ D are relatively prime or coprime whenever gcd(a, b) is a unit.

For negative square-free d, it is not too difficult to check when Q(
√
d) is Euclidian.
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Theorem 1.40. For negative square-free d, Q(
√
d) is Euclidian if and only if d ∈

{−1,−2,−3,−7,−11} and in each case, the Euclidian function is φ : Q(
√
d)∗ → R>0,

α 7→ |N(α)|.

A proof can be found in section 4.7 of [16]. This immediately enables us to solve a new
class of Diophantine equations. We can now use the same technique as in Example 1.31
to solve the Diophantine equations like x2 + dy2 = 21 for d ∈ {−1,−2,−3,−7,−11}.

Now that we have seen precisely whenever unique factorization into irreducibles is
possible, we will shift our focus towards ideals. Kummer and Dedekind developed the
theory of ideals and showed that factorization of ideals into prime ideals is always possible
and unique in rings of integers of number fields. In fact, factorization of ideals can be seen
as a generalization of the factorization of elements, since a factorization of a principal
ideal into principal prime ideals corresponds precisely to factorizing the element into
irreducibles, as we shall see later on.

As usual, we define the multiplication I · J of two ideals as the set of all finite sums∑
xiyj, where all xi ∈ I and all yj ∈ J . From now on, we will denote ideals by bold

letters. The following important observations follow immediately from the definitions.

Lemma 1.41. If a, b ∈ OK, u ∈ OK is a unit and p ⊂ OK is an ideal, then

(i) (a) · (b) = (ab),

(ii) (a) = (ua) and

(iii) p is prime if and only if a · b ⊂ p⇒ a ⊂ p or b ⊂ p for all ideals a and b.

Definition 1.42. A ring D is called a Dedekind ring whenever it is a Noetherian domain
satisfying the additional properties that

(i) if α ∈ Q(D) satisfies a monic polynomial equation over D, then α ∈ D and

(ii) every non-zero prime ideal of D is maximal.

Dedekind rings generalize the properties of rings of integers of number fields when it
comes to factorization of ideals, as we will see later on.

Lemma 1.43. The ring of integers OK of a number field K is a Dedekind ring.

Proof. We already know that OK is a Noetherian domain (Lemma 1.35) and property
(i) holds by Lemma 1.17, so we need to show (ii). To that end, suppose that p is a prime
ideal and that 0 6= α ∈ p. Since α is an algebraic integer, N = N(α) = σ1(α) · · ·σn(α) ∈
Z. Also, all the σi(α) ∈ OK and one of them equals α, so (N) ⊂ p. Hence we find that
O/p ⊂ O/(N) with the trivial injection x + p 7→ x + (N). We had N ∈ Z, so every
element in O/(N) has finite order and since O and thus O/(N) is finitely generated,
we must have that O/(N) is finite. We conclude that O/p is a finite domain and must
therefore be a field, making p maximal.
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Now note that the product between ideals is associative and commutative and that D
serves as a unit. However, inverses of ideals are not so easily defined. In fact, the set of
ideals is, in general, not a group. Therefore, we extend the set of ideals to a larger set,
that we will readily show to indeed be a group.

Definition 1.44. If D is a Dedekind ring with quotient field Q(D), then the set F of
fractional ideals of D consists of the sets a ⊂ Q(D) such that aD ⊂ a and there exists
a c ∈ D such that ca ⊂ O.

We notice that if a is a fractional ideal and ca ⊂ D, then ca ⊂ D is an ideal in D.
Hence, a is a fractional ideal if and only if there exists a c ∈ D and an ideal b ⊂ O such
that a = c−1b. Also, every ideal is a fractional ideal and we have the same associative
multiplication on F . An example of a fractional ideal in Q is 1

2
Z, which we will soon

show to be the inverse 2Z = (2).

Definition 1.45. If a ⊂ D is an ideal, then we define a−1 = {x ∈ Q(D) | xa ⊂ D}.

We will show in Theorem 1.49 that a−1 indeed serves as the inverse of a. From the
definition, we see that Da−1 ⊂ a−1 and any c ∈ a gives ca−1 ⊂ D, so a−1 ∈ F . Also,
we notice that aa−1 ⊂ D and that for any ideal b we have b ⊂ a implies a−1 ⊂ b−1.
Before we are able to prove theorem 1.49, we need some additional lemma’s.

Lemma 1.46. For each non-zero ideal a ⊂ D, there exist prime ideals p1, . . . ,pr such
that p1 · · ·pr ⊂ a.

Proof. Suppose not. By the noetherianity of D, we can choose a maximal ideal a such
that those prime ideals do not exist. In particular, a is not prime, so we can find ideals
b and c such that bc ⊂ a, but b 6⊂ a and c 6⊂ a. If we define b′ = a + b and c′ = a + c,
then we find that b′c′ ⊂ a and a ( b′, a ( c′. Now we can use the maximality of a to
find products of prime ideals in b′ and in c′. The product of all these prime ideals must
then be in a, a contradiction.

Lemma 1.47. If a ⊂ D is a proper ideal, then D ( a−1.

Proof. We will show that p−1 6= D for any maximal ideal p. This is sufficient since there
exists a maximal ideal p such that a ⊂ p, which means p−1 ⊂ a−1. Now take 0 6= x ∈ p
and let r be smallest such that there exist prime ideals pi with p1 · · ·pr ⊂ (r) ⊂ p.
Since p is prime, we have pi ⊂ p for some i, say wlog that p1 ⊂ p. By maximality of p1,
we have p1 = p. Also, the minimality of r implies that we can find b ∈ p2 · · ·pr \ (a).
It follows that bp ⊂ (a) and hence ba−1 ∈ p−1. However, b /∈ (a) implies ba−1 /∈ D, so
we are done.

Lemma 1.48. If a ⊂ D is a non-zero ideal and S ⊂ K a set such that aS ⊂ a, then
S ⊂ D.
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Proof. Suppose that s ∈ S. We can write a = (a1, . . . , an) since D is noetherian. Since
as ⊂ a, we can express ais in terms of the aj as

ais =
n∑
j=1

bijaj ⇐⇒ bi1a1 + . . .+ bi,i−1ai−1 + (bii − s)ai + bi,i+1ai+1 + . . .+ binan = 0.

The last set of equations can be viewed as Ca = 0, where C = (cij) is a matrix and
a = (a1, . . . , an)T a vector. Thus B has a zero eigenvalue and hence detB = 0. This
gives a monic equation in s with coefficients in D. By Definition 1.42 (i), we find s ∈ D,
as desired.

Theorem 1.49. The set F of fractional ideals of D with the usual multiplication is an
abelian group.

Proof. We only need to show that every fractional ideal has an inverse, since the other
group properties are clear. We will prove this in steps. First suppose that p is a maximal
ideal. We already saw that p ⊂ pp−1 ⊂ D and pp−1 is an ideal. So by maximality,
pp−1 = p or pp−1 = D. But if pp−1 = p, then p−1 ⊂ D by the previous lemma, which
contradicts Lemma 1.47.

Suppose towards a contradiction that there exists an ideal b such that bb−1 6= D and
let {0} 6= a be the maximal ideal such that the inequality holds. We can find a maximal
ideal p such that a ⊂ p. Then p−1 ⊂ a−1 and hence a ⊂ ap−1 ⊂ aa−1 ⊂ D, so ap−1 is
an ideal. But a = ap−1 would contradict the previous two lemmas like before, so ap−1

is a strictly larger ideal. The maximality condition now yields ap−1(ap−1)−1 = D, from
which it follows from the definition of a−1 that D = ap−1(ap−1)−1 ⊂ aa−1 ⊂ D.

Lastly, we turn to fractional ideals. If a is fractional, we can write a = c−1b for c ∈ D
and b an ideal in D. Then we see that c−1b · cb−1 = D, finishing the proof.

The following definition helps to highlight our new view of fractional ideals as a group
under multiplication.

Definition 1.50. If a and b are prime ideals in D, we say that a divides b, written as
a | b, when there exists an ideal c such that b = ac. This is now equivalent to b ⊂ a,
since we can take c = a−1b ⊂ D.

The group structure of F now allows us to prove the following fundamental theorem.

Theorem 1.51. Every non-zero ideal of D can be uniquely, up to order, written as a
product of prime ideals.

Proof. We first prove the existence of this factorization. Like always, we assume that not
every non-zero ideal can be factorized into prime ideals and we take a to be the maximal
ideal that cannot be factorized. In particular, a is not prime, hence not maximal, so we
can find a maximal ideal p such that a ( p and hence we find that a ( ap−1 ⊂ aa−1 ⊂
D. Since ap−1 is a strictly larger ideal than a, it can be factorized. Multiplication by p
then gives a factorization for a, a contradiction.
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We now prove the uniqueness by induction. Suppose p1 · · ·pr = q1 · · ·qs, where all
pi’s and qj’s are prime ideals. Then pr | qi for some i since pr is prime, say w.l.o.g.
that i = s. Since pr is maximal, this implies that pr = qs and multiplication by p−1r
now yields p1 · · ·pr−1 = q1 · · ·qs−1. By the induction hypothesis, r− 1 = s− 1 and the
factors are the same.

Corollary 1.52. If we allow negative powers in the expansion, then any fractional ideal
a can also uniquely be written as a product of powers of prime ideals.

Proof. We already know that a is fractional if and only if there exists an ideal b ⊂ D
and a c ∈ D such that (c)a = ca = b. If b = p1 · · ·pr and (c) = q1 · · ·qs, then
a = p1 · · ·prq−11 · · ·q−1s . The factorization of a is unique since the factorizations of b
and (c) are.

One immediate consequence is that we can again define the greatest common divisor
and the least common multiple of two ideals.

At this point, we leave the abstract Dedekind ring D and go back to considering the
Dedeking ring OK , the ring of integers of a number field K.

Definition 1.53. If a ⊂ OK is an ideal, then we define its norm N(a) = |O/a|.

This norm is always finite by the proof of Lemma 1.43. The following lemma illustrates
that there should be no confusion between the norm of an element and that of an ideal.

Lemma 1.54. If a = (a) ⊂ OK is a principal ideal, then N(a) = |N(a)|.

Proof. Since OK/a is finite, we conclude from Theorems 1.3 and 1.4 that a is a free
abelian group of rank n. So if V = {v1, . . . , vn} is a Z-basis for O and U = {u1, . . . , un}
for a, then we can write ui =

∑
j αijvj with αij ∈ Z for each i, j. By Theorem 1.4, we

then find that N(a) = |OK/a| = det cij. As we saw in the proof of Lemma 1.23, we also
have ∆U = (det cij)

2∆V . Since N(a) is positive, we find

N(a) =

∣∣∣∣∆U∆V

∣∣∣∣1/2 .
Now since a = (a) is principal, we can take ui = avi for each i. They are all in a
and clearly still linearly independent over Z. We also see from the definitions that
∆({av1, . . . , avn}) = (N(a))2∆({v1, . . . , vn}), which proves the statement.

The norm is indeed multiplicative, as we would like a ‘norm’ to be.

Lemma 1.55. If a and b are ideals in OK, then N(ab) = N(a) N(b).

Proof. Fist note that, by the uniqueness of factorization, it is sufficient to prove N(ap) =
N(a) N(p), where p is a prime ideal. Towards that end, notice that the surjection
π : OK/ap→ OK/a with π(ap+x) = a+x is a homomorphism with kernel a/ap, which
implies that |OK/ap| = |OK/a| · |a/ap|. Thus it remains to show that |a/ap| = |OK/p|.
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Consider then φ : OK → a/ap with φ(x) = ap + yx, where y ∈ a \ ap. By the
unique prime factorization, ap 6⊂ a, so such a y exists. Also, note that the kernel of
φ is an ideal unequal to OK that contains p. So since p is maximal, p = kerφ. For
surjectivity, suppose that ap ⊂ b ⊂ a for some ideal b. Multiplying by a−1 then yields
p ⊂ a−1p ⊂ OK and by maximality of p we find that b = a or b = ap. Since y /∈ ap,
we conclude that ap + (y) = a. Thus φ is surjective and a/ap ' OK/p as groups.

Our definition of the norm also allows us to prove a generalization of Fermat’s Little
Theorem, which will be useful in Chapter 3.

Lemma 1.56. Let p be a prime number and K a number field of degree n with ring of
integers OK. Then for each a ∈ OK, we have that ap

n ≡ 1 (mod (p)).

Proof. We defined the norm of the ideal (p) as N((p)) = |OK/(p)| <∞ and by Lemma
1.54, N((p)) = |N(p)| = pn.

Using unique factorization and Lemma 1.55, many interesting properties of the norm
are easily deduced. For example, if a is an ideal and N(a) is prime, then a is prime.
Also, from the definition, we see that N(a) · 1 = N(a) ∈ a. Hence, if p is prime, then
some prime divisor p of N(p) is in p. But if there were two different primes p, q ∈ p,
then 1 = ap + bq ∈ p for some a, b ∈ Z and OK = p, which is not true. Also, (p) ⊂ p
and N(p) divides N((p)) = pn, where n = [K : Q]. We have thus found for any prime
ideal p that N(p) = pm, where m ≤ n and p is a unique prime number. We are now
ready to prove an important theorem.

Theorem 1.57. Factorization of elements into irreducibles is unique in OK if and only
if OK is a principal ideal ring.

Proof. We already know that this factorization is unique in any principal ideal ring. For
the converse, suppose the factorization is unique and let 0 6= p ⊂ OK be a prime ideal.
Then there exists a prime number p ∈ Z∩p. In OK , we can uniquely write p = p1 · · · pm
into irreducibles. Since p is a prime ideal, there exists an i such that pi ∈ p. By theorem
1.39, pi is then prime and hence (pi) ⊂ p is a prime ideal. But any non-zero prime ideal
is maximal and since p 6= OK , we find that p = (pi) is principal. Lastly, the unique
factorization of ideals into prime ideals shows that any ideal is principal.

This finishes the theory of unique factorization in OK , for now. We may conclude
that unique factorization is possible when OK is a principal ideal domain or, equiva-
lently, when every irreducible element is prime and that in that case, the factorization
of π ∈ OK corresponds to the factorization of (π) into (principal) prime ideals. If fac-
torization is not unique, there exists an irreducible element y ∈ OK that is not prime.
Hence (y) is not prime and (y) factorizes into prime ideals that are all not principal.

At this point, it would be a shame not to mention the following definition.

Definition 1.58. If P is the set of principal fractional ideals in O, the class group is
defined as the set H = F/P . Its order h = |H| is called the class number.
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The class group ‘measures’ in some way how non-unique the factorization into irre-
ducibles is in a number field. It can be shown that the class group is always finite (see
[16]). Also, note that the class number h = 1 if and only if factorization into irreducibles
is unique in OK .

1.4 A geometrical approach to number theory

We begin this section by studying some geometry, which shall accumulate into Minkowski’s
theorem. Then, we shall translate a number field K into a geometrical setting which
will allow us to apply the strength of Minkowski’s theorem. The final result we obtain
is Dirichlet’s unit theorem, a detailed description of the group of units in the ring of
integers OK of a number field. This is an essential tool for our study of Diophantine
equations in Chapter 3. At first, we need to develop the geometrical formalisms.

Definition 1.59. If {e1, . . . , en} is a linearly independent set in Rm, then the additive
group generated by {e1, . . . , en} is called a lattice. A subset of Rn is called discrete when
its intersection with B(r+) := {x ∈ Rn | |x| ≤ r} is finite for every r ≥ 0.

Note that any lattice is a free abelian group. The following theorem connects the new
definitions.

Theorem 1.60. An additive subgroup of Rn is a lattice if and only if it is discrete.

Proof. Firstly, suppose that L is a lattice generated by {e1, . . . , en}. Since the ei form
a basis for Rn, we have a trivial automorphism f of Rn as a vector space by f(a1e1 +
. . . + anen) = (a1, . . . , an). By Heine-Borel, f(B(r+)) is bounded, say by M . Then, if
v = a1e1 + . . .+anen ∈ B(r+), we find that |ai| ≤ ||f(v)|| ≤M for each i. But for each i
there are only finitely many integer values of ai that obey this inequality, which implies
that L is discrete.

For the converse, letG be a discrete additive subgroup of Rn. We shall use induction on
n. The case n = 0 is trivial. Since G ⊂ Rn, we may take a maximal linearly independent
set {g1, . . . , gm} in G. If V is the span of the {g1, . . . , gm−1}, define H = G ∩ V .
Then H is a discrete subgroup, so by the hypothesis we can find a linearly independent
set {h1, . . . , hk} that generates H. As g1, . . . , gm−1 ∈ H, we have k ≥ m − 1 and
because gm /∈ H, the set {h1, . . . , hk, gm} is linearly independent in G, so k ≤ m − 1
as well. Thus k = m − 1 and we define A as the set of all x ∈ G such that x =
a1h1 + . . . + am−1hm−1 + amgm, 0 ≤ ai < 1 for each i 6= m and 0 ≤ am ≤ 1. Since A is
a bounded subset of the discrete set G, it must be finite, so we may define x′ ∈ A with
minimal coefficient a of gm. Clearly, for any g ∈ G we can find integers ci such that

g′ := g − cmx′ − c1h1 − . . .− cm−1hm−1

is in A and has a coefficient for gm that is strictly smaller than a, but non-negative. It
follows that this coefficient equals 0 and g′ ∈ H. Hence {x′, h1, . . . , hm−1} generates G
and since the set is clearly linearly independent, G must be a lattice.
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Definition 1.61. If L ⊂ Rn is lattice generated by {e1, . . . , en}, the fundamental domain
T is the set of elements

∑
aiei such that 0 ≤ ai < 1.

The fundamental domain of a lattice can be seen as one of the ‘boxes’ of the roster.
For example, for the lattice Z2 ⊂ R2 generated by (1, 0) and (0, 1), we see that T =
[0, 1) × [0, 1). Also, by considering the integer parts of the coefficients, we see that for
any n-dimensional lattice L ⊂ Rn and any x ∈ Rn, there is a unique l ∈ L such that
x ∈ T + l.

Next, we shall study the the quotient group Rn/L for lattices L. We denote the direct
product of n copies of the (multiplicative) circle group of S1 = {e2πix | x ∈ [0, 1)} as
Tn = S1 × . . .× S1 and will call this the n-dimensional torus.

Theorem 1.62. Suppose that m ≥ n are integers and that L is an m-dimensional lattice
in Rn. Then Rn/L ' Tm × Rn−m as groups.

Proof. Let V be the m-dimensional span of the generators of L and take a complement
space W such that Rn = V ⊕W . Then as groups, Rn ' V ×W . We see that W ' Rn−m

and the map

π : V −→ Tm,
m∑
i=1

aiei 7→ (e2πia1 , . . . , e2πiam)

is a surjective group homomorphism with kernel L.

Corollary 1.63. If L is an n-dimensional lattice in Rn, the previously defined map π
gives a bijection T → Tn.

Definition 1.64. For a subset X ⊂ Rn, we define its volume v(X) as the (Lebesgue)
integral of 1 over X. This volume exists only if the integral does. Also, if L is an
n-dimensional lattice, we use the bijection φ := π|T : T → Tn to define for any subset
Y ⊂ Tn its volume as v(Y ) = v(φ−1(Y )).

Theorem 1.65. If X ⊂ Rn is bounded, v(X) exists and π|X is injective, then v(π(X)) =
v(X).

Proof. The idea is to split X into parts using the lattice, bring those parts to the
fundamental domain T and then use the bijection φ. Firstly, the boundedness of X
implies that X intersects only finitely many sets T + l for l ∈ L. Since Rn = ∪l∈LT + l,
we can write X = Xl1 ∪ . . . ∪Xlm , where Xli = X ∩ (T + li). We translate this to the
fundamental domain by defining Yli = Xli− li ⊂ T (this is a real minus, not a setminus).
Since π(x) = π(x−li), the injectivity of π|X implies that the Yli are disjoint. Also clearly,
v(Xli) = v(Yli) since we just applied a translation. Putting this all together gives

v(π(X)) = v(π(∪Xli)) = v(π(∪Yli)) = v(φ(∪Yli)) = v(∪Yli) =
∑

v(Yli) =
∑

v(Xli),

which equals v(X), as desired.

We say that a subset X ⊂ Rn is symmetric when x ∈ X implies −x ∈ X.
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Theorem 1.66 (Minkowski). Let L be an n-dimensional lattice in Rn and X a bounded,
convex and symmetric subset of Rn. If v(X) > 2nv(T ), then X contains a non-zero point
of L.

Proof. If L is generated by {e1, . . . , en}, let 2L be the lattice generated by {2e1, . . . , 2en}.
It has a fundamental domain 2T with volume v(2T ) = 2nv(T ). If π : Rn → Tn induces
the isomorphism Rn/2L ' Tn, then we find that

v(π(X)) ≤ v(Tn) = v(2T ) = 2nv(T ) < v(X),

by the assumption. Thus, by Theorem 1.65 there must exist two points x 6= y ∈ X such
that π(x) = π(y), which means that x−y ∈ 2L and 1

2
(x−y) ∈ L. Since X is symmetric,

also −y ∈ X and by convexity 1
2
x− 1

2
y ∈ X as well.

The crucial idea of the proof is that X needs to overlap itself when you try to squeeze
it into the fundamental domain T or, equivalently, in the torus Tn. This theorem might
seem trivial at first sight, but the implications it has are enormous. For example, the
four squares theorem, which states that every positive integer can be written as a sum of
four squares, can be proven quite easily using Minkowski’s theorem. See [16] page 143
for a proof. But more importantly for us, Minkowski’s theorem also has led to many new
insights in number theory. In order to use Minkowski’s theorem, we need to translate
the story of number fields, rings of integers and ideals into that of lattices and vector
spaces over R.

Since most information about an element α ∈ K = Q(θ) is captured by its Galois
conjugates, we look at them a little closer. Note that if τ : K → C is a homomorphism,
then so is τ : K → C given by τ(x) = τ(x). We say τ is real, when τ = τ and complex
when it is not real. So the Galois homomorphisms come in pairs and we may write
n = s + 2t, where s is the number of real Galois homomorphisms and t the number of
complex ones. In the rest of this section, let K, n, s and t be given.

Definition 1.67. The map

σ : K −→ Cn, α 7→ (σ1(α), . . . , σn(α))

will be referred to as the geometric representation of K.

We consider Cn here as a vector space over R. Notice that σ is a homomorphism since
the σi are homomorphisms and that is injective since K is a field and σ is non-trivial.

Definition 1.68. If x = (x1, . . . , xn) ∈ Cn, we define its norm N(x) = x1 · · ·xn.

This notation should not cause any confusion, since for α ∈ K, we have N(α) =
N(σ(α)). Also, we see that N(xy) = N(x) N(y) for any x, y ∈ Cn.

Theorem 1.69. If I ⊂ (K,+) is a finitely generated subgroup generated by A =
{α1, . . . , αm}, then σ(I) is a lattice with generators σ(α1), . . . , σ(αm). In particular,
ideals of OK are mapped to lattices.
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The proof amounts to calculating the determinant of a matrix and can be found in
[16].

We now focus on proving Dirichlet’s unit theorem. Let U be the group of units of O.
We would like to use the geometric interpretation of K we just introduced. However,
U is a multiplicative group and is hence not mapped to a lattice. Luckily for us, there
exists such a thing as the logarithm.

Definition 1.70. The map

` : K∗ −→ Rn, x 7→ (log |σ1(x)|, . . . , log |σn(x)|)

where | · | denotes the usual absolute value on C, is called the logarithmic representation
of K. Also, we write `i(x) = log |σi(x)|.

This map is well-defined since for each i, |σi(x)| = 0 if and only if x = 0. Notice that
` = l ◦ σ, where l maps (x1, . . . , xn) to (log |x1|, . . . , log |xn|). Moreover, ` is clearly a
homomorphism between (K∗, ·) and (Rn,+) and

n∑
i=1

`i(α) = log |N(α)|.

Before we can characterize the ‘finite part’ of U , we need a lemma.

Lemma 1.71. If f ∈ Z[x] is a monic polynomial such that all roots in C have absolute
value 1, then all roots of f are roots of unity.

A proof that relies on symmetric polynomials can be found in [16].

Theorem 1.72. The kernel of `|U : U → Rn is the set W of roots of unity in OK,
which is a finite group of even order.

Proof. For each α ∈ K, note that `(α) = 0 if and only if |σi(α)| = 1 for each i. Suppose
that `(α) = 0. By Lemma 1.20, the field polynomials of α is in Z[x]. So by the previous
lemma, α is a root of unity. Conversely, if α is a root of unity, then so are its conjugates,
so |σi(α)| = 1 for each i.

Again since all Galois conjugates of a root of unity are roots of unity as well, a root
of unity is mapped by σ within a bounded area of Cn. Also, σ(OK) is a lattice (after
identifying Cn with R2n) by Theorem 1.69 and hence discrete by Theorem 1.60. We
conclude that OK contains finitely many roots of unity, so in particular W is finite. The
order of W is even, since −1 ∈ W .

Now that we have characterized the kernel of `, we continue by investigating its image.

Lemma 1.73. The image E = `(U) ⊂ Rn is a lattice of dimension ≤ s+ t− 1.
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Proof. We first show that E is a lattice. By Theorem 1.60, it is sufficient to show that
E is discrete. Consider r > 0 and ε ∈ U such that ||`(ε)|| < r, where || · || denotes
the Euclidian norm in Rn. In particular, we find that |`k(ε)| ≤ ||`(ε)|| < r and hence
|σk(ε)| < er for each k. Since U ⊂ OK and OK is a finitely generated abelian group,
σ(OK) is a lattice by Theorem 1.69 and hence discrete. We thus find just finitely many
ε ∈ U such that |σk(ε)| < er, so in particular finitely many ε ∈ U such that ||`(ε)|| < r.
This proves that E is discrete.

For the dimension, note that

|σi(x)| = |σi(x)| = |σi(x)| for each x ∈ U,

which means that the the coordinates of `(x) always have t pairs of identical entries.
Hence E has dimension ≤ s+ 2t− t = s+ t. Also, we know that for any ε ∈ U , we have

n∑
i=1

`i(ε) = log |N(ε)| = log 1 = 0.

We can interpret this as a sum over the s + t not necessarily identical entries with the
entries corresponding to a complex σi counted twice. From these s + t entries, we can
choose s+t−1 randomly, after which the last one is fixed. This means that the dimension
of E must be ≤ s+ t− 1.

The last thing about E that we need to find out is its exact dimension. This will turn
out to be s+ t− 1. Before we shall be able to prove this, we need two lemma’s. Firstly,
we need a more topological description of the dimension of a lattice.

Lemma 1.74. A lattice L in Rm has dimension m if and only if there exists a bounded
B ⊂ Rm such that

Rm = ∪x∈Lx+B.

Proof. If L has dimension m, the fundamental domain will serve as the bounded set, as
explained below Definition 1.61.

For the converse, suppose that such a B exists and that the dimension of L is strictly
smaller than m. If V is the space spanned by L, then we can find a complement W of
V and we see that Rm = ∪x∈V x+B. Hence the projection π : Rm → W has π(B) = W
as image. However, writing out the distance on Rm in the bases of V and W , we see
that |π(u)− π(v)| ≤ |u− v| for each u, v ∈ Rm. Therefore, W must be bounded as well,
a contradiction when dimW ≥ 1.

Next, we would like to be able to compute the volume of the fundamental domain.

Lemma 1.75. If L is an m-dimensional lattice in Rm generated by {e1, . . . , em}, then
v(T ) = | det(aij)|, where T is the fundamental domain of L and ei = (a1i, . . . , ani) for
each i.

Proof. This follows from the substitution rule for integrals, using the substitution xi =∑
j aijyj.
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We are now ready to make a crucial step in the proof of Dirichlet’s unit theorem. It
involves, as was already spoiled, Minkowski’s theorem. However, before we do that, we
need to be a little more precise about our geometrical representation. So far, we have
not specified the order of the homomorphisms σi. We shall write them as

σ1, . . . , σs, σs+1, . . . , σs+t, σs+1, . . . , σs+t,

where the first s are real and the others complex. If we consider C as a vector space over
R, then for x ∈ OK , σs+i(x) = a + bi = (a, b) for some a, b ∈ R and σs+i(x) = a− bi =
(a,−b) for each 1 ≤ i ≤ t. Moreover, for each j ≤ s, σj(x) = c = (c, 0) for some c ∈ R, so
in fact, the image of σ is contained in an (s+2t)-dimensional vector space over R and it is
captured fully by the first s+ t coordinates of σ (the last t being complex, hence counted
twice). Thus, we view σ as σ : K → Lst, where Lst = Rs × Ct. In this perspective, the
definition of the norm slightly changes into N(x1, . . . , xs+t) = x1 · · ·xs · |xs+1|2 · · · |xs+t|2
for (x1, . . . , xs+t) ∈ Lst. We highlight the use of Minkowski’s theorem in the following
lemma, before we prove the final theorem.

Lemma 1.76. Suppose that L is an (s+2t)-dimensional lattice in Lst with a fundamental
domain of volume v and c1, . . . , cs+t ∈ R>0 such that

c1 · · · cs · c2s+1 · · · c2s+t >
(

4

π

)t
v.

Then there exists a non-zero x ∈ L ∩X, where

X = {(x1, . . . , xs+t) ∈ Lst | |xi| < ci for each 1 ≤ i ≤ s+ t}.

Proof. In order to use Minkowski’s theorem, we compute v(X). It is a product of s real
integrals over (−cj, cj) for 1 ≤ j ≤ s and t complex integrals over {z ∈ C | |z| < cs+k}
for 1 ≤ k ≤ t. Thus, the volume equals

v(X) = 2c1 · · · 2csπc2s+1 · · · πc2s+t = 2sπtc1 · · · csc2s+1 · · · c2s+t > 2s+2tv.

Since X is clearly bounded, convex and symmetric, Minkowski’s theorem now yields the
desired result.

Theorem 1.77. The image E of U is a lattice of dimension s+ t− 1.

Proof. Let S = {x ∈ Lst | |N(x)| = 1}. Then we see that S is mapped to the set
V = {(x1, . . . , xs+t) ∈ Rs+t | x1 + . . .+ xs+t = 0} by coordinate-wise applying log | · |. If
we call this map l, then `|U = (l ◦ σ)|U . By the well-known properties of the logarithm,
we can use Lemma 1.74 to conclude that we are done when we can find a bounded B ⊂ S
such that S = ∪ε∈Uσ(ε)B.

In order to find a suitable B, we define M = σ(OK), which is an (s+ 2t)-dimensional
lattice by Theorem 1.25 and Corollary 1.69. Let v be the volume of the fundamental
domain of M . Consider y ∈ S and define the linear map λy : Lst → Lst with λy(x) = yx.
Then λy has determinant N(y) = ±1, which is easily seen when considering Lst as a
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subset of Cs+2t. Hence the bases for the lattices M and yM are related by a unimodular
map, which by Lemma 1.75 implies that their fundamental domains have the same
volume v. Now choose c1, . . . , cs+t ∈ R>0, such that

δ = c1 · · · cs · c2s+1 · · · c2s+t >
(

4

π

)t
v.

If again X = {(x1, . . . , xs+t) ∈ Lst | |xi| < ci for each 1 ≤ i ≤ s + t}, then Lemma 1.76
tells us that we can find a non-zero x ∈ yM ∩X. So for some non-zero α ∈ OK , we have
x = yσ(α). Now |N(x)| = |N(α)|, which implies that |N(α)| < δ.

An important fact to realize now is that due to the unique factorization of ideals of
OK into prime ideals, any ideal has finitely many divisors. In particular, any m ∈ Z can
be contained in at most finitely many ideals and since N(a) ∈ a for any ideal a of OK ,
we conclude that there are finitely many ideals with norm m, so also finitely many with
norm < δ. Since |N(a)| = N((a)) for each a ∈ K, we find only finitely many pairwise
non-associate elements α1, . . . , αN ∈ OK with |N(αi)| < δ for each i. Then for some
ε ∈ U and some i we have αi = εα. Finally, we define

B = S ∩ (∪Ni=1σ(α−1i )X).

Note that B is bounded because X is bounded and that B is independent of y since δ
and v are. But we now have

y = σ(α−1)x = σ(ε)σ(α−1i ) ∈ σ(ε)B,

as |N(σ(ε))| = 1. Since y was arbitrary, this completes the proof.

At last, we can now unify everything we have learned about the unit group U of OK .

Theorem 1.78 (Dirichlet’s unit theorem). The group of units U of O is isomorphic to
W ×Zs+t−1, where W is the set of roots of unity in OK and a finite group of even order.

Dirichlet’s unit theorem can be generalized to special subrings of OK , which we call
orders.

Definition 1.79. Suppose that K is a number field of degree n. An order of K is a
subring O ⊂ OK of the ring of integers of K such that O has an integral basis of size n.
The ring of integers OK is called the maximal order.

Suppose that O is an order in K with integral basis A = {α1, . . . , αn}, so O =
Z[α1, . . . , αn]. Then A is also a Q-basis for K, so K = Q(α1, . . . , αn). Conversely,
suppose that K = Q(α1, . . . , αr), where the αi are algebraic integers. Then O =
Z[α1, . . . , αr] is a subring of OK . Since any integral basis for O is also a Q-basis for
K, O must be an order. Thus, all orders are of the form

O = Z[α1, . . . , αr],

where the αi are algebraic integers such that K = Q(α1, . . . , αr).
For a subring R ⊂ OK , we define its rank as the power of Z in the decomposition

of the group of units in R into cyclic groups. The following theorem allows us to use
Dirichlet’s unit theorem for any order.
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Theorem 1.80. If O is an order in K, then the rank of O is equal to the rank of OK.

A proof can be found in [15]. We will not go any further into the theory of orders in
this thesis. More information on orders can also be found in [15].

Suppose that U is the group of units of an order O.

Definition 1.81. Dirchlet’s unit theorem tells us that there exist s+ t− 1 fundamental
units, which are the units η1, . . . , ηs+t−1 such that every ε ∈ U can be written uniquely
as

ε = ζεk11 · · · ε
ks+t−1

s+t−1 ,

where ζ ∈ U is a root of unity.

Dirichlet’s unit theorem gives us a lot of information, but it fails to present a way
to actually find these fundamental units. In general, this question is rather difficult to
answer. For specific cubic number fields we can give a criterion for deciding whether an
element is a fundamental unit. The following theorem is such an example.

Theorem 1.82. Let K = Q(θ) be a a cubic number field such that the discriminant of
θ is negative, where we may choose θ to be real. If ε is a unit in the ring of integers of
K such that

1 < ε <

(
d− 32 +

√
d2 − 64d+ 960

8

) 2
3

,

where d is the absolute value of the discriminant of K, then ε is a fundamental unit.

Proof. Since the discriminant of θ is negative, we have two complex and one real Galois
homomorphism, so s = t = 1 and Dirichlet’s unit theorem gives us one fundamental
unit. If ε is such a fundamental unit, so are −ε, 1/ε,−1/ε, so we may assume that ε > 1.
Since the only roots of unity in a real field are ±1, we can write any unit as ±εn for
some n ∈ Z. The idea is to find a lower bound for ε2. The Galois conjugates of ε are
complex and they are each others complex conjugates, so let reiφ be such a conjugate
in polar coordinates. Then ±1 = NK/Q(ε) = ε · reiφ · re−iφ = εr2, so we find that ε = 1

r2
.

Computing the discriminant of the minimum polynomial of ε yields

∆(ε) = −4 sin2(φ)

(
r3 +

1

r2
− 2 cos(φ)

)
.

Now one can check that the function f(x, φ) = −4 sin2(φ) (x− 2 cosφ)− 4x2 is bounded
from above by 16. Hence we get that |∆(ε)| ≤ 4(r3 + r−3)2 + 16 = 4(ε2 + ε−2 + 8).
We defined the discriminant ∆ of K as the determinant of a matrix defined by an
integral basis A for OK . Note that Z[ε] ⊂ OK is an additive subgroup with Z-basis
E = {1, ε, ε2} (since [Q(ε) : Q] = 3). By Theorem 1.4, the index |OK/Z[ε]| is finite and
equals the determinant of A, where A = (aij) is the Z-matrix that converts from the
basis of OK to the basis of Z[u]. As in the proof of Lemma 1.23, we then find that
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∆(E) = (detA)2∆(A). If we compute ∆(E) using the Vandermonde determinant, we
find that ∆(E) = ∆(ε), which shows that

d = |∆(A)| ≤ |∆(ε)| ≤ 4

(
ε3 +

1

ε3
+ 8

)
.

The above equation is quadratic in ε3 and can hence be solved for ε3. Taking the 2
3
-rd

power shows that ε2 is larger than the right hand side of the desired upper bound for ε,
which equals the expression given in the theorem.

Remark 1.83. The theorem can be formulated even a little stronger than presented here.
Namely, if ε is a unit in the ring of integers of a number field K, then for any k ∈ Z>1,
we have that

1 < ε <

(
d− 32 +

√
d2 − 64d+ 960

8

) k
3

implies that ε is at most a (k − 1)-th power of the fundamental unit. In practice, if we
wanted to prove that a unit ε is fundamental and the criterium of Theorem 1.82 fails, we
can at least find this k and try to check explicitly that ε cannot be a 1, 2, . . . , (k− 1)-th
power of the fundamental unit.

Dirichlet’s unit theorem has lots of applications in the theory of Diophantine equations.
We will see some of these in Chapter 3, but Pell’s equation is also a nice example.

Theorem 1.84. Pell’s equation x2−dy2 = 1 has infinitely many integer solutions (x, y)
for any square-free d ∈ Z>0.

Proof. We can rewrite the equation as N(x + y
√
d) = (x + y

√
d)(x − y

√
d) = 1. Thus,

we consider Q(
√
d). Since d > 0, both monomorphisms Q(

√
d) → C are real, so s = 2

and t = 0. The ring of integers of Q(
√
d) is Z[

√
d] or Z[1

2
+ 1

2

√
d] by Example 1.30.

Dirichlet’s unit theorem now says that the unit group contains precisely one factor of
Z. So if the ring of integers equals Z[

√
d], then all infinitely many units are of the form

x +
√
dy for x, y ∈ Z and they have norm 1, which means that (x, y) are all integer

solutions to Pell’s equation. If the ring of integers equals Z[1
2

+ 1
2

√
d], then Z[

√
d] is an

order, so by Theorem 1.80 we find infinitely many solutions as well. We can also show
this explicitly.

Suppose d ≡ 1 (mod 4). Then we have infinitely many half- integer solutions of
x2 − dy2 = 1. In particular, we can find solutions z1 = x1 + y1

√
d and z2 = x2 + y2

√
d

such that z2 6= ±z1, x1 ≡ x2 (mod 4) and y1 ≡ y2 (mod 4). But then z1z
−1
2 is a solution

to Pell’s equation and we see that

z1z
−1
2 = (x1 + y1

√
d)

1

4
(x2 − y2

√
d) =

x1x2 − dy1y2
4

+
x2y1 − x1y2

4

√
d

and the latter is in Z[
√
d]. Since z1 6= ±z2, we see that z1z

−1
2 6= ±1 and hence all its

infinitely many powers are solutions to Pell’s equation as well.

The question of finding the integer solutions to Pell’s equation has thus been reduced
to finding the fundamental unit of Q(

√
d).
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2 p-Adic numbers

In this chapter we study the p-adic numbers, which form a key tool for solving many
Diophantine equations. Throughout this entire chapter, p is a prime number. The first
mathematician to introduce the p-adic numbers was the German Kurt Hensel in 1897.
He was inspired by earlier work on power series by Weierstrass, who was one of Hensel’s
teachers. Hensel realized that he needed some kind of p-adic theory when he became
interested in the exact power of a prime p that divides the discriminant of a number
field.

Nowadays, one of the most important applications of p-adic numbers is in Diophan-
tine equations. The p-adic numbers can give ‘local’ information about the solutions of
Diophantine equations, where ‘local’ refers to the information contained in the prime
number p. Therefore, the study of p-adic numbers is often referred to as ‘local number
theory’, whereas the content of Chapter 1 is called ‘global number theory’. The results
of this chapter are fundamental for the approach to Diophantine equations described in
Chapter 3.

2.1 The construction of the p-adic numbers

In this section, we will construct the p-adic numbers as the completion of the rational
numbers Q with respect to the p-adic norm. The p-adic norm is a norm we can define
on Q such that two elements a, b ∈ Q are close whenever their difference is divisible by
a high power of the prime number p. We begin with the definition of a norm on a field.

Definition 2.1. A norm or absolute value on a field F is a map | · | : F −→ R≥0 such
that for each x, y ∈ F

(i) |x| = 0 if and only if x = 0,

(ii) |x · y| = |x| · |y| and

(iii) |x+ y| ≤ |x|+ |y|.

Definition 2.2. The p-adic valuation ordp is defined for n ∈ Z \ {0} as ordp(n) =
max{m ∈ Z | pm | n}. Then fora, b ∈ Z \ {0}, we define ordp(a/b) = ordp(a)− ordp(b)).
The p-adic norm | · |p on Q is defined as |0|p = 0 and for y ∈ Q∗ as

|y|p = p− ordp(y).

The standard absolute value x 7→ max(x,−x) on Q will be denoted as | · |∞ and the
trivial norm that maps Q∗ to {1} and 0 to 0 will be denoted by | · |1.
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Notice that if you would somehow define a “1-adic valuation” on Q, then the trivial
norm would equal the “1-adic norm”.

It is not difficult to prove that ordp(x+ y) ≤ min(ordp(x), ordp(y)) for each x, y ∈ Q∗,
which is equivalent to the following crucial lemma.

Lemma 2.3. For any x, y ∈ Q we have

|x+ y|p ≤ max(|x|p, |y|p).

Using this lemma, it can easily be shown that | · |p indeed defines a norm on Q. The
reader might notice that for a prime ideal p, we can likewise define a p-adic valuation on
any number field K, using the unique factorization of ideals. This is true and in Section
2.5 we will show that such ‘p-adic norms’ can be completely described by p-adic norms.
Therefore, we shall study the p-adic case.

Definition 2.4. Any norm | · | on a field F satisfying |x + y| ≤ max(|x|, |y|) for each
x, y ∈ Q is called non-archimedian. A norm that is not non-archimedian is called
archimedian.

The non-archimedian property of a norm immediately gives rise to some interesting
results.

Lemma 2.5. If F is a field with a non-archimedian norm, then

∞∑
n=1

an converges ⇐⇒ an −→ 0.

Lemma 2.6. For any non-archimedian norm | · | on a field F and for each x, y ∈ F ,
the equality |x± y| = max(|x|, |y|) holds whenever |x| 6= |y|.

Proof. Say wlog that |x| < |y|. Then we find that |x− y| = |y − x| ≤ |y|. However, we
also see that

|y| = |x− (x− y)| ≤ max(|x|, |x− y|) = |x− y|.
Replacing y by −y will do the rest.

The following examples show how counterintuitive non-Archimedian norms can be.
In both examples, consider a field F together with a non-archimedian norm | · | on F .

Example 2.7. As an interesting consequence of Lemma 2.6, consider a triangle with
points x, y and z in F . We may assume z = 0. Then we see from the above lemma that
either |x| = |y| or the length of one of the two is equal to |x− y|, the third side. Hence
every triangle is isosceles!

Example 2.8. Another nice result is that any element of a sphere is a center. Consider
the sphere Ba(r) = {x ∈ F | |x − a| < r} around a with radius r and take b ∈ F such
that |b− a| = r. Then for y ∈ B(a, r), we have |y − a| < r and hence

|y − b| = |y − a− (b− a)| = max(|y − a|, |b− a|) = r.
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In order to see that the p-adic and q-adic norms are really different when p and q are
distinct primes, we would like to be able to compare norms to each other. The most
intuitive way of defining two norms | · |1 and | · |2 on a field F to be equivalent is when
their induced metrics induce the same topologies. Clearly, this is the case when there
exists a positive α ∈ R such that |x|1 = |x|α2 for each x ∈ F , since only the radii of the
open balls differ. It is also true, but less trivial, that for any two equivalent norms there
exists such an α. A proof of this fact can be found in [7]. The following Theorem by
Ostrowski motivates the study of p-adic norms.

Theorem 2.9 (Ostrowski). Every norm | · | on Q is equivalent to | · |p, where p is either
∞, 1 or a prime.

For a proof, see [9]. In other words, Theorem 2.9 says that, up to equivalence, the
p-adic norms constitute all norms on Q, except for the standard and trivial norms.
However, we still need to see that all these norms are indeed inequivalent. If p 6= q are
primes, then |pn|p = p−n, while |qn|p = 1 and vice versa, which shows that | · |p and | · |q
are not equivalent. Futhermore, the standard and trivial norm are clearly not equivalent
to any p-adic norm or each other.

The following theorem allows us to define the p-adic numbes.

Definition/theorem 2.10. If (F, | · |) is a normed field, then there exists a unique
(up to isomorphisms) smallest complete normed extension field K of F such that the
norm on K also extends the norm on F . Moreover, K = C/ ∼, where C is the set
of Cauchy sequences in F and for x = (xn) and y = (yn) in C, we have x ∼ y when
limn→∞(xn − yn) = 0. The inclusion is given by the injection

ι : F −→ K, x 7→ [x, x, x, . . .],

which has a dense image. Also, the norm | · | on K is defined for x = [(xn)] ∈ K as
|x| = limn→∞ |xn| (and this is well-defined). The field K is complete and is called the
completion of F with respect to | · |.

The proof of this theorem is very similar to the standard proof that R is the completion
of Q and has therefore been omitted. We are now able to define the p-adic numbers Qp

as the completion of Q with respect to the p-adic norm. Also, we define the p-adic
integers Zp := {x ∈ Qp | |x|p ≤ 1}. By the non-archimedianity of | · |p, this is a subring
of Qp under addition. A first observation is that the image of the p-adic norm does not
change.

Lemma 2.11. The image of | · |p of remains {pn | n ∈ Z} ∪ {0} after extending its
domain to Qp.

Proof. If (xn) is a Cauchy sequence in Q, note that either 0 = x = [(xn)] ∈ Qp or
there exist ε,N > 0 such that |xi|p > ε for each i ≥ N . By the Cauchy property, there
exists an M > 0 such that for any i, j > M we also have |xi − xj|p < ε. Thus, for
i, j > max(N,M) Lemma 2.6 implies that |xi|p = |xj|p. Therefore, |xn|p is constant
when n is large enough and |x|p = |xk|p for each k > max(N,M), so the image of | · |p
does not change.
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The following two lemma’s prepare for Theorem 2.14, which will shed new light on
the p-adic numbers.

Lemma 2.12. If x ∈ Q and |x|p ≤ 1, then for any i ∈ Z≥0 there exists an integer α ∈ Z
such that |α− x|p ≤ p−i. This integer α can be chosen smaller than pi.

Proof. If we write x = a/b ‘in lowest terms’, then |x|p ≤ 1 means that pi and b are
relatively prime. Hence there exist integers m,n such that mb + npi = 1. We can then
take α = am+ kpi for k ∈ Z such that α < pi.

In particular, this lemma says that Z ⊂ Zp is dense.

Lemma 2.13. Every element a ∈ Qp with |a|p ≤ 1 has a unique representative Cauchy
sequence of the form (ai) for which:

(1) ai ∈ {0, 1, . . . , pi − 1} and

(2) ai ≡ ai+1 (mod pi) for all i ≥ 1.

Proof. For uniqueness, suppose we have two such representations (ai) and (bi) that are
unequal, so for some j we have aj 6= bj. By (1), also aj 6≡ bj (mod pj). It follows by
(2) that for all i > j we have ai 6≡ bi (mod pj) and hence |ai − bi|p > p−j, which clearly
implies a 6∼ b.
For existence, take a representation (bi) for a. We can define N(j) such that N(j) ≥ j
and i, i′ ≥ N(j) implies |bi − bi′|p ≤ p−j. Then for any i ≥ N(1) it follows from the
non-archimedian property that |bi|p ≤ 1. We may then apply the previous lemma to
bN(j) for each j and the resulting sequence (αj) will suffice.

Theorem 2.14. We have

Qp =

{
∞∑

i=−m

ι(aip
i) | 0 ≤ ai < pi, a−m 6= 0, m ∈ Z

}
,

where ι : Q→ Qp is the inclusion of the completion.

Proof. If a ∈ Qp we can find an m such that for a′ = apm, we have |a′|p ≤ 1. Let (a′i) be
a representation for a′ satisfying (1) and (2) from Lemma 2.13. Also, define ai = p−ma′i.
When we write a′i in base p, we see that condition (1) implies that the highest occurring
power of p is i−1 and that (2) means that a′i+1 = a′i+ bip

i for some non-negative integer

bi < pi. We conclude that ai+1 is a partial sum of the form ai+1 =
∑i

k=−m bkp
k. Clearly

these partial sums are Cauchy, hence there exists a limit in Qp, which we denote by∑∞
k=−m ι(bkp

k). This limit is clearly equivalent to a. On the other hand, any such limit
represents an element of Qp by definition.

If x =
∑∞

i=−m ι(aip
i) ∈ Qp, this sum is called the p-adic expansion of x. Theorem 2.14

allows us to view Qp as the set of p-adic expansions. This emphasizes the way we can
think of the p-adic numbers as a way of looking modulo all powers of the prime number
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p at the same time. Note that Zp is the set of elements with no negative powers of p in
its p-adic expansion.

In the rest of this chapter, we will just write x when we actually mean the constant
sequence ι(x).

We finish this section with an important property of the p-adic numbers. It says that
we can ‘lift’ factorizations modulo p to Qp.

Theorem 2.15 (Hensel’s Lemma). Suppose that f ∈ Zp[x] has modulo p a factorization
f = g̃h̃ ∈ Fp[x], where f := f (mod p) and g̃, h̃ ∈ Fp[x] relatively prime and g̃ monic.
Then there exist g, h ∈ Zp[x] such that g is monic, g = g̃ ∈ Fp[x], h = h̃ ∈ Fp[x] and
f = gh.

For a proof, see page 74 of [7].

2.2 From Qp to Cp

In this section, we study more algebraic properties of Qp. This will result in the con-
clusion that Qp is not algebraically closed and hence we construct its algebraic closure
Qp. It turns out that Qp is not complete anymore, but its completion Cp will be shown
to be algebraically closed. We need to construct Cp in order to be able to do analysis
on the p-adic numbers in the coming sections. This section will be of a more algebraic
kind and therefore requires the prerequisite knowledge of the theory of field extensions
and some Galois theory. We start by investigating the local compactness of Qp and its
finite extensions.

Definition 2.16. If F is a field with a non-archimedian norm | · |, then the valuation
ring of F is VF = {x ∈ F | |x| ≤ 1} and its unique maximal ideal will be denoted by
pF = {x ∈ F | |x| < 1}. The residue field of F is the quotient VF/pF =: VF/p.

Theorem 2.17. If K is a field with a non-archimedian norm | · | that is complete such
that the maximal ideal of the valuation ring pK = (x) is principal, then K is locally
compact if and only if its residue field is finite.

Proof. Firstly, we prove that K is locally compact if and only if VK is compact. Clearly,
if VK is compact, then any ball Ba(r

+) = {y | |y − a| ≤ r}, where a ∈ K and r > 0,
is compact and if K is locally compact, there exists a ball Ba(r

+) that is compact and
hence VK is compact. There are obvious continuous maps between such balls.

Also, VK is compact if and only if VK is complete and totally bounded (see [13] page
52 for a proof). Since VK is closed in a complete set it is complete. We show that VK
is totally bounded if and only if VK/p is finite. Note first that (xn) = {y ∈ K | |y| ≤
|x|n}. Suppose VK/(x) is finite. We will show by induction that VK/(x

n) is finite. The
trivial surjective homomorphism VK/(x

n) −→ VK/(x
n−1) has kernel (xn−1)/(xn), which

is isomorphic to VK/(x) by mapping a+ (x) to xn−1a+ (xn). Hence the kernel is finite
and by the induction hypothesis, so is the image. This implies that VK/(x

n) is finite as
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well. We can then cover VK by finitely many (open!) sets of the kind a + (xn), where
a ∈ VK . Since |xn| −→ 0, this shows the total boundedness.

For the converse, suppose we could cover VK with finitely many balls of radius ε for
any ε > 0. Let {Bi | 1 ≤ i ≤ n} be a set of balls of radius |x|/2 that cover VK and let
ai be a center of Bi. Then the sets {ai + (x) | 1 ≤ i ≤ n} cover VK , which means that
VK/(x) is finite.

If K is a finite extension of Qp and x, y, π ∈ VK , we write x ≡ y (mod π) when
x − y ∈ (π), the ideal in VK generated by π. If K = Qp, note that x ≡ y (mod pn) iff
|x− y|p ≤ p−n iff x− y has a p-adic expansion without any entries before pn, so this is
an extension of the regular modulus on Z.

Lemma 2.18. The maximal ideal of the valuation ring Zp of Qp is pZp = (p) and for
each n ∈ Z≥1, Zp/pnZp ' Z/pnZ, making Zp compact and Qp locally compact. Also,
there are no other ideals in Zp besides pnZp, where n ∈ Z≥1.

Proof. The subring pZp is clearly the only maximal ideal of Zp. Furthermore, the quo-
tient map π : Z −→ Zp/pnZp mapping x to x (mod pn) is surjective by Lemma 2.12
and has kernel pnZp. Lastly, if I is an ideal with greatest occurring norm p−n, then
I = pnZp.

We would now like to be able to extend our norm on Qp to (finite) extension fields.
Recall that any two norms | · |1 and | · |2 on a vector space V over a locally compact
field F are equivalent if and only if there exist constants c1, c2 ∈ R>0 such that c1|x|1 ≤
|x|2 ≤ c2|x|2. Then, in the same way as on page 6 of [10], we can prove the following
theorem.

Theorem 2.19. All norms on a finite dimensional vector space V over a locally compact
field F are equivalent.

Corollary 2.20. If V = K is a vector space over F that is a field, then there exists at
most one norm on K that extends the norm | · | on F .

Proof. Suppose | · |1 and | · |2 are unequal norms on K that extend | · |, say |x|1 < |x|2
for some x ∈ K. By the previous theorem, there exists a constant c ∈ R>0 such that
|x|2 ≤ c|x|1 for all x ∈ K. For sufficiently large N ∈ Z>0, however, we find that
c|xN |1 < |xN |2.

For the following lemma and theorem, let F be a locally compact field and K ⊃ F a
finite extension. We now want to extend the norm on F to K. To do this, we use the
“norm” NK/F of the field extension F ⊂ K = F (α).

Lemma 2.21. If there exists a norm || · || on K that extends the norm | · | on F , then
for α ∈ K

||α|| = |NK/F (α)|1/[K:F ].

37



Proof. Let n be the degree of α and L 3 α a finite Galois extension of F . Then L
contains all the conjugates of α. Suppose we have a norm || · || on L that is an extension
of | · |. For any conjugate αi, let σi ∈ Gal(L/F ) such that σi(α) = αi. Then | · |i defined
by |x|i = |σi(x)| is also a norm extending | · |. Hence by the previous corollary, they
are equal and thus we conclude that |NF (α)/F (α)| = ||α||n, leaving only one option of
defining || · ||:

||α|| = |NF (α)/F (α)|1/n = |NK/F (α)|1/[K:F ],

where we have used Lemma 1.28.

Of course, the next thing to do is to check whether this indeed gives us a norm.

Theorem 2.22. There exists a unique non-archimedian norm on K extending the norm
| · | on F .

Since NK/F is multiplicative and NK/F (α) = 0 iff α = 0 for each α ∈ K, the only thing
worth proving is the non-archimedianity. Proofs can be found on page 152 of [7] and
page 61 of [9]. Since Qp is locally compact, this procedure applies to finite extensions
K of Qp. Note that the image of the norm in K is then contained in {pq | q ∈ Q}.

We define Qp as the (unique) algebraic closure of Qp. Since | · |p extends uniquely to
any algebraic extension of Qp, it also extends uniquely to Qp. Also note that on Qp, we
have Im | · |p = {pq | q ∈ Q} ∪ {0}, since for example, xb − p−a has a root p−a/b with
norm pa/b for a, b ∈ Z.

Remember that we were looking for a complete algebraic closure of Qp. It turns out
that Qp is not complete. In order to prove this, we need to understand more about finite
extension of Qp first. From now on, we consider a finite extension K of Qp.

We can extend the order to elements α ∈ K by

ordp α := − logp |α|p = − logp |NK/Qp(α)|1/np = − 1

n
logp |NK/Qp(α)|p.

By Lemma 1.28(ii), NK/Qp(α) ∈ Qp, so we see that the image of K under ordp is
contained in 1

n
Z. Since it is a subring under addition, it is of the form 1

e
Z where e ∈ Z

divides n. This motivates the following definition.

Definition 2.23. The number e ∈ Z such that Im ordp = 1
e
Z is called the index of

ramification of K. If e = 1, K is an unramified extension of Qp and if e = n, it is called
totally ramified.

If e is the ramification index of K, we see that the maximal ideal pK in the valuation
ring OK of K is principal and equal to (π), where π ∈ K such that ordp π = 1/e. Since K
is also complete because Qp is complete, we conclude from Theorem 2.17 the following.

Corollary 2.24. Any finite extension K of Qp is locally compact.

Note that if π ∈ K is such that ordp π = 1/e, then any x ∈ K can uniquely be written
in the form x = πm · u. Just take m = e · ordp x and u = x/πm.
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Lemma 2.25. Let Qp ⊂ K be a finite extension of degree n with ramification index e
such that the extension Fp ⊂ OK/p is of degree f . Then n = e · f .

It can be proved that, if π ∈ K has ordp π = 1/e and if {yi | |yi|p = 1, 1 ≤ i ≤ f}
is a basis for OK/p, then {πjyi | 1 ≤ i ≤ f, 0 ≤ j ≤ e − 1} is a basis for K over Qp.
The details are rather tedious and can be found in [7]. The following lemma helps to
characterize the unramified extensions of Qp. This will be important for proving that
Qp is not complete.

Lemma 2.26. There is exactly one unramified extension Kf ⊃ Qp of degree f , which
can be obtained by adjoining a primitive (pf − 1)th root of unity. If K is an extension
of degree n with residue field of degree f and index of ramification e, then K = Kf (π),
where π is the root of an Eisenstein polynomial over Kf .

Proof. We only prove the existence of Kf . Let α be a generator of the cyclic group F×
pf

.

It’s minimum polynomial P (x) = xf + bf−1x
f−1 + . . . + b0 over Fp has degree f , since

Fpf ⊂ Fp(α). Define P (x) = xf + af−1x
f−1 + . . . + a0 ∈ Zp[x], where ai = bi for each

i. Then P (x) is irreducible over Qp, since if it weren’t, we could use Gauss’ Lemma to
write is as a product of two polynomials in Zp[x] and reducing modulo p would give a
factorization of P . Let α ∈ Qp be a root of P . Now let Kf = Qp(α). Then α + OKf

is a root of P ∈ Fp[x]. We conclude that [OKf
/pKf

: Fp] = f ≥ [Kf : Qp]. The other
inequality holds by Lemma 2.25.

A proof for the rest of the theorem can be found in [9]. The proof makes use of the
following lemma, which is also crucial for proving Theorem 2.29.

Lemma 2.27. If K ⊃ Qp with 0 6= x ∈ OK, there exists a ∈ OK such that a is a
(pf−1)th root of unity and x ≡ a (mod π), where π is an element of K with ordp π = 1/e.

The proof is quite straightforward and can be found on page 67 of [9]. We first
characterize precisely which extensions of Qp are unramified.

Theorem 2.28. The finite unramified extensions of Qp are precisely the extensions
Qp(α), where α is an mth root of unity such that p does not divide m.

Proof. By Lemma 2.26, any finite unramified extension can be obtained by adjoining a
(pf − 1)th root of unity for some f and clearly p does not divide that. For the converse,
suppose p - m and let f be the order of p in (Z/mZ)∗. Then pf − 1 = mn for some n.
If α is a primitive (pf − 1)th root of unity, then αn is a primitive mth root of unity and
Qp(α

n) ⊂ Qp(α) hence Qp ⊂ Qp(α
n) is an unramified extension.

We are now ready to prove a generalization of Theorem 2.14 for finite extensions of
Qp.

Theorem 2.29. Let K ⊃ Qp be a finite extension of degree n, with ramification index e
and residue field of degree f and take π ∈ K such that ordp π = 1/e. Then every element
x ∈ K can be written uniquely in the form x =

∑∞
i=m aiπ

i, where m = ordp(x) · e and
each ai is either 0 or a (pf − 1)th root of unity.
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Proof. Take x ∈ OK . We can use the previous lemma to find a unique a0 ∈ K such that

x ≡ a0 (mod π) and ap
f

0 = a0 (a0 equals 0 iff x ≡ 0 (mod π)). Now we want to find an

a1 ∈ A such that x ≡ a0 + a1π (mod π2) and ap
f

1 = a1. The first condition is equivalent
to a1 ≡ (x − a0)/π (mod π). We may again apply the previous lemma (remembering
that (x− a0)/π ≡ 0 (mod π) iff a1 = 0), now with (x− a0)/π as our ‘x’. Continuing in
this fashion, we construct a2, a3, . . .. The partial sums clearly form a Cauchy sequence,
since |πi − πj|p ≤ max(p−i/e, p−j/e). Since K is a finite extension of the complete space
Qp, it is complete as well and the limit indeed makes sense. Now if x ∈ K, then we can
write x = πm · u for m = e · ordp x and |u|p = 1, hence u ∈ OK .

If x =
∑∞

i=m aiπ
i, this sum is called the π-adic expansion of that element.

We can now start to prove that Qp is not complete. The following lemma will be the
crucial argument in the proof.

Lemma 2.30. Suppose ξ ∈ Qp is algebraic over Qp of degree n. Then there exists an
arbitrarily large integer N such that

an−1ξ
n−1 + . . .+ a1ξ + a0 6≡ 0 (mod pN)

for any coefficients ai ∈ Zp such that at least one is not divisible by p.

Proof. Let M ∈ Z>0. Suppose for each N ≥M there did exist coefficients ai,N such that∑n−1
i=0 ai,Nξ

i ≡ 0 (mod pN). Since Zp ⊂ Qp is compact, there exists a sequence (Nj1) in
Z≥0 such that (an−1,Nj1

)j1 is a convergent subsequence of (an−1,N)N . In the same way,
we find a subsequence (Nj2) of (Nj1) such that (an−2,Nj2

) is convergent and continuing in
this fashion, we find a sequence (Njn)jn in Z≥0 such that for each i, (ai,Njn

)jn converges

to some ai ∈ Zp. The resulting element
∑n−1

i=0 aiξ
i ≡ 0 (mod pN) for each N ∈ Z>0 and

is hence equal to 0. Since for each N , the elements ai,N were not all divisible by p, there
exists an i such that ai 6= 0. We conclude that ξ satisfies some non-trivial polynomial
over Qp of degree less than n, which is a contradiction.

Theorem 2.31. The algebraic closure Qp is not complete.

Proof. We need to find a Cauchy sequence that cannot have a limit in Qp. We will define
it as (an) with

ai =
i∑

j=0

bjp
Nj ,

where bi is a primitive (p2
i − 1)th root of unity and (Nj) is a positive strictly increasing

sequence of integers to be determined later. Note that 2i | 2i′ implies that p2
i−1 | p2i

′
−1,

hence bi′ | bi when i′ > i. Also note that the bj for j ≤ i are the digits in the p-adic
expansion of ai in the unramified extension Qp(bi) as defined in Theorem 2.29. Moreover,
(ai) is clearly Cauchy.

We now show that Qp(ai) = Qp(bi). By Theorem 2.26, Qp(bi) is unramified of degree
2i (it is also Galois, since bi is a primitive root of unity). If bi /∈ Qp(ai), there would
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exist by the fundamental theorem of Galois theory (see [6]) an isomorphism σ of Qp(bi)
that is the identity on Qp(ai) while σ(bi) 6= bi. However, ai and σ(ai) would then have
different p-adic expansions, since σ(ai) =

∑i
j=0 σ(bj)p

Nj .
Next, we choose N0 = 0 and define Nj by induction. Suppose Nj for j < k have been

chosen. By Theorem 2.26, [Qp(ai) : Qp] = [Qp(bi) : Qp] = 2i. We then choose Nj > Nj−1
according to the previous lemma such that for any coefficients αi ∈ Zp not all divisible
by p and for any n < 2i we have

αna
n
i + . . .+ α1ai + α0 6≡ 0 (mod pNj).

Suppose now that a ∈ Qp is the limit of (ai) and say a satisfies an equation βna
k +

. . .+β1a+β0 = 0. After dividing by the maximal norm of the βi’s, we may assume that
all βi ∈ Zp and that not all are divisible by p. Now choose i such that 2i > n. Because
a ≡ ai (mod pNi+1), ai satisfies a forbidden equation (mod pNi+1).

Since Qp is not sufficient, we define the complex p-adic numbers Cp as the completion
of Qp with respect to | · |p. We construct Cp from Qp exactly like we constructed Qp

from Q. We extend | · |p also in the same way and in the same way as Lemma 2.1 we see
that the possible values of | · |p remain the fractional powers of p and 0. Conveniently for
us, the story does not continue forever and Cp is actually algebraically closed. Before
we prove this, we prove two very helpful lemma’s.

Lemma 2.32 (Krasner’s Lemma). If L is a finite extension of Qp and b ∈ Qp is closer
to a ∈ Qp than all Galois conjugates of a over L, then L(a) ⊂ L(b).

Proof. Suppose that a /∈ L(b). Then a has at least one more conjugate ai over L(b) that
is not in L(b). Let σ be an isomorphism between L(a, b) and L(ai, b) that fixes L(b) and
maps a to ai. Then |b− ai|p = |σ(b− ai)|p = |b− a|p and since ai is also a conjugate of
a over L, we find that

|ai − a|p ≤ max(|ai − b|p, |b− a|p) = |b− a|p < |ai − a|p,

a contradiction.

Lemma 2.33. Let Qp ⊂ L = Qp(α) be a finite extension of degree n and f = a0 +
. . . + an−1x

n−1 + xn the minimum polynomial of α over Qp. Then there exists ε > 0
such that for each monic g = b0 + . . . + bn−1x

n−1 + xn ∈ Q[x] of degree n with Mg =
maxi(|ai − bi|) < ε, there is a root β of g such that Qp(α) = Qp(β).

Proof. Consider g = (x − β1) · · · (x − βn) = b0 + . . . + bn−1x
n−1 + xn ∈ Q[x] with each

βi ∈ Qp such that Mg < ε. Let N = max0≤i≤n(|α|i) and note that g(α) = g(α)− f(α).
Hence we see that

n∏
i=1

|α− βi| = |g(α)− f(α)| ≤
n∑
i=1

|ai − bi||α|i ≤ nMgN.

We thus find at least one j such that |α − βj| ≤ n1/nM1/nN1/n, so for ε small enough
we find, using Krasner’s lemma, that K(α) ⊂ K(βj). Since g(βj) = 0 and g has degree
n, we conclude that [K(βj) : K] ≤ n, so K(α) = K(βj).
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Theorem 2.34. The set of complex p-adic numbers Cp is algebraically closed.

Proof. Let f(x) = xn+an−1x
n−1+. . .+a0 ∈ Cp[x] be a monic irreducible polynomial with

a root α in the algebraic closure of Cp. Since Qp is dense in Cp, we can find polynomials
gj = xn + an−1,jx

n−1 + . . .+ a0,j ∈ Qp[x] such that Mj = maxi(|ai,j − ai|p) < 1/j. For j
large enough, we can use Lemma 2.33 to find roots βj of gj such that

|α− βj|p ≤ n1/nM
1/n
j N1/n −→ 0,

where N = max0≤i≤n(|α|ip). (We can always extend the norm to the finite extension
Cp(α).) This shows that (βj) is a Cauchy sequence in Cp. Since Cp is complete, it
converges within Cp and the limit must equal α ∈ Cp. We have thus shown that every
monic irreducible polynomial in Cp[x] has a root in Cp, which is sufficient.

2.3 Topological properties of Qp and Cp

In order to find out with what kind of normed fields we are dealing, we investigate the
topological properties of Qp and Cp in this section. We are going to show that both
fields are Haussdorff, whereas in contrast to Qp and its finite extensions, Cp and Qp are
not locally compact. Curiously, both Qp and Cp are also totally disconnected. Before
we will be able to show this, we need some information about the residue fields. The
following definition will help with this.

Definition/lemma 2.35. The union Qur
p of all finite unramified extensions of Qp is a

field called the maximal unramified extension of Qp.

Proof. We need to check that this is indeed a field. We characterized unramified exten-
sions in Lemma 2.26. With the same notation as in that lemma, suppose x, y ∈ Qur

p =
∪fKf , so say x ∈ Kg and y ∈ Kh. We consider Kgh. Since pn − 1 | pgh − 1 when
n | gh, we see that Kn ⊂ Kgh for n ∈ {g, h}. Hence x and y are both in Kgh and we are
done.

We write Zurp for the valuation ring of Qur
p . Since the image under ordp of Qur

p is still
Z by definition, we find that Zurp has maximal ideal pZurp .

Lemma 2.36. The residue fields of Qur
p and Qp are both equal to Fp.

Proof. We first prove that the the residue field of Qur
p an algebraic extension of Fp.

Consider α ∈ Zurp . Since Qp ⊂ Qur
p is algebraic, there exist n ∈ Z and coefficients

ai ∈ Qp such that a0 + a1α+ . . .+ an−1α
n−1 + αn = 0. Then by the non-archimedianity

of the norm, for each i < n, we have |ai|p|α|ip ≤ |α|np , hence |ai|p ≤ |α|n−ip ≤ 1 and
ai ∈ Zp for each i. Therefore, for any α ∈ Zurp /pZurp , we can find a q ∈ Zp[x] such that
q(α) = 0. Note that by Lemma 2.18, Fp = Zp/pZp and we have an obvious inclusion
Zp/pZp → Zurp /pZurp . Now α is a zero of q(x) ∈ Fp[x], as desired. The same argument

works to show that the residue field of Qp is an algebraic extension of Fp, so it is a subset
of Fp.
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Now suppose f(α) = 0 for some monic irreducible f ∈ Zurp /pZurp [x] and α ∈ Fp. Then
we can find an f ∈ Zurp [x] such that the coefficients of f are either 0 or have norm 1

and f(α) = β ∈ pZurp . If a is the constant coefficient of f (which has norm 1, since f
is irreducible), then |a − β|p = 1, so ordp (a− β) = 0. Also, the polynomial equation
f(α) ∈ pZurp yields that |α|p ≤ 1. Hence ordp α = 1

n
ordp α

n = 1
n
· ordp (a− β) = 0, so

|α|p = 1 and α ∈ Zurp . This shows that α ∈ Zurp /pZurp , so Zurp /pZurp = Fp.
Since Qur

p ⊂ Qp and we have a trivial inclusion from Zurp /pZurp into the residue field

of Qp, it must be Fp as well.

As we shall soon see, ‘closed’ and ‘open’ discs are both closed and open in the topology
on Cp, so we need to introduce some notation. For a ∈ Cp and r > 0, we write Ba(r) :=
{x ∈ Cp | |x − a|p < r}, Ba(r

+) := {x ∈ Cp | |x − a|p ≤ r} and Ca(r) = Ba(r
+) \ Ba(r).

We will speak of Ba(r) and Ba(r
+) as respectively the open and closed disc around

a of radius r and of Ca(r) as the circle around a of radius r. Also, we abbreviate
B(r) := B0(r). We are now ready to prove the main theorem of this section.

Theorem 2.37. The spaces Cp and Qp are totally disconnected Hausdorff spaces that
are not locally compact.

Proof. For the disconnectedness, consider a ∈ Cp. If b ∈ Ca(r), then Bb(ε) ⊂ Ca(r) for
each ε < r by the non-archimedianity of the norm. Hence any circle is open and thus
for ∗,∼∈ {<,≤} any set of the kind A = {x ∈ Cp | r1 ∗ |x|p ∼ r2} is open, which shows
that any ball is disconnected.

In order to show that Cp is not locally compact, let A and B be the valuation rings of
Qp and Cp respectively with maximal ideals M and N . By Lemma 2.36, A/M = Fp. The
map A/M −→ B/N mapping x+M 7→ x+N is a well-defined injective homomorphism,
hence B/N is also infinite. We proceed as in the proof of Theorem 2.17. If B were
compact, it could be covered by finitely many ‘open’ balls Bi = ai +N of radius 1. But
then B/N would be finite, a contradiction.

Lastly, since the image of the norm is Q, Cp is Haussdorff. The proofs for Qp are
exactly the same.

2.4 p-adic number fields

We take a brief intermezzo to discuss a generalization of the p-adic numbers: the p-adic
numbers, where p ⊂ OK is a prime ideal in the ring of integers of a number field K.
Even though we will see in this section that we learn everything there is to know about
p-adic norms by studying the p-adic case, it is in Chapter 3 convenient to be able to
speak of p-adic norms and valuations as well. In this section, let C > 0 be a constant
and K a number field.

Definition 2.38. If p is a prime ideal of OK , we define the p-adic valuation ordp(x) for
x ∈ K∗ as the exponent of p in the factorization of the fractional ideal xOK into prime
ideals. The p-adic norm |x|p is defined as C− ordp(x) if x ∈ K∗ and as 0 when x = 0.
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Note that the definition of the p-adic valuation is indeed a generalization of the p-
adic valuation on Q. Also, if C 6= K ∈ R>0 is another constant, then K = Cα for some
α ∈ R>0 and we see that the p-adic norm is, up to equivalence, independent of the choice
of the constant C. For convenience, we might then as well choose C = N(p) in order
to make the generalization with respect to the p-adic norm more explicit. For the same
reason as in the p-adic case, the p-adic norm is indeed a norm and it is non-archimedian.

Lemma 2.39. If p and q are different prime ideals in OK, then | · |p is not equivalent
to | · |q.

Proof. If p 6= q, then p 6⊂ q and q 6⊂ p since both are maximal ideals. Thus, we may
choose a ∈ p \ q and b ∈ q \ p. Then ordp a > 0 and ordq a = 0, while ordp b = 0 and
ordq b > 0, which shows that | · |p is not equivalent to | · |q.

Lemma 2.40. Suppose that K is a finite extension of Q and that p is a prime number
such that (p) = pa11 · · ·pann is the factorization into prime ideals in K. Then for each
i, the restriction of the pi-adic norm to Q is equivalent to | · |p. In other words, each
pi-adic norm is equivalent to an extension of | · |p to K.

Proof. For each i, paii ∩ Z is an ideal in Z and since p ∈ paii ∩ Z, we conclude that
paii ∩Z = (p) as ideals in Z. Also, p /∈ pbii for any bi > ai. Hence for any m ∈ Z, we have
m ∈ pai·ni if and only if pn | m, so ordpi

(m) = ai ordp(m) and we see that | · |pi
= | · |ai·fp

on Q, where N(p) = pf , so they are equivalent.

We already saw in the remarks below Lemma 1.56, that there is a unique prime
number p in each prime ideal p. Thus, for each prime ideal p in K, the p-adic norm is
equivalent to an extension of a unique p-adic norm.

Theorem 2.41. Suppose that K = Q(α) is a finite extension of Q, f is the minimum
polynomial of α over Q , p is a prime ideal in OK above p and that L is the completion
of K with respect to | · |p. If f = f1 · · · fn is the decomposition of f into irreducibles in
Qp[x], then there exists an i such that L ' Qp(αi), where αi is a root of fi. Also, the
p-adic norm on L is equivalent to the p-adic norm induced by Qp(αi).

Proof. By Lemma 2.40, the restriction of | · |p to Q is equivalent to | · |p. Since L is
complete, it thus contains Qp. But L also contains α, which is a root of f . Therefore, L
must contain a homomorphic image of Qp(αi) for some i. But Qp(αi) contains Q and a
root of f , so it must contain a homomorphic image of Q(α). Also, since the p-adic norm
extends uniquely to Qp(αi) by Theorem 2.22, the p-adic norm restricted to the image
of Qp(αi) in L must be equivalent to the p-adic norm. Since Qp(αi) is complete with
respect to this norm, we have L ' Qp(αi) as desired.

Theorem 2.42. Suppose that K = Q(α) is a finite extension of Q, f is the minimum
polynomial of α over Q and fi ∈ Qp[x] is an irreducible factor of f ∈ Qp[x]. Then there
is a unique prime ideal p above p in K such that the injection Q(α) → K = Qp[x]/(fi)
mapping α to x+(fi) induces a norm on K that is equivalent to the norm |·|p. Moreover,
K is isomorphic to the completion Kp of K with respect to | · |p.

44



Proof. We define p = {x ∈ OK | |x|p < 1}, where | · |p is the p-adic norm on K induced
by K. (Note that | · |p extends uniquely to K by Theorem 2.22.) It is now easy to check
that p is maximal in OK and that | · |p is equivalent to | · |p. By Lemma 2.39, p is unique
with this property. Since K contains (an isomorphic image of) K and is complete with
respect to | · |p, it also contains (an isomorphic image of) Kp. We see that |fi(α)|p is a
non-zero power of |fi(x + (fi))|p = 0, so fi(α) = 0. Since Kp contains Qp and a root of
fi and K is the smallest such field, we find that Kp ' K.

Lemma 2.40 and Theorem 2.41 show that we can go back and forth between prime
numbers and prime ideals and that is does not matter whether we study finite extensions
of Qp or completions of finite extensions of Q. Luckily for us, studying the p-adic case
is thus sufficient for understanding the p-adic theory in general.

The following corollary is going to be very useful in Chapter 3.

Corollary 2.43. Suppose that f ∈ Q[x] is irreducible in both Q[x] and Qp[x]. Then
there is a unique prime ideal p above p in Q[x]/(f) =: K.

Proof. Suppose p and q are two prime ideals in K above p such that Kp and Kq are the
completions of K with respect to the p- and q-adic norms respectively . By Theorem
2.41, we find that Kp ' Qp(α) ' Kq since f is still irreducible in Qp[x]. This implies
that the p- and q-adic norm are equivalent, which by Lemma 2.39 shows that p = q.

2.5 Analysis on Cp

Now we have constructed the complex p-adic numbers and have investigated some of its
topological properties, we are ready to do analysis on Cp. Therefore, when not explicitly
mentioned, we will in this section be working in Cp.

In this section, we will mostly be dealing with formal power series. If R is a ring, let
R[[x]] denote the ring of power series over R, with addition and multiplication as usual.
We first show the elementary facts about power series in Cp[[x]].

Lemma 2.44. A series
∑∞

n=1 anx
n converges when |x|p < r and diverges when |x|p > r,

where r = 1/ lim sup |an|1/np is the radius of convergence. If |x|p = r, the series converges
if and only if |an|p|r|np −→ 0.

The proof is not difficult once you remember that the series converges if and only if
an −→ 0 and can be found in [9].

Lemma 2.45. Every power series over K that converges in an open or closed disc is
continuous on that disc.

The proof is a careful, but quite straightforward work with inequalities and makes
important use of the archimedian property of the norm. It can be found in [9]. The two
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most important power series we know in R[[x]] and C[[x]] are the exponential and the
logarithm. As formal power series, they can be defined in Cp[[x]] just as easily:

logp(1 + x) :=
∞∑
n=1

(−1)n+1x
n

n
and expp(x) :=

∞∑
n=0

xn

n!
.

In order to determine their radii of convergence and to show that the usual properties
still hold, we need the following two lemma’s.

Lemma 2.46. Let f ∈ Cp[[x]] be a power series such that there exists a sequence (xm)
in Cp with xm 6= 0 for infinitely many m and f(xm) = 0 for each m and xm → 0. Then
f = 0 ∈ Cp[[x]].

Proof. Suppose
∑
anx

n = f 6= 0 ∈ K[[x]] and let k be the smallest integer such that
ak 6= 0. We can then write f(x) = xkg(x) with g(0) = ak 6= 0. Since g is continuous by
the previous lemma, we find that g(xm) −→ g(0) = ak, while g(xm) = 0 for infinitely
many m, a contradiction.

Lemma 2.47. If n = a0 + a1p+ . . .+ asp
s ∈ Z≥0, where 0 ≤ ai ≤ p− 1 for each i (i.e.

n in base p), then

ordp(n!) =
n−

∑
ai

p− 1
.

Proof. The proof is by induction on n. The case n = 1 is trivial. Suppose n is as above
and that the equation holds for n. If k = ordp(n+ 1), then apparently a0 = a1 = . . . =
ak−1 = p − 1, ak 6= p − 1 and n + 1 = (ak + 1)pk + ak+1p

k+1 + . . . + asp
s. If bi are the

coefficients of n + 1 in base p, then
∑
bi =

∑
ai − k(p − 1) + 1 and the equation now

follows.

Theorem 2.48. The disc of convergence of logp(1 + x) is B0(1) ⊂ Cp and the disc of

convergence of expp(x) is B0(p
1/(1−p)) ⊂ Cp.

Proof. For logp, we see that |an|p = |1/n|p = pordp n and hence limn→∞ |an|1/np = 1. If
|x|p = 1, then |anxn|p = pordp n ≥ 1 and the series diverges.

For expp, note that |an|p = pordp n!. If r = 1/ lim sup |an|1/np , this implies that

ordp r = − ordp (lim sup
n→∞

|an|1/np ) = − lim sup
n→∞

1

n
ordp |an|p

and since ordp |x|p = − ordp x, we get

ordp r = lim inf
n→∞

1

n
ordp

1

n!
= lim inf

n→∞

n− Sn
n(1− p)

,

where Sn is the sum of the coefficients of n in base p. Since Sn/n −→ 0, this implies
that ordp r = 1/(1− p) and hence r = p1/(1−p). If ordp x = 1/(p− 1), then ordp anx

n =
Sn/(p − 1). Now the sequence (apmx

pm) has constant norm p1/(p−1) since Spm = 1 and
thus anx

n 6→ 0.
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Note that the radius of convergence of the p-adic exponential function is very different
from that of the exponential in C[[x]], which converges everywhere. This lack of conver-
gence of expp may seem undesirable, but in Section 2.6 we will see that this allows us
to prove very useful theorems on p-adic power series. We continue by proving the usual
properties of the logarithm and the exponential.

Theorem 2.49. The following equalities hold for each x, y in the appropriate discs of
convergence:

logp[(1 + x)(1 + y)] = logp(1 + x) + logp(1 + y) and expp(x) expp(y) = expp(x+ y).

Proof. For the logp, note that x, y ∈ B0(1) implies that x + y + xy ∈ B0(1), so we can
speak of logp[(1 + x)(1 + y)]. Since the equality holds over R, we find that∑

(−1)n+1x
n

n
+
∑

(−1)n+1y
n

n
=
∑

(−1)n+1 (x+ y + xy)n

n

for x, y ∈ (−1, 1). Hence for any fixed y ∈ (−1, 1), the difference vanishes for x ∈ (−1, 1).
With xm = 1/m, we can use Lemma 2.46 to conclude that the difference is the zero series
in Q[[x]] for any fixed y ∈ (−1, 1) and hence the difference is the zero series in Q[[x, y]].
But as a formal power series, there is no difference between log and logp, since all
coefficients are in Q ⊂ Qp. Thus the equality holds over Cp as well.

We can apply the same reasoning to expp.

Theorem 2.50. The functions expp : B0(p
1/(1−p)) −→ B1(p

1/(1−p)) and

logp : B1(p
1/(1−p)) −→ B0(p

1/(1−p)) are mutually inverse.

Proof. Showing that the images are in the right disc is straightforward. The inverse
statement can be proved using the same reasoning as in the previous lemma.

We have shown that the expp and logp still behave like they do in C, which is very
convenient. It enables us to use the exponential and the logarithm to define more power
series. The following power series has an important application in our method for solving
Diophantine equations in Chapter 3.

Lemma 2.51. For a ∈ Cp such that ordp(a) > 1
p−1 the power series

(1 + a)x := expp(x logp(1 + a)) ∈ Cp[[x]]

converges when ordp(x) ≥ 0.

Proof. By Lemma 2.48, we know that (1 + a)x converges if and only if ordp(x) +
ordp(logp(1 + a)) > 1

p−1 . Now

logp(1 + a) = a− a2

2
+
a3

3
− . . .

and since ordp(a) > 1
p−1 , one can see that ordp(logp(1+a)) = min(ordp(a), ordp a

2/2, . . .) >
1
p−1 .
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Remark 2.52. Suppose a series of rational numbers converges to a rational number with
respect to | · |p and to a rational number with respect to | · |∞. You might expect these
limits to be the same, but in general, they are not. For a counterexample, see [9] page
81.

2.6 Newton Polygons

In this section we investigate the roots of polynomials in Cp[x]. Hence we do no harm
when we consider only polynomials that are normalized such that their constant coeffi-
cient equals 1. The set of such polynomials will be denoted as 1 +xCp[x]. An important
tool for studying these roots are Newton polygons.

Definition 2.53. The Newton polygon of a polynomial f =
∑n

i=0 aix
i ∈ 1 + xCp[x] is

the polygon defined as follows:

(1) draw the points (i, ordp ai) for each 0 ≤ i ≤ n such that ai 6= 0 in the plane;

(2) starting at (0, ordp a0) = (0, 0), rotate the upper y-axis counter-clockwise until you
‘hit’ a point drawn in step (1);

(3) pick the drawn point (i, ordp ai) furthest away (horizontally) from (0, 0) on the line
and draw the line segment between both points;

(4) if i = n, stop: the polygon is finished;

(5) otherwise, consider the vertical half line through and above (i, ordp ai) and rotate
it counterclockwise until you ‘hit’ a drawn point, then continue at step (3).

This construction is called the convex hull of the points (i, ordp ai). The slopes of
the Newton polygon are the slopes of the lines it consists of and the length of an
edge of the polygon is the length of the projection of that edge onto the horizontal
axis.

Recall from Definition 1.5 that the coefficients of any polynomial f are ± the elemen-
tary symmetric polynomials in the roots of f . This observation is crucial for proving
the following theorem, which immediately illustrates the strength of Newton polygons.

Theorem 2.54. If the Newton polygon of f =
∑n

i=1 aix
i ∈ 1+xCp[x] has slopes µ1, . . . µr

(r ≤ n) with corresponding lengths l1, . . . lr, then for each k, f has exactly lk roots in Cp

with order −µk.

Proof. Write f(x) = (1 − x/α1) · · · (1 − x/αn) and let λi := ordp 1/αi = − ordp αi for
each i. Order the roots such that λ1 ≤ . . . ≤ λn and suppose that λ1 = . . . = λr < λr+1.
Now ai is the ith symmetric polynomial in the 1/αj’s, which is the sum of all possible
products of i of the 1/αj’s. Hence, using that ordp (x+ y) ≥ min(ordp x, ordp y) (which
is equivalent to the non-archimedianity of | · |p), we find that ordp ai ≥ iλr. Thus each
point (i, ordp ai) is on or above the line L through (0, 0) and (r, rλr).
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3x
2 − 2x+ 1 with p = 3

Figure 2.1: Two Newton polygons for polynomials.

If we now consider ar, we see that it is a sum of all products of exactly r of the 1/αj’s.
But all of such terms have order > rλr, except for 1/(α1 · · ·αr). Hence by Lemma 2.6,
ordp ar = rλr, so (r, ordp ar) lies on L.

In order to show that r is the biggest integer such that this can happen, consider
i > r. Then ordp ai > iλr by the same arguments as above. We conclude that the line
between (0, 0) and (r, rλr) is the first segment of the Newton polygon.

Note that we are only interested in the slopes of the polygon, so we can translate all
points and segments together by any value we like. So if we have λs < λs+1 = λs+2 =
. . . = λs+r < λs+r+1, we can use (x, y) −→ (x − s, y − ordp as) to get to the same
situation as before. After considering all the roots, this results in the statement of the
theorem.

A direct application of Theorem 2.54 is the following theorem.

Theorem 2.55. Any f =
∑n

i=0 aix
i ∈ Z[x] with ordp an − ordp a0 = k ∈ Z such that

gcd(k, n) = 1 and for each i, ordp ai ≥ ordp a0 + k
n
i ≥ 0, is irreducible.

Proof. Note that the last condition holds if and only if the Newton polygon of f consists
of only one segment, which then has slope λ = k/n. Also note that the Newton polygon
of f is the one of f/a0 moved ordp a0 upwards. Then by the previous theorem, all
roots αi ∈ Cp have ordp 1/αi = k/n, so ordp αi = −k/n. Suppose that f = g · h with
g =

∑m
i=0 bix

i and h in Z[x]. Then ordp b0 = −mk/n and mk/n is an integer, which can
only be true when m = n or m = 0.

Example 2.56. Polynomials f = a0 + a1x+ . . .+ anx
n ∈ Z[x], such that

(i) p - an and p | ai for i 6= n, but p2 - a0 (Eisenstein polynomials),
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(ii) p - a0, p | ai for i 6= 0, but p2 - an (‘reversed’ Eisenstein polynomials) or

(iii) p - a0, pn−1 | an, pn - an and for each i, pi | ai are irreducible.

We now move on from polynomials to power series.

Definition 2.57. For a power series f ∈ 1 + xCp[[x]], we define the Newton polygon in
the same way as for a polynomial. However, we need to be careful about a few things:

(1) We can get infinitely many segments. This poses no problem, we will just have an
infinite polygon.

(2) We could hit infinitely many points on a line. In that case, the polygon will end
with that infinitely long line.

(3) We could arrive at a case where the line we rotate hits no points, but when we rotate
it a little more, it has moved past some points. For instance, when ordp ai = 1 for
each i > 0 and ordp a0 = 0. In this case, we let the slope be the supremum of the
slopes of the lines that are below all these points. (We could also in general have
defined the Newton polygon in this way.)

The following lemma’s all prepare for the p-adic Weierstrass preparation theorem,
which can be seen as a generalization of Theorem 2.54 for power series.

Lemma 2.58. The radius of convergence of f = 1 +
∑∞

i=1 aix
i ∈ 1 + xCp[[x]] is ps,

where s is the supremum of the slopes of the Newton polygon of f .

Proof. Note that ordp aix
i = ordp ai+ i ordp x. But if ordp x > −s, then, since the slopes

of a Newton polygon are increasing towards s, we see that (i, ordp ai+ i ordp x) will grow
arbitrarily high for large i. Hence ordp aix

i →∞ and the power series converges. With
the same argument, if ordp x < −s, ordp aix

i will be negative for large i, so f does not
converge.

Lemma 2.59. Let f = 1 +
∑∞

i=1 aiX
i ∈ 1 + xCp[[x]] with first slope λ1 of its Newton

polygon and let c ∈ Cp be such that λ = ordp c ≤ λ1. Suppose that f converges on
B(pλ+), which by the previous lemma holds when λ < λ1 or when the Newton polygon of
f has more than one segment. Then the Newton polygon of g = (1−cX)f is obtained by
attaching the Newton polygon of f to the line from (0, 0) to (1, λ). Moreover, g converges
on exactly the same set as f .

Proof. We will first reduce the proof to the case where c = 1 and λ = 0: suppose the
lemma holds for c = 1 and let f and g be as above. Then the Newton polygons of
f ′(x) := f(x/c) and g′(x) = g(x/c) are that of f and g, minus the line y = λx and we
see that f ′ and g′ satisfy the lemma with c, λ, λ1 replaced by 1, 0, λ1 − λ. Then we can
apply the lemma for c = 1 and note that g(x) = g′(cx) and f(x) = f ′(cx) and that the
Newton polygons of g(cx) and f(cx) equal the Newton polygons of g(x) and f(x) with
the line y = λx added, to conclude that the lemma holds in the general case.
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We now prove the lemma for c = 1 and λ = 0. Write g(x) = 1 +
∑∞

i=1 bix
i. Then

bi+1 = ai − ai+1, so ordp bi+1 ≥ min(ordp ai, ordp ai+1) with equality when ai 6= ai+1,
which clearly occurs when (i, ordp ai) is a vertex of the polygon of f . So at vertices,
ordp bi+1 = ordp ai and hence the polygons of f and g have the desired shape when the
Newton polygon of f has infinitely many vertices. If not, suppose that λf is the final
slope of f . Since ordp bi+1 ≥ ordp ai, we need to check that g cannot have a slope λg
greater than λf . Suppose it does. Then for some j, ordp bi+1 > ordp ai for all i ≥ j,
which implies that aj = aj+1 = aj+1 = . . ., which contradicts the convergence of f on
B(1). Therefore, in the case of a last segment, their slopes are equal. Since the second
vertex of g is (1, 0), we find that the Newton polygon of g is that of f attached to the
line from (0, 0) to (1, 0). Lastly, g and f converge on the same set by the previous
lemma.

The next step is to try and deduce the orders of the roots of power series from their
Newton polygon.

Lemma 2.60. Let f = 1+xCp[[x]] be a power series with Newton polygon with first slope
λ1 that converges on the closed disc B(pλ1+) and suppose that the first line of this polygon
actually hits a point (i, ordp ai). Both conditions are satisfied when the polygon has more
than one slope. Then there exists an α ∈ Cp such that f(α) = 0 and ordp 1/α = λ1.

Proof. Again we can reduce to the case λ1 = 0. Suppose the lemma holds for λ1 = 0
and let f be as in the lemma. Since λ1 ∈ Q, we may consider π = pλ1 ∈ Qp such that
ordp π = λ1. Then g(x) = f(x/π) satisfies the lemma with λ1 = 0 and we find a root β
as in the lemma. Then α = β/π is the desired root of f .

So we consider λ1 = 0. Since f converges on B(1+), the orders ordp ai → ∞, so we
can define N to be the greatest i for which ordp ai = 0. Also, let fn = 1 +

∑n
i=1 aix

i.
If n ≥ N , Lemma 2.54 implies that fn has precisely N roots αn,1, . . . αn,N in Cp with
ordp αn,i = 0 for each i. We define the sequence (αn) as follows: let α0 = αN,1 and let
αn+1 be the element of {αN+n,1, . . . , αN+n,N} that minimizes |αN+n,i − αn|p.

By the construction of (αn)

|αn+1 − αn|Np ≤
N∏
i=1

|α(n+1),i − αn|p =
N∏
i=1

|1− αn/α(n+1),i|p,

the last equality being true since |αn|p = 1. Now suppose that n ≥ N and β is a zero of
fn+1 unequal to one of the α(n+1),i. Then by definition of N , ordp (1/β) > 0, so |β|p > 1,
hence |1− αn/β|p = 1. So the last product equals |fn+1(αn)|p = |fn+1(αn)− fn(αn)|p =
|an+1α

n+1
n |p = |an+1|p −→ 0. We conclude that (αn) is a Cauchy sequence.

Let α be the limit of (αn). In order to show that 0 = f(α) = limn→∞ fn(α), we
compute |(αi − αin)/(α − αn)|p = |

∑i
j=1 α

i−jαj−1n |p ≤ 1. Since also |ai|p ≤ 1 for each i,
we find that

|fn(α)|p = |fn(α)− fn(αn)|p = |α− αn|p

∣∣∣∣∣
n∑
i=1

ai
αi − αin
α− αn

∣∣∣∣∣
p

≤ |α− αn|p.

We conclude that f(α) = 0, finishing the proof.
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Using the same ideas, we can prove another useful lemma.

Lemma 2.61. Let f = 1+
∑∞

i=1 aix
i ∈ 1+xCp[[x]] converge on a disc including α ∈ Cp,

which is a root of f . If g = 1 +
∑∞

i=1 bix
i = f ·

∑∞
j=1(x/α)j, i.e. f divided by 1−X/α,

then g converges on B(|α|+p ).

Proof. By computing the product, we find that the coefficients of g are bi =
∑i

k=1(1/α)jai−j.
Hence, if again fn = 1+

∑n
i=1 aix

i, then fn(α) = bnα
n and we see that |bnαn|p −→ 0.

The previous lemmas together prove the main theorem of this section.

Theorem 2.62 (p-adic Weierstrass preparation theorem). Suppose f = 1 +
∑∞

i=1 aix
i ∈

1 +xCp[[x]] converges on B(pλ+) and let N be the greatest i such that (i, ordp ai) lies on
an edge of slope ≤ λ. This N always exists, since the convergence is on the closed disc
B(pλ+). Then there exists a power series g = 1 +

∑∞
i=1 bix

i ∈ 1 +xCp[[x]] that converges
and is non-zero on B(pλ+) and a uniquely determined polynomial h ∈ 1 + xCp[x] of
degree N such that f = h · g. Also, the Newton polygon of h coincides with that of f up
to (N, ordp aN).

Proof. We prove this by induction on N . If N = 0, the Newton polygon of f has no
edge of slope ≤ λ. If f had a root α ∈ B(pλ+), then we could combine Lemma’s 2.61
and 2.59 to find that the first slope of the Newton polygon of f had slope − ordp α ≤ λ,
a contradiction. Therefore, h = 1 and g = f work for N = 0.

Now let N ≥ 1 and assume the theorem is true for N − 1 and let λ1 ≤ λ be the first
slope of the Newton polygon of f . By the conditions of the theorem, we may apply
Lemma 2.60 to conclude that f has a root α ∈ Cp with ordp α = −λ1. By Lemma 2.61,
f ′ = f

∑∞
i=0(X/α)n converges on B(pλ1+). Let bi be the coefficients of f ′. Similar to the

previous lemma, we then see that

ordp bi ≥ min(ordp 1/αi, ordp a1/α
i−1, . . . , ordp ai−1/α, ordp ai) ≥ iλ1,

hence the first slope µ of f ′ has µ ≥ λ1. We may now apply Lemma 2.59 to see that f ′

has the same Newton polygon as f without the first segment and that f ′ converges on
B(pλ+).

We conclude that f ′ satisfies the conditions of the theorem for N − 1 and by the
induction hypothesis we then find a h′ ∈ 1 +xCp[x] of degree N − 1 and g ∈ 1 +xCp[[x]]
such that f ′ = h′ · g and g converges and is non-zero on B(pλ+) and h′ has the same
polygon as f ′ up to (N − 1, ordp aN−1). Multiplying by x− α yields

f = (x− α) · f ′ = (x− α) · h′ · g = h · g,

where h = (x − α) · h′. Moreover, h is uniquely determined by its roots since it has
constant coefficient 1.

Remark 2.63. The p-adic Weierstrass theorem can be stated even stronger. Namely, h
and g can be shown to be in K[[x]] if K is a complete subfield of Cp and f ∈ K[x].
However, this is a non-trivial result that (probably) does not easily follow from what we
have done so far.
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Corollary 2.64. If λ is the slope of a segment of length N of the Newton polygon
of f ∈ 1 + xCp[[x]], then there are exactly N roots α ∈ Cp such that f(α) = 0 and
ordp α = −λ.

Theorem 2.65 (Strassmann). Let 0 6= f =
∑∞

i=0 aix
i ∈ Cp[[x]] be a power series that

converges on Zp and choose N ∈ Z≥0 as the largest i such that |ai|p = maxn |an|p. Then
f has at most N roots in Zp.

Proof. Note that ordp aN = max({n | ordp an = minm(ordp am)}) and hence (N, ordp aN)
is the point where the slope starts to be positive for the first time. Thus, the Weierstrass
preparation theorem says together with Theorem 2.54 that f has exactly N zeros in B(1)
and thus at most N in Zp.

Strassmann’s theorem will be a very important tool for tackling Diophantine equa-
tions in Chapter 3. The p-adic Weierstrass preparation theorem has more interesting
consequences, though. For example, unlike in C, entire power series over Cp have the
beautiful property that they behave like polynomials when considering their roots.

Theorem 2.66 (Factorization of entire power series). Any power series f ∈ Cp[[x]] with
f(0) = a0 6= 0 that converges everywhere has countably many roots and

f = a0
∏

α : f(α)=0

(
1− x

α

)
.

Proof. If f is a polynomial, the theorem is clear. Otherwise, we consider f ′ = f/a0. We
conclude from Lemma 2.58 that the slopes of the Newton polygon of f ′ approach infinity.
Now for any λ, we can apply the Weierstrass preparation theorem to find f ′ = hλ · gλ
with the appropriate properties. Let bλi be the coefficients of gλ and consider the first
slope µλ of gλ. Since gλ is non-zero on B(pλ), we conclude from Lemma 2.60 that µλ > λ
and hence µλ →∞ when λ→∞ if the Newton polynomial of gλ actually hits a point.
So if there are infinitely many λ such that gλ has a Newton polygon consisting of just
one segment, this reasoning fails. However, we then have that all (bλi , ordp b

λ
i ) (i > 0) are

on a line with slope µλ. Using Lemma 2.58, we then see, as the radius of convergence
is greater than pλ, that the slopes still approach infinity. In conclusion, all coefficients
converge to 0, such that gλ → 1 as λ→∞. Since any root of f ′ is a root of hλ for some
λ, we see that f equals the infinite product over its roots.

Corollary 2.67. If f ∈ Cp[[x]] is entire, i.e. it converges everywhere, and non-zero on
Cp, then f is constant.

In C, a result like this can never be obtained, since the exponential converges and is
non-zero on the whole of C. Therefore, the lack of convergence of the p-adic exponential
series was already an indirect consequence of the p-adic Weierstrass preparation theorem.
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3 Diophantine equations

Now that we have studied local and global number theory it is time to put our knowledge
to use. Therefore, this chapter will be devoted to solving Diophantine equations. The
only solutions we will be studying in this chapter are integer solutions. Thus, when we
speak of a solution to a Diophantine equation, we actually mean an integer solution.

3.1 Skolem’s method for solving Thue equations

In this section we shall study a method for solving Diophantine equations that was in-
troduced by the Norwegian mathematician Thoralf Skolem (1887-1963). The class of
Diophantine equations we are going to apply this method to are equations of the kind
f(x, y) = 1, where f ∈ Z[x, y] is an irreducible binary form. A binary form is nothing
more than a homogeneous polynomial in two variables, which we will choose to be x
and y. It is important to note that there already exists an algorithm to find all solu-
tions of equations f(x, y) = A, where A ∈ Z \ {0} and f ∈ Z(x, y) is an irreducible
binary form of degree at least 3. Such equations are called Thue equations, after the
Norwegian mathematician Axel Thue (1863-1922), who proved in 1909 that they always
have finitely many (integer) solutions. It may not come as a surprise that Skolem was
actually a PhD student of Thue. In 1968, Alan Baker provided an effective upper bound
on max(|x|, |y|) for solutions of a Thue equation and in 1989, De Weger and Tzanakis
presented an efficient algorithm for finding the solutions of any Thue equation [17].

So if there already exists an algorithm for finding the solutions, why should we study
them again using another method? First of all, the methods of Thue and Baker are
analytical. They make use of Diophantine approximation, which is a theory that studies
the approximation of real numbers by rationals. Skolem’s method, which we will present
in this section, is of an algebraic nature. Secondly, the idea behind Skolem’s method
allows us to solve Diophantine equations that are not easily solved with Thue’s method.
In Section 3.2 for example, we will show that the equation x3 + dy3 = 1 has at most
two solutions (x, y) ∈ Z2 for any d ∈ Z. Such a general result about a class of degree 3
Diophantine equations is difficult to obtain by Thue’s approximation techniques. Fur-
thermore, the Chabauty-Coleman method for finding rational points on curves of genus
g ≥ 2 (see [12]) is inspired by Skolem’s p-adic method. The main theorems of this section
are based on the ideas presented in Proposition 4.5.17 of [2]. We begin this section by
studying binary forms in general.

Lemma 3.1. If f ∈ Q[x, y] is a binary form of degree n such that the degree of f(x, 1)
is n as well. Then f is irreducible if and only if f(x, 1) ∈ Q[x] is irreducible.
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Proof. Firstly, suppose f is irreducible. Then the coefficient for xn is non-zero, so f(x, 1)
has degree n. Suppose that g(x) = f(x, 1) were reducible, say g = h · k with deg h = m
and deg k = n−m. Now let h′ and k′ be the polynomials obtained by adding the power
of y to each monomial such that h′ is homogeneous of degree m and k′ is homogeneous
of degree n−m. Then h′k′ is homogenous of degree n and its coefficient for xiyn−i is the
same as the coefficient for xi in hk, so we conclude that h′k′ = f(x, y). Conversely, if f
were reducible, then a factorization of f includes a factor of x in both factorizations, so
f(x, 1) would be reducible as well.

Since the study of the equation f(x, y) = 1, where f ∈ Z[x, y] is reducible, say
f = g · h, actually corresponds to finding solutions to g(x, y) = ±1 and h(x, y) = ±1,
we may restrict ourselves to irreducible polynomials. The following lemma allows us to
use Dirichlet’s unit theorem, which is the starting point for Skolem’s method.

Lemma 3.2. Let f ∈ Q[x, y] be an irreducible binary form of degree n such that f(x, 1)
is monic of degree n. Then for any a, b ∈ Q, f(a, b) = NK/Q(a − bθ), where θ is a root
of f(x, 1) in C and K = Q(θ).

Proof. Since f is monic, f(x, 1) has degree n. Consider f(x, 1) and let α1, . . . , αn ∈ C
be its n roots. Then we can write f(x, 1) = (x − α1) · · · (x − αn). Using the same idea
as in the proof of Lemma 3.1, we find that f(x, y) = (x−α1y) · · · (x−αny). Let θ = α1

and K = Q(θ). Then by Lemma 3.1, [K : Q] = n and we see that the αi are the Galois
conjugates of θ, so that f(a, b) = NK/Q(a− bθ) for each a, b ∈ Q.

We call a binary form f(x, y) monic, whenever f(x, 1) is monic of the same degree.
We already saw that Pell’s equation had infinitely many solutions. Similarly, we can
now say that any binary form of degree 2 has infinitely many solutions.

Corollary 3.3. Let f(x, y) = x2 + axy+ by2 = 1, where a, b ∈ Z. If f(x, 1) has two real
roots, the Diophantine equation f(x, y) = 1 has infinitely many solutions (x, y).

Proof. Let θ be a root of f(x, 1). By Lemma 3.2 we can rewrite the equation as NK/Q(x−
yθ) = 1, where K = Q(θ). The proof now follows that of Theorem 1.84, where we
concluded the same thing for Pell’s equation.

The following theorem gives a description of the amount of solutions to a special class
of Thue equations of degree 3. In order to avoid writing out all cases that may arise in
detail, we will need the notion of effectively computable. A bound is called effectively
computable when there exists a (finite) algorithm to compute it. In the remaining
theorems of this section, the proofs serve as the desired algorithms.

Theorem 3.4. Suppose that f ∈ Z[x, y] is a monic irreducible cubic binary form such
that f(x, 1) has a negative discriminant. Let θ be the real root of f(x, 1). Also, suppose
that there exists some power m ∈ Z \ {0} such that the fundamental unit ε of K = Q(θ)
has εm = ±1 +p(v0 +v1θ+v2θ

2) =: ±1 +pα with p an odd prime such that ordp(α) ≥ 0.
If f(x, 1) is irreducible over Qp, then there is an effectively computable bound to the
number of solutions of the Diophantine equation f(x, y) = 1.
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Proof. By Lemma 3.2, we can write f(x, y) = NK/Q(x − yθ). Since the discriminant of
f(x, 1) is negative, we know that f(x, 1) ∈ Z[x] has one real and two complex roots.
Thus, Dirichlet’s unit theorem tells us that the unit group of K one fundamental unit ε
of norm 1. Solving f(x, y) = 1 now amounts to finding x, y, k ∈ Z such that x−yθ = εk.
Consider a root of g, which we also call θ by abuse of notation. We consider Qp(θ). By
Corollary 2.43, we can define p as the unique prime ideal in K above p. By Theorem
2.41 and Lemma 2.40, p induces a norm | · |p on Qp(θ) which is equivalent to | · |p.
Suppose there exist an 0 ≤ l < |m| and a k ∈ Z such that x − yθ = εmk+l, which is
equivalent to εl(x− yθ) = εmk.

Remember that ordp(α) ≥ 0. Therefore, since p > 2, ordp(pα) ≥ 1 > 1
p−1 and we can

apply Lemma 2.51 to see that εmk = (1 + pα)k converges as a power series in k for each
k ∈ Zp:

εl(x− yθ) = εmk = (1 + pα)k = expp(k logp(1 + pα)) =
∑
j≥0

cjk
j.

Notice that c0 = 1, c1 = logp(1 + pα) = pα − (pα)2

2
+ (pα)3

3
− . . . ≡ pα (mod p2Zp) and

using Lemma 2.47, we see that cj ≡ 0 (mod p2Zp) for each j ≥ 2. Also, ordp cj → ∞.
Here Zp = {x ∈ Qp(θ) | |x|p ≤ 1}.

Since f(x, 1) is irreducible in Qp[x], 1, θ, θ2 are linearly independent over Qp and we
may collect the coefficients of 1, θ and θ2, so that

εl(x− yθ) =
∑
j≥0

f0,jk
j +
∑
j≥0

f1,jk
jθ +

∑
j≥0

f2,jk
jθ2. (3.1)

Let ni = ordp vi for each i. Since ordp(pr−2/n) ≥ 0 for each r ≥ 2, we see that f0,0 = 1,
f1,0 = f2,0 = 0 and f0,j ≡ pvj (mod pnj+2Zp) for each j. Also, f0,j ≡ 0 (mod pnj+2Zp)
for each j ≥ 2 and ordp fi,j →∞ when j →∞.

Firstly, as a potential shortcut, suppose that ni = 0 for each i and that there do
not exist (x, y) ∈ Z2 that solve f(x, y) = 1 such that εl(x − yθ) = a0 + a1θ + a2θ

2,
where ai ≡ 0i (mod pZp) for each i. Suppose that ai 6≡ 0i (mod pZp). We can then
compare the coefficients for θi on the left and right hand side of 3.1 to obtain that∑

j fi,jk
j = ai 6≡ 0i (mod pZp). Since fi,j ≡ 0 (mod pZp) for j ≥ 0 and fi,0 = 0i,

a0 6≡ 0 (mod pZp), we can apply Strassmann’s theorem with N = 0 to find that such a
k does not exist.

Secondly, we consider the general case. We again write εl(x− yθ) = a0 + a1θ + a2θ
2.

Note that each ai is a linear expression in x and y. If one ai is constant, i.e. does not
depend on x and y, we can collect the coefficients of θi in 3.1. Since ordp fi,j →∞ when
j → ∞, there exists an N to apply Strassmann with and this N can be computed by
finding the values of the coefficients. Since the power series we consider does not depend
on (x, y), we find at most N solutions to f(x, y) = 1 that correspond to this value of l.
If no ai is constant, we know at least that {1, a0, a1, a2} is a Q-linearly dependent set in
the Q-vector space spanned by 1, x, y. Therefore, we can find βi ∈ Q such that

β0a0 + β1a1 + β2a2 = β3.

56



If βi 6= 0 for each i ∈ {0, 1, 2}, we consider the Q-basis

B =

{
1,

1

β0β1
− θ

β1
,− 1

β0β2
+
θ2

β2

}
for Q(θ). In this basis, the coefficient of εl(x− yθ) for 1 is equal to β3/β0. Since β3/β0 is
independent of the values of x and y, we may collect the coefficients for 1 in the basis B
on both sides of 3.1. Again, since ordp cj grows to infinity, we know that we can apply
Strassmann for some N , which we can compute by calculating the coefficients explicitly.
Since the power series we constructed is independent of (x, y), this gives at most N
solutions to f(x, y) = 1 that correspond to this value of l. If βi = 0 for one i ∈ {0, 1, 2},
we can construct an analogous basis and do the same. The case that two βi are 0 is the
case where one αi is constant and has already been dealt with.

The above algorithm works for each l ∈ {0, 1, 2} and hence results in a computable
upper bound for the amount of solutions of f(x, y) = 1.

Keeping the notation of the previous theorem, note that the powers of the fundamental
unit that are multiples of p are most likely to be of the form ±1 + p(v0 + v1θ + v2θ

2),
since the coefficients p arise naturally from Newtons binomium. Moreover, Lemma 1.56
ensures us that we can find such a power for every prime p, namely p3 = |N(p)|. This
draws the question whether we might always be able to choose our prime p in such a
way that f is irreducible in Qp[x]. Unfortunately, there exist examples of polynomials
that are reducible in Qp[x] for every prime p, while still being irreducible over Q. See
[8] for such examples.

However, such counterexamples only exist for polynomials of composite degree, not for
polynomials of prime degree. This is a consequence of Chebotarev’s Density Theorem.
The formulation and proof of this theorem can be found in [11]. We formulate a corollary
of Chebotarev’s Density Theorem that is sufficient for our purposes.

Theorem 3.5. Suppose f ∈ Z[x] is irreducible and consider the Galoisgroup G of f
over Q as a subset of Sn. If G contains a permutation with cycle pattern (n1, . . . , nk),
then there are infinitely many primes p such that f (mod p) has a factorization into
irreducibles of degrees n1, . . . , nk in Fp[x].

This allows us to discard the conditions of Theorem 3.4.

Theorem 3.6. Suppose that f ∈ Z[x, y] is a monic irreducible cubic binary form with
negative discriminant. Then there exists an effectively computable bound to the number
of solutions of the Diophantine equation f(x, y) = 1.

Proof. Since the discriminant of f is negative, its Galois group must be S3. The group
S3 contains a cycle of length 3, so by Theorem 3.5, there exists a prime p 6= 2 such that
f (mod p) is irreducible in Fp[x]. We can find this prime by checking the irreducibility
of f (mod q) for all primes q, starting at 3. Now f is irreducible over Qp as well. Let θ
be a root of f(x, 1) and K = Q(θ) with fundamental unit ε. By Lemma 1.56, εp

3
is of

the desired form. Now we can apply Theorem 3.4.
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Let us apply the proof of Theorem 3.4 to two specific examples. In both examples,
we need the value of the discriminant of the number field. There exist very effective
methods for computing these. One of these can be found in chapter 3 of [16]. I have
used Mathematica to do the computations.

Proposition 3.7. The only solutions to the Diophantine equation f(x, y) = x3 +6xy2−
y3 = 1 are (x, y) = (1, 0), (x, y) = (0,−1) and (x, y) = (1, 6).

Proof. Firstly, f(x, 1) = x3 + 6x − 1 has no roots (mod 5) and is hence irreducible in
Q[x]. Moreover, f(x, 1) has no roots (mod 9) and is hence irreducible in Q3[x] as well.
Also, the discriminant ∆(f) = −4 · 63 − 27 < 0. Let θ be a root of f(x, 1). Since the
discriminant of Q(θ) is −891, we can apply Theorem 1.82, to compute that a unit ε is a
fundamental unit when 1 < ε <∼ 35.9. We find that ε = −θ is a unit with norm 1 and
1/ε ∼ 6, making 1/ε and hence ε a fundamental unit. Since ε3 = 1 − 6θ, we can apply
Theorem 3.4 with p = 3. Let p be the unique ideal in Q(θ) above 3. We compute that

ε0(x− yθ) = x− yθ,
ε1(x− yθ) = −xθ + y2θ2 and

ε2(x− yθ) = −y + 6yθ + xθ2.

In the notation of Theorem 3.4, α = −2θ and v0 = 0, v1 = −2, v3 = 0. We compute
that

exp3(k log3(1− 6θ)) ≡ 1−
(

6θ − 62

2
θ2 − 2 · 62θ3

)
k +

62

2
θ2k2 − 2 · 62θ3k3 (mod 33Zp).

Since the coefficient of x − yθ for θ2 is constant and equal to 0, we can compare the
coefficients for θ2 to find that 0 =

∑
j≥0 f2,jk

j, where f0 = 0, f1 6≡ 0 (mod 33Z3), f2 6≡
0 (mod 33Z3) and fj ≡ 0 (mod 33Zp) for j ≥ 3. Therefore, we can apply Strassmann
withN = 2 to find at most two solutions for l = 0. Since (x, y) = (1, 0) and (x, y) = (1, 6)
are solutions corresponding to l = 0 with respectively k = 0 and k = 1, they are all.
Now we consider l = 1. The coefficient for 1 of εl(x− yθ) is constant and equal to 0 and
we see that we can collect the coefficients for 1 and apply Strassmann with N = 0 to find
no solutions for this l. Lastly, we check l = 2. We see that (x, y) = (0,−1) is a solution
corresponding to k = 1. In order to prove that this is the only one, we write a0 = −y,
a1 = 6y, a2 = x. We see that a1 = −6a0. In the basis B = {1, θ−1/6, θ2}, the coefficient
of ε2(x−yθ) for 1 is equal to 0. The constant coefficient of exp3(k log3(1−6θ)) in the new
basis is a power series

∑
j≥0 bjk

j with b0 = 1, b1 ≡ 1 (mod 3Z3) and bj ≡ 0 (mod 3Z3)
for j ≥ 2. Therefore, we can apply Strassmann with N = 1 to this power series to
conclude that (0,−1) was indeed the only solution for l = 2.

Proposition 3.8. The only solutions to the Diophantine equation x3 + 2y3 = 1 are
(x, y) = (1, 0) and (x, y) = (−1, 1).

Proof. Let f(x, y) = x3 + 2y3. Then f(x, 1) ∈ Z[x] is Eisenstein with p = 2, hence
irreducible. We also see that f(x, 1) has one real and two complex roots. Since x3 + 2
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has no roots modulo 9, it is irreducible over Q3 as well. We want to apply Theorem 3.4
with p = 3. Let θ be a third root of 2 and p the unique ideal in Q(θ) above 3. We
can check that ε = −1 − θ is a unit in the ring of integers of Q(θ). The discriminant
of Q(θ) is −108. Applying Theorem 1.82, we find that ε is a fundamental unit when
1 < ε <∼ 7.1. Since 1/ε ∼ 3.8, 1/ε is a fundamental unit and ε as well. We compute
that

ε3 = (−1− θ)3 = 1− 3θ − 3θ2,

so Theorem 3.4 applies with p = 3. We compute that

ε0(x− yθ) = x− yθ,
ε1(x− yθ) = −x− (y − x)θ + yθ2 and

ε2(x− yθ) = −x− 2y + (y − 2x)θ + (2y − x)θ2.

We see that the coefficient of exp3(k log3(1+3θ−3θ2)) for θ2 is equal to −3k (mod 32Z3).
Therefore, we can apply Strassmann with N = 1 to the power series obtained for the
coefficient of θ2 to find at most one solution for l = 0. Since (1, 0) is such a solution
with k = 0, it is the only one. For l = 1, we notice that ε1(x − yθ) 6≡ 1 (mod 3Zp),
regardless of the values of x and y. Thus, we find no solutions for this l. Lastly, we
consider l = 2. Since −3(−x − 2y) + 4(y − 2x) − 5(2y − x) = 0, we consider the basis
B = {1,− 1

12
+ 1

4
θ,− 1

15
− 1

5
θ2}. In this basis, ε2(x− yθ) has a coefficient for 1 equal to 0.

Also, we can compute that (mod 32Zp) we have

exp3(k log3(1−3θ−3θ2)) ≡ 1−(3θ+3θ2)k = 1−12

(
− 1

12
+

1

4
θ

)
k+15

(
− 1

15
− 1

5
θ2
)
k.

Thus, we can apply Strassmann with N = 1 to the power series obtained by comparing
the coefficients for 1 to find at most one solution for l = 2. Since (x, y) = (−1, 1) is a
solution corresponding to l = 2 and k = 0, it is the only one.

Note that the proof of Theorem 3.4 explicitly uses the fact that the degree of f(x, 1) is
at least 3. A similar proof would hence not work for monic irreducible forms f of degree
2 such that f(x, 1) has two real roots. Of course, it could never have worked because
of Corollary 3.3. We can, however, proof an analogous statement in the degree 4 case.
First we can find a condition on f using Theorem 3.5.

Lemma 3.9. Suppose that f(x, y) ∈ Z[x, y] is a monic irreducible binary form of degree
4 such that f(x, 1) has four non-real roots. Then there exists a prime number p 6= 2 such
that there is an irreducible factor g of f(x, 1) in Qp[x] of degree ≥ 3 if and only if the
Galois group of f(x, 1) is not the Klein group V4.

Proof. Suppose that the Galois group of f(x, 1) is not V4. From Galois theory, we know
that the Galois group of f must then be C4, D4, A4 or S4, up to inner automorphisms.
All of these groups contain either a cycle of length 4 or a cycle of length 3, so we conclude
from Theorem 3.5 that infinitely many such primes exist.

For the converse, suppose that g is an irreducible factor of f(x, 1) in Qp[x] of degree
≥ 3 for a prime p > 2. We can use Hensel’s Lemma to find that g (mod p) is also an
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irreducible factor of f (mod p) in Fp[x]. If p divides the discriminant of g, then the
derivative g′ = 0. Because g is irreducible, g divides φ(x) = xp

n −x, say φ = g · q, where
n equals 3 or 4 and q ∈ Fp[x]. But then the derivative φ′ = q′ · g, so g divides both φ
and φ′, a contradiction since the degree of g is greater than 1. Therefore, p does not
divide the discriminant of f . Then the fact that the degree of g is ≥ 3 implies that we
can find a cycle of length 3 or 4 in the Galois group of f(x, 1) (see [6] page 36). Such a
cycle does not exist in V4.

Theorem 3.10. Suppose that f(x, y) ∈ Z[x, y] is a monic irreducible binary form of
degree 4 such that f(x, 1) has four non-real roots and the Galois group of f(x, 1) is not
V4. Then there exists an effectively computable bound for the number of solutions to the
Diophantine equation f(x, y) = 1.

Proof. By the previous theorem, there exists a prime p > 2 and an irreducible factor
g of f(x, 1) in Qp[x] of degree ≥ 3. Let θ be a root of f(x, 1) and using Lemma
1.56, take m ∈ Z \ {0} such that the fundamental unit ε of K = Q(θ) has εm =
±1 + p(v0 + v1θ + v2θ

2 + v3θ
3) := 1 + pα with each vi ∈ Qp and ordp α ≥ 0. By abuse

of notation, we also write θ for a root of g. Note that s + t − 1 = 1, so we again have
one fundamental unit. By Theorem 2.42, we can find a unique prime ideal p above p in
K that is equivalent to the p-adic norm we find from the inclusion of Q(θ) into Qp(θ).
The proof is now analogous to that of Theorem 3.4, where we only need to distinguish
the cases [Qp(θ) : Qp] = 3 and [Qp(θ) : Qp] = 4. In both cases, we can use the fact
that any set of four or five elements of the Q-vector space spanned by {1, x, y} is linearly
dependent over Q. The only other difference with the degree 3 case is that N(−1) = N(1)
since the degree is 4 and that we can have a third or fifth root of unity in Q(θ). So
instead of considering εl(x+ yθ), we consider (−1)iεl(x+ yθ) when there are no roots of
unity of order > 2 in Q(θ), (−1)iζj3ε

l(x+yθ) when ζ3 ∈ Q(θ) is a third root of unity and
(−1)iζk5 ε

l(x − yθ) when ζ5 ∈ Q(θ) is a fifth root of unity, where 0 ≤ i ≤ 1, 0 ≤ j ≤ 2,
0 ≤ k ≤ 4 and 0 ≤ l < m.

In the below propositions in this section, we deal with equations of degree larger than
3. For number fields of this degree, we did not provide a way to find the fundamental
unit, as was done in Theorem 1.82. Instead, we rely on the fact that algorithms to
find the fundamental units exist and have been implemented in computer software, like
Mathematica.

Proposition 3.11. The only solutions for the Diophantine equation f(x, y) = x4 +
4x3y + 2x2y2 − 4xy3 + 3y4 = 1 are (x, y) = (1, 0) and (x, y) = (−1, 0).

Proof. One can check that θ =
√

2 +
√
−2− 1 is a root of f(x, 1). Let K = Q(θ). Also,

one can check that the fundamental unit of K is equal to ε = 13 + 10θ + 2θ2 and that
ε2 = 157+276θ+144θ2+24θ3 = 1+3(52+92θ+48θ2+8θ3). Therefore, we take m = 2 and
p = 3. From θ4+4θ3+2θ2−4θ = −3, we find that min(ord3(θ), . . . , ord3(θ

4)) = 1, which
implies that ord3(θ) = 1/4. Since the ramification index of the extension Q3 ⊂ Q3(θ)
is e = 4 and we know that e ≤ [Q3(θ) : Q3] ≤ 4, we conclude that [Q3(θ) : Q3] = 4, so
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that f(x, 1) is irreducible in Q3[x] and hence in Q[x] as well. Also, it is not difficult to
see that K contains no third of fifth root of unity. We now compute that

±ε0(x− yθ) = ±(x− yθ),
±ε1(x− yθ) ≡ ±(−θ − θ2 − θ3) (mod 3Z3[θ]),

±ε2(x− yθ) ≡ ±(x+ y + (x− y)θ) (mod 3Z3[θ]),

±ε3(x− yθ) ≡ ±((1 + y)θ − θ2 + yθ3) (mod 3Z3[θ]).

For l = 1 and l = 3, the coefficient for 1 is constant and equal to 0 (mod 3Z3[θ]), so we
can always apply Strassmann with N = 0 to the power series obtained from comparing
the coefficient of 1. This yields no solutions for l = 1 and l = 3. For l = 2, notice that
we can only achieve that x + y ≡ 1 (mod 3Z3) and x− y ≡ 0 (mod 3Z3) when (x, y) ≡
(−1,−1) (mod 3). However, this contradicts the restriction that f(x, y) ≡ 1 (mod 3).
Therefore, we can always apply Strassmann with N = 0 to one of the coefficients and
we do not find any solutions for l = 2 either.

Lastly, we consider l = 0. Comparing the coefficient for θ3 gives, in the notation
of Theorem 3.4,

∑
j f3,jk

j = 0, where f3,0 = 0, f3,1 ≡ 24 (mod 32Z3) and f3,j ≡
0 (mod 32Z3) for j ≥ 2. Thus, applying Strassmann with N = 1 gives at most one
solution. This goes for both the plus and the minus case, so we find at most two
solutions to the Diophantine equation f(x, y) = 1. Since (x, y) = (±1, 0) are solutions
corresponding to l = 0 and k = 0, they must be all.

Now that we have seen how the idea works for number fields with one fundamental
unit, we can start to think about how this generalizes to arbitrary amounts of funda-
mental units. A difficulty that arises is that we would then like to consider p-adic power
series in multiple variables x1, . . . , xr. However, we did not study such power series in
this thesis. Therefore, we will restrict ourselves to the easiest case, in which we are still
able to work with one variable.

Theorem 3.12. Suppose that f(x, y) ∈ Z[x, y] is an irreducible monic binary form
of degree n and that θ is a root of f(x, y). Let {ε1, . . . , εr} be the set of all (distinct)
fundamental units of K = Q(θ). Also, assume we have m1, . . . ,mr ∈ Z and an odd prime
p such that for each 0 ≤ i ≤ k we have that εmi

i = ±1+p(vi,0+vi,1θ+. . .+vi,n−1θ
n−1) with

each vi,j ∈ Zp and moreover d = [Qp(θ) : Qp] ≥ 3 and there exists k ≥ 2 and 1 ≤ i ≤ r
such that vi,k 6≡ 0 (mod pZp). Suppose that W is the (finite) set of roots of unity in K
and for each w ∈ W and 0 ≤ li < |mi|, where 1 ≤ i ≤ r and not all li equal to 0 and
w = ±1 simultaneously, we have that wεl11 · · · εlrr (x− yθ) = a0 +a1θ+ . . .+ad−1θ

d−1 with
a0 6≡ 1 (mod pZp) or ai 6≡ 0 (mod pZp) for some i ≥ 1. Then the only solutions to the
Diophantine equation f(x, y) = 1 are (x, y) = (±1, 0) when n is even and (x, y) = (1, 0)
when n is odd.

Proof. Again, we can write f(x, y) = NK/Q(x − yθ). Define αi = vi,0 + vi,1θ + . . . +
vi,n−1θ

n−1 for each i. By the same reasoning as in the proof of Theorem 3.4, (1 + pαi)
ki

converges in Qp(θ) as a power series in ki. Also, let p be the unique ideal in K above p.
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If we have a solution (x, y), then there exist w ∈ W and 0 ≤ li < |mi| such that

wεl11 · · · εlrk (x− yθ) = (1 + pα1)
k1 · · · (1 + pαk)

kr . (3.2)

Since for each i, (1 + pαi)
ki = 1 + pzi with zi ∈ Zp[θ], we find that the right-hand

side of 3.2 can be written as 1 + pz with z ∈ Zp[θ]. However, by assumption, the left-
hand side cannot, unless 0 = l1 = . . . = lr and w = ±1. Consider i and k such that
vi,k 6≡ 0 (mod pZp). Then we write∏

m6=i

(1 + pαm)km = 1 + pwi where wi ∈ Zp

to conclude that the right-hand side of 3.2 is equal to 1+pzi+p
2wizi. Comparing the co-

efficients for θk, we get the equation 0 = ±
∑

j gjk
j
i , where g0 = 0, g1 ≡ pvi,k (mod p2Zp)

and gj ≡ 0 (mod p2Zp) for j ≥ 2. Thus, we may apply Strassmann with N = 1 to find
at most one solution for this power series. Taking w = 1, we see that ki = 0 gives this
solution with (x, y) = (1, 0). In the case that w = −1, k1 = 0 yields (x, y) = (−1, 0) as
the only possibility. This is a solution to our Diophantine equation if and only if n is
even.

Despite the many assumptions we need to do to prove Theorem 3.10, the implications
it has are certainly not trivial, as the following example illustrates.

Proposition 3.13. The trivial solution is the only solution for the Diophantine equation
f(x, y) = x5 − 2y5 = 1.

Proof. The polynomial f(x, 1) is Eisenstein with p = 2 so irreducible in Q[x]. Also,
f(x, 1) has one real and four complex roots, so by Dirichlet’s unit theorem there are two
fundamental units, which turn out to be ε1 = θ − 1 and ε2 = 1 + θ + θ3. Computing
their fifth powers yields

ε51 = 1 + 5θ − 10θ2 + 10θ3 − 5θ4 = 1 + 5(θ − 2θ2 + 2θ3− θ4)
ε52 = 151 + 105θ + 100θ2 + 95θ3 + 65θ4 = 1 + 5(30 + 21θ + 20θ2 + 19θ3 + 13θ4),

where θ is a root of x5 − 2. We would like to apply Theorem 3.12 with p = 5. One
can check that f(x, y) is irreducible over Z/25Z and hence over Q5 as well. Also, the
only roots of unity in Q(θ) are W = {±1}. Using a programme like Mathematica,
one can check that the 25 different expressions εl11 ε

l2
2 (x − yθ) are never of the form

a0 + a1θ + . . . + a4θ
4, where a0 ≡ 1 (mod 5Z5) and ai ≡ 0 (mod 5Z5) for 1 ≤ i ≤

4. In order to see this, note that all solutions of x5 − 2y2 ≡ 1 (mod 5) are (x, y) ∈
{(1, 0), (−1,−1), (0, 2), (2,−2), (−2, 1)}. Also, we see that v1,2 = −2 6≡ 0 (mod 5Z5).
All conditions of Theorem 3.12 are now satisfied, so we conclude that (x, y) = (1, 0) is
the only solution to the Diophantine equation f(x, y) = 1.

Note that Theorem 3.12 can also be applied to obtain Corollary 3.11.
In this section, we have applied Skolem’s method to three specific kinds of Thue

equations. It is possible to generalize Skolem’s method in such a way that a general proof
for the finiteness of solutions of Thue equations is obtained. Borevich and Shafarevich
extended Skolem’s ideas using p-adic manifolds to obtain the following result.
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Theorem 3.14. If f ∈ Z[x, y] is an irreducible form of degree at least 3 such that f(x, 1)
has at least one complex root and c ∈ Z \ {0}, then the equation f(x, y) = c has a finite
number of integer solutions.

A proof can be found in [1]. The theory behind the proof goes beyond the scope of
this thesis. We can describe the intuition behind the condition that f(x, 1) needs to
have at least one complex root. Suppose that θ is a root of f(x, 1) and that we have r
fundamental units in the ring of integers of K = Q(θ). Applying the same ideas as in
Theorem 3.4, we get finitely many equations similar to (3.1) that look like this:

p(x, y) =
∑
ji≥0

f0,j1,...,jrk
j1
1 · · · kjrr +

∑
ji≥0

f1,j1,...,jrk
j1
1 · · · kjrr θ+. . .+

∑
ji≥0

fn−1,j1,...,jrk
j1
1 · · · kjrr θn−1,

where ki is a variable power of the i-th fundamental unit εi and p is a polynomial in
Q[θ][x, y]. If we write p(x, y) = a0 + a1θ + . . . + an−1θ

n, this amounts to solving the n
equations

∑
ji≥0 fm,j1,...,jrk

j1
1 · · · kjrr = am, where m ∈ {0, . . . , n−1} for the r+2 variables

x, y, k1, . . . , kr. Therefore, naively, one would expect such a system of equations to have
finitely many solutions only when r + 2 ≤ n, or r + 1 ≤ n − 1. This is only the case
when f(x, 1) has at least one complex root.

3.2 Skolem’s equations x3 + dy3 = 1

In this section we prove a theorem by Skolem on the Diophantine equations x3 +dy3 = 1
for d ∈ Z and we consider some of its implications. The idea behind the proof of the
theorem is similar to the idea behind the theorems in Section 3.1. It relies on p-adic
power series and Strassmann’s Theorem. We present a proof inspired by [2].

Theorem 3.15 (Skolem). For any d ∈ Z there exists at most one non-trivial solution
(x, y) to the Diophantine equation f(x, y) = x3 + dy3 = 1.

Proof. First we deal with the case d = ±1. Since we can replace y by −y in a solution,
the cases d = 1 and d = −1 are equivalent, so we consider d = −1. Then x3 − y3 =
(x − y)(x2 + xy + y2) = 1, so we have that x − y = x2 + xy + y2 = ±1. Substituting
x = y ± 1 in the quadratic part, we find that 3y(y ± 1) + 1 = ±1. Looking modulo
3, we find 1 ≡ ±1 (mod 3), so we get 3y(y + 1) = 0, giving y = 0 or y = −1. Hence
(x, y) ∈ {(1, 0), (0,−1)} are all the solutions. Now assume d 6= ±1. We may suppose
that d is cube-free. Otherwise, we could write d = ac3 with a cube-free or equal to ±1.
If (x, y) is a solution to x3 + dy3 = 1, then (x, cy) is a solution to x3 +ay3 = 1, so we are
left with the cube-free case. Therefore, if θ is a root of x3 − d and K = Q(θ), we have
that [K : Q] = 3. By Lemma 3.2 and because −θ is a root of x3 + d, we can write the
equation as f(x, y) = NK/Q(x+ yθ) = 1.

Now suppose we have two units of x1+y1θ and x2+y2θ of K, both with norm 1. Since
f(x, 1) has two complex and one real root, we have one fundamental unit ε by Dirichlet’s
unit theorem. We may assume that NK/Q(ε) = 1, otherwise we take −ε. Hence there
exist m1,m2 ∈ Z such that x1 + y1θ = εm1 and x2 + y2θ = εm2 . Suppose that (x1, y1)
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and(x2, y2) are not the trivial solution, i.e. m1,m2 6= 0. Then we can define N = m1/m2.
Also, we can simplify m1/m2 such that m1/m2 = n1/n2 with gcd(n1, n2) = 1 and we
may suppose that 3 - n2; otherwise we consider n2/n1. This means that N ∈ Z3. Since
one of n1, n1−n2, n1 +n2 is divisible by 3, we may write N = 3M + r with M ∈ Z3 and
r ∈ {0, 1, 2}. We compute that

(x1 + y1θ)
3 = 1 + 3x1y1(x1θ + y1θ

2) =: 1 + 3α.

Therefore, we can use Lemma 2.51 to write

x2 + y2θ = (1 + 3α)M(x1 + y1θ)
r

where (1 + 3α)M = exp3(M log3(1 + 3α)) =
∑

j≥0 cjM
j is a power series in M . Just like

in the proof of Theorem 3.4, we find that c0 = 0, c1 = 3α + 32x21y
2
1A for A ∈ Z3[θ] and

cj ∈ 32x21y
2
1Z3[θ]. Hence we find that

x2 + y2θ = (1 + 3Mx1y1(xθ + yθ2) + 9Mx2y2C)(x+ yθ)r for some C ∈ Z3[θ].

If we write C = C0 + C1θ + C2θ and collect the coefficients for θ2 in this expression, we
find that

0 =


3Mx1y

2
1(1 + 3x1C2) if r = 0

3Mx21y
2
1(2 + 3(y1C1 + x1C2)) if r = 1

y21(1 + 9Mx21(x1 + C2x
2
1 + 2C1x1y1 + C0y

2
1)) if r = 2.

Since y1 6= 0, we can divide by y2 in the case r = 2 to obtain a contradiction modulo 3.
Since d 6= ±1 there are no solutions to x3 + dy3 = 1 with x = 0, so x1 6= 0. Therefore,
in the other cases, we can divide by 3Mx1y

2
1 (r = 0) and 3Mx21y

2
1 (r = 1) when M 6= 0

to again obtain a contradiction modulo 3. If M = 0 and r = 0, we have that N = 0
and hence n2 = 0, a contradiction. Hence we must have M = 0 and r = 1, which gives
N = 1 and n1 = n2, implying that (x1, y1) = (x2, y2) as desired.

Example 3.16. The Diophantine equation x3 + 2y3 = 1, which we solved in Corollary
3.8, can now be solved in a much easier way. We see that (1, 0) and (−1, 1) are two
solutions, so by Theorem 3.15, they are the only ones. We can do the same for d = 7,
since (2,−1) is a non-trivial solution of x3 + 7y3 = 1. In general, for any n ∈ Z>0, the
Diophantine x3 + (n3−1)y3 = 1 has as the non-trivial solution the pair (x, y) = (n,−1).

This example demonstrates the power of Theorem 3.15 and therefore of Skolem’s p-
adic method for solving Thue equations, which now allows us to solve an entire class of
Diophantine equations in a single blow.

The Russian mathematician Boris Delone (1890-1980) proved the following theorem,
which shows exactly when the non-trivial solution mentioned in Theorem 3.15 exists for
positive cube-free d ∈ Z. When Delone proved his theorem, he was not (yet) familiar
with p-adic numbers, so his approach could be considered ad hoc. However, from mod-
ern perspective, the ideas behind his approach show similarities with Skolem’s p-adic
method.
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Theorem 3.17 (Delone). For d ∈ Z>0 cube-free, the Diophantine equation x3 +dy3 = 1
has a non-trivial solution if and only if the fundamental unit ε of the ring Z[d1/3] such
that 0 < ε < 1 is of the form x+ yd1/3 wity x, y ∈ Z.

Delone’s proof can be found in [3]. Note that for any fundamental unit ε, one of the
fundamental units ε,−ε, ε−1 and −ε−1 lies in the interval (0, 1) ⊂ R. Also note that
Z[d1/3] is an order by the remarks above Theorem 1.80 and that this theorem shows the
existence of the fundamental unit ε in Z[d1/3].
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Reflection

In one of the first meeting with my supervisor-to-be, I was given three possible subjects
for my bachelor’s thesis. I had come to Sander Dahmen and Rob de Jeu with the request
to help me to find a subject for my bachelor’s thesis that “had something to do with
number theory”. The first options they came up with were

1. Diophantine equations,

2. p-adic numbers and p-adic zeta functions and

3. dessins d’enfants.

The p-adic zeta functions are a p-adic generalization of the Riemann zeta function. More
information about p-adic zeta functions can be found in [9]. A dessin d’enfant (French
for “ children’s drawing”) is a graph with vertices alternatingly coloured black and white
that can be assigned to holomorphic functions from a Riemann surface to the Riemann
sphere.

Before doing any research on these subjects, Diophantine equations would have been
my first choice. This, because I have always been more than others interested in the
integers and their properties. I believe that in its essence, mathematics is a theory
that has been developed in order to understand the properties of the natural numbers.
Therefore I first looked at the book Diophantine equations by Louis Mordell [14], but I
returned it to the library after just half an hour of scanning its content. Mordell presents
in his book many ad hoc solutions to Diophantine equations and many of these solutions
involve (large amounts of) calculations. I, however, preferred to be working in a more
abstract and algebraic setting.

Secondly, I scanned p-adic Numbers, p-adic Analysis and Zeta-Functions by Neil
Koblitz [9]. On one hand, I became enthusiastic about the idea of the p-adic numbers
and because of my interest in the integers, I liked the idea of generalized zeta-functions.
On the other, I thought that a choice for option 2 would result in too many p-adic
analysis. Lastly, I read about dessins d’enfants, which I also found an interesting topic.

In the end, I am happy that dr. Dahmen proposed a more theoretic approach towards
solving Diophantine equations that also required the knowledge of the p-adic numbers.
I was immediately convinced by this combination of subjects, because it allowed me to
immerse myself into new mathematical theory, while it also gave me the opportunity to
do research on Diophantine equations myself.

In retrospect, I think that I made an excellent choice, because I very much enjoyed
writing this thesis. I studied most of the algebraic number theory from [16], which is
a very well written and accessible textbook for bachelor students who have had a first
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course in ring and field theory. I would very much advise this book to any third-year
bachelor student with an interest in algebra or number theory. Thanks to this book, I
was able to study all the number theory that I needed relatively quickly and without
any major problems.

For studying the p-adic number theory, I used a combination of [9] and [7]. In [9],
Koblitz presents a short and direct path towards the p-adic Weierstrass preparation
theorem. At times, however, it was more difficult to read, often because proofs were
left to the reader. In addition, I used [7] to fill the gaps and to provide additional
information. Gouvea explains the p-adic theory in [7] in a more elaborate way, which
makes the book more accessible. However, I found that this went at the expense of the
general overview of the theory. Together, the books were an excellent way to study the
p-adic numbers and I encountered no major difficulties while studing this piece of the
theory.

Furthermore, even though Chapter 3 is based on [2], I formulated and proved all
the lemma’s and theorems in Section 3.1 myself. Despite that fact that it was much
harder than studying from textbooks, I enjoyed doing some mathematical research my-
self. Once, after having written about seven pages of Section 3.1, I discovered a crucial
error in all the proofs and examples I had written down, which caused me to rewrite
most of this section. In spite of the time this cost, it was satisfying to be presented with
a problem and to be able to solve it all by yourself.

Lastly, I would like to thank my supervisor dr. Sander Dahmen for all of his help
during this project. I am especially greatful for the way he encouraged me to investigate
many loose ends into detail, even though that resulted in a lenghty thesis for him to
read.
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Populaire samenvatting

De stelling van Pythagoras is waarschijnlijk de meest bekende wiskundige stelling van
allemaal. Iedere vwo-leerling leert tegenwoordig al in de tweede klas dat voor een
rechthoekige driehoek met zijden a, b en c, waar c de lange zijde is, geldt dat

a2 + b2 = c2.

Het klassieke voorbeeld van zo’n driehoek heeft zijden met lengtes 3, 4 en 5. Inderdaad,
32+42 = 52. Misschien ben je ooit ook wel een voorbeeld tegengekomen, waar de driehoek
zijden had met lengtes 5, 12 en 13. Nu kun je je afvragen: voor welke gehele getallen
a, b en c geldt er nog meer dat a2 + b2 = c2? Dit is een voorbeeld van een diofantische
vergelijking, een vergelijking in meerdere variabelen met gehele coëfficiënten waar je
gehele oplossingen voor zoekt. De variabelen in de stelling van Pythagoras zijn a, b en c
en de cöfficiënten voor al die variabelen zijn gelijk aan 1.

Een ander voorbeeld van een diofantische vergelijking is nu snel gevonden: a3+b3 = c3.
We zien meteen dat er gehele oplossingen zijn wanneer a, b of c gelijk is aan nul. Andere
oplossingen lijken minder gemakkelijk te vinden. In 1621 viel het de Franse wiskundige
Pierre de Fermat op dat voor iedere gehele n groter dan 2 de vergelijking an + bn = cn

geen gehele oplossingen leek te hebben. Dit vermoeden werd bekend als ‘de Laatste
Stelling van Fermat’ en sindsdien hebben velen geprobeerd het te bewijzen. Dit lukte
pas in 1995, toen de Brit Andrew Wiles een bewijs presenteerde.

Dit verslag staat in het teken van het ontwikkelen van een methode die het mogelijk
maakt om een speciaal soort diofantische vergelijkingen op een relatief eenvoudige manier
op te lossen. Deze methode maakt gebruik van wiskundige theorie die ook Andrew Wiles
gebruikte voor zijn bewijs van de Laatste Stelling van Fermat.

De algebräısche getaltheorie is één van deze theorieën en misschien wel de meest
fundamentele. Deze wordt beschreven in Hoofdstuk 1. Kort gezegd is getaltheorie
de studie van de gehele getallen . . . ,−3,−2,−1, 0, 1, 2, 3, . . .. Aangezien diofantische
vergelijkingen gekarakteriseerd worden door gehele coëficienten en we op zoek zijn naar
gehele oplossingen, is het niet verwonderlijk dat we eerst wat meer over de gehele getallen
willen weten. In het bijzonder bestudeert de getaltheorie de breuken Q, de verzameling
van alle getallen a

b
, waar a en b gehele getallen zijn. De verzameling breuken vormt een

lichaam, wat betekent dat de som en het product van breuken nog steeds een breuk is
en dat er voor iedere breuk a

b
een additieve inverse −a

b
en een multiplicatieve inverse b

a

bestaat. Door aan Q een getal toe te voegen dat geen breuk is (bijvoorbeeld wortel twee)
verkrijgen we een nieuw lichaam K. In het geval van wortel twee schrijven we dan K =
Q(
√

2). In zo’n lichaam K kunnen we kijken naar de ring van gehelen, de verzameling
getallen in K die een nulpunt zijn van een polynoom a0 + a1x + . . . + an−1x

n−1 + xn,
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waar alle ai gehele getallen zijn. Het is hier belangrijk dat de coëfficiënt van de grootste
macht van x gelijk is aan 1. Deze ring van gehelen kun je zien als een veralgemenisering
naar K van de gehele getallen in Q. De getaltheorie bestudeert uitbreidingen K van Q
en hun ringen van gehelen.

Vervolgens wordt in Hoofdstuk 2 de theorie van de p-adische getallen bestudeerd. Als
je op een klok de tijd 23:00 ziet staan, dan interpreteer je dat als ‘elf uur’. Eigenlijk
reken je dan modulo 12. Dat betekent dat je alle getallen bekijkt ten opzichte van het
getal 12. Dus 34 wordt 10, 55 wordt 7 en 48 wordt 0. Het kan soms handig zijn om
een diofantische vergelijking modulo een priemgetal te bekijken. Bijvoorbeeld, als je wil
inzien dat de vergelijking 5a2 +10b2 = 4 geen gehele oplossingen heeft, dan kun je kijken
modulo 5. Je ziet dat 5a2 +10b2 deelbaar is door 5, ongeacht de waardes van a en b. Dat
betekent dat 5a2 + 10b2 gelijk is aan 0 modulo 5 voor alle waardes van a en b. Echter, 4
is niet gelijk aan 0 modulo 5, dus er kunnen geen oplossingen bestaan. Je zou kunnen
zeggen dat de p-adische getallen bedacht zijn om modulo p, p2, p3 etcetera tegelijk te
kunnen kijken, waar p een priemgetal is. Net zoals de reële getallen, zijn de p-adische
getallen een uitbreiding van de breuken Q. In de p-adische getallen liggen twee getallen
dicht bij elkaar als hun verschil deelbaar is door een hoge macht van p.

Tenslotte is de opgedane kennis van de eerste twee hoofsdstukken in Hoofdstuk 3
toegepast om een speciaal soort diofantische vergelijkingen op te lossen. Dit zijn vergeli-
jkingen van de vorm f(x, y) = 1, waar f een binaire vorm is. Binair slaat op het feit
dat f afhangt van twee variabelen, x en y. Een binaire vorm is een polynoom in x en y,
zodat de machten van x en y in de lossen termen altijd optellen tot hetzelfde getal. Een
voorbeeld van een binaire vorm is x3 +6xy2−y3. Je ziet dat de som van de machten van
x en y van iedere term gelijk is aan drie. De manier waarop zo’n diofantische vergeli-
jking wordt opgelost is als volgt. Je ziet vrij snel dat (x, y) = (1, 0), (0,−1), (1, 6) drie
oplossingen zijn van x3 + 6xy2 − y3 = 1. Vervolgens is er met behulp van de kennis
uit de eerste twee hoofdstukken een stelling bewezen, waaruit je kan afleiden dat het
onmogelijk is dat deze diofantische vergelijking meer dan drie oplossingen heeft. We
weten dan met zekerheid dat we alle oplossingen hebben gevonden. De moeilijkheid
schuilt in het bewijzen van stellingen die grenzen aangeven voor het aantal oplossingen
van diofantische vergelijkingen.

Terug naar de diofantische vergelijking van Pythagoras: a2 + b2 = c2. We zagen al
oplossingen (a, b, c) = (3, 4, 5) en (a, b, c) = (5, 12, 13). Zijn dit ze dan allemaal? Nee, dit
is een voorbeeld van een diofantische vergelijking met oneindig veel oplossingen. Immers,
als (a, b, c) een oplossing is, dan is (a · n, b · n, c · n) dat ook voor ieder geheel getal n.
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