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Abstract

This essay discusses the method introduced by James Maynard in 2013 to show bound-
edness of gaps between primes. Also, two subsequent improvements to this method by the
Polymath8b group are implemented to prove the best currently known result
lim inf pn+1−pn ≤ 246 about prime gaps. Moreover, the boundedness of gaps between arbi-
trary prime m-tuples is proved and Maynard’s sieve method is compared to its predecessor,
the GPY sieve. Finally, an argument is given that denies such sieve methods to be applied
to prove the twin prime conjecture.
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1 Introduction

1.1 The Twin Prime Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also
prime. Some say Euclid was the first to pose the conjecture; what we can say for sure is that
mathematicians have unsuccessfully attempted to prove the conjecture for hundreds of years.
A consequence of the prime number theorem is that the average gap between prime numbers
close to n is approximately of size log n, so twin primes appear to be a rare species. This was
confirmed by Viggo Brun [2], who proved in 1915 that∑

p: p+2 prime

1

p
+

1

p+ 2
<∞,

where the sum runs over all twin prime pairs. Moreover, he showed that the number of twin
primes below x is bounded above by Cx/(log x)2 for some constant C > 0. This bound still goes
to infinity as x increases; and computers indeed continued to find larger and larger twin primes.

In April 2013, a major breakthrough was realised by Yitang Zhang [18], who announced that
he had found a number C ≈ 70000000 such that

lim inf
n

pn+1 − pn ≤ C,

where pn is the n-th prime number, thus establishing bounded gaps between primes for the
first time. Before 2013, the best known result was lim infn(pn+1 − pn)/ log n = 0, obtained by
Goldston, Pintz and Yıldırım in 2005 [7]. In November 2013, just half a year after Zhang’s
announcement, James Maynard severely decreased the bound when he released a paper showing
that in fact lim infn pn+1−pn ≤ 600 [10]. Maynard’s proof was significantly simpler than Zhang’s;
it built on the more elementary techniques of Goldston, Pintz and Yıldırım. Moreover, Maynard’s
approach allowed him to prove finite gaps between prime m-tuples for every m, i.e.

lim inf
n

pn+m − pn <∞ for every m ∈ N.

At approximately the same time, Terence Tao independently obtained similar results using the
same ideas, which he published on his blog [15]. Subsequently, a group of mathematicians united
as the Polymath8b group [13], in order to further reduce Maynard’s bound. This led to many
improvements, amongst which is the current world record

lim inf
n

pn+1 − pn ≤ 246.

Peculiarly, however, current methods do not allow this bound to be reduced to any number
smaller than 6. Therefore, the twin prime conjecture remains out of reach (for now).

1.2 The Hardy-Littlewood Conjecture

The approach followed by James Maynard was inspired by the following conjecture.

Conjecture 1.1 (Prime k-tuples conjecture). For any admissible set H = {h1, . . . , hk} of inte-
gers, there are infinitely many n ∈ N such that n+ h1, . . . , n+ hk are all prime.

A set H = {h1, . . . , hk} is called admissible if for every prime number ` the integers h1, . . . , hk
do not fill up all residue classes modulo `. If H is not admissible then for every n there is an
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hi such that ` | n + hi, so being admissible is an obvious condition we need to impose on sets
H. The conjecture states that this obvious condition is indeed sufficient to ensure that there are
infinitely many n ∈ N making all of n+ h1, . . . , n+ hk prime. Also note that taking H = {0, 2}
(which is obviously admissible) in the prime k-tuples conjecture yields the twin prime conjecture.

A proof for the prime k-tuples conjecture has not been found for any k ≥ 2. Suppose that
instead we can show for a fixed admissible setH = {h1, . . . , hk} of integers that there are infinitely
many n such that at least m of n+ h1, . . . , n+ hk are prime. Then we immediately obtain

lim inf
n

(pn+m−1 − pn) ≤ max
i,j
|hi − hj |.

This is the path we will take.
So why do we expect the prime k-tuples conjecture to be true? Let us use the Cramér model

to say something about this. We let Pn be independent random Bernoulli(1/ log n) variables for
n ∈ N. Then according to this model, we expect to have a number of

E
∑
n≤x

k∏
m=1

Pn+hm =
∑
n≤x

k∏
m=1

1

log(n+ hm)

n ≤ x such that all of n+h1, . . . , n+hm are prime. We have log(n+h) = log n+h/n−h2/n2+. . . =
log n+O(1/n) and hence the above equals∑

n≤x

1

(log n)k

(
1 +O

(
log n

n

))
=

x

(log x)k
(1 + o(1)).

This shows that

E
∑
n≤x

k∏
m=1

Pn+hm ∼
x

(log x)k
.

Of course, this model is clearly wrong when H is not admissible. Indeed, we have made an
obvious error in our model when assuming the Pn to be independent. In reality, if we want all
of n + h1, . . . , n + hk−1 and n + hk to be prime, then for each prime p, n must lie outside the
residue classes −h1, . . . ,−hk modulo p. This happens with probability

∏
p(1− vH(p)/p), where

we let vH(p) denote the the number of distinct residue classes modulo p occupied by H. However,
assuming independence, we computed this probability as

∏
p(1 − 1/p)k. As a result, we have a

correction factor

G(H) =
∏
p

(
1− vH(p)

p

)(
1− 1

p

)−k
.

Note that for all large p we have vH(p) = k and it is not difficult to see that the sum of the
logarithms of the terms converges for each k ≥ 1. As a result, G(H) 6= 0 if and only if vH(p) 6= p
for all p. This is precisely the statement that H is admissible! It is therefore reasonable to make
the following stronger conjecture, as was done long ago by Hardy and Littlewood [9].

Conjecture 1.2 (Hardy-Littlewood). If H is admissible, we have

#{n ≤ x | n+ h is prime ∀h ∈ H} ∼ G(H)
x

(log x)k
.
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1.3 The GPY sieve

Goldston, Pintz and Yıldırım (GPY) took, based on ideas of Selberg and others, a sieve-theoretic
approach towards establishing bounded prime gaps. In this section we attempt to explain and
motivate this.

Consider N to be a large number. Each number n in the interval [N, 2N) has by the prime
number theorem a probability of about 1/ logN to be prime. So when k is large enough (about
logN) and n is chosen uniformly at random in [N, 2N) we have

k∑
m=1

P(n+m is prime) > 1.

Then by a variant of the pigeonhole principle, P(at least 2 of the n + m are prime) > 0 and we
have found two primes at most k apart. This gives us a prime gap of size � logN , which is not
as small as we wish. However, the above argument can be improved, since there is no reason we
should choose n uniformly at random in [N, 2N). Perhaps we can find a probability distribution
that gives more weight to primes. Moreover, we can consider more general shifted numbers n+h
for h ∈ H = {h1, . . . , hk} instead of n+ 1, . . . , n+ k.

Indeed, suppose we can find a sequence of non-negative numbers (wn) determining a proba-
bility density wn/

∑
N≤n<2N wn, such that for all sufficiently large N we have

k∑
m=1

P(n+ hm is prime) =

k∑
m=1

∑
N≤n<2N wn1n+hm is prime∑

N≤n<2N wn
> ρ (1)

for some ρ > 1. Then for infinitely many n ∈ N we have that #{1 ≤ m ≤ k | n+hm is prime} ≥
dρe ≥ 2, thus proving bounded gaps between primes. The ratio in (1) is maximal when wn =
1all n+hm prime. However, if this is the case then showing that

∑
N≤n≤2N wn is non-zero is as

difficult as establishing the prime k-tuples conjecture. Therefore, the weights wn are allowed to
be a little less optimal with the hope that this will simplify estimations for the two sums. So we
desire to choose “nice” weights wn that are larger than, but as close as possible to, 1all n+hm prime.

This is essentially a sieve problem. For all but finitely many n ∈ [N, 2N), P (n) =
∏
h∈H(n+h)

is a product of integers n+h all smaller than N2 and so 1all n+hi prime = 1p|P (n)⇒p>N . In general,
given a sequence of integers A and a set of primes P, an upper bound sieve method produces
weights w̃n ≥ 1p|n⇒p/∈P of a fixed type such that∑

p|n⇒p/∈P

1n∈A ≤
∑
n∈A

w̃n

is almost as tight as possible for weights of that type. Each sieve method deals with a specific
type of weight, since it is too general to optimize the above over all weights. In particular, with
P = {p prime | p < N} and A = {P (n) | N ≤ n < 2N} an upper bound sieve method thus gives
weights wn = w̃P (n) ≥ 1p|P (n)⇒p>N such that the inequality∑

N≤n<2N

1p|P (n)⇒p>N =
∑

p|n⇒p/∈P

1n∈A ≤
∑
n∈A

w̃n =
∑

N≤n<2N

wn (2)

is tight, which is what we want. It thus makes sense to apply an upper bound sieve method.
GPY chose the Λ2 Selberg sieve, which means they considered weights of the form

w̃n =

∑
d|n

λd

2

, (3)
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with λd ∈ R constrained by

λ1 = 1, λd = 0 when some prime factor of d is not in P and λd = 0 when d ≥ R (4)

for some threshold R. Conveniently, being a square, w̃n is non-negative. Also, divisor sums
are well understood in multiplicative number theory, which makes it possible to compute sums
involving these weights (i.e., these weights are “nice”). The condition “λd = 0 when some prime
factor of d is not in P” ensures that w̃n ≥ 1p|n⇒p/∈P and the threshold R is a common feature
in all sieves; it is required to keep the error terms in the computations under control. Note that
we want to have as much freedom as possible in choosing the λd’s, so we would like R to be as
large as possible. It turns out (see Remark 3.9) that R cannot be chosen larger than

√
N . With

R ≤
√
N , we find for all d with a prime factor greater than N that λd = 0 as d > R, so we do not

need to worry about the condition “λd = 0 when some prime factor of d is not in P” anymore.
The problem is now to optimise (2) subject to (3) and (4). For general sieve problems with

the Selberg sieve, the optimal Selberg weight constituents λd are known to be

λd = 1d≤Rµ(d)(logR/d)k.

This is not very surprising, as one can verify that
∑
d|m µ(d)

(
log m

d

)k
vanishes when m has more

than k prime factors. The above choice of λd is a smoothed approximation to µ(d)(log(P (n)/d)k.
Note that, when R ≈

√
N , the values logR and logP (n) for n ∈ [N, 2N) do differ by approx-

imately a factor 2k. This is irrelevant, as the ratio in (1) is unchanged when scaling wn by a
constant factor.

These weights appear to be promising, but they do not turn out to give the results we want.
Goldston, Pintz and Yıldırım [7] noticed that the problem of maximising the ratio of the two
sums in (1) is not exactly the same as the problem we try to solve with the Selberg sieve. Their
idea was hence to consider a slightly more general form of the sieve weight constituents

λd = 1d≤Rµ(d)F (logR/d),

where F is a polynomial, and attempt to find the best possible F . They found an ` > 0 (e.g.
` =

√
k) such that F (x) = xk+l gives better results than F (x) = xk. With that they could

almost prove bounded gaps between primes. Finally, Maynard and Tao took the idea of GPY
one step further. They exploited the structure of the numbers P (n) and successfully considered
a more general form of the sieve weights

wn =

 ∑
d1|n+h1,...,dk|n+hk

λd1,...,dk

2

. (5)

We are back in the GPY case when the λ’s depend only on the product
∏
i di. It is the extra

freedom gained by allowing the λ’s to depend on the individual divisors of the n + hi that
makes the difference. We refer to the sieve-theoretic approach using the above weights as the
Maynard-Tao sieve. These weights are compared to the GPY weights in more detail in Section 5.

1.4 Acknowledgements

This essay is largely based on the papers ‘Small gaps between primes’ by James Maynard [10] and
‘Variants of the Selberg sieve, and bounded intervals containing many primes’ by the Polymath8b
group [13]. Every mention of these authors in this essay refers to these papers.

The author would like to express his thanks to Dr A.J. Harper for his valuable comments.
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2 Establishing the sieve input

2.1 The duos Bombieri-Vinogradov and Elliott-Halberstam

In this subsection the the main arithmetic input of the Maynard-Tao sieve is discussed. We
would like to find weights of the form (5) that maximise the ratio of the sums in (1), the first of
which is

k∑
m=1

∑
N≤n<2N

1n+hm is primewn.

Estimating the inner sum for each m obviously requires some arithmetic information. As we will
see in the proof of Lemma 3.7(ii), it turns out that we need an upper bound for∑

q≤R2

E(N ; q, a), (6)

where

E(N ; q, a) :=

∣∣∣∣∣∣∣∣
∑

1≤n<N
n≡a mod q

1n is prime −
1

φ(q)

∑
1≤n<N

1n is prime

∣∣∣∣∣∣∣∣ ,
with different a coprime to q. We expect E(N ; q, a) to be small when q is sufficiently small
compared to N , because there does not appear to be a reason why primes would prefer some
residue classes mod q above others. Recall that we would like to take R ≤

√
N as large as

possible so we desire an upper bound for (6) for large R2. The prime number theorem for
arithmetic progressions says that for every A > 0 we have E(N ; q, a) � N

(logN)A
for fixed q

coprime to a. The implicit constant here does depend on q however, making this bound useless
for (6) as R will depend on N . Yet one would expect a similar upper bound to exist for sufficiently
small q depending on N . This has been proved for q ≤ (logN)B for any B (a result known as
the Siegel-Walfisz theorem), but we will need q to be much larger. We can do a lot better
assuming the Generalised Riemann Hypothesis, but not unconditionally. Enter Bombieri [1] and
Vinogradov [17], who proved a very strong result concerning the average values of E(N ; q, a),
which is precisely what we need.

Theorem 2.1 (Bombieri-Vinogradov). For every positive constant A there exists a B such that∑
q≤
√
x/(log x)B

max
(a,q)=1

E(x; q, a)� x

(log x)A
.

Note that the upper bound is the same as in the prime number theorem for arithmetic progres-
sions, but we now sum over q. As can be seen from (6), this would allow us to take R (almost) up
to N1/4, which approaches the upper bound

√
N . Elliott and Halberstam [3] conjectured that

in fact we can sum over q nearly all the way up to N , which would allow us to take R nearly up
to
√
N as desired.

Conjecture 2.2 (Elliott-Halberstam). For every positive constant A and every ε > 0 we have∑
q≤x1−ε

max
(a,q)=1

E(x; q, a)� x

(log x)A
.

Because it plays an important role in our story, we give such statements a name.
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Definition 2.3. We say the primes have level of distribution θ when for every A > 0 we have∑
q≤xθ

max
(a,q)=1

E(x; q, a)� x

(log x)A
.

In the coming sections we consider an arbitrary level of distribution 0 < θ < 1, in order to see
how our results improve when stronger versions of the Bombieri-Vinogradov are proved. Note
that the Bombieri-Vinogradov theorem implies that the primes have level of distribution θ for
every θ < 1/2 and the Elliott-Halberstam conjecture asserts the primes have level of distribution
θ for every θ < 1. It has been shown by Friedlander and Granville [4] that the primes do not
have level of distribution 1, so the Elliott-Halberstam conjecture is the best possible.

2.2 Computing sums of arithmetic functions

Let τk(n) be the number of ways to write an integer n as a product of k integers. These numbers
will arise at various points as combinatorial coefficients. In order to deal with them, we need the
following following lemma.

Lemma 2.4. We have∑
n<R

τk(n)�k R(logR)k−1 and
∑
n<R

τk(n)

n
�k (logR)k.

Proof. We first prove a general formula. Suppose that F (n) =
∑
d|n f(d) and x ≥ 0. Then

∑
n≤x

F (n) =
∑
n≤x

∑
d|n

f(d) =
∑
d≤x

f(d)
∑

n≤x, d|n

1 =
∑
d≤x

f(d)bx/dc = x
∑
d≤x

f(d)

d
+O

∑
d≤x

|f(d)|

 .

We will apply this with F (n) = τk(n) and f(n) = τk−1(n). Indeed, if we want to write n as
a product of k factors, we may first choose a divisor d and then the remaining k − 1 divisors.
Hence τk(n) =

∑
d|n τk−1(n/d) =

∑
d|n τk−1(d). We thus obtain

∑
n<R

τk(n) = R
∑
d≤R

τk−1(d)

d
+O

(∑
d<R

|τk−1(d)|

)
.

We now proceed by induction on k for k ≥ 2. By the above we have∑
n<R

τ2(n) = R
∑
d≤R

1

d
+O

(∑
d<R

1

d

)
� R logR+ logR� R logR.

Now assume that
∑
n<R τk−1(n)� R(logR)k−2. Then we get∑

n<R

τk(n) = R
∑
d<R

τk−1(d)

d
+O(R

(
logR)k−2

)
.

We use partial summation to evaluate the above sum. This yields∑
d<R

τk−1(d)

d
=

1

R

∑
d<R

τk−1(d) +

∫ R

1

∑
d≤t

τk−1(d)
dt

t2
� (logR)k−2 +

∫ R

1

(log t)k−2 dt

t

= (logR)k−2 +
1

k − 1
(logR)k−1 � (logR)k−1.

This completes the proof for the first inequality and simultaneously proves the second.
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The following lemma will allow us to approximate sums of arithmetic functions of a certain kind.
More general statements appear for example in [8] (lemmata 5.3 and 5.4).

Lemma 2.5. Suppose that γ is a multiplicative arithmetic function such that for sufficiently
large primes p we have γ(p) − 1 � 1/p as p → ∞ and consider a multiplicative function g
defined on primes p by g(p) = γ(p)/(p− γ(p)). Then we have

(i) ∑
n≤x

µ(n)2g(n) = G log x+O

(
1 + G

∑
p

(γ(p)− 1) log p

p

)
,

where G =
∏
p(p− 1)/(p− γ(p)) and

(ii) ∑
n≥x

µ(n)2g(n)2 = Hx−1 +O(1),

where

H =
∏
p

(
1 +

(γ(p)2 − 1)p+ γ(p)− γ(p)2/p

(p− γ(p))2

)
.

Proof. We may assume that g is strongly multiplicative because of the factor µ(n)2. Let f(n) =
nµ(n)2g(n) and h(n) = f ∗ µ(n). Then we have f(n) =

∑
d|n h(n) and we see that h(n) is

multiplicative. Moreover after a simple calculation we obtain for each prime p

h(p) =
pγ(p)− p+ γ(p)

p− γ(p)
, h(p2) =

−pγ(p)

p− γ(p)
and h(pk) = 0 for k ≥ 3.

Now if H(s) =
∑
n h(n)n−s converges absolutely at s then we have the Euler product H(s) =∏

p(1 + h(p)p−s + h(p2)p−2s + . . .). Similarly, we see that
∑
n |h(n)|n−1 converges if and only if∏

p

(
1 +
|h(p)|
p

+
|h(p2)|
p2

+ . . .

)
=
∏
p

(
1 +

γ(p)− 1

p− γ(p)
+

2γ(p)

p(p− γ(p))

)
converges, in which case they are equal. This last product converges since γ(p) − 1 � 1/p,
making the sum of the logarithms of the terms converge. Hence H(s) converges absolutely at
s = 1 and we have

H(1) =
∏
p

(
1 +

γ(p)− 1

p− γ(p)

)
=
∏
p

p− 1

p− γ(p)
= G

by the Euler product. We now work out that∑
n≤x

f(n)

n
=
∑
n≤x

1

n

∑
d|n

h(d) =
∑
d≤x

h(d)

d

∑
n≤x/d

1

n
.

The inner sum equals log(x/d) +O(1) so that we obtain∑
n≤x

f(n)

n
= G log x+H ′(1)− log x

∑
d≥x

h(d)

d
+O(H(1)).

Next, note that H ′(1) = H(1)(logH)′(1). Using the Euler product, we compute that

(logH)′(1) =
∑
p

(γ(p)− 1) log p

p
.
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Therefore, it remains to bound the tail sum. We see that∑
n

|h(n)|n−3/4 =
∏
p

(
1 +

(γ(p)− 1)p+ γ(p)

p3/4(p− γ(p))
+

γ(p)

p1/2(p− γ(p))

)
converges since the sum of the logarithms of the factors does (again because γ(p) − 1 � 1/p).
Hence the abscissa of absolute convergence σa(H) ≤ 3/4. An elementary result in Dirichlet
series (exercise 4 of Chapter 1.2 in [11]) says that

∑
n≥x |h(n)|n−σ � xσa−σ+ε for every ε > 0.

In particular, we find with σ = 1 and ε = 1/8 a sufficient bound
∑
n≥x |h(n)|n−1 � x−1/8.

For the second part of the lemma, we define f̃(n) = µ(n)2g(n)2n2. Then we can write

f̃(n) =
∑
d|n h̃(d) and using that h̃(n) =

∑
d|n µ(n/d)f̃(d) we compute that

h̃(p) =
p2γ(p)2

(p− γ(p))2
− 1, h̃(p2) = − p2γ(p)2

(p− γ(p))2
, h̃(pk) = 0 for k ≥ 3.

Then ∑
n≥D

µ(n)2g(n)2 =
∑
n≥D

1

n2

∑
d|n

h̃(d) =
∑
d

h̃(d)

d2

∑
n≥D/d

1

n2
=

1

D

∑
d

h̃(d)

d
+O(1).

It remains to compute the most right-hand sum (and see that it converges). For this, we again
use the Euler product:

∏
p

(
1 +
|h̃(p)|
p

+
|h̃(p)|
p2

)
=
∏
p

(
1 +
|γ(p)− 1||γ(p) + 1|p+ 3|γ(p)|+ |γ(p)2/p|

|p− γ(p)|2

)
converges because γ(p)− 1� 1/p. Hence we have

∑
d

h̃(d)

d
= H̃(1) =

∏
p

(
1 +

(γ(p)2 − 1)p+ γ(p)− γ(p)2/p

(p− γ(p))2

)
,

as desired.

Corollary 2.6. For any integer W ≥ 0 we have∑
n≤x

µ(n)2

φ(n)
= log x+O(1),

∑
n≤x,(n,W )=1

µ(n)2

φ(n)
=
φ(W )

W
log x+O(1),

∑
n≤x

µ(n)2

g(n)
� log x,

∑
n≤x,(n,W )=1

µ(n)2

g(n)
� φ(W )

W
log x,

∑
n≥x

µ(n)2

φ(n)2
� 1

x
,

∑
n≥x,(n,W )=1

µ(n)2

φ(n)2
� φ(W )

W

1

x
,

∑
n≥x

µ(n)2

g(n)2
� 1

x
, and

∑
n≥x,(n,W )=1

µ(n)2

g(n)2
� φ(W )

W

1

x
,

where g is a multiplicative arithmetic function defined on the primes by g(p) = p− 2.
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Proof. We apply (i) and (ii) from the above lemma with γ(p) = 1, γ(p) = 1p-W , γ(p) = p
p−1 and

γ(p) = 1p-W
p
p−1 respectively.

Corollary 2.7. When g(n) ∈ R≥0 for all n, we have, keeping the notation from Lemma 2.5,∑
n≤x

µ(n)2τk(n)g(n)� Gk+1(log x)k+1 and
∑
n≤x

µ(n)2τk(n)2g(n)� G3k+1(log x)3k+1.

Proof. We prove the first part by induction. The case k = 0 is Lemma 2.5. For the induction
step, we note that∑

n≤x

µ(n)2τk(n)g(n) =
∑
n≤x

µ(n)2g(n)
∑
d|n

τk−1(d) =
∑
d≤x

µ(d)2τk(d)g(d)
∑
n≤x/d
(n,d)=1

µ(n)2g(n)

� G
∑
d≤x

µ(d)2τk−1(d)g(d) log(x/d)� G log x
∑
d≤x

µ(d)2τk−1(d)g(d)

by Lemma 2.4. For the second inequality, we use that for coprime d1, d2 we have τ`(d1)τ`(d2) ≤
τ2`(d1d2) to write∑
n≤x

µ(n)2τk(n)2g(n) =
∑
n≤x

µ(n)2g(n)
∑
d|n

∑
d1d2=d

τk−1(d1)τk−1(d2) ≤
∑
n≤x

µ(n)2g(n)
∑
d|n

τ2(d)τk−1(d)

=
∑
d≤x

µ(d)2τ2(d)τk−1(d)g(d)
∑
n≤x/d
(n,d)=1

µ(n)2g(n).

The right-hand sum is� log x by Lemma 2.5. We show by induction that
∑
d≤x µ(d)2τ2(d)τk−1(d)g(d)

� (G log x)3k. The case k = 1 is the first inequality in the statement. For k > 1 we have∑
d≤x

µ(d)2τ2(d)τk−1(d)g(d) =
∑
d≤x

µ(d)2τ2(d)g(d)
∑
e|d

τk−2(e)

=
∑
e≤x

µ(e)2τk−2(e)τ2(e)g(e)
∑
d≤x/e
(d,e)=1

µ(d)2τ2(d)g(d)� (G log x)3
∑
e≤x

µ(e)2τk−2(e)τ2(e)g(e),

where we used for coprime and square-free e, d that τ2(de) = 2ω(de) = 2ω(d)2ω(e) = τ2(d)τ2(e).

The powers of log x occurring in Corollary 2.7 are not optimal, but for our purposes any power
of log x suffices. The following corollary serves as a substitute for Lemma 6.1 in [10].

Corollary 2.8. Consider a piecewise differentiable function G : [0, 1] → R and let Gmax =
supt∈[0,1](|G(t)|+ |G′(t)|). Then, keeping the notation from Lemma 2.5, we have

∑
d≤x

µ(d)2g(d)G

(
log d

log z

)
= G log x

∫ 1

0

G(t)dt+O

(
G
∑
p

(γ(p)− 1) log p

p
Gmax

)
.

This is now an exercise in partial summation; a proof can be found in [6, Lemma 4].
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3 The Maynard-Tao sieve

3.1 Reduction of the problem

In this subsection, the main results are stated and proved modulo two crucial propositions. The
content of this subsection is based on Maynard’s paper [10].

Let H = {h1, . . . , hk} be an admissible set. First recall that our aim is to find weights of the
form as in (5) that maximise the ratio of the two sums in (1). In order to deal with small prime
factors, we only consider weights wn that vanish outside of a prefixed residue class v0 mod W ,
where W =

∏
p≤D0

p and D0 = log log logN . Note that W ≤ 4D0 � (log logN)2. We choose v0

such that hi + v0 is coprime to W for each i. We can do this by the Chinese remainder theorem
since H is admissible. The upshot is that D0 and W are small enough to be negligible compared
to the other variables, but that still D0 →∞ so that it exceeds all small prime factors. This is
the only point in the story where we need H to be admissible; indeed, only modulo small primes
can a set H of fixed size occupy all residue classes.

The aim is then to find an upper bound for

S1 =
∑

N≤n<2N,
n≡v0 mod W

 ∑
di|n+hi ∀i

λd1,...,dk

2

and a lower bound for S2 =
∑k
m=1 S

(m)
2 , where

S
(m)
2 =

∑
N≤n<2N,

n≡v0 mod W

1n+hm is prime

 ∑
di|n+hi ∀i

λd1,...,dk

2

.

We choose the smooth weight constituents of the form

λd1,...,dk =

(
k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri∀i

(ri,W )=1∀i

µ(
∏k
i=1 ri)

2∏k
i=1 φ(ri)

F

(
log r1

logR
, . . . ,

log rk
logR

)
,

when (
∏k
i=1 di,W ) = 1 and λd1,...,dk = 0 otherwise. Here F is a piecewise differentiable function

supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k |
∑k
i=1 xi ≤ 1} and R is the sieve threshold. These

weights generalise the GPY sieve weights, as is discussed in Section 5. For F as above, we define

Ik(F ) =

∫ ∞
0

· · ·
∫ ∞

0

F (t1, . . . , tk)2dt1 . . . dtk,

J
(m)
k (F ) =

∫ ∞
0

· · ·
∫ ∞

0

(∫ ∞
0

F (t1 . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk

and

Mk = sup
F

∑k
m=1 J

(m)
k (F )

Ik(F )
.

The following proposition summarizes the output of the sieve method. The main arithmetic
ingredients used to prove it are the prime number theorem and the Bombieri-Vinogradov theorem.
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Proposition 3.1. Suppose that the primes have level of distribution θ > 0 and let R = Nθ/2−δ

for δ > 0 sufficiently small. Then with weight constituents as defined above, we have

S2

S1
= (1 + o(1))

(
θ

2
− δ
) ∑k

m=1 J
(m)
k (F )

Ik(F )
.

Consequently, for any admissible set H = {h1, . . . , hk} of size k there are infinitely many n such
that at least m := dMkθ/2e of n+ h1, . . . , n+ hk are prime. In particular,

lim inf
n

pn+m−1 − pn ≤ max
i,j
|hi − hj |.

This proposition is proved in the next subsection. Note that S2/S1 is indeed independent of W .
The remaining problem to find functions F providing a lower bound for Mk is purely analytic.

Proposition 3.2. We have

(i) M5 > 2,

(ii) M54 > 4 and

(iii) Mk > log k − 2 log log k − 2 for k sufficiently large.

This proposition is proved in Section 4. Parts (i) and (iii) were first proved by Maynard,
whereas part (ii) was first proved by Polymath8b. We proceed to show how we can combine
these two propositions to obtain results on prime gaps.

Theorem 3.3. We have

(i) lim infn pn+1 − pn ≤ 270 ,

(ii) lim infn pn+1 − pn ≤ 12 if we assume the Elliott-Halberstam conjecture and

(iii) lim infn pn+m − pn � m3e4m (unconditionally) for m sufficiently large.

Proof. For (i), we can take θ = 1/2 − ε for ε > 0 arbitrarily small by the Bombieri-Vinogradov
theorem. It has been computed by Engelsma that there exists an admissible set H of size 54
with diameter maxh,g∈H |h− g| = 270 and that this is the smallest diameter of an admissible set
of this size. Thus we are done by Propositions 3.2(i) and 3.1.

Part (ii) follows in the same way using Proposition 3.2(ii) and the fact that {0, 2, 6, 8, 12} is
an admissible set of size 5 with diameter 12.

For part (iii) we again take θ = 1/2 − ε for ε > 0 arbitrarily small. Then by Proposition
3.2(iii) we find for k sufficiently large

Mkθ

2
≥
(

1

4
− ε

2

)
(log k − 2 log log k − 2).

When k ≥ Cm2e4m for C a sufficiently large constant independent of k and m, we get

log k − 2 log log k − 2 ≥ 4m+ 2 logm+ logC − 2 log(4m+ logm+ logC) > 4m

when m is also sufficiently large. So taking ε = 1/k, k = dCm2e4me and m sufficiently large,
we find Mkθ/2 > m. As an admissible set, we take the first k primes greater than k, i.e.
H = {pπ(k)+1, . . . , pπ(k)+k}. None of the elements is divisible by a number ≤ k and, having just
k elements, H cannot occupy all residue classes modulo a number greater than k. Thus H is
admissible and since

π(k log k)� k log k

log k + log log k
� k � k + π(k)

we see that H has diameter � k log k � m3e4m. This finishes the proof by Proposition 3.1.
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The bound in (i) will be reduced to 246 in Section 6.
Now consider an admissible set H = {h1, . . . , hk} of size k such that for infinitely many n at

least m of n + h1, . . . , n + hk are prime. By the pigeonhole principle, one of the finitely many
subsets of H of size m must obey the prime m-tuples conjecture. Hence Theorem 3.3 allows us
to prove a partial prime m-tuples conjecture.

Theorem 3.4. (Partial m-Tuples Theorem) A positive proportion of the admissible m-tuples
obeys the prime m-tuples conjecture, i.e. for x sufficiently large in terms of m we have

the number of admissible m-tuples below x obeying the conjecture

the number of admissible m-tuples below x
�m 1,

where a set H is said to lie below x when H ⊂ {1, 2 . . . , bxc}.

Proof. We first find a lower bound for the number of admissible sets below x obeying the prime
m-tuples conjecture. We take k = Cm3e4m so that by the remark above, every admissible set
of size k contains a subset of size m that obeys the prime m-tuples conjecture. We may assume
that k ≤ x. We proceed by finding a lower bound for the number of admissible k-tuples below
x. For each prime p ≤ k, we remove from {1, 2, . . . , bxc} the entire residue class mod p that
contains the fewest elements. This class has size at most bxc/p, so the remaining set A has size

|A| ≥ bxc
∏
p≤k

(1− 1/p)�m bxc.

Moreover, since A does not occupy all residue classes mod p for any p ≤ k, every size k subset
of A is admissible. There are

(|A|
k

)
such sets and each of them contains at least one (admissible)

subset of size m obeying the prime m-tuples conjecture. Every such set of size m obeying the
prime m-tuples conjecture is contained in precisely

(|A|−m
k−m

)
size k sets in A, so we obtain(

|A|
k

)(
|A| −m
k −m

)−1

�m |A|(|A| − 1) · · · (|A| −m+ 1)�m |A|m �m xm

distinct admissible sets below x of size m that obey the prime m-tuples conjecture. On the other
hand, there are only

(bxc
m

)
�m xm sets of size m below x.

3.2 Applying the sieve

In this subsection we prove Proposition 3.1 by estimating both S1 and S
(m)
2 in a way characteristic

of the Selberg sieve. Let [di, ei] denote the least common multiple of two integers di and ei. The
main idea is to expand the square and swap the sums to obtain

S1 =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n≤2N
n≡v0 mod W
[di,ei]|n+hi∀i

1 (7)

and

S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n≤2N
n≡v0 mod W
[di,ei]|n+hi∀i

1n+hm is prime. (8)

We then aim to diagonalise the quadratic forms that arose.
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First recall that we set R = Nθ/2−δ. We will restrict the support of the λd1,...,dk to those

(d1, . . . , dk) for which (
∏k
i=1 di,W ) = 1 (to avoid complications arising from small prime factors),

µ(
∏k
i=1 di)

2 = 1 (for computational convenience) and
∏k
i=1 di < R holds. The last condition is a

k-dimensional analogue of the restricted support of the Selberg sieve. Later F will be chosen to
be supported on Rk in order to satisfy this condition. We first diagonalise the quadratic forms.

Definition 3.5. We define the diagonalising weight constituents for S1 to be

yr1,...,rk =

(
k∏
i=1

µ(ri)φ(ri)

) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

and for S
(m)
2 to be

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏k
i=1 φ(di)

,

where g is the strongly multiplicative function defined on primes p by g(p) = p− 2.

We note here that yr1,...,rk = y
(m)
r1,...,rk = 0 when (r1, . . . , rk) lies outside of the support of λr1,...,rk .

We see that we can retrieve the λ-variables from the y-variables as well. For d1, . . . , dk with
µ(
∏k
i=1 di)

2 = 1 we have

∑
r1,...,rk
di|ri∀i

yr1,...,rk∏k
i=1 φ(ri)

=
∑

r1,...,rk
di|ri∀i

(
k∏
i=1

µ(ri)

) ∑
e1,...,ek
ri|ei∀i

λe1,...,ek∏k
i=1 ei

=
∑

e1,...,ek

λe1,...,ek∏k
i=1 ei

∑
r1,...,rk
di|ri∀i
ri|ei∀i

k∏
i=1

µ(ri) =
λd1,...,dk∏k
i=1 µ(di)di

,

where in the last equality we need that
∑
s|e/d µ(s) =

∏
p|e/d(1− µ(p)) = 1e=d.

In order to deal with the error terms that we will obtain, we first relate the maximum values
of the y and λ variables.

Lemma 3.6. We have
λmax � ymax(logR)k,

where λmax = supd1,...,dk |λd1,...,dk | and ymax = supr1,...,rk |yr1,...,rk |.

The proof of this lemma is not very enlightening and will thus be omitted. The following lemma
corresponds to lemmata 5.1 and 5.2 of [10].

Lemma 3.7. We have

(i)

S1 =
N

W

∑
r1,...,rk

y2
r1,...,rk∏k
i=1 φ(ri)

+O
(
y2

maxN(logR)k

WD0

)
and

(ii) for any A > 0

S
(m)
2 =

N

φ(W ) logN

∑
r1,...,rk

(y
(m)
r1,...,rk)2∏k
i=1 g(ri)

+O

(
(y

(m)
max)2φ(W )k−2N(logN)k−2

W k−1D0

)
+O

(
y2

maxN

(logN)A

)
,

where y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |.
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Remark 3.8. The proof of (ii) requires both the prime number theorem and the distribution level
of the primes to deal with the indicator function. This is the main arithmetic input of the sieve.

Proof. We begin with (ii), where we start off with (8). If W, [d1, e1], . . . , [dk, ek] are pairwise
coprime, the conditions n ≡ v0 mod W and n ≡ −hi mod [di, ei] ∀i mean that n has to lie in

a fixed residue class modulo q = W
∏k
i=1[di, ei] by the Chinese remainder theorem. Also, the

indicator function only contributes when n is coprime to q. We will see that this case gives the
main contribution. With the level of distribution θ and the prime number theorem in mind, we
write when µ(q)2 = 1 ∑

N≤n<2N
n≡v0 mod W
[di,ei]|n+hi∀i

1n+hm is prime =
XN

φ(q)
+O(E(N, q)), (9)

where XN = π(2N − 1)− π(N − 1) and

E(N, q) = 1 + sup
a: (a,q)=1

∣∣∣∣∣∣∣∣
∑

N≤n<2N
n≡a mod q

1n is prime −
1

φ(q)

∑
N≤n<2N

1n is prime

∣∣∣∣∣∣∣∣ .
We note that the +1 in the definition of E(N, q) accounts for the fact that we sum over N ≤
n < 2N instead of N − hm ≤ n < 2N − hm.

What happens to the inner sum in (9) if µ(q)2 6= 1? This is where we see the benefit of intro-
ducing W . Either for some i we have (W, [di, ei]) > 1 or for some i, j we have ([di, ei], [dj , ej ]) > 1.
In the first case, we get (W, v0 + hi) > 1 contradicting our choice of v0. In the second, we find
a non-trivial common factor of n+ hi and n+ hj and hence of their difference hi − hj . As N is
large, this factor also divides W putting us in the first case. As a result, the inner sum is zero
in both cases. Since the inner sum in (9) is trivially zero when dm 6= 1 or em 6= 1, we may write

S
(m)
2 =

XN

φ(W )

′∑
d1,...,dk
e1,...,ek
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 φ([di, ei])

+O

 ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)

 ,

where the primed sum means that we sum only over those di and ei with W, [d1, e1], . . . , [dk, ek]
pairwise coprime.

We deal with the big oh term first. The restricted support of λd1,...,dk implies that we only

need to consider square-free q < R2W . Choosing d1, . . . , dk, e1, . . . , ek so that r/W =
∏k
i=1[di, ei]

can be done in at most τ3k(r) ways because

r/W =

k∏
i=1

di
(di, ei)

ei
(di, ei)

(di, ei)

since di and ei are square-free. Using Lemma 3.6 we obtain∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)� y2
max(logR)2k

∑
r<R2W

µ(r)2τ3k(r)E(N, r).

We have WR2 = WNθ−2δ � Nθ−δ, so assuming the primes have level of distribution θ, we find
for every A > 0 that

∑
r<R2W E(N, r)�A N/(logN)A. By the triangle inequality, we also have
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the crude bound E(N, r)� N/φ(r). Applying this, Cauchy-Schwarz, Corollary 2.7 and the fact
that R2W � N , we obtain for any A > 0 that the previously displayed is at most

� y2
max(logR)2k

( ∑
r<R2W

µ(r)2τ3k(r)2 N

φ(r)

)1/2( ∑
r<R2W

µ(r)2E(N, r)

)1/2

� y2
maxN

(logN)A
.

In the main term we now want to separate the ei and the di variables to make the substitution.
To this end, note that 1(di,ei)=1 =

∑
si,j |(di,ej) µ(si,j) and that for square-free di and ei we have

1

φ([di, ei])
=

1

φ(di)φ(ei)

∑
ui|(di,ei)

g(ui),

where g is the strongly multiplicative function defined on primes p by g(p) = p−2. Both formulas

are straightforward to verify. The main term of S
(m)
2 then becomes

XN

φ(W )

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

g(ui)

) ∑
s1,2,...,sk,k−1

 ∏
1,≤i,j≤k

µ(si,j)

 ∑
d1,...,dk
e1,...,ek
ui|di,ei∀i

si,j |di,ej∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 φ(di)φ(ei)

.

Note here that we have removed the conditions (di, dj) = (ei, ej) = (di,W ) = (ei,W ) = 1
because λd1,...,dkλe1,...,ek = 0 when one of these conditions if violated. Similarly, we see that
λd1,...,dkλe1,...,ek = 0 when si,j is not coprime to one of ui, uj , sa,j or si,b for some a 6= i or b 6= j.
Hence we may restrict the sum over s1,2, . . . , sk,k−1 to those si,j coprime to all of ui, uj , sa,j and
si,b for all a 6= i and b 6= j. We denote this sum by Σ∗.

Writing aj = uj
∏
i6=j sj,i and bj = uj

∏
i6=j si,j we can now make the substitution to obtain

XN

W

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

g(ui)

) ∗∑
s1,2,...,sk,k−1

 ∏
1≤i6=j≤k

µ(sj,i)

g(si,j)2

 y(m)
a1,...,ak

y
(m)
b1,...,bk

.

In the above we have used that ya1,...,ak = 0 when a =
∏k
i=1 ai is not square-free to factor the

multiplicative arithmetic functions. In the case that for some i, j we have si,j 6= 1, we have
si,j > D0 since (si,j ,W ) = 1. Using that ya1,...,ak 6= 0 only if am = 1 and that XN � N/ logN ,
we see that this case contributes at most

� (y
(m)
max)2N

φ(W ) logN

 ∑
u<R

(u,W )=1

µ(u)2

g(u)


k−1(∑

s

µ(s)2

g(s)2

)k2−k−2(k−1)−1 ∑
si,j>D0

µ(si,j)
2

g(si,j)2
.

Using Corollary 2.6 we can upper bound this by

� (y
(m)
max)2φ(W )k−2N(logR)k−1

W k−1D0 logN
.

We have now shown that

S
(m)
2 =

XN

φ(W )

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2φ(W )k−2N(logR)k−1

W k−1D0 logN

)
+O

(
y2

maxN

(logN)A

)
.
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At last, we now apply the prime number theorem XN = N/ logN + O(N/(logN)2) to replace
XN by N/ logN at the cost of an error of size

� (y
(m)
max)2N

φ(W )(logN)2

 ∑
u<R

(u,W )=1

µ(u)2

g(u)


k−1

� (y
(m)
max)2φ(W )k−2N(logR)k−3

W k−1
,

which is smaller than the first error term.
The proof of (i) is a k-dimensional analogue of the proof for diagonalising weights in the Λ2

Selberg sieve. Moreover, it is very similar to the proof of (ii), so we will only sketch it briefly.
We start with (7). Again the inner sum can be rewritten as running over all n in some fixed
residue class mod q and so it equals N/q +O(1). Consequently,

S1 = N
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
q

+O

 ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |

 .

The main term can be treated very similarly to the main term of S
(m)
2 . Since λd1,...,dk = 0 when

d =
∏
i di ≥ R and there are τk(d) ways to write d as a product of k integers, the error term is

� λ2
max

(∑
d<R

τk(d)

)2

� y2
maxR

2(logR)4k−2

by Corollary 2.7 and Lemma 3.6. This is smaller than the error term given in the statement of
the lemma, because R2 = Nα for some α < 1.

Remark 3.9. In the proofs of both (i) and (ii) we used that R2 � N . If instead we had chosen
R2 = N1+η for some η ≥ 0 then in our estimation of S1 we would have picked up an error of
size y2

maxR
2(logR)4k−2 = y2

maxN
1+η(logN)4k−2. However, by Corollary 2.7 the main term of

S1 is

N

W

∑
r1,...,rk

y2
r1,...,rk∏k
i=1 φ(ri)

� Ny2
max

W

(∑
r<R

µ(r)2

φ(r)

)k
� Ny2

max(logR)k

W
� y2

maxN
1+η(logN)4k−2,

so the supposed “error term” would dominate the main term making all our estimations worthless.

The same problem would occur with S
(m)
2 . Thus, indeed, as with the 1-dimensional Selberg sieve,

we cannot take R to be larger than
√
N . This observation will also be important in Section 6

when we apply the “ε-trick”.

The following lemma allows us to compare the new variables yr1,...,rk and y
(m)
r1,...,rk .

Lemma 3.10. If rm = 1 we have

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

WD0

)
.

The main idea is to substitute the expression for the λ-variables in terms of the y-variables in

the definition of y
(m)
r1,...,rk . We omit the details.
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Motivated by the GPY sieve weights, we now restrict the choice of λd1,...,dk more by setting

yr1,...,rk = F

(
log r1

logR
, . . . ,

log rk
logR

)
,

where F is a piecewise differentiable function supported on Rk. A benefit of taking a smooth
function here is that we can transform sums into integrals using Corollary 2.7; and integrals
are nice to work with. Furthermore, we again set yr1,...,rk = 0 when either µ(r1 · · · rk)2 = 0 or
(r1 · · · rk,W ) > 1. We define

Fmax = sup
(x1,...,xk)∈[0,1]k

|F (t1, . . . , rk)|+
k∑
i=1

∣∣∣∣∂F∂ti (t1, . . . , tk)

∣∣∣∣ .
The estimations of S1 and S

(m)
2 can now be rewritten using Corollary 2.8.

Lemma 3.11. With the y-variables defined as above, we have

(i)

S1 =
φ(W )kN(logR)k

W k+1
Ik(F ) +O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
and

(ii)

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J

(m)
k (F ) +O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
.

Proof. Again we start with (ii). We find using our choice of y that whenever y
(m)
r1,...,rk 6= 0 we

have

y(m)
r1,...,rk

=
∑

u: (u,W
∏k
i=1 ri)=1

µ(u)2

φ(u)
F

(
log r1

logR
, . . . ,

log rm−1

logR
,

log u

logR
,

log rm+1

logR
, . . . ,

log rk
logR

)
+O

(
Fmaxφ(W ) logR

WD0

)
.

We see using Corollary 2.6 that y
(m)
max � φ(W )Fmax(logR)/W . We now want to apply Corollary

2.8 with γ(p) = 1 if p -W
∏k
i=1 ri and γ(p) = 0 otherwise. For this, note that

∑
p

|γ(p)− 1| log p

p
=

∑
p|W

∏k
i=1 ri

log p

p
�

∑
p<logR

log p

p
+

∑
p|W

∏k
i=1 ri

log p

logR
� log logN,

using Mertens and the fact that
∑
p|W

∏k
i=1 ri

log p ≤
∑
d|W

∏k
i=1 ri

Λ(d) = log(W
∏k
i=1 ri) �

logR. We now obtain

y(m)
r1,...,rk

= (logR)
φ(W )

W

(
k∏
i=1

φ(ri)

ri

)
F (m)
r1,...,rk

+O
(
Fmaxφ(W ) logR

WD0

)
,

where

F (m)
r1,...,rk

=

∫ 1

0

F

(
log r1

logR
, . . . ,

log rm−1

logR
, tm,

log rm+1

logR
, . . . ,

log rk
logR

)
dtm.
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Substituting this into our expression for S
(m)
2 , we claim to get

S
(m)
2 =

φ(W )N(logR)2

W 2 logN

∑
r1,...,rk

(ri,W )=1∀i
(ri,rj)=1∀i6=j

rm=1

(
k∏
i=1

µ(ri)
2φ(ri)

g(ri)ri

)(
F (m)
r1,...,rk

)2

+O
(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
.

(10)

The main term comes from taking the square of the main term of y
(m)
r1,...,rk . Note that we have

restricted the sum because y
(m)
r1,...,rk = 0 when either (ri,W ) 6= 0 for some i, (ri, rj) 6= 0 for some

i 6= j or rm 6= 1. The largest error term obtained from squaring y
(m)
r1,...,rm is the product between

the main term and the error term. Using that φ(ri) ≤ ri, this contributes at most

� N(logR)2φ(W )F 2
max

D0W 2 logN

∑
r1,...,rk
rm=1

∏k
j=1 µ(rj)

2∏k
i=1 g(ri)

=
N(logR)2φ(W )F 2

max

D0W 2 logN

(∑
r<R

µ(r)2

g(r)

)k−1

.

We have inserted the µ(rj)
2 and the condition rm = 1 here because y

(m)
r1,...,rk = 0 when µ(rj)

2 = 0
for some j or rm 6= 1. Using Corollary 2.6 again to evaluate the last sum, we obtain the same

error term as in (10). We also have the two big oh terms already present in S
(m)
2 . Using that

y
(m)
max � φ(W )Fmax log(R)/W , we see that the first of those is of the same size as the error term

in (10). The second big oh term y2
maxN/(logN)A � F 2

maxN/(logR)A is seen to be smaller when
A is sufficiently large.

Now if (ri,W ) = (rj ,W ) = 1 but (ri, rj) > 1, then ri and rj must have a common prime
factor p > D0. Hence the requirement (ri, rj) = 1 in the sum in (10) can be removed at the cost
of an error of size

� φ(W )N(logR)2F 2
max

W 2 logN

∑
p>D0

φ(p)2

g(p)2p2


 ∑

r<R
(r,W )=1

µ(r)2φ(r)

g(r)r


k−1

� F 2
maxφ(W )kN(logR)k

W k+1D0
,

which can be absorbed in our previous error term. In the above we use Corollary 2.6 after
applying the upper bound φ(d) ≤ d.

Finally, we apply Corollary 2.8 for each variable ri with i 6= m in turn with γ(p) = 1+1/(p2−
p− 1) if p -W and γ(p) = 0 otherwise to evaluate

∑
r1,...,rm−1,rm+1,...,rk

(ri,W )=1∀i

(
k∏
i=1

µ(ri)
2φ(ri)

g(ri)ri

)
(F (m)
r1,...,rk

)2.

Using that ∑
p

|γ(p)− 1| log p

p
�
∑
p|W

log p

p
� logD0

by Mertens, we finally obtain

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J

(m)
k (F ) +O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
,

as desired. Again the proof of (i) is similar to, but slightly simpler than the proof of (ii); it will
be omitted.

19



Indeed, the error terms are smaller than the main terms (albeit by just a factor D0), so we have
proved Proposition 3.1.

4 Solving the variational problem

4.1 Small k

Our aim is to find functions F that approximate

Mk = sup
F

∑k
m=1 J

(m)
k (F )

Ik(F )
,

where the supremum runs over the piecewise differentiable functions F : [0, 1]k → R supported

on Rk such that Ik(F ) 6= 0. We first notice that both
∑k
m=1 J

(m)
k (F ) and Ik(F ) are symmetric

in m, which implies that we can restrict our search to symmetric functions.

Lemma 4.1. We have

Mk = sup
F

kJk(F )

Ik(F )
,

where Jk(F ) := J
(1)
k (F ) and the supremum runs over all symmetric piecewise differential func-

tions F on Rk.

Proof. Suppose F is piecewise differentiable. Then so is |F |, and Ik(F ) = Ik(|F |) and J
(m)
k (|F |) ≥

J
(m)
k (F ). Hence we may choose a sequence Fn of non-negative piecewise differentiable functions

such that
∑k
m=1 J

(m)
k (F )/Ik(F )→ Mk. After rescaling, we may assume Ik(Fn) = 1 for each n.

We note that

Q(F ) := MkIk(F )−
k∑

m=1

J
(m)
k (F )

is by definition a positive semi-definite quadratic form on Sk of which the induced bilinear form
is clearly symmetric. Thus, Q(F ) obeys the triangle inequality. We define

Fn(t1, . . . , tk) =
1√
k!

∑
σ∈Sk

F (tσ(1), . . . , tσ(k)).

Since Q(F ) is symmetric, the triangle inequality gives Q(Fn) ≤ Q(F ) and we have Q(Fn) → 0
as well. Also, as each Fn is non-negative Ik(Fn) ≥ Ik(Fn/k!) = 1/k! so Ik(F ) is bounded away
from zero. Thus we find

kJk(Fn)

Ik(Fn)
→Mk

as desired.

Since every continuous function can be well approximated by polynomials, we consider functions
of the form

F (t1, . . . , tk) = P (t1, . . . , tk)1(t1,...,tk)∈Rk ,

where P is a polynomial. We know from the theory of symmetric polynomials that each can be
expressed as a polynomial in the power sum polynomials Pj =

∑k
i=1 t

j
i . However we prefer to

work with a linear basis, because this allows us to write Jk(F ) and Ik(F ) as a positive definite
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quadratic forms: if P = a1f1 + . . . akfk for piecewise differentiable functions fk and scalars ak,
then

Ik(F ) =
∑

1≤i,j≤d

aiaj

∫
Rk

fifjdt1 . . . dtk

and

J
(m)
k (F ) =

∑
i≤i,j≤d

aiaj

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

fidtm

)(∫ 1

0

fjdtm

)
dt1 . . . dtm−1dtm+1 . . . dtk.

If we can evaluate the two integrals above, we have computable symmetric positive-definite
matrices M2 and M1 such that ∑k

m=1 J
(m)
k (F )

Ik(F )
=

aTM2a

aTM1a
,

where a = (a1, . . . , ad). Such expressions have a well-known maximum.

Lemma 4.2. Suppose that M1,M2 are real symmetric positive-definite square matrices of the

same size. Then the maximal value of aTM2a
aTM1a

is the largest eigenvalue of M−1
1 M2. This maximum

is attained when a is an eigenvector of M−1
1 M2.

Proof. Note that the fraction is unaffected when we change a by a non-zero scalar. Hence we
may assume that aTM1a = 1 and it remains to maximise aTM2a subject to the constraint
aTM1a = 1. This is a straightforward computation with Lagrange multipliers.

It remains to find a choice of f1, . . . , fd that allow us to compute the matrices M2 and M1. To
this end, let a signature α be a non-increasing finite sequence of integers. Then we define

Pα =
∏

s(a1,...,ak)=α

ta11 · · · t
ak
k ,

where s(a1, . . . ak) is the unique signature consisting of the integers a1, . . . , ak. Clearly, any
product of the power sum polynomials can be written as a linear combination of Pα’s, so they
form a basis. It remains to find elements of this basis that can be well integrated on Rk. The
following lemma will provide inspiration.

Lemma 4.3 (Beta function identity). We have∫
Rk

(
1−

k∑
i=1

ti

)a k∏
i=1

taii dt1 . . . dtk =
a!a1! · · · ak!

(k + a+
∑k
i=1 ai)!

Proof. The crucial observation here is to use the substitution v = t1/(1−
∑k
i=2 ti) to obtain

∫ 1−
∑k
i=2 ti

0

(
1−

k∑
i=1

ti

)a( k∏
i=1

taii

)
dt1 =

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+ai+1 ∫ 1

0

(1− v)ava1dv

=
a!a1!

(a+ a1 + 1)!

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+ai+1

.

for the inner integral. Applying this recursively we find the result.
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This lemma takes care of the integrals arising from Ik. We can compute the integrals arising
from Jk as well, using first the displayed line in the proof to get rid of the squared inner integral
and then applying the lemma with k − 1 instead of k.

So good candidates for integration would be polynomial expressions in 1−P1 and P for some
relatively simple polynomial P . (Note that P should not be a function of the sum P1, since
that would bring us to the GPY case; see Section 5.) Maynard chose P = P2, the next simplest
symmetric polynomial, and found M105 > 4. The Polymath8b group [13] managed to do a lot
better by considering more general polynomials.

Lemma 4.4. The polynomials (1 − P1)aPα with a ∈ Z≥0 and α a signature avoiding 1 form a
linear basis for the symmetric polynomials.

Proof. We begin with the basis consisting of the Pα’s. Let the length of a signature α be the
number of non-zero entries. Suppose that α is a signature of length ` containing 1 and let α′

be the signature we obtain after removing 1 from α. Then one readily sees that Pα − P1Pα′ is
a linear combinations of Pβ ’s with length of β strictly smaller than `. Thus, we recursively find
that each Pγ can be expressed as a linear combination of P a1 Pα’s with a a non-negative integer
and α a signature avoiding 1. Consequently they span the space and so do the (1 − P1)aPα’s.
Moreover, they are clearly linearly independent.

Thus, a reasonable choice would be to consider linear combinations of all (1 − P1)aPα, where
a ≥ 0, α is a signature avoiding 1 and the total degree a+α1 + . . .+α` ≤ d is bounded by some
threshold d. In order to compute M1 and M2 efficiently, we choose a d ∈ Z>0 and make a table
of the coefficients cα,β,γ defined by

PαPβ =
∑
γ

cα,β,γPγ .

for degPαPβ ≤ d. Then we write the corresponding integrals as a linear combination of integrals
over polynomials of the form (1 − P1)aPγ and we evaluate those using Lemma 4.3 . Lastly, we
find the largest eigenvalue of M−1

1 M2. In order to speed up the computations, the Polymath8b
group considered signatures α with only even entries. Doing this with d = 23 and k = 54, they
found M54 ≥ 4.00238, proving Proposition 3.2(ii).

4.2 Large k

This subsection discusses the proof of Proposition 3.2(iii). The previous arguments only allow
lower bounds for Mk to be computed for fixed small k. Therefore, a different method is required
to find a lower bound for all sufficiently large k. We present Tao’s probabilistic approach [16]
to this problem. Maynard [10] approaches the problem in a similar way, but uses a physical
interpretation of the involved integrals instead. The main idea is to choose F to be of the form

F (t1, . . . , tk) = 1∑
i ti≤1k

1/2g(kt1) · · · k1/2g(ktk),

where g : [0,∞] → R is piecewise differentiable, supported on [0, T ] for some T > 0 and nor-
malised so that

∫∞
0
g(t)2dt = 1. This is a convenient choice as it almost makes the k-dimensional

integrals a product of k one-dimensional integrals. Such F ’s are symmetric in t1, . . . tk, so J
(m)
k (F )

is again independent of m. We write Ik := Ik(F ) and Jk := J
(1)
k (F ) for convenience. Note that

indeed kJk/Ik is invariant under scaling of g. We also define µ =
∫∞

0
tg(t)dt.
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Lemma 4.5. With the above definitions, we have

Mk ≥
(∫ ∞

0

g(t)dt

)2(
1− kT

(k − T − kµ))2

)
provided µ < 1− T/k.

Proof. We see that

Ik ≤
∫

[0,∞)n

k∏
i=1

kg(kti)
2dt1 · · · dtn = 1

by the normalisation assumption. Also, when 1−
∑k−1
i=1 ti ≥ T/k the inner integral in Jk is∫ ∞

0

1∑
i ti≤1k

1/2g(kt1) · · · k1/2g(ktk)dtk =

(
k−1∏
i=1

√
kg(kti)

)
k−1/2

∫ ∞
0

g(t)dt

since in that case the range of the integral is [0, T/k] and
∑k
i=1 ti ≤ 1 for tk ∈ [0, T/k]. Thus we

find

Mk ≥ kJk ≥
(∫ ∞

0

g(t)dt

)2 ∫
∑k−1
i=1 ti≤1−T/k

(
k−1∏
i=1

kg(kti)
2

)
dt1 · · · dtk−1

=

(∫ ∞
0

g(t)dt

)2 ∫
∑k−1
i=1 t

′
i≤k−T

(
k−1∏
i=1

g(t′i)
2

)
dt′1 · · · dt′k−1.

The key observation at this point is that this can be interpreted as a probability. LetX1, . . . , Xk−1

be non-negative independent random variables on R, each identically distributed with density
function g(t)2. Then the above translates into

Mk ≥
(∫ ∞

0

g(t)dt

)2

P(X1 + . . .+Xk−1 ≤ k − T ).

We would like to use Chebyshev’s inequality to lower bound this. Chebyshev says that most
mass lies around the mean, so to get a lower bound we need the mean of X1 + . . .+Xk−1 to be
smaller than k − T . As E(X1 + . . . + Xk−1) = (k − 1)µ and µ < 1− T

k , this is indeed the case.
Since

Var(X1 + . . .+Xk−1) = (k − 1)VarX1 ≤ (k − 1)EX2
1 ≤ (k − 1)Tµ,

Chebyshev’s inequality implies

Mk ≥
(∫ ∞

0

g(t)dt

)2(
1− (k − 1)Tµ

(k − T − (k − 1)µ))2

)
≥
(∫ ∞

0

g(t)dt

)2(
1− kT

(k − T − kµ))2

)
provided µ < 1− T/k ≤ 1.

Now it is a matter of maximizing the right-hand side for g and T subject to the constraints
µ < 1− T/k and

∫∞
0
g(t)2dt = 1. Maynard carefully showed in Section 8 of [10] that

g(t) =
c

1 +At
, c2 =

1 +AT

T
, 1 +AT = eA and T = log k − 2 log log k

obey both conditions and give Mk ≥ log k − 2 log log k − 2, as desired.
The Polymath8b group more carefully optimised the above arguments in [13] and found

Mk ≥ log k − C for some constant C.
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4.3 An upper bound for Mk

In order to see how much room for improvement is left, we find an upper bound for Mk. This
result corresponds to Corollary 6.4 of [13].

Proposition 4.6. For each k, we have Mk ≤ k
k−1 log k.

Proof. Let F be a piecewise differentiable function on Rk and consider a function Gm : Rk →
[0,∞) such that

∫∞
0
G(t1, . . . , tk)dtm ≤ 1 for every t1, . . . , tm−1, tm+1, . . . , tk ≥ 0. Using Cauchy-

Schwarz, we bring the F 2 inside to find(∫ ∞
0

F (t1, . . . , tk)dtm

)2

≤
∫ ∞

0

F (t1, . . . , tk)2

G(t1, . . . , tk)
dtm

∫ ∞
0

G(t1, . . . , tk)dtm ≤
∫ ∞

0

F (t1, . . . , tk)2

G(t1, . . . , tk)
dtm

for each t1, . . . , tm−1, tm+1, . . . , tk ≥ 0, which implies J
(m)
k (F ) ≤

∫
Rk F (t1, . . . , tk)2/G(t1, . . . , tk)dtm.

So if we have such functions Gm for every 1 ≤ m ≤ k, then we conclude that∑k
m=1 J

(m)
k (F )

Ik(F )
≤ sup
Rk

k∑
m=1

1

Gm(t1, . . . , tk)
.

We have this bound for every F , so for Mk as well. It remains to find suitable functions Gm.
Here is a good choice: we take

Gm =
k − 1

log k

1

1−
∑
i 6=m ti + (k − 1)tm

.

The factor (k − 1)/ log k is chosen to make
∫ 1−

∑
i6=m ti

0 G(t1, . . . , tk)dtm = 1 and we see that

k∑
m=1

log k

k − 1

1−
∑
i 6=m

ti + (k − 1)tm

 =
k

k − 1
log k,

thus proving the proposition.

The possible values of Mk are thus within log k− 2 log log k− 2 ≤Mk ≤ k
k−1 log k. Moreover, for

specific values of k, we have computed stronger lower bounds. For k = 105, Maynard obtained
M105 ≥ 4.0020697..., which is not extremely close to the upper bound M105 ≤ 4.6987.... The
subsequent result M54 ≥ 4.00238... from the Polymath8b group, is much closer to the upper
bound which equals 4.06024... for k = 54. The Polymath8b group [13] compared the two bounds
for more small values of k and found the two to be similarly close in each case. In conclusion, the
algorithm described in 4.1 for computing lower bounds for Mk appears to be close to optimal,
so there may not be to be much to gain from attempting to optimise it any further.

5 Comparison with the GPY method

Before 2013, the standard approach towards proving bounded gaps used the classical sieve weights
of the form (

∑
d|(n+h1)···(n+hk) λd)

2. In their celebrated paper, Goldston, Pintz and Yıldırım were
unfortunately unable to prove bounded gaps between primes. In this section we describe a reason
for this and the fact that Maynard’s approach was more successful. We first investigate in what
way the Maynard weights generalise the GPY weights. As remarked by Maynard [10], it appears
that λd1,...,dk as defined in Proposition 3.1 is approximately defined in terms of the integral of F
with respect to each coordinate. The following proposition makes this intuition precise.
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Proposition 5.1. For the weights λd1,...,dk as defined in Proposition 3.1, there exists a constant
C independent of R, d1, . . . , dk such that

λd1,...,dk = (1 + o(1))C(logR)k
φ(W )k

W k
µ

(
k∏
i=1

di

)∫ 1

log(d1)
logR

· · ·
∫ 1

log dk
logR

F (t1, . . . , tk)dt1 . . . dtk.

Proof. We start by rewriting the weights as

λd1,...,dk = µ

(
k∏
i=1

di

)
k∏
i=1

di
φ(di)

∑
r1,...,rk
di|ri ∀i

(ri,W )=1 ∀i

µ
(∏k

i=1 ri

)2

∏k
i=1 φ(ri)

F

(
log(r1)

logR
, . . . ,

log(rk)

logR

)

= µ

(
k∏
i=1

di

)
k∏
i=1

di
φ(di)

∑
s1,...,sk

(si,diW )=1 ∀i
(si,sj)=1 ∀i 6=j

∏k
i=1 µ(si)

2∏k
i=1 φ(si)

F

(
log(d1s1)

logR
, . . . ,

log(dksk)

logR

)
,

where we may sum over the si up to R as F is supported on Rk. Also, we exchanged
∏
i µ(di)

for µ(
∏
i di) since λd1,...dk = 0 when d1, . . . , dk are not all pairwise coprime. Using Corollary 2.8

for sk with g = φ and G(t) = F (log(d1s1)/ logR, . . . , log(dk−1sk−1)/ logR, t+ log dk/ logR), the
sum is asymptotic to

log(R)
∑

s1,...,sk−1

(si,diW )=1 ∀i
(si,sj)=1 ∀i6=j

∏k−1
i=1 µ(si)

2∏k−1
i=1 φ(si)

φ(Wdk
∏k−1
i=1 sk)

Wdk
∏k−1
i=1 sk

∫ 1

0

F

(
log(d1s1)

logR
, . . . ,

log(dk−1sk−1)

logR
, t+

log dk
logR

)
dt

= log(R)
φ(W )

W

φ(dk)

dk

∑
s1,...,sk−1

(si,diW )=1 ∀i
(si,sj)=1 ∀i 6=j

∏k−1
i=1 µ(si)

2∏k−1
i=1 si

∫ 1

0

F

(
log(d1s1)

logR
, . . . ,

log(dk−1sk−1)

logR
, t+

log dk
logR

)
dt,

where in the end we used that W,dk and
∏k−1
i=1 sk are pairwise coprime by definition of the

supports of λd1,...,dk and the remaining sum. Now we can do a similar thing for sk−1. We
apply Corollary 2.8 with a different multiplicative arithmetic function g defined on primes by
g(p) = γ(p)/(p − γ(p)) with γ(p) = 1(p,dk−1W

∏
i≤k−1 si)=1p/(p + 1). From the support of γ, we

find that

Gγ = Cγ
φ(W )φ(dk−1)

Wdk−1
,

where Cγ is a constant not depending on any variable except γ. We see that we can apply the
above argument for sk−1, sk−2, . . . , s1 in turn, but each time for an arithmetic function g defined
in terms of a different function γ, to conclude that

λd1,...,dk = (1 + o(1))C(logR)k
φ(W )k

W k
µ

(
k∏
i=1

di

)∫
[0,1]k

F

(
t1 +

log d1

logR
, . . . , tk +

log dk
logR

)
dt1 . . . dtk

for some constant C. Note that
∏
i di/φ(di) cancels out against

∏
i φ(di)/di obtained from this

procedure. This proves the proposition.
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Note that the quotient S2/S1 is unaffected when multiplying each wn by a constant not depending
on n. Also, the quotient S2/S1 as computed in Proposition 3.1 already has a factor (1 + o(1)).
Therefore, the Tao weight constituents

λ̃d1,...,dk := µ

(
k∏
i=1

di

)
F̃

(
log d1

logR
, . . . ,

log dk
logR

)
,

where F̃ (t1, . . . , tk) is a differentiable function supported on Rk with piecewise differentiable

derivative ∂k

∂t1···∂tk f̃ , must give the same results as the λd1,...,dk . Indeed, these are the weight

constituents used by Tao [15] and by the Polymath8b group [13].
Recall that Goldston, Pintz and Yıldırım considered weights of the form wn = (

∑
d|
∏
h∈H(n+h) λd)

2.

Considering such weights is equivalent to λd1,...,dk being a function of the product d1 · · · dk. With

d = d1 · · · dk and f̃(d) = F̃ (d1, . . . , dk), the Tao sieve weights then become

λ̃d1,...,dk = µ(d)f̃

(
log d

logR

)
= µ(d)f

(
log

R

d

)
,

where f(t) = f̃(1− t/ logR). These are indeed the weight constituents (1.3) used by GPY. This
shows in what way the smooth Maynard sieve weights generalise the smooth GPY sieve weights.
Let us verify that we also obtain the same results.

Lemma 5.2. If F (t1, . . . , tk) = G(t1 + . . .+ tk) for some function G, then

Ik(F ) =
1

(k − 1)!

∫ 1

0

G(t)2tk−1dt and J
(m)
k (F ) =

1

(k − 2)!

∫ 1

0

(∫ 1

t

G(v)dv

)2

tk−2dt.

Proof. Using the substitution v = t1 + . . .+ tk and then partial integration we find∫ 1−
∑k
i=3 ti

0

∫ 1−
∑k
i=2 ti

0

G(t1 + . . .+ tk)2dt1dt2 =

∫ 1−
∑k
i=3 ti

0

∫ 1

∑k
i=2 ti

G(v)2dvdt2

=

[
t2

∫ 1

∑k
i=2 ti

G(v)2dv

]1−
∑k
i=3 ti

0

+

∫ 1−
∑k
i=3 ti

0

G

(
k∑
i=2

ti

)2

t2dt2

=

∫ 1−
∑k
i=3 ti

0

G

(
k∑
i=2

ti

)2

t2dt2.

Continuing this argument, we recursively find the desired equality for Ik(F ). The same works
for Jk(F ).

For a piecewise differentiable function G : [0, 1] → R we define Ik(G) := Ik(F ) and Jk(G) :=

J
(1)
k (F ), where F : Rk → R is given by F (t1, . . . , tk) = G(t1 + . . .+ tk). Note that for F of this

form J
(m)
k (F ) is independent of m.

In order to prove bounded gaps between primes using F of this form, we would like to find a
piecewise differentiable function G such that kJk(G)/Ik(G) > 4 for some k. Goldston, Pintz and
Yıldırım considered f(x) = xk+`, which up to an unimportant constant factor translates by the

above into G(x) = (1−x)` (we get f̃(x) = (logR)k+`(1−x)k+` and then we need to differentiate
k times). For this G, the beta function identity and Lemma 5.2 can be used to compute that

kJk(G)

Ik(G)
=

2k(2`+ 1)

(`+ 1)(k + 2`+ 1)
.
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With ` =
√
k, say, we thus see that kJk(G)/Ik(G) converges to 4 from below as k → ∞ and

this saves approximately a factor 2 over the ` = 0 case. This proves bounded intervals between
primes using the GPY method, provided the primes have level of distribution strictly greater
than 1/2. This was indeed a result of GPY [7]: they were just “an epsilon” away from proving
bounded prime gaps unconditionally. Unfortunately, however, GPY could never have obtained
kJk(G)/Ik(G) > 4, as Soundararajan [14] noticed. The presented proof was found by Tao [15].

Proposition 5.3. We have kJk(G)/Ik(G) < 4 for every G : [0, 1]→ R piecewise differentiable
and every k ≥ 2.

Proof. We define the function g(t) =
∫ 1

t
G(v)dv and note that g′(t)2 = G(t)2. We will show for

any differentiable function g : [0, 1]→ R with g(1) = 0 that

k

∫ 1

0

g′(t)2 tk−2

(k − 2)!
dt < 4

∫ 1

0

g(t)2 tk−1

(k − 1)!

for each integer k ≥ 2. Also define f(t) = g(t)tk/2−1, which transforms the above into

k(k − 1)

4

∫ 1

0

f(t)dt <

∫ 1

0

(f ′(t)− (k/2− 1)t−1f(t))2tdt.

We note that
∫ 1

0
2f(t)f ′(t)dt =

∫ 1

0
(f(t)2)′dt = f(1)2 − f(0)2 = 0. Hence expanding the right-

hand square and subtracting (k/2− 1)2
∫ 1

0
f(t)2dt from both sides, we obtain

3k − 4

4

∫ 1

0

f(t)2dt <

∫ 1

0

f ′(t)2t+
(k − 2)2

4
f(t)2(t−1 − 1)dt.

We split the proof into two cases. If y is close to 1, more specifically if y ≥ 1− 2√
3k−4

, we show

3k − 4

4

∫ 1

y

f(t)2dt <

∫ 1

0

f ′(t)2dt.

If y is far from 1, more specifically if y ≤ 1− 3k−4
k2−k , we show that

3k − 4

4

∫ y

0

f(t)2dt <
(k − 2)2

4

∫ 1

0

f(t)2(t−1 − 1)dt.

If y is close to 1, we see using Cauchy-Schwarz that

f(y)2 =

∣∣∣∣∫ y

0

f ′(t)
√
t

1√
t
dt

∣∣∣∣2 ≤ ∫ 1

0

f ′(t)2tdt| log(y)| =
∫ 1

0

f ′(t)2dt log(1/y)

so that the integral ∫ 1

y

f(t)2dt ≤ (y − 1) log y

∫ 1

0

f ′(t)2dt.

Since (y− 1) log y ≤ (y− 1)2 ≤ 4
3k−4 , we obtain the desired inequality. For y far from 1, we have

y ≤ (k − 2)2

(k − 2)2 + 3k − 4
, i.e.

3k − 4

4
≤ (k − 2)2

4

(
1

y
− 1

)
.

This is sufficient to prove the desired inequality for y far from 1. It remains to prove that the
two regions overlap, that is (3k − 4)3 ≤ 4(k2 − k)2 for all k ≥ 2. This is elementary.
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The optimal value of kJk/Ik was found by Pintz, Révész and Farkas [12] using Bessel functions.
Unfortunately, the above proof is not very insightful, so let us give a more intuitive argument

why the Maynard sieve weights perform better. We again view the weights as a probability
density. Then GPY found a probability density on [N, 2N) such that for a randomly chosen
n ∈ [N, 2N) according to this density, P(n + hi is prime) � 1/k as k → ∞ and N → ∞. It is
unfortunate that the constant that bounds kP(n + hi is prime) is precisely the critical value 4,
but what we really desire is for kP(n+ hi is prime) to increase to infinity as k →∞.

Recall that the GPY weights were constructed to place most mass on those n where∏
h∈H(n+ hi) has at most k prime factors, i.e. those where all n+ hi are prime. Since we need

wn to be chosen such that
∑k
m=1 P(n+ hm is prime) is computable, we make a certain error. It

would be helpful if these deviations of wn from 1all n+hi prime occur when at least many of the
n+hi are prime; after all, we require P(n+hi is prime) to be large for each i. Indeed, this is what
Maynard ensured by allowing the sieve weights to depend on the individual n+ hi’s rather than
their product. In fact, we found a probability density such that P(n+ hi is prime) � (log k)/k.

To illustrate this, recall that the GPY weights resemble the square of∑
d|
∏

(n+hi)
µ(d)(log

∏k
i=1(n+hi)

d )k which vanishes when not all n + hi are prime. Similarly it

follows from the chosen form of the function F (t1, . . . , tk) = 1∑
ti≤1g̃(kt1) · · · g̃(ktk) for the Tao

weights for large k, that they resemble the square of ∑
d1|n+h1

µ(d1) log
n+ h1

d1

 · · ·
 ∑
dk|n+hk

µ(dk) log
n+ hk
dk

 (11)

which vanishes when not all n+ hi are prime powers. Suppose now that n+ h2, . . . , n+ hk are
prime, but n+ h1 is not a prime power. Then

∑
d1|n+h1

µ(d1) log n+h1

d1
= 0 but∑

di|n+hi
µ(di) log n+hi

di
= log(n + hi) for i > 1. As wn can be thought of as being a smoothed

approximation to the square of (11), the first factor of wn is small. However, as opposed to the
GPY case, this is now partially compensated by the larger values at n+h2, . . . , n+hk. Moreover,
we see that wn is larger when more of the n+ hi are prime.

Why does this make such a big difference? GPY found P(n+hi is prime) � 1/k which differs
a factor of about k from the optimal value P(n + hi is prime) = 1. Hence the smooth weights
wn approximate 1all n+pi prime rather roughly and this becomes more rough as k increases. As
a result, when k increases we can benefit more from choosing wn better at those n where it
deviates from 1all n+pi prime. This is why we could save a factor log k that increases with k.

6 Further improvements to the Maynard-Tao sieve

After Maynard’s paper came out, the Polymath8b group managed to make a series of improve-
ments to the sieve, proving amongst other results the following theorem.

Theorem 6.1. We have lim inf pn+1 − pn ≤ 246.

The improvements can be divided into two categories:

(1) finding functions that give better approximations to (the equivalent of) Mk and

(2) enlarging the allowed support of F in order to consider a larger set of functions.

Improvements of the first kind initially led to lim inf pn+1 − pn ≤ 270 and have already been
considered in Section 4. In this section, a way to slightly enlarge the support of the allowed
functions is discussed, resulting in a proof of Theorem 6.1.
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6.1 A trivial way to enlarge the support of F

A more or less trivial way to enlarge the support of F was already noted by Maynard in his
paper [10]. He remarks that in the proof of lemmata 3.7(ii) and 3.11(ii) λd1,...,dk is only really
required to be supported on those (d1, . . . , dk) with

∏
i 6=m di ≤ R. This is because we need to

set dm = 1. For such di we have(∏
i

di

)k−1

=
∏
m

∏
i6=m

di ≤ Rk,

so we can use Rk/(k−1) instead of R in our estimates for S1 and S2. However, we do need to
be careful here: as noted in Remark 3.9 this works only when 2k(θ/2)/(k − 1) < 1, i.e. when
k > 1/(1− θ). Hence this idea is of little use when assuming the Elliott-Halberstam conjecture.
If indeed k ≥ 1/(1− θ), the above reasoning implies that instead of Mk it suffices to consider

M ′k = sup
F

∑k
m=1

∫∞
0
. . .
∫∞

0

(∫∞
0
F (t1, . . . , tk)dtm

)2
dt1 . . . dtm−1dtm+1 . . . dtk∫∞

0
· · ·
∫∞

0
F (t1, . . . , tk)2dt1 . . . dtk

,

where now F runs over the piecewise differentiable functions supported on the slightly larger set

R′k = {(t1, . . . , tk) ⊂ [0, 1]k | t1 + . . . tm−1 + tm+1 . . .+ tk ≤ 1 for each 1 ≤ m ≤ k}.

Unfortunately, Maynard also remarks in his paper [10] that this enlarged support gives negligible
numerical benefits. We thus need to find a better way to enlarge the support.

6.2 Sieving on an ε-enlarged support

Note that a precise asymptotic for S
(m)
2 as established in Lemma 3.11(ii) is not really necessary;

it suffices to find a lower bound. This simple idea allows us to further enlarge the support. The
following corresponds to Theorem 3.12(i) from [13]. The proof has been adapted to fit our setup.

Proposition 6.2 (ε-trick). Suppose the primes have level of distribution θ. Then for any ε > 0
such that 1 + ε < 1/θ and any piecewise differentiable function F supported on (1 + ε)Rk with
λd1,...,dk defined in terms of F , we have

S
(m)
2 ≥ (1 + o(1))

φ(W )kN(logR)k+1

W k+1 logN
J

(m)
k,ε (F ),

where

J
(m)
k,ε (F ) :=

∫
(1−ε)Rk−1

(∫ ∞
0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

Remark 6.3. Note that the enlarged support of F comes at the cost of a smaller integration
range (1 − ε)Rk−1 so it is not a priori clear that the ε-trick gives better results. This loss is
minimised by applying ideas from the previous subsection to allow the squared inner integral in

J
(m)
k,ε to be unrestricted. Also, note that letting ε→ 0 we get the original asymptotic from Lemma

3.11(ii) back, so the ε-trick cannot do worse.

Proof. As in the proof of Lemma 3.7(ii) we have

S
(m)
2 =

∑
n

1n+hm is primewn =
∑
n

1n+hm is prime

 ∑
d1,...,dk
dm=1

λd1,...,dk


2

,
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where now we define λd1,...,dk in terms of a piecewise differentiable function F supported on
(1 + ε)Rk. We now have no hope of obtaining the same asymptotic as before. However, we
can obtain a lower bound if we introduce a new k-dimensional Selberg weight w̃n in terms of
λ̃d1,...,dk , which we define similar to λd1,...,dk , but in terms of another function F̃ supported also

on (1+ε)Rk. The upper bound we take is wn = w̃n+(wn−w̃n) ≥ wn−w̃n. We choose F̃ to agree
with F when

∑
i 6=m tk > 1 − ε, which will imply that the contributions from

∑
i 6=m tk > 1 − ε

cancel each other out nicely. More specifically, we get as in the proof of Lemma 3.7(ii) that

∑
n

1n+hm is prime(wn − w̃n) =
XN

φ(W )

′∑
d1,...,dk
e1,...,ek
dm=em=1

λd1,...,dkλe1,...,ek − λ̃d1,...,dk λ̃e1,...,ek∏k
i=1 φ([di, ei])

+O

 ∑
d1,...,dk
e1,...,ek
dm=em=1

|λd1,...,dkλe1,...,ek − λ̃d1,...,dk λ̃e1,...,ek |E(N, q)


In the big oh term, we now only need to consider those d1, . . . , dk and e1, . . . , ek where either∏
i 6=m di ≤ R1−ε or

∏
i6=m ei ≤ R1−ε, since λd1,...,dkλe1,...,ek and λ̃d1,...,dk λ̃e1,...,ek agree in the

other case. Thus, we find for q such that E(N, q) appears with a non-zero coefficient in the error
term that

q = W
∏
i 6=m

[di, ei] ≤W
∏
i 6=m

diei ≤WR1−εR1+ε = WR2.

This shows that we do have control over this error term, provided 2(1+ε)θ/2 < 1, i.e. 1+ε < 1/θ,
as was noted in Remark 3.9. The other error terms produced in the proofs of Lemma 3.7(ii) and
Lemma 3.11(ii) depend only on logR so they form no threat. These proofs now work in exactly
the same way to give

∑
n

1n+hm is prime(wn−w̃n) ∼ φ(W )kN(logR)k+1

W k+1 logN

∫
(1−ε)Rk−1

(∫ 1

0

F (t1, . . . , tk)2 − F̃ (t1, . . . , tk)2dtm

)2

.

To finish the proof, we just choose F̃ to be zero when
∑
i 6=m tk < 1−ε. Note that we only require

F̃ to be piecewise smooth.

When estimating S1 we change nothing, so we just work with the weights wn. Again by Remark
3.9, however, we need ε+ 1 < 1/θ for this to work. Together with the previous proposition, this
proves the following theorem.

Theorem 6.4. Suppose the primes have level of distribution θ and consider ε ≥ 0 such that
1 + ε < 1/θ. Also, define

Mk,ε := sup
F

∑k
m=1 J

(m)
k,ε (F )

Ik(F )
,

where the supremum runs over all piecewise differentiable F supported on (1 + ε)Rk. If we can
show that Mk > 2`/θ for a positive integer `, then for any admissible set H = {h1, . . . , hk} there
are infinitely many n such that at least `+ 1 of the the translates n+ h1, . . . , n+ hk are prime.

Unfortunately, the condition 1 + ε < 1/θ means that the ε-trick will be useless once we assume
the Elliott-Halberstam conjecture. For θ < 1 the ε-trick will help us lower the bound.
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Proposition 6.5. We have M50,1/4 > 4.

Proof. In order to obtain these lower bounds, we need a slight modification to our approach in
Section 4 since we need to integrate over (1− ε)Rk and (1+ ε)Rk instead of Rk. With the trivial
substitution t′i = ti/(1 + ε) for each 1 ≤ i ≤ k, we can apply Lemma 4.3 to integrate polynomials
(1 + ε − P1)aPα over (1 + ε)Rk. For integrating over (1 − ε)Rk we would like to work with
polynomials (1 − ε − P1)Pα, however. To fix this, we just convert between the two by noting
(1 + ε−P1)a = (2ε+ 1− ε−P1)a and applying the binomial theorem. Taking polynomials of the
form (1 − P1)aPα with α consisting only of even integers and total degree bounded by d = 25
the Polymath8b group computed, in the same way as in the previous section, for k = 50 and
ε = 1/25 that indeed M50,1/25 ≥ 4.00124....

The value ε = 1/25 was found by trying different values of ε of the kind ε = 1/m. Note that
M50 ≤ 50 log(50)/49 = 3.99186... < 4 so this result could not have been achieved without the
ε-trick! The admissible set of size 50 with smallest diameter has diameter 246, as was found by
Engelsma. This finishes the proof of Theorem 6.1.

7 Limitations arising from the Parity Problem

We have shown that lim inf pn+1− pn ≤ 12 provided the Elliott-Halberstam conjecture holds. In
this section, we give a (heuristic) argument why no similar sieve theoretic approach can without
additional techniques ever be applied to prove the twin prime conjecture. This is a manifestation
of the parity problem of sieves, which roughly says that, individually, general sieve methods are
unable to accurately count the size of sets that contain only integers with an even number of
prime factors or only integers with an odd number of them.

In order to find the implications of the parity problem in the case of finding primes within
short intervals, we examine our approach more closely. We started with an admissible set H =
{h1, . . . , hk} and proceeded to show that

∑
N≤n<2N #{i | n + hi is prime}wn >

∑
N≤n<2N wn

for cleverly chosen non-negative weights wn. This means that for some N ≤ n < 2N , we have
wn > 0 and #{i | n+ hi is prime} ≥ 2, hence∑

N≤n<2N

1A(n)wn > 0, (12)

where A = {n | at least two of n+ h1, . . . , n+ hk are prime}.
The first thing we did when proving Lemma 3.7 (i), was to remark that

S1 =
∑

d1,...,dk
e1,...,ek

λd1,...dkλe1,...,ek
∑

N≤n<2N
n≡v0 mod W
[di,ei]|n+hi

1

after which one wants to approximate the inner sum. When approximating S
(m)
2 we obtain the

same expression with 1n+hm is prime instead of 1 in the inner sum. All our results rely on the
estimations of these inner sums. One can imagine that different sieve methods might rewrite
their analogue to S1 and S2 differently and instead require estimations for sums of the form∑

N≤n<2N
n≡a mod q

f(n+ h) (13)
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for h ∈ H, q ≤ N1−ε and f a multiplicative function. In fact, the Polymath8b group [13] arrives
at such sums with f different from an indicator function. In order to estimate those sums, one
needs to use a generalised version of the Bombieri-Vinogradov theorem or the Elliott-Halberstam
conjecture.

Principle 7.1 (Parity problem for primes in bounded intervals). The twin prime conjecture
cannot be proved using a sieve-theoretic approach with weights wn that relies solely on estimations
of sums of the form (13) and arrives at a conclusion of the form (12).

Derivation. Suppose that we could use such an approach with weights wn to prove the twin
prime conjecture. Assume without loss of generality that H = {0, 2}, so that
A = {n | n, n + 2 are prime}. Then consider additional weights vn = 1 − λ(n)λ(n + 2), where
λ(n) = (−1)Ω(n) is the Liouville function. The Liouville function is similar to the Möbius
function and, similar to “Möbius cancellation”, we have “Liouville cancellation”, meaning that∑
n≤N λ(n) = o(N). In fact, this is � N/ log10N by the prime number theorem. Moreover, one

would expect that

∑
N≤n<2N
n≡a mod q

λ(n)λ(n+2) = o

(
N

φ(q)

)
and

∑
N≤n<2N
n≡a mod q

f(n+h)λ(n)λ(n+2) = o

 ∑
N≤n<2N
n≡a mod q

f(n+ h)


when q ≤ N1−ε and f does not “conspire” with the Liouville function. We now consider the
sieve with weights wnvn instead. Then we get for example

S1 =
∑

d1,...,dk
e1,...,ek

λd1,...dkλe1,...,ek
∑

N≤n<2N
n≡v0 mod W
[di,ei]|n+hi

1 · vn

and more generally one would need to approximate sums of the form∑
N≤n<2N
n≡a mod q

f(n+ h)vn.

However, by the previous arguments we have∑
N≤n<2N
n≡a mod q

f(n+ h)vn = (1 + o(1))
∑

N≤n<2N
n≡a mod q

f(n+ h)

and so we obtain the same estimates for our new weights. Consequently, we must have∑
N≤n<2N 1A(n)wnvn > 0 as well, which is impossible as vn is constructed to be zero on A.

In fact, as shown in [13], a similar argument denies such a sieve-theoretic proof for
lim infn pn+1 − pn ≤ 4. The parity problem does not completely rule out a proof of the twin
prime conjecture using sieve methods, however. Friendlander and Iwaniec [5], for example,
circumvented the parity problem and used sieve methods to find an asymptotic for the number
of prime values of the polynomial X2 + Y 4. In fact, one parity obstruction was overcome in this
essay as well by finding a lower bound for the number of primes in short intervals. Instead of
sieving for primes directly (which would be problematic by the parity problem), we sieved for
numbers P (n) =

∏
n∈H(n + h) with few prime factors and used a pigeonhole-type of argument

to relate this to the existence of primes in short intervals. Thus, one may still cherish the hope
of finding a clever idea that defeats the parity obstruction to the twin prime conjecture.
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