Modularity of elliptic curves over certain totally real quartic fields
 Linfoot Seminar in Bristol

May 6, 2020
Josha Box
University of Warwick

Modularity theorems

Modularity theorems

Theorem (Wiles-Breuil-Conrad-Diamond-Taylor, 2000)

All elliptic curves over \mathbb{Q} are modular.

Modularity theorems

Theorem (Wiles-Breuil-Conrad-Diamond-Taylor, 2000)

All elliptic curves over \mathbb{Q} are modular.

Theorem (Freitas-Le Hung-Siksek, 2015)

All elliptic curves over totally real quadratic fields are modular.

Modularity theorems

Theorem (Wiles-Breuil-Conrad-Diamond-Taylor, 2000)

All elliptic curves over \mathbb{Q} are modular.

Theorem (Freitas-Le Hung-Siksek, 2015)

All elliptic curves over totally real quadratic fields are modular.

Theorem (Derickx-Najman-Siksek, 2019)

All elliptic curves over totally real cubic fields are modular.

Modularity theorems

Theorem (Wiles-Breuil-Conrad-Diamond-Taylor, 2000)

All elliptic curves over \mathbb{Q} are modular.

Theorem (Freitas-Le Hung-Siksek, 2015)

All elliptic curves over totally real quadratic fields are modular.

Theorem (Derickx-Najman-Siksek, 2019)

All elliptic curves over totally real cubic fields are modular.

Theorem (\square)

Let K be a quartic field that does not admit any quadratic subfields. Then every elliptic curve over K is modular.

Modularity theorems

Theorem (Wiles-Breuil-Conrad-Diamond-Taylor, 2000)

All elliptic curves over \mathbb{Q} are modular.

Theorem (Freitas-Le Hung-Siksek, 2015)

All elliptic curves over totally real quadratic fields are modular.

Theorem (Derickx-Najman-Siksek, 2019)

All elliptic curves over totally real cubic fields are modular.

Theorem (\square)

Let K be a quartic field that does not admit any quadratic subfields. Then every elliptic curve over K is modular.

This theorem is part of a work in progress. The ultimate goal is to extend the result to all quartic fields.

Modularity lifting theorems

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)
Let K be a totally real field and E / K an elliptic curve that is not modular.

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$.

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)
Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Suppose that E / K is a non-modular elliptic curve over a totally real field K satisfying the above conditions.

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Suppose that E / K is a non-modular elliptic curve over a totally real field K satisfying the above conditions. Then E gives rise to a K-point on one of

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Suppose that E / K is a non-modular elliptic curve over a totally real field K satisfying the above conditions. Then E gives rise to a K-point on one of

$$
X_{0}(105)=X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~b} 7)
$$

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Suppose that E / K is a non-modular elliptic curve over a totally real field K satisfying the above conditions. Then E gives rise to a K-point on one of

$$
X_{0}(105)=X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~b} 7), X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7),
$$

Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E / K an elliptic curve that is not modular. Assume that K does not contain $\sqrt{5}$ or $\zeta_{7}+\zeta_{7}^{-1}$. Then
(i) $\operatorname{Im}\left(\bar{\rho}_{E, 3}\right)$ is contained in a conjugate of $B(3)$ or the normaliser of a split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$,
(ii) $\operatorname{Im}\left(\bar{\rho}_{E, 5}\right)$ is contained in a conjugate of $B(5)$ and
(iii) $\operatorname{Im}\left(\bar{\rho}_{E, 7}\right)$ is contained in a conjugate of either $B(7)$ or the normaliser of a non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$.

Suppose that E / K is a non-modular elliptic curve over a totally real field K satisfying the above conditions. Then E gives rise to a K-point on one of

$$
X_{0}(105)=X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~b} 7), X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7), X(\mathrm{~b} 5, \mathrm{~ns} 7)
$$

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

Theorem (\square)

All quartic points on $X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ either correspond to modular elliptic curves or are defined over a non-totally real field or a field containing $\sqrt{5}$.

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

Theorem (\square)

All quartic points on $X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ either correspond to modular elliptic curves or are defined over a non-totally real field or a field containing $\sqrt{5}$.

- Elementary explicit methods but quite involved.

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

Theorem (\square)

All quartic points on $X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ either correspond to modular elliptic curves or are defined over a non-totally real field or a field containing $\sqrt{5}$.

- Elementary explicit methods but quite involved.
- $X_{0}(105)$ has genus 13 and its Mordell-Weil group has rank 0 . We work on $X_{0}(105) / w_{5}$ (genus 5).

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

Theorem (\square)

All quartic points on $X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ either correspond to modular elliptic curves or are defined over a non-totally real field or a field containing $\sqrt{5}$.

- Elementary explicit methods but quite involved.
- $X_{0}(105)$ has genus 13 and its Mordell-Weil group has rank 0 . We work on $X_{0}(105) / w_{5}$ (genus 5).
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ has genus 21 and $\mathrm{M}-\mathrm{W}$ group of positive rank. We combine $X_{0}(35)=X(b 5, b 7)$ and $X(s 3, b 7)$ (both genus 3, rank 0).

$X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$

Theorem (\quad)

All quartic points on $X_{0}(105)$ and $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ either correspond to modular elliptic curves or are defined over a non-totally real field or a field containing $\sqrt{5}$.

- Elementary explicit methods but quite involved.
- $X_{0}(105)$ has genus 13 and its Mordell-Weil group has rank 0 . We work on $X_{0}(105) / w_{5}$ (genus 5).
- $X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~b} 7)$ has genus 21 and $\mathrm{M}-\mathrm{W}$ group of positive rank. We combine $X_{0}(35)=X(b 5, b 7)$ and $X(s 3, b 7)$ (both genus 3, rank 0).
$X_{0}(35)$
$X(s 3, b 7)$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

This curve has genus 6 and a planar model computed by Derickx-Najman-Siksek:

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

This curve has genus 6 and a planar model computed by Derickx-Najman-Siksek:

$$
\begin{aligned}
& 5 u^{6}-50 u^{5} v+206 u^{4} v^{2}-408 u^{3} v^{3}+321 u^{2} v^{4}+10 u v^{5}-100 v^{6} \\
& +9 u^{4} w^{2}-60 u^{3} v w^{2}+80 u^{2} v^{2} w^{2}+48 u v^{3} w^{2}+15 v^{4} w^{2} \\
& +3 u^{2} w^{4}-10 u v w^{4}+6 v^{2} w^{4}-w^{6}=0 .
\end{aligned}
$$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

This curve has genus 6 and a planar model computed by Derickx-Najman-Siksek:

$$
\begin{aligned}
& 5 u^{6}-50 u^{5} v+206 u^{4} v^{2}-408 u^{3} v^{3}+321 u^{2} v^{4}+10 u v^{5}-100 v^{6} \\
& +9 u^{4} w^{2}-60 u^{3} v w^{2}+80 u^{2} v^{2} w^{2}+48 u v^{3} w^{2}+15 v^{4} w^{2} \\
& +3 u^{2} w^{4}-10 u v w^{4}+6 v^{2} w^{4}-w^{6}=0
\end{aligned}
$$

The Atkin-Lehner involution w_{5} acts on pairs (E, H), where E is an elliptic curve and H a subgroup of order 5 , by

$$
(E, H) \rightarrow(E / H, E[5] / H) .
$$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

This curve has genus 6 and a planar model computed by Derickx-Najman-Siksek:

$$
\begin{aligned}
& 5 u^{6}-50 u^{5} v+206 u^{4} v^{2}-408 u^{3} v^{3}+321 u^{2} v^{4}+10 u v^{5}-100 v^{6} \\
& +9 u^{4} w^{2}-60 u^{3} v w^{2}+80 u^{2} v^{2} w^{2}+48 u v^{3} w^{2}+15 v^{4} w^{2} \\
& +3 u^{2} w^{4}-10 u v w^{4}+6 v^{2} w^{4}-w^{6}=0
\end{aligned}
$$

The Atkin-Lehner involution w_{5} acts on pairs (E, H), where E is an elliptic curve and H a subgroup of order 5 , by

$$
(E, H) \rightarrow(E / H, E[5] / H) .
$$

On this curve that is the map

$$
w_{5}:(u: v: w) \mapsto(u: v:-w)
$$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$,

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

C is hyperelliptic of genus 2 .

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

C is hyperelliptic of genus 2 .
Problem: C has infinitely many quadratic points.

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

C is hyperelliptic of genus 2 .
Problem: C has infinitely many quadratic points.
Compute that $J_{C}(\mathbb{Q}) \simeq \mathbb{Z} \times \mathbb{Z}$, with explicit generators d_{1} and d_{2},

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

C is hyperelliptic of genus 2 .
Problem: C has infinitely many quadratic points.

Compute that $J_{C}(\mathbb{Q}) \simeq \mathbb{Z} \times \mathbb{Z}$, with explicit generators d_{1} and d_{2}, pulling back to

$$
D_{1}=\rho^{*} d_{1} \text { and } D_{2}=\rho^{*} d_{2}
$$

$X(\mathrm{~b} 5, \mathrm{~ns} 7)$

We obtain a degree 2 map $\rho: X(\mathrm{~b} 5, \mathrm{~ns} 7) \rightarrow C$, where C is

$$
C: y^{2}=x^{6}-2 x^{5}+7 x^{4}+4 x^{3}+3 x^{2}+10 x+5
$$

C is hyperelliptic of genus 2 .
Problem: C has infinitely many quadratic points.

Compute that $J_{C}(\mathbb{Q}) \simeq \mathbb{Z} \times \mathbb{Z}$, with explicit generators d_{1} and d_{2}, pulling back to

$$
D_{1}=\rho^{*} d_{1} \text { and } D_{2}=\rho^{*} d_{2}
$$

Modular form computations (and Kolyvagin-Logachev) show that $r k J_{X}(\mathbb{Q})=\operatorname{rk} J_{C}(\mathbb{Q})=2$.

Chabauty's method

Chabauty's method

We would like to determine the quartic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ that do not map to a quadratic point on C.

Chabauty's method

We would like to determine the quartic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ that do not map to a quadratic point on C.

Consider a curve X of genus g and rank $r:=r k J_{X}(\mathbb{Q})$.

Chabauty's method

We would like to determine the quartic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ that do not map to a quadratic point on C.

Consider a curve X of genus g and rank $r:=r k J_{X}(\mathbb{Q})$. Consider the diagram

Chabauty's method

We would like to determine the quartic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ that do not map to a quadratic point on C.

Consider a curve X of genus g and rank $r:=r k J_{X}(\mathbb{Q})$. Consider the diagram

and the intersection $X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$.

Chabauty's method

We would like to determine the quartic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ that do not map to a quadratic point on C.

Consider a curve X of genus g and rank $r:=r k J_{X}(\mathbb{Q})$. Consider the diagram

and the intersection $X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$. If $g \geq r+1$, i.e. $r<g$, then $X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$ is expected to be finite.

Chabauty's method

There is a bilinear pairing

$$
J_{X}\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad([P-Q], \omega) \mapsto \int_{Q}^{P} \omega
$$

Chabauty's method

There is a bilinear pairing

$$
J_{X}\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad([P-Q], \omega) \mapsto \int_{Q}^{P} \omega .
$$

It's right-hand kernel is trivial and it's left-hand kernel is $J_{X}\left(\mathbb{Q}_{p}\right)_{\text {tors }}$.

Chabauty's method

There is a bilinear pairing

$$
J_{X}\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad([P-Q], \omega) \mapsto \int_{Q}^{P} \omega .
$$

It's right-hand kernel is trivial and it's left-hand kernel is $J_{X}\left(\mathbb{Q}_{p}\right)_{\text {tors }}$.

Definition

If $Q \in X\left(\mathbb{Q}_{p}\right)$, we denote by t_{Q} a uniformiser at Q reducing to a uniformiser at the reduction of $Q \bmod p$.

Chabauty's method

There is a bilinear pairing

$$
J_{X}\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad([P-Q], \omega) \mapsto \int_{Q}^{P} \omega .
$$

It's right-hand kernel is trivial and it's left-hand kernel is $J_{X}\left(\mathbb{Q}_{p}\right)_{\text {tors }}$.

Definition

If $Q \in X\left(\mathbb{Q}_{p}\right)$, we denote by t_{Q} a uniformiser at Q reducing to a uniformiser at the reduction of $Q \bmod p$.

If $P \in X\left(\mathbb{Q}_{p}\right)$ is in the residue disc of $Q \in X\left(\mathbb{Q}_{p}\right)$, then

$$
\int_{Q}^{P}\left(\sum_{n=0}^{\infty} a_{n} t_{Q}^{n}\right) \mathrm{d} t_{Q}=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} t_{Q}(P)^{n+1}
$$

Chabauty's method

There is a bilinear pairing

$$
J_{X}\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad([P-Q], \omega) \mapsto \int_{Q}^{P} \omega .
$$

It's right-hand kernel is trivial and it's left-hand kernel is $J_{X}\left(\mathbb{Q}_{p}\right)_{\text {tors }}$.

Definition

If $Q \in X\left(\mathbb{Q}_{p}\right)$, we denote by t_{Q} a uniformiser at Q reducing to a uniformiser at the reduction of $Q \bmod p$.

If $P \in X\left(\mathbb{Q}_{p}\right)$ is in the residue disc of $Q \in X\left(\mathbb{Q}_{p}\right)$, then

$$
\int_{Q}^{P}\left(\sum_{n=0}^{\infty} a_{n} t_{Q}^{n}\right) \mathrm{d} t_{Q}=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} t_{Q}(P)^{n+1}
$$

If $r<g$ then there exists ω such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$.

Chabauty's method

Chabauty's method

Chabauty's method

Theorem

Let p be a prime of good reduction

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}.

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$ and suppose there is an $\omega \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$.

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$ and suppose there is an $\omega \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$. If

$$
\frac{\omega}{\mathrm{d} t_{P}}(P) \neq 0 \quad \bmod p
$$

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$ and suppose there is an $\omega \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$. If

$$
\frac{\omega}{\mathrm{d} t_{P}}(P) \neq 0 \quad \bmod p
$$

then P is the unique rational point in its $\bmod p$ residue disc.

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$ and suppose there is an $\omega \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$. If

$$
\frac{\omega}{\mathrm{d} t_{P}}(P) \neq 0 \quad \bmod p
$$

then P is the unique rational point in its mod p residue disc.
"The map $\mathcal{X}_{\mathbb{Z}_{p}} \rightarrow J_{X, \mathbb{F}_{p}}$ is a formal immersion at P."

Chabauty's method

Theorem

Let p be a prime of good reduction and $\mathcal{X} / \mathbb{Z}_{p}$ the minimal proper regular model of X / \mathbb{Q}_{p}. Consider $P \in X(\mathbb{Q})$ and suppose there is an $\omega \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ such that $\int_{D} \omega=0$ for all $D \in J_{X}(\mathbb{Q})$. If

$$
\frac{\omega}{\mathrm{d} t_{P}}(P) \neq 0 \quad \bmod p
$$

then P is the unique rational point in its mod p residue disc.
"The map $\mathcal{X}_{\mathbb{Z}_{p}} \rightarrow J_{X, \mathbb{F}_{p}}$ is a formal immersion at P."

Provably determining $X(\mathbb{Q})$

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,
- a "vanishing differential", and

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,
- a "vanishing differential", and
- explicit generators of a finite index subgroup of $J_{X}(\mathbb{Q})$.

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,
- a "vanishing differential", and
- explicit generators of a finite index subgroup of $J_{X}(\mathbb{Q})$.

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,
- a "vanishing differential", and
- explicit generators of a finite index subgroup of $J_{X}(\mathbb{Q})$.

An unknown point can map to a limited set of $\operatorname{Ker}\left(\operatorname{red}_{p}\right)$-cosets.

Provably determining $X(\mathbb{Q})$

Input:

- set of known rational points,
- a "vanishing differential", and
- explicit generators of a finite index subgroup of $J_{X}(\mathbb{Q})$.

An unknown point can map to a limited set of $\operatorname{Ker}\left(\operatorname{red}_{p}\right)$-cosets. Now intersect cosets for different primes for which the kernels $\operatorname{Ker}\left(\operatorname{red}_{p}\right)$ intersect.

Symmetric Chabauty

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power.

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power. Points are unordered d-tuples $P_{1}+P_{2}+\ldots+P_{d}$ with $P_{i} \in X$ for all i.

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power. Points are unordered d-tuples $P_{1}+P_{2}+\ldots+P_{d}$ with $P_{i} \in X$ for all i.

Example

$$
\begin{aligned}
\operatorname{Sym}^{2}(X)(\mathbb{Q}) & =\{P+Q \mid P, Q \in X(\mathbb{Q})\} \\
& \cup\{P+\bar{P} \mid P \in X(K),[K: \mathbb{Q}]=2\}
\end{aligned}
$$

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power. Points are unordered d-tuples $P_{1}+P_{2}+\ldots+P_{d}$ with $P_{i} \in X$ for all i.

Example

$$
\begin{aligned}
\operatorname{Sym}^{2}(X)(\mathbb{Q}) & =\{P+Q \mid P, Q \in X(\mathbb{Q})\} \\
& \cup\{P+\bar{P} \mid P \in X(K),[K: \mathbb{Q}]=2\}
\end{aligned}
$$

Consider the diagram

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power. Points are unordered d-tuples $P_{1}+P_{2}+\ldots+P_{d}$ with $P_{i} \in X$ for all i.

Example

$$
\begin{aligned}
\operatorname{Sym}^{2}(X)(\mathbb{Q}) & =\{P+Q \mid P, Q \in X(\mathbb{Q})\} \\
& \cup\{P+\bar{P} \mid P \in X(K),[K: \mathbb{Q}]=2\}
\end{aligned}
$$

Consider the diagram

and $\operatorname{Sym}^{d} X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$.

Symmetric Chabauty

Let $\operatorname{Sym}^{d}(X)$ be the d-th symmetric power. Points are unordered d-tuples $P_{1}+P_{2}+\ldots+P_{d}$ with $P_{i} \in X$ for all i.

Example

$$
\begin{aligned}
\operatorname{Sym}^{2}(X)(\mathbb{Q}) & =\{P+Q \mid P, Q \in X(\mathbb{Q})\} \\
& \cup\{P+\bar{P} \mid P \in X(K),[K: \mathbb{Q}]=2\}
\end{aligned}
$$

Consider the diagram

and $\operatorname{Sym}^{d} X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$. If $r<g-(d-1)$ then we "expect" $\operatorname{Sym}^{d} X\left(\mathbb{Q}_{p}\right) \cap \overline{J_{X}(\mathbb{Q})}$ to be finite.

Symmetric Chabauty

Symmetric Chabauty

Theorem (Siksek)
 Let $p>\ldots$ be a prime of good reduction.

Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+\ldots+Q_{d} \in \operatorname{Sym}^{d} X(\mathbb{Q})
$$

with all Q_{i} distinct.

Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+\ldots+Q_{d} \in \operatorname{Sym}^{d} X(\mathbb{Q})
$$

with all Q_{i} distinct. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$.

Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+\ldots+Q_{d} \in \operatorname{Sym}^{d} X(\mathbb{Q})
$$

with all Q_{i} distinct. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$. If the mod v reduction ($v \mid p$) of the matrix

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{j}}}\left(Q_{j}\right)\right)_{i, j}, \quad i \in\{1, \ldots, s\}, j \in\{1, \ldots, d\}
$$

has rank d,

Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+\ldots+Q_{d} \in \operatorname{Sym}^{d} X(\mathbb{Q})
$$

with all Q_{i} distinct. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$. If the mod v reduction $(v \mid p)$ of the matrix

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{j}}}\left(Q_{j}\right)\right)_{i, j}, \quad i \in\{1, \ldots, s\}, j \in\{1, \ldots, d\}
$$

has rank d, then \mathcal{Q} is the unique point of $\operatorname{Sym}^{d} X(\mathbb{Q})$ in its $\bmod p$ residue class.

Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+\ldots+Q_{d} \in \operatorname{Sym}^{d} X(\mathbb{Q})
$$

with all Q_{i} distinct. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$. If the mod v reduction ($v \mid p$) of the matrix

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{j}}}\left(Q_{j}\right)\right)_{i, j}, \quad i \in\{1, \ldots, s\}, j \in\{1, \ldots, d\}
$$

has rank d, then \mathcal{Q} is the unique point of $\operatorname{Sym}^{d} X(\mathbb{Q})$ in its $\bmod p$ residue class.

If Q_{i} has multiplicity m in \mathcal{Q}, you need to look at $a_{0}\left(\omega_{j}, t_{Q_{i}}\right), \ldots, a_{m-1}\left(\omega_{j}, t_{Q_{i}}\right)$.

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

- $g=6$

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

$$
\begin{aligned}
& \text { e } g=6 \\
& \text { - } r=2
\end{aligned}
$$

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

$$
\begin{aligned}
& g=6 \\
& \text { - } r=2 \\
& \text { - } d=4
\end{aligned}
$$

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

$$
\begin{aligned}
& \text { - } g=6 \\
& \text { - } r=2 \\
& d=4 \\
& \text { - } r=2<6-(4-1)=g-(d-1)
\end{aligned}
$$

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

- $g=6$
- $r=2$
- $d=4$
- $r=2<6-(4-1)=g-(d-1)$.

But we have infinitely many quartic points coming from the quadratic points on C.

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

- $g=6$
- $r=2$
- $d=4$
- $r=2<6-(4-1)=g-(d-1)$.

But we have infinitely many quartic points coming from the quadratic points on C.
Unlike when $d=1$, for higher the degree $r<g-(d-1)$ does not imply (effective) finiteness.

Symmetric Chabauty for $X(\mathrm{~b} 5, \mathrm{~ns} 7)$?

- $g=6$
- $r=2$
- $d=4$
- $r=2<6-(4-1)=g-(d-1)$.

But we have infinitely many quartic points coming from the quadratic points on C.
Unlike when $d=1$, for higher the degree $r<g-(d-1)$ does not imply (effective) finiteness.
But so far I have not seen examples where the infinite set was not due to a map $X \rightarrow C$ of degree at most d.

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

The image of $\operatorname{Sym}^{2} C$ in A is a point.

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

The image of $\operatorname{Sym}^{2} C$ in A is a point. We do Chabauty as before, replacing J_{X} by A :

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

The image of $\operatorname{Sym}^{2} C$ in A is a point. We do Chabauty as before, replacing J_{X} by A :

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

The image of $\operatorname{Sym}^{2} C$ in A is a point. We do Chabauty as before, replacing J_{X} by A :

Now we expect $\operatorname{Sym}^{4} X\left(\mathbb{Q}_{p}\right) \cap \overline{A(\mathbb{Q})}$ to be actually finite when

Contracting $\mathrm{Sym}^{2} \mathrm{C}$

Up to isogeny, the Jacobian of $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$ splits:

$$
J_{X} \sim J_{C} \times A
$$

The image of $\operatorname{Sym}^{2} C$ in A is a point. We do Chabauty as before, replacing J_{X} by A :

Now we expect $\operatorname{Sym}^{4} X\left(\mathbb{Q}_{p}\right) \cap \overline{A(\mathbb{Q})}$ to be actually finite when

$$
r_{X}-r_{C}<g_{X}-g_{C}-(d-1)
$$

Relative Symmetric Chabauty

Relative Symmetric Chabauty

Theorem (Siksek)

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction.

Relative Symmetric Chabauty

Theorem (Siksek)
Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$.

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i.

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{dt} Q_{Q_{1}}}\left(Q_{1}\right) \frac{\omega_{i}}{\mathrm{~d} t P_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{1}}}\left(Q_{1}\right) \frac{\omega_{i}}{\mathrm{~d} t P_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 2, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q}

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{1}}}\left(Q_{1}\right) \frac{\omega_{i}}{\mathrm{~d} t P_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 2, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q} are in $\rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})$.

Relative Symmetric Chabauty

Theorem (Siksek)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=\rho^{*} Q+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})
$$

with $P \neq Q$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t_{Q_{1}}}\left(Q_{1}\right) \frac{\omega_{i}}{\mathrm{~d} t P_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 2, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q} are in $\rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})$.

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.
So $A(\mathbb{Q})$ is torsion and for $D \in A(\mathbb{Q})$ of order n and $\omega \in H^{0}\left(A_{\mathbb{Q}_{p}}, \Omega^{1}\right):$

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.
So $A(\mathbb{Q})$ is torsion and for $D \in A(\mathbb{Q})$ of order n and $\omega \in H^{0}\left(A_{\mathbb{Q}_{p}}, \Omega^{1}\right):$

$$
\int_{D} \omega=\frac{1}{n} \int_{n D} \omega=0
$$

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.
So $A(\mathbb{Q})$ is torsion and for $D \in A(\mathbb{Q})$ of order n and $\omega \in H^{0}\left(A_{\mathbb{Q}_{p}}, \Omega^{1}\right):$

$$
\int_{D} \omega=\frac{1}{n} \int_{n D} \omega=0
$$

So all $\omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ with $\rho_{*} \omega=0$ satisfy

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.
So $A(\mathbb{Q})$ is torsion and for $D \in A(\mathbb{Q})$ of order n and $\omega \in H^{0}\left(A_{\mathbb{Q}_{p}}, \Omega^{1}\right):$

$$
\int_{D} \omega=\frac{1}{n} \int_{n D} \omega=0
$$

So all $\omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ with $\rho_{*} \omega=0$ satisfy

$$
\int_{D} \omega=0 \text { for all } D \in J_{X}(\mathbb{Q})
$$

Back to $X=X(\mathrm{~b} 5, \mathrm{~ns} 7)$

Special case: $r_{X}=r_{C}=2$.
So $A(\mathbb{Q})$ is torsion and for $D \in A(\mathbb{Q})$ of order n and $\omega \in H^{0}\left(A_{\mathbb{Q}_{p}}, \Omega^{1}\right):$

$$
\int_{D} \omega=\frac{1}{n} \int_{n D} \omega=0
$$

So all $\omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ with $\rho_{*} \omega=0$ satisfy

$$
\int_{D} \omega=0 \text { for all } D \in J_{X}(\mathbb{Q})
$$

Now $C=X / w_{5}$ implies that $\rho_{*}=1+w_{5}^{*}$, so we need to compute

$$
\operatorname{Ker}\left(1+w_{5}^{*}\right)
$$

The forgotten class of points

The forgotten class of points

There are a few quadratic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ and a few rational points on C.

The forgotten class of points

There are a few quadratic points on $X(b 5, \mathrm{~ns} 7)$ and a few rational points on C.

Consider points of the form $\mathcal{Q}=Q_{1}+Q_{2}+P_{1}+P_{2}$ with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q}) \backslash \rho^{*} C(\mathbb{Q})$.

The forgotten class of points

There are a few quadratic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ and a few rational points on C.

Consider points of the form $\mathcal{Q}=Q_{1}+Q_{2}+P_{1}+P_{2}$ with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q}) \backslash \rho^{*} C(\mathbb{Q})$.

They are not in $\rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})$

The forgotten class of points

There are a few quadratic points on $X(\mathrm{~b} 5, \mathrm{~ns} 7)$ and a few rational points on C.

Consider points of the form $\mathcal{Q}=Q_{1}+Q_{2}+P_{1}+P_{2}$ with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q}) \backslash \rho^{*} C(\mathbb{Q})$.

They are not in $\rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})$ but the matrix has rank at most 3 .

The forgotten class of points

There are a few quadratic points on $X(b 5, \mathrm{~ns} 7)$ and a few rational points on C.

Consider points of the form $\mathcal{Q}=Q_{1}+Q_{2}+P_{1}+P_{2}$ with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q}) \backslash \rho^{*} C(\mathbb{Q})$.

They are not in $\rho^{*} \operatorname{Sym}^{2} C(\mathbb{Q})$ but the matrix has rank at most 3 .
C has finitely many rational points but $r_{C}=g_{C}$ so C does not satisfy the Chabauty assumption for $d=1$.

Partially relative Chabauty

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)
 Let $p>\ldots$ be a prime of good reduction.

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$.

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q}),
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i.

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t Q_{1}}\left(Q_{1}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t Q_{2}}\left(Q_{2}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t p_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t Q_{1}}\left(Q_{1}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t Q_{2}}\left(Q_{2}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t p_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 3,

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction ($v \mid p$) of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t Q_{1}}\left(Q_{1}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t Q_{2}}\left(Q_{2}\right) \frac{\omega_{i}}{\mathrm{~d} t p_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 3, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q} are of the form

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t Q_{1}}\left(Q_{1}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t Q_{2}}\left(Q_{2}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t p_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 3, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q} are of the form $Q_{1}+Q_{2}+R_{1}+R_{2}$ with $R_{1}+R_{2} \in \rho^{*} C(\mathbb{Q})$.

Partially relative Chabauty

Theorem (Siksek, -Gajovic-Goodman)

Let $p>\ldots$ be a prime of good reduction. Consider

$$
\mathcal{Q}=Q_{1}+Q_{2}+\rho^{*} P=Q_{1}+Q_{2}+P_{1}+P_{2} \in \operatorname{Sym}^{4} X(\mathbb{Q})
$$

with $P_{1}+P_{2} \in \rho^{*} C(\mathbb{Q})$ and $Q_{1}+Q_{2} \in \operatorname{Sym}^{2} X(\mathbb{Q})$. Suppose that $\omega_{1}, \ldots, \omega_{s} \in H^{0}\left(\mathcal{X}, \mathbb{Z}_{p}\right)$ are linearly independent differentials such that $\int_{D} \omega_{i}=0$ for all i and $D \in J_{X}(\mathbb{Q})$ and $\rho_{*} \omega_{i}=0$ for all i. If the mod v reduction $(v \mid p)$ of the matrix with rows

$$
\left(\frac{\omega_{i}}{\mathrm{~d} t Q_{1}}\left(Q_{1}\right) \quad \frac{\omega_{i}}{\mathrm{~d} t Q_{2}}\left(Q_{2}\right) \frac{\omega_{i}}{\mathrm{~d} t P_{1}}\left(P_{1}\right)\right), \quad i \in\{1, \ldots, s\}
$$

has rank 3, then all points in $\operatorname{Sym}^{4} X(\mathbb{Q})$ in the residue class of \mathcal{Q} are of the form $Q_{1}+Q_{2}+R_{1}+R_{2}$ with $R_{1}+R_{2} \in \rho^{*} C(\mathbb{Q})$.

This theorem is part of (ongoing) joint work with Stevan Gajovic and Pip Goodman.

Conclusion

There are 2 Galois orbits of quartic points that do not map to a quadratic point on C.

Conclusion

There are 2 Galois orbits of quartic points that do not map to a quadratic point on C.

They are defined over a field without any quadratic subfields.

Conclusion

There are 2 Galois orbits of quartic points that do not map to a quadratic point on C.

They are defined over a field without any quadratic subfields.

But that field is not totally real.

Thank you for listening.

