
Modularity of elliptic curves over certain totally
real quartic fields

Linfoot Seminar in Bristol

May 6, 2020

Josha Box
University of Warwick



Modularity theorems

Theorem (Wiles–Breuil–Conrad–Diamond–Taylor, 2000)

All elliptic curves over Q are modular.

Theorem (Freitas–Le Hung–Siksek, 2015)

All elliptic curves over totally real quadratic fields are modular.

Theorem (Derickx–Najman–Siksek, 2019)

All elliptic curves over totally real cubic fields are modular.

Theorem (�)

Let K be a quartic field that does not admit any quadratic
subfields. Then every elliptic curve over K is modular.

This theorem is part of a work in progress. The ultimate goal is to
extend the result to all quartic fields.
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Modularity lifting theorems

Theorem (Wiles et al., Thorne, Kalyanswami)

Let K be a totally real field and E/K an elliptic curve that is not
modular. Assume that K does not contain

√
5 or ζ7 + ζ−17 . Then

(i) Im(ρE ,3) is contained in a conjugate of B(3) or the normaliser
of a split Cartan subgroup of GL2(F3),

(ii) Im(ρE ,5) is contained in a conjugate of B(5) and

(iii) Im(ρE ,7) is contained in a conjugate of either B(7) or the
normaliser of a non-split Cartan subgroup of GL2(F7).

Suppose that E/K is a non-modular elliptic curve over a totally
real field K satisfying the above conditions. Then E gives rise to a
K -point on one of

X0(105) = X (b3,b5,b7), X (s3,b5, b7), X (b5,ns7).
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X0(105) and X (s3, b5, b7)

Theorem (�)

All quartic points on X0(105) and X (s3,b5,b7) either correspond
to modular elliptic curves or are defined over a non-totally real field
or a field containing

√
5.

Elementary explicit methods but quite involved.

X0(105) has genus 13 and its Mordell–Weil group has rank 0.
We work on X0(105)/w5 (genus 5).

X (s3,b5,b7) has genus 21 and M–W group of positive rank.
We combine X0(35) = X (b5, b7) and X (s3, b7) (both genus
3, rank 0).

X0(35) X (s3, b7)

X0(7) = X (b7)
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X (b5, ns7)

This curve has genus 6 and a planar model computed by
Derickx–Najman–Siksek:

5u6 − 50u5v + 206u4v2 − 408u3v3 + 321u2v4 + 10uv5 − 100v6

+ 9u4w2 − 60u3vw2 + 80u2v2w2 + 48uv3w2 + 15v4w2

+ 3u2w4 − 10uvw4 + 6v2w4 − w6 = 0.

The Atkin–Lehner involution w5 acts on pairs (E ,H), where E is
an elliptic curve and H a subgroup of order 5, by

(E ,H)→ (E/H,E [5]/H).

On this curve that is the map

w5 : (u : v : w) 7→ (u : v : −w).
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X (b5, ns7)

We obtain a degree 2 map ρ : X (b5,ns7)→ C , where C is

C : y2 = x6 − 2x5 + 7x4 + 4x3 + 3x2 + 10x + 5.

C is hyperelliptic of genus 2.

Problem: C has infinitely many quadratic points.

Compute that JC (Q) ' Z× Z, with explicit generators d1 and d2,
pulling back to

D1 = ρ∗d1 and D2 = ρ∗d2.

Modular form computations (and Kolyvagin–Logachev) show that
rkJX (Q) = rkJC (Q) = 2.
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Chabauty’s method

We would like to determine the quartic points on X (b5,ns7) that
do not map to a quadratic point on C .

Consider a curve X of genus g and rank r := rkJX (Q). Consider
the diagram

X (Q) JX (Q)

X (Qp) JX (Qp)

and the intersection X (Qp) ∩ JX (Q). If g ≥ r + 1, i.e. r < g , then

X (Qp) ∩ JX (Q) is expected to be finite.
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Chabauty’s method

There is a bilinear pairing

JX (Qp)× H0(XQp ,Ω
1)→ Qp, ([P − Q], ω) 7→

∫ P

Q
ω.

It’s right-hand kernel is trivial and it’s left-hand kernel is
JX (Qp)tors.

Definition

If Q ∈ X (Qp), we denote by tQ a uniformiser at Q reducing to a
uniformiser at the reduction of Q mod p.

If P ∈ X (Qp) is in the residue disc of Q ∈ X (Qp), then∫ P

Q

( ∞∑
n=0

ant
n
Q

)
dtQ =

∞∑
n=0

an
n + 1

tQ(P)n+1.

If r < g then there exists ω such that
∫
D ω = 0 for all D ∈ JX (Q).
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Chabauty’s method

Theorem

Let p be a prime of good reduction and X/Zp the minimal proper
regular model of X/Qp. Consider P ∈ X (Q) and suppose there is
an ω ∈ H0(X ,Ω1) such that

∫
D ω = 0 for all D ∈ JX (Q). If

ω

dtP
(P) 6= 0 mod p,

then P is the unique rational point in its mod p residue disc.

“The map XZp → JX ,Fp is a formal immersion at P.”
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Provably determining X (Q)

Input:

set of known rational points,

a “vanishing differential”, and

explicit generators of a finite index subgroup of JX (Q).

X (Q) JX (Q)

X (Fp) JX (Fp)

redp

An unknown point can map to a limited set of Ker(redp)-cosets.
Now intersect cosets for different primes for which the kernels
Ker(redp) intersect.
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Symmetric Chabauty

Let Symd(X ) be the d-th symmetric power. Points are unordered
d-tuples P1 + P2 + . . .+ Pd with Pi ∈ X for all i .

Example

Sym2(X )(Q) = {P + Q | P,Q ∈ X (Q)}
∪{P + P | P ∈ X (K ), [K : Q] = 2}

Consider the diagram

SymdX (Q) JX (Q)

SymdX (Qp) JX (Qp)

and SymdX (Qp) ∩ JX (Q). If r < g − (d − 1) then we “expect”

SymdX (Qp) ∩ JX (Q) to be finite.
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Symmetric Chabauty

Theorem (Siksek)

Let p > . . . be a prime of good reduction. Consider

Q = Q1 + . . .+ Qd ∈ SymdX (Q)

with all Qi distinct. Suppose that ω1, . . . , ωs ∈ H0(X ,Zp) are
linearly independent differentials such that

∫
D ωi = 0 for all i and

D ∈ JX (Q). If the mod v reduction (v | p) of the matrix(
ωi

dtQj

(Qj)

)
i ,j

, i ∈ {1, . . . , s}, j ∈ {1, . . . , d}

has rank d,then Q is the unique point of SymdX (Q) in its mod p
residue class.

If Qi has multiplicity m in Q, you need to look at
a0(ωj , tQi

), . . . , am−1(ωj , tQi
).
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Symmetric Chabauty for X (b5, ns7)?

g = 6

r = 2

d = 4

r = 2 < 6− (4− 1) = g − (d − 1).

But we have infinitely many quartic points coming from the
quadratic points on C .
Unlike when d = 1, for higher the degree r < g − (d − 1) does not
imply (effective) finiteness.
But so far I have not seen examples where the infinite set was not
due to a map X → C of degree at most d .
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due to a map X → C of degree at most d .
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Contracting Sym2C

Up to isogeny, the Jacobian of X = X (b5,ns7) splits:

JX ∼ JC × A.

The image of Sym2C in A is a point. We do Chabauty as before,
replacing JX by A:

Sym(4)X (Q) A(Q)

Sym(4)X (Qp) A(Qp)

Now we expect Sym4X (Qp) ∩ A(Q) to be actually finite when

rX − rC < gX − gC − (d − 1).
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Relative Symmetric Chabauty

Theorem (Siksek)

Let p > . . . be a prime of good reduction. Consider

Q = ρ∗Q + ρ∗P = Q1 + Q2 + P1 + P2 ∈ ρ∗Sym2C (Q),

with P 6= Q. Suppose that ω1, . . . , ωs ∈ H0(X ,Ω1) are linearly
independent differentials such that

∫
D ωi = 0 for all i and

D ∈ JX (Q) and ρ∗ωi = 0 for all i . If the mod v reduction (v | p)
of the matrix with rows(

ωi
dtQ1

(Q1) ωi
dtP1

(P1)
)
, i ∈ {1, . . . , s}

has rank 2, then all points in Sym4X (Q) in the residue class of Q
are in ρ∗Sym2C (Q).
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Back to X = X (b5, ns7)

Special case: rX = rC = 2.
So A(Q) is torsion and for D ∈ A(Q) of order n and
ω ∈ H0(AQp ,Ω

1):∫
D
ω =

1

n

∫
nD
ω = 0.

So all ω ∈ H0(XQp ,Ω
1) with ρ∗ω = 0 satisfy∫

D
ω = 0 for all D ∈ JX (Q).

Now C = X/w5 implies that ρ∗ = 1 + w∗5 , so we need to compute

Ker(1 + w∗5 ).
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The forgotten class of points

There are a few quadratic points on X (b5,ns7) and a few rational
points on C .

Consider points of the form Q = Q1 + Q2 + P1 + P2 with
P1 + P2 ∈ ρ∗C (Q) and Q1 + Q2 ∈ Sym2X (Q) \ ρ∗C (Q).

They are not in ρ∗Sym2C (Q) but the matrix has rank at most 3.

C has finitely many rational points but rC = gC so C does not
satisfy the Chabauty assumption for d = 1.
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Partially relative Chabauty

Theorem (Siksek, �–Gajovic–Goodman)

Let p > . . . be a prime of good reduction. Consider

Q = Q1 + Q2 + ρ∗P = Q1 + Q2 + P1 + P2 ∈ Sym4X (Q),

with P1 + P2 ∈ ρ∗C (Q) and Q1 + Q2 ∈ Sym2X (Q). Suppose that
ω1, . . . , ωs ∈ H0(X ,Zp) are linearly independent differentials such
that

∫
D ωi = 0 for all i and D ∈ JX (Q) and ρ∗ωi = 0 for all i . If

the mod v reduction (v | p) of the matrix with rows(
ωi

dtQ1
(Q1) ωi

dtQ2
(Q2) ωi

dtP1
(P1)

)
, i ∈ {1, . . . , s}

has rank 3, then all points in Sym4X (Q) in the residue class of Q
are of the form Q1 + Q2 + R1 + R2 with R1 + R2 ∈ ρ∗C (Q).

This theorem is part of (ongoing) joint work with Stevan Gajovic
and Pip Goodman.
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quadratic point on C .

They are defined over a field without any quadratic subfields.

But that field is not totally real.
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Thank you for listening.


