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Chapter 1

Introduction

We will study Ordinary Differential Equations, or ODEs, of the form ẋ = f(x). The State
Variables x vary in the the State Space (or phase space) X. In this course X will be finite
dimensional (Partial Differential Equations live in infinite dimensional spaces). X is a metric
space, usually Rn. x(t) is the State of the system x ∈ X at time t. t ∈ R is the Independent
Variable. f : X → X is a vector field. f(x) gives the speed and direction of the motion at x ∈ X.
The graph of (x(t), t) in X is the Phase Portrait. The graph of x(t) is called the Solution, the
trajectory, the orbit of the system or the flow.1

Figure 1.1: A phase portrait.

ẋ = f(x) gives an autonomous DE, i.e. one not depending on t. This means that given any point
(x1, . . . , xn) ∈ X, f(x1, . . . , xn) will take the same value ∀ t ∈ R. This course is concerned with
the study of first order autonomous ODEs. Qualitative Theory helps one to understand the local
and global behaviour of an ODE without actually having to find explicit solutions to them; thus
the subject is of great importance as many ODEs have no explicit solutions.

Example 1.0.1: Take X = R, ẋ = x has solution x(t) = x0e
t, with x(0) = x0. Looking at the

phase portrait, one can see that 0 is an unstable fixed point, which is also a global repeller and all
orbits not starting at 0 go to ±∞.

This is the qualitative description of the the behaviour of the system. Thus, if we know f or its
graph, we don’t need a solution to understand the behaviour of the system. This works for lots of
“nice” fs in R, but this becomes very difficult in Rn≥3.

Example 1.0.2: The below cubic-like function f displays the behaviour one would expect as the
ODE ẋ = f(x), and is similar to the type of thing studied in first year ODEs.

Example 1.0.3: Consider ẋ = f(x) = Sign(x)x2. f(x) = 0 at x = 0. For x > 0, x(t) = 1
x−1
0 −t

.

The solution goes to infinity as t→ 1
x0

. This is called Finite Time Blowup (FTB), i.e. x→∞ as
t→ T <∞.

This happens but we do not worry about it. It doesn’t change the phase portrait. However, we do
worry about the existence and uniqueness of solutions.

1From now on the vector x will not be underlined unless we have something like x = (x, y).
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Figure 1.2: Two “nice” functions giving the same result, but only one has an explicit solution.

Figure 1.3: Example 1.0.2: a cubic-like function giving two “unstable” fixed points and one “stable”
fixed point, as per MA133 Differential Equations.

Example 1.0.4: Consider ẋ = |x|
1
2 Sign(x). We find that for any T ≥ 0, we have a solution

x(t) =
{
x = 0 t ∈ [0, T ]
x = 1

4 (t− T )2 t ∈ [T,∞)

so the solution is not unique - what about 0 and T?

Example 1.0.5: With X = R2. Consider 1-dimensional Simple Harmonic Motion (SHM), given
by ẍ = −x. Write y = ẋ to get ẏ = −x, ẋ = y, which is a first order ODE in R2. We can write
this in the form (

ẋ
ẏ

)
=
(

0 1
−1 0

)(
x
y

)
We can find solutions of the form

x(t) = r0 cos(t+ φ), y(t) = r0 sin(t+ φ)

The phase portrait shows that all solutions are periodic orbits around a fixed point (0, 0), which
is structurally unstable.

Aside: One method of solving these is a change of coordinates. In X = R2 where ẋ = Ax with
complex eigenvalues for A, write x = r cos(θ), y = r sin(θ). Then try to get to the form ṙ = 0,
θ̇ = 1.

Example 1.0.6: In X = R2, (
ẋ
ẏ

)
=
(

2 0
0 −1

)(
x
y

)
gives x→ ±∞ as t→∞ and y → 0 as t→∞. So (0, 0) is a fixed point. but suppose we had some
non-linear, i.e. higher order terms as well? Then the equations would look like(

ẋ
ẏ

)
=
(

2 0
0 −1

)(
x
y

)
+ h. o. t.

This usually can’t be solved, but the qualitative question is “what does the phase portrait look
like near (0, 0) now?”. We will show that it is the same under certain conditions.
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Figure 1.4: Example 1.0.5: the phase portrait of Simple Harmonic Motion.

Example 1.0.7: With X = R3.

ẋ = 10(y − x)
ẏ = 28x− y − xz

ż =
8
3
z − xy

The Lorenz equations have only two quadratic but terms, but the phase portrait is chaotic with a
strange attractor:

Figure 1.5: The well-known Lorenz attractor.

We are interested in behaviour (such as periodicity, going to a limit or infinity, etc) which is
invariant under “nice” changes of coordinates. By a “nice” change of coordinates h with y = h(x)
we mean a diffeomorphism, i.e. a differentiable bijection with differentiable inverse. We are also
interested in properties invariant under parameterisation of time, e.g. new time s = α(t), where
α : R→ R.

Figure 1.6: These systems have been subjected to a diffeomorphism, but their phase portraits
display the same sort of behaviors.

What does it mean to say that there does not exist explicit solutions? Consider ẏ = y2 − t - this
has no explicit solution, but we could define a new function L(y0, t) as being the solution, but
obviously this is not helpful. Similarly the pendulum solution θ̈ = − sin(θ) can be solved using
elliptic functions, but these are not “normal”.

4



Chapter 2

One Dimensional ODES (X = R1)

2.1 Flows, Existence and Uniqueness

It is more natural to write “solutions” as functions of starting position and time.

Definition: φ : X × R → R is called the Flow; φ(x0, t) = x(t) the place one gets to starting at
x0 at t = 0 and solving until time t.

We need φ to have some obvious properties:

(I) φ(x0, 0) = x0

(II) φ(φ(x0, s), t) = φ(x0, s+ t)

A function φ satisfying these properties is a candidate for the solution of the ODE.1 To solve
ẋ = f(x), then it should satisfy

d
dt

(φ(x, t)) = f(φ(x, t))

Equivalently, integrate both sides to get

φ(x0, t) = x0 +
∫ t

0

f (φ(x0, s)) ds

So, given f , does φ exist and is it unique?

Definition: A function f : X → Y metric spaces is Lipschitz with Lipschitz constant L if

‖f(x)− f(y)‖ ≤ L‖x− y‖

for some L ∈ R, and for all x, y ∈ X.

Example 2.1.1: If f : R→ R, f is Lipschitz with constant L, the function remains in the region
bounded by lines of slope ±L through the point (x, f(x)).

Figure 2.1: Example 2.1.1: a Lipschitz function. f cannot escape the lines of slope ±L.

1If it does so for s, t ≥ 0 then it is called a semi flow in some books.
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Note: Lipschitz ⇒ Continuous, but Lipschitz ; Differentiable.

Definition: f is Locally Lipschitz at the point x∗ with constant L if

‖f(x∗)− f(y)‖ ≤ L‖x∗ − y‖

for all y in a neighborhood of x∗.

Example 2.1.2: f(x) = |x|
1
2 is not locally Lipschitz at 0 because L would have to be ±∞.

Outline of what we will do next:

(1) Theorem: f Lipschitz ⇒ ∃! φ solving ẋ = f(x).

(2) Worry: How long does φ exist for? The theorem is only local.

(3) Proof: An algorithm to find a sequence of functions converging to φ.

How to solve ẋ = f(x)?2 We shall try to approximate the solution with a sequence of functions
{ui}:

u0(x0, t) = x0

u1(x0, t) = x0 +
∫ t

0

f (u0(x0, s)) ds

...

un+1(x0, t) = x0 +
∫ t

0

f (un(x0, s)) ds

Note that if the sequence of functions converges to φ, then

φ(x0, t) = x0 +
∫ t

0

f (φ(x0, s)) ds

Implying that φ is a flow solving the equation.

Definition: This is called Picard Iteration, and we denote it by un+1 = P (un).

Example 2.1.3: Let us check that for ẋ = x the Picard Iteration gives x(t) = x0e
t:

u0(x0, t) = x0

u1(x0, t) = x0 + x0t

u2(x0, t) = x0

(
1 + t+

t2

2

)
...

un = (x0, t) = x0

(
1 + t+

t2

2
+ . . .

tn

n!

)
So un(x0, t)→ x0e

t as n→∞.

The proof of the theorem relies on the fact that Picard Iteration is a contraction mapping on an
appropriate function space:

‖P (u)− P (v)‖ ≤ K‖u− v‖

for some fixed K ∈ [0, 1) (see MA222 Metric Spaces or MA225 Differentiation for the contraction
mapping theorem). We use the fact that f is Lipschitz when proving that P is a contraction. Do
this as an exercise.

Note: The worry, (2), arises since the space of functions we consider is only defined in some
interval |t| ≤ τ for some constant τ .

2See Grimshaw for details.

6



Theorem: If f is locally Lipschitz then ∀y ∈ X ∃ε, τ > 0 such that solutions exist and are unique
for each |x− y| < ε and t ∈ [−τ, τ ]. Furthermore, φ : X × R 7→ X is Lipschitz.

Can we use the theorem to extend the solutions by gluing end-pieces together? Pick x1 ∈ X and
define x1, x2, . . . ∈ X by applying the theorem - a solution through xi exists in the interval [−τi, τi],
so define xi+1 = φ(x1, τi). What can happen?

• If there is a fixed point x∗ then xi → x∗ as t→∞

•
∑
i τi <∞ but xi → ±∞ (FTB)

What else?

Figure 2.2: (a) “Gluing” pieces together. (b) A fixed Point. (c) Finite Time Blowup.

Theorem (Extension Theorem): Let f be locally Lipschitz. Then for all x0 ∈ X there is a
maximal time interval [α, β], α < 0 < β where either or both could be infinite, on which there is a
unique solution. If β <∞, then φ(x, t)→∞ as t→ β, i.e. we get FTB.

Corollary: If φ(x, t) remains in a compact set, then β =∞ and there is a unique solution for all
t > 0.

Prove these as an exercise.

2.2 Orbits

Definition: O(x) - the Orbit of x - is the set {φ(x, t) : t ∈ [α, β]}. O+(x) is the positive orbit of
x, defined on t ∈ (0, β].

Definition: x∗ is a Fixed Point if O(x∗) = x∗, or equivalently f(x∗) = 0.

Definition: We say that x is a Periodic Point with period T > 0 if φ(x, T ) = x but φ(x, t) 6= x
for t ∈ (0, T ). O(x) is a Periodic Orbit of period T .

Definition: If x∗ is a fixed point and φ(x, t) → x∗ as t → ±∞, then O(x) is a Homoclinic
Orbit.

Definition: If x∗, y∗ are distinct fixed points, and x∗ ← φ(x, t)→ y∗ as −∞← t→∞, then O(x)
is a Heteroclinic Orbit.

Definition: A Heteroclinic Loop is a union of heteroclinic orbits joining fixed points x∗1, . . . , x
∗
n, x
∗
1

cyclically.

For more exotic examples, consider the Torus in R3 with the DE defined on the surface as θ̇1 = ω1,
θ̇2 = ω2. If ω1

ω2
∈ Q then the orbits are periodic - for every ω1 times you go around one way, you

go around the other way ω2 times. But if ω1
ω1

/∈ Q, then any orbit fills the surface of the torus
densely. There are other more complicated geometric objects defined by the flow, such as strange
attractors. This happens in Rn≥3. Most of the interesting objects in a flow can be characterised
by one or more of these properties:

(I) Invariance
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Figure 2.3: (a) A homoclinic orbit. (b) A heteroclinic orbit. (c) A heteroclinic cycle.

(II) ω-limit sets

(III) Stability

Definition: A set Λ is Invariant Under f if for all x ∈ Λ, φ(x, t) ∈ Λ for every t ∈ R and
Forward Invariant if only satisfied for all t ≥ 0.

Examples of invariant sets include fixed points, periodic orbits, the whole space X, and the orbits
of every x ∈ X. Invariance is important, but clearly far too general. We have to capture some
notion of the eventual behaviour of the flow. We could look at points y ∈ X such that φ(x, t)→ y
as t→∞, but this is too narrow - points in a periodic orbit cannot satisfy this for example.

Definition: Given x ∈ X, the ω-limit set of x, ω(x), is the set {y ∈ X : φ(x, tn)→ y} for some
increasing sequence tn →∞.

Warning: The last point is important, otherwise any point φ(x, T ) is in ω(x) for all T > 0.

Example 2.2.1: Some examples:

(I) If x is a fixed point, then ω(x) = x.

(II) If x is on a periodic orbit, then ω(x) is the whole periodic orbit.

(III) Consider a saddle point x0 with a homoclinic orbit attached, and an unstable focus point x1

inside the homoclinic orbit such that orbits inside spiral out from the centre to the edge: Let

Figure 2.4: Example 2.2.1 (III).

y0 be a point on the homoclinic orbit, y1 a point on an orbit outside it, and y2 a point on a
spiral inside it. Then

– ω(x0) = x0, ω(y0) = x0,

– ω(x1) = x1, ω(y1) = ∅, and

– ω(y2) = {x0} ∪ {homoclinic orbit}.

Theorem: If O(x) is bounded, then ω(x) is non-empty, closed, connected and invariant.
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Proof. (Sketch)

Non-empty: O(x) is bounded, so O(x) ⊆ K is compact. Take any sequence of times tn → ∞. Then
φ(x, tn) is a sequence of points in K, so there is a convergent subsequence converging to y
say, so y ∈ ω(x).

Invariant: Suppose y ∈ ω(x). Then there is a sequence tn → ∞ such that φ(x, tn) → y. Consider the
point φ(y, τ). Then φ(x, tn + τ)→ φ(y, τ) by the continuity of φ.

Connected: If ω(x) were disconnected, then it would have at least two disjoint sets A and B such that
A ∪ B = ω(x), A ∩ B = ∅. We can find disjoint open neighbourhoods of A and B. φ(x, t)
must keep crossing from one to the other, so we can pick a sequence of times tn → ∞ such
that φ(x, tn) is in neither A nor B. We have a sequence of points in a compact set3, so there
must be a subsequence converging to a point of ω(x), which is a contradiction.

Closed: Suppose we have z1, z2, . . . ∈ ω(x) such that zn → y. So there are φ(x, tni) such that tni →∞
and φ(x, tni)→ zn as i→∞. Pick from each of these sequences of times a sequence such that
the times are increasing, and we get a sequence φ(x, tn) such that tn →∞ and φ(x, tn)→ y
as n→∞. See the handout for more details. �

Figure 2.5: (a) Invariance. (b) Connected. (c) Closed: the circled dots represent one possible
sequence φ(x, tn).

2.3 Stability

Liaponov - “Start near, stay near”.. Asymptotic - “Start near, get close to and tend to as t→∞”.

Examples 2.3.1:

• ẋ = y, ẏ = −x. (0, 0) is a fixed point - Liaponov stable but not asymptoticly stable. Any
periodic orbit is Liaponov stable but not asymptotically stable.

• ẋ = −x, ẏ = −y. (0, 0) is both Liaponov stable and asymptotically stable.

We will see that Asymptotically stable implies Liaponov stable.

Definition: An invariant set Λ is called Liaponov Stable if for all neighbourhoods V ⊇ Λ there
is a neighbourhood U ⊆ V such that x ∈ U ⇒ φ(x, t) ∈ V for all t > 0.

Definition: Λ is Asymptotically Stable if it is Liaponov Stable and if there is a neighbourhood
V ⊇ Λ such that φ(x, t)→ Λ for all x ∈ V .

Lemma: If Λ is asymptotically stable, then it is also Liaponov stable.

Example 2.3.1: A fixed point x∗ with a homoclinic orbit which is neither Liaponov stable nor
asymptotically stable, since we have to go around the loop to get back to it, even though for all
x ∈ V , φ(x, t)→ x∗ as t→∞. See figure 2.6.
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Figure 2.6: Example 2.3.1.

Note: Asymptotically stable sets are called sinks or attractors. There are many different defini-
tions for each of these. Invariant sets asymptotically stable under time reversal are called sources
or repeller. We tend not to use the word unstable, since it means not stable, and is thus not the
opposite of stable, and we do not wish to confuse things like sources with things like saddles.

Definition: If Λ is invariant and asymptotically stable, then B(Λ), the Basin of Attraction, is
the set {x ∈ X : φ(x, t)→ Λ} as t→∞.

Example 2.3.2: An asymptotically stable point inside a homoclinic orbit with everything spiraling
towards it. Then the basin of attraction is everything within the homoclinic orbit; see figure 2.7.

Figure 2.7: Example 2.3.2. Λ is the whole region inside the homoclinic orbit.

Exercise: Show that B(Λ) is always open.

Definition: If Λ is asymptotically stable, invariant, and B(Λ) = X, then Λ is a Global Attrac-
tor.

We can now describe phase spaces with f : R 7→ R. Recall the usual results.

Exercise: Show that for X = R, x∗ a fixed point, f ′(x∗) < 0⇒ x∗ asymptotically stable.

Definition: If f is C1 and x0 is a fixed point such that |f ′(x0)| 6= 0 then we say that x0 is a
Hyperbolic fixed point.

In rough: Hyperbolic points are structurally stable, non hyperbolic points are not. Associated
with bifurcations. Hyperbolic stability: slight changes don’t change the qualitative picture.

Note: We must be careful by what we mean by “slight change”. Stability of a structural kind
depends on an appropriate definition of “small change” - for f ∈ C1, both f and f ′ change by a
small amount.

3If U and V are neighbourhoods of A and B respectively, then X \ (U ∩ V ) is compact.
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Chapter 3

Two Dimensional Flows (X = R2)

3.1 Hamiltonian Flows and Hamiltonians

If a quantity is conserved by a flow, this “reduces the problem by one dimension”, where you look
at lines where the quantity is constant.

Example 3.1.1: ẋ = y, ẏ = x3 − x. consider

H(x, y) =
1
2
y2 +

1
2
x2 − 1

4
x4

Compute dH
dt along the flow.

dH
dt

=
∂H

∂x
ẋ+

∂H

∂y
ẏ = y(x− x3) + y(x3 − x) = 0

So H does not vary along orbits of the flow. Look at sets {H = c}. Draw the fixed points,
y = 0, x = 0,±1. Calculate H at the fixed points: H(0, 0) = 0, H(±1, 0) = 1

4 . Draw the level sets
remembering techniques for phase portraits. We know the behaviour of the flow:

(I) At the fixed points x∗ are such that f(x∗) = 0.

(II) All orbits of the flow must lie within a set of type {H = c}, i.e. dH
dt = 0.

(III) For 0 < c < 1
4 the sets look like ellipses. Contains no fixed points anywhere on the curve

⇒ |f(x)| not zero anywhere ⇒ |f(x)| attains a positive minimum on the curve ⇒ velocity is
bounded away from 0 on the curve ⇒ periodic orbit of flow with finite period Tc.

(IV) c = 1
4 uses similar arguments; note that the fixed points are in this set. There is a hetero-

clinic orbit between the fixed points (1, 0) and (−1, 0), so any orbit starting on one of these
heteroclinic orbits will tend tend to the appropriate fixed points as t→ ±∞ (see figure 3.1).
Orbits not on the heteroclinic orbits will tend to ∞ or −∞ as t→∞ or the fixed points as
t→ −∞.

Observe that we have learned a lot of information about the flow with solving the equations.

Example 3.1.2: Pendulum: θ̈ = − sin(θ). Write p = θ̇ to get θ̇ = p, ṗ = − sin(θ). Consider
H(p, θ) = 1

2p
2 − cos(θ).

dH
dt

=
∂H

∂p
ṗ+

∂H

∂θ
θ̇ = −p sin(θ) + p sin(θ) = 0

So H is constant on all orbits. Sets {H = c}. There are fixed points at (0, 2kπ) and (0, (2k+ 1)π)
where k ∈ Z, with periodic orbits around (0, 2kπ) and homoclinic orbits joining (0, (2k + 1)π).

Note: We have two possibilities for the phase space: R2 or S1 × R, the latter being the more
natural choice.
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Figure 3.1: Example 3.1.1: The level sets H = c show the fixed points, heteroclinic orbits and
periodic orbits, enabling us to get a good idea of the flow. In (a), c < 1

4 (III), in (b) c = 1
4 (III)

while in (c), c > 1
4 .

Figure 3.2: Example 3.1.2: The level sets H = c show the fixed points, heteroclinic orbits and
periodic orbits, enabling us to get a good idea of the flow. Note that the flow can be taken between
0 and 2π or between −π and π.

Figure 3.3: The phase space is a cylinder, but it makes life easier to “unwrap” it into R× [0, 2π).

Definition: A system is Conservative (or Hamiltonian) if there is a function H : X → R such
that d

dt (H(φ(x, t))) = 0.

Definition: Such a function H is known as the Hamiltonian Function.

In real systems, there is often a conserved quantity, although not necessarily energy. If the system
is Hamiltonian, the orbits lie in the level sets of H, locally of dimension one less than that of the
phase space X (i.e. of co-dimension 1). In general it is hard to know if H even exists, and is
usually difficult to find when it does.
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3.2 Liaponov Functions

Example 3.2.1 (1): The damped pendulum has the system θ̈ = −kθ̇− sin(θ), where k > 0. Write
θ̇ = p, ṗ = −kp − sin(θ). Consider V (θ, p) = 1

2p
2 − cos(θ) - we don’t call this function H since it

is no longer a Hamiltonian:
dV
dt

=
∂V

∂θ
θ̇ +

∂V

∂p
ṗ = −kp2 ≤ 0

Thus Ḣ = 0 ⇔ p = 0. Now we expect that solutions cross the lines V = c in the direction of
decreasing c. This is not an ideal example, since there is a line p = 0 where V̇ = 0.

Figure 3.4: The black whole lines are the level sets H = c and the blue dotted lines are the
solutions. These two lines always cross at the same angle.

Example 3.2.2 (2): ẋ = x2 − x − 2xy, ẏ = y2 − 2y + 5xy. There is a fixed point at the origin.
The linear part of the system suggests that near near to (0, 0) everything decreases, so the origin
is asymptotically stable. Try V (x, y) = 1

2 (x2 + y2):

dV
dt

=
∂V

∂x
ẋ+

∂V

∂y
ẏ = xẋ+ yẏ = −x2(1− x+ 2y)− y2(2− y + 5x)

If V̇ ≤ 0 at least in the region where x − 2y ≤ 1 and y − 5x ≤ 2 we should be able to find a ball
inside this region where everything goes to the origin. We can’t say anything about orbits in the
shaded region but not the ball, since they could go out of the region.

Figure 3.5: Every orbit within the blue ball is asymptotically stable.

Definition: A Liaponov Function V : X → R for a flow φ on X is a function such that
V (φ(x, t)) ≤ V (x) ∀ t > 0, x ∈ X. Usually we have that V ∈ C1 and V̇ ≤ 0.

We’re often concerned with local behaviour near to a fixed point.

Definition: Let x0 be a fixed point. Suppose V : X → R is differentiable in U \ {x0} where U is
an open neighbourhood of x0 such that

(a) V (x0) = 0 and V (x) > 0 ∀ x ∈ U \ {x0}

(b) V̇ ≤ 0 in U \ {x0} or

(c) V̇ < 0 in U \ {x0}.
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If V satisfies (a) and (b) it is called a Liaponov Function for x0. If in addition it satisfies (c)
then it is called a Strict Liaponov Function.

Note: We can fix V (x0) = 0 by adding a constant to V .

Examples 3.2.1:

• In the first example V was a strict Liaponov function for (0, 0).

• For the damped pendulum (c) was not satisfied since V = 0 whenever p = 0. But in fact the
fixed point is asymptotically stable, but we need more theory.

Theorem (Liaponov’s First Theorem): If there is a Liaponov function for a fixed point x0, then
x0 is Liaponov stable.

Proof. Given U a neighbourhood of x0 we want to show that there is a neightbourhood V ′ ⊆ U
such that ∀ x ∈ V ′, φ(x, t) ∈ U ∀ t > 0. Pick δ > 0 small enough such that B(x0, δ) ( U . Consider
the surface of B(x0, δ); it is the surface of the sphere Sδ(x0). V takes positive values at all points
on Sδ(x0). Since Sδ(x0) is a compact set there is a minimum value α > 0 of V on Sδ(x0).
Define the open set V ′ := {x ∈ V (x) < α} ∩ B(x0, δ). Since α was a minimum V ′ ( B(x0, δ)
(points on the boundary have V ≥ α). Now ∀ x ∈ V ′, V (x) < α. so V (φ(x, t)) < α for t ≥ 0,
since V̇ ≤ 0. So V (φ(x, t)) � α for t ≥ 0. So φ(x, t) /∈ Sδ(x0) ∀ t ≥ 0. So φ(x, t) remains inside
B(x0, δ) ⊆ U ∀ t ≥ 0. �

Theorem (Liaponov’s Second Theorem): If there is a strict Liaponov function for a fixed point
x0, then x0 is asymptotically stable.

Proof. Now we have V̇ < 0 in U \{x0}. We already know from the first theorem that x0 is L-stable.
We just need to show that φ(x, t) → x0 as t → ∞. Choose sets as before and pick y ∈ V ′. Then
φ(y, t) ∈ B(x0, δ) ∀ t ≥ 0, so the orbit stays bounded (so ω(y) 6= ∅). If ω(y) = x0 then we are
done, and (φ(y, t)→ ω(y) as t→∞).
Suppose there is a z ∈ ω(y) such that z 6= x0. So there is a sequence of times {tn}∞n=1 with tn →∞
and φ(y, tn)→ z. Since we have V̇ < 0, φ(y, t) is decreasing monotonically to V (z)(> 0). Consider
the orbit φ(z, t) through z. V̇ < 0 at z, so there is a time τ such that V (φ(z, τ)) < V (z). By
continuity, for points z′ close enough to z, V (φ(z′, τ)) < V (z). So now just choose z′ = φ(y, tn) for
n large enough. But then V (φ(y, tn + τ)) < V (z), which contradicts V (φ(y, t))↘ V (z) as t→∞.
This is a contradiction, so there is no non-x0 element of ω(y). So x0 is asymptotically stable. �

Define E := {x : V̇ = 0} for a Liaponov function V . Define Mc := {x : V (φ(x, t)) = c ∀ t ≥ 0}.
Mc contains entire forward orbits. If x ∈Mc, then so is φ(x, t), f ≥ 0, so Mc ⊆ E. In the damped
pendulum case, MC ⊆ {p = 0} and consists of entire forward orbits. The only orbits which remain
in {p = 0} are the two fixed points (0, 0) and (π, 0). For other points consider that ṗ 6= 0. The
only non-empty sets Mc are M1 = (π, 0) and M−1 = (0, 0). Mc 6=±1 = ∅.

Theorem (La Salle’s Principle): If V is a Liaponov function for a flow φ then ∀ x ∈ X, ∃ c such
that ω(x) ⊆Mc.

Apply this to the damped pendulum: ∀x ∈ X, ω(x) ⊆Mc for some c so ∀x, ω(x) = (0, 0) or (π, 0).
There are some orbits that tend to (π, 0) (in fact there are only two), but we already know that
(0, 0) is Liaponov Stable, so orbits staring near (0, 0) don’t go to (π, 0)⇒ must go to (0, 0)⇒ (0, 0)
is Liaponov Stable.

Proof. Pick x ∈ X. V̇ ≤ 0, or more generally V is not decreasing. Let c := inf{V (φ(x, t)) : t ≥ 0}.
If c = −∞, φ(x, t) → ∞ ⇒ ω(x) = ∅ and there is nothing to prove. Assume c 6= −∞ and that
ω(x) 6= ∅. Let y ∈ ω(x), so there is a sequence of times {tn}∞n=1 tending to infinity such that
φ(x, tn) → y. By the continuity of V and V (φ(x, tn)) ↘ c we have V (y) = c. We need to show
that y ∈ Mc, so we first need to prove that V (φ(y, t)) = c ∀ t ≥ 0. Suppose not. Then there is
an s such that V (φ(y, s)) < c. But then consider the sequence of points φ(x, tn + s) → φ(y, s) ⇒
V (φ(x, tn + s))→ V (φ(y, s)). this contradicts the definition of c so if V (φ(x, t)) so y ∈Mc and we
are done. �
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Exercise: Prove Liaponov’s second theorem; from Liaponov’s first theorem and La Salle’s Prin-
ciple it should take only a few steps.

The use of “Liaponov Functions” as bounding functions: take a set K 6= ∅. ∃ function such that
V̇ < 0 outside K. Want to identify a set K ′ such that all orbits eventually enter K ′ and never
leave it.

Theorem: Let V : Rn → R be differentiable and let K be a region outside which V̇ ≤ −δ, for
some δ > 0. Let α := sup{V (x) : x ∈ ∂K}. Then K ′ := Vα := {x : V (x) ≤ α} is such that all
orbits enter and remain in K ′.

The proof is a simple exercise, but finding V is usually awful.

Definition: A system is called a Gradient System if x = −∇V (x) for some function V : X → X.

For such functions, V is a Liaponov function: V̇ = −(∇V )2 ≤ 0 and V̇ = 0 only at fixed points.
La Salle’s invariance principle implies that all orbits tend to fixed points.

3.3 Fixed Points and Nearby Behaviour

Most theorems are in Rn, and most examples are in R2. Suppose ẋ = f(x) has a fixed point at
x0. Change variables to move the fixed point to the origin:

y = x− x0, ẏ = ẋ = f(x) = f(y + x0)

So the new equation ẏ = f(y + x0) =: g(y) has a fixed point at 0: g(0) = f(x0) = 0. So now we
have that, without loss of generality, f(x) = ẋ and f(0) = 0. Our General system can be written
in the form ẋ = Ax+ h. o. t., where A is an n×n matrix, and the higher order terms are quadratic
or higher. Ax is called the Linear Part, h.o.t. the Non-Linear Part. We want to

(I) Recall how to solve/understand the behaviour of the linear system ẋ = Ax.

(II) Understand how the addition of non-linear terms affects the behaviour.

3.3.1 The Linear Part

Consider the hyperbolic case, i.e. where A has no eigenvalues with 0 real part (c.f. in the 1D case
f ′(0) 6= 0); the non-hyperbolic case comes later. Consider a linear change of variables y = Bx,
where B is non-singular. Then ẏ = Bẋ = BAx = BAB−1y. BAB−1 has the same eigenvalues
as A, and by choosing B carefully, we can put BAB−1 into Jordan Norma Form. Recall that the
JNF makes ẋ = Ax much easier to solve by allowing us to solve each block separately. In R2 there
are only four possibilities:

(A)
(
λ1 0
0 λ1

)
︸ ︷︷ ︸

λ1 6=λ2

, (B)
(
λ1 0
0 λ1

)
, (C)

(
λ1 1
0 λ1

)
, (D)

(
λ1 ω
−ω λ1

)

(A) There are three cases:

1. If λ1, λ2 > 0, then the origin is a Repeller or Source. Orbits are repelled at different
rates in different directions according to the ratio of the two eigenvalues; see 1st year
ODEs.

2. If λ1 > 0, λ2 < 0, then the origin is a Saddle:

3. If λ1, λ2 < 0, then the origin is an Attractor or Sink.

(B) Gives two cases:

1. If λ1 < 0 then the origin is called a Star Node, and it attracts all orbits equally.

2. If λ1 > 0 then the origin repels all orbits equally in all directions.

(C) In this case we have 2 equal eigenvalues but only one eigenvector; see diagram.
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Figure 3.6: (a) A Saddle (b) Case C

(D) We have two cases:

1. If λ1 > 0 then orbits spiral outwards clockwise - the origin is an Unstable Focus.

2. If λ1 < 0 then orbits spiral inwards clockwise - the origin is a Stable Focus.

In any number of dimensions we can catalog cases like this, but this very quickly becomes cumber-
some and tedious. In general, we don’t calculate the JNF, but we do something equivalent, which
is calculating the eigenvectors and eigenvalues of A. Then we can draw the phase portrait, and
we can then change coordinates easily if we want. So we can explicitly solve the linear parts and
understand completely the qualitative behaviors and the relationships of orbits to eigenvectors and
eigenvalues of A.

3.3.2 The Non-Linear Part

We want to say that if A is hyperbolic, then the non-linear system is “sort of like” the linear system
near the origin, where the h.o.t are small. We get three main types of result:

(I) 0 a sink for the linear part ⇒ 0 a sink for the full equation. We can show this with a local
Liaponov Function.

(II) Linearisation theorem (Hartman-Grobman): we can map orbits of the linear system onto
orbits of the non-linear system in a “nice” way.

(III) Un/Stable manifold theorems: in the non-linear case the un/stable manifold is “nice”, and
we can learn some techniques to calculate the un/stable manifold.

3.4 Stable and Unstable Manifolds

Example 3.4.1: Consider ẋ = x, ẏ = −y. Eigenvalues are ±1, eigenvectors are the axes. Exactly
two orbits tend to (0, 0) as t → ∞ (the y-axis), and exactly two orbits tend to (0, 0) as t → −∞
(the x-axis). The x and y axes are called Seperatices, since they separate R2 into regions of
similar behaviour, made up of orbits of the ODE so the other orbits cannot cross them.

Definition: The Stable Manifold Ws(x0) of a fixed point x0 is the set{
x : lim

t→∞
(φ(x, t)) = x0

}
Definition: The Unstable Manifold Wu(x0) of a fixed point x0 is the set{

x : lim
t→−∞

(φ(x, t)) = x0

}
Exercise: Check that the example satisfies the definition.
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Figure 3.7: The definition holds for the linear and non-linear flows in any number of dimensions.
This example is in R3, where the stable manifold in blue is two dimensional and the stable manifold
is one dimensional. Possible flows are in black.

Theorem: For n > 2, at a saddle point for hyperbolic fixed points x0,

dim (Ws(x0)) + dim (Wu(x0)) = n

We often talk about the local manifolds - we are only concerned by orbits close to x0, denoted by
Ws

loc(x0) and Wu
loc(x0).

Example 3.4.2: Consider ẋ = x, ẏ = x2− y. We can see that {x = 0} is still the stable manifold.
We guess that there is an unstable manifold Wu(x0) tangent to the x-axis. On the assumption
that it exists, try to calculate it. Suppose it has the equation y(x) =

∑∞
n=0 anx

n, i.e. a standard
geometric object. We should have a0 = a1 = 0, since it goes through the origin and is tangent to the
x-axis (a1 is chosen to give the same slope as the appropriate eigenvector). Calculate coefficients
using the fact that we have two expressions for dy

dx :

dy
dx

= 1a1x
2 + 2a2x+ 3a3x

2 + . . .

dy
dx

=
ẏ

ẋ
=
x2 − y
x

=
x2 − (a0 + a1x+ a2x

2 + . . .)
x

= −a0

x
− a1 + (1− a2)x− a3x

2 − . . .

Equating coefficients, we get a0 = 0, a1 = −a1 → a1 = 0 as expected, 2a2 = 1− a2 ⇒ a2 = 1
3 , and

for n > 2, nan = −an ⇒ an = 0. So y = 1
3x

2 is the equation of the unstable manifold.

Figure 3.8: The unstable manifold.

Note: Since in this case we can solve the ODE, we can check this result by hand; do this as an
exercise. Observe that we can always change coordinates to get a “nice” linear part.

Example 3.4.3: A more general example:

ẋ = x+ xy, ẏ = x2 − xy − y

This has the same linear part as before, so Ws((0, 0)) and Wu((0, 0)) are tangent to the y and x
axes respectively as before. Consider as before the expressions

Wu ((0, 0)) = y(x) =
∞∑
n=2

anx
n, Ws ((0, 0)) = x(y) =

∞∑
n=2

bny
n
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and compare the coefficients to this expression:

dy
dx

=
ẏ

ẋ
=
x2 − xy − y
x+ xy

In the case of the unstable manifold we get

(2a2x+ 3a3x
2 + . . .)(x+ xy) = x2 − y − xy

(2a2x+ 3a3x
2 + . . .)

(
x+ x(2a2x+ 3a3x

2 + . . .)
)

= x2 − (1 + x)(2a2x+ 3a3x
2 + . . .)

after tedious algebraic manipulation (an exercise) we get that

y(x) =
1
3
x2 − 1

12
x3 − 1

36
x4 + . . .+ h. o. t.

Do the stable case as an exercise. This is a good approximation of Wu((0, 0)) near (0, 0), but we
don’t know in what neighbourhood it is good without doing more work - see Analysis II.

But we need to make sure that the un/stable manifolds actually exist.

3.5 Stable Manifold Theorem (SMT)

We will outline a geometric proof for the 2 dimensional case.

Theorem (Stable Manifold Theorem where dim(X) = 2): Given a fixed (saddle) point x0 of a C1

vector field, there are exactly two orbits (in addition to x0 itself) tending to x0 as t → ∞. They
approach x0 tangentially to the stable contracting subspace Es of Df(x0) one from each side.

Df(x0) is the matrix A - the linear part of the vector field. Es is the eigenspace corresponding to
the eigenvalues of A with negative real parts; in this 2 dimensional case the eigenvalues are real
and Es(x0) is the corresponding eigenvector.

Remark: By reversing time we get the “Unstable Manifold Theorem”.

Glendinning’s proof is based on a succession of non-linear changes of coordinates that makes the
equations “more linear”, i.e. the higher order terms become of higher and higher order. Perko’s
proof uses Picard iteration to get flows converging to the stable manifold. We will do a geometric
proof.

Proof. Change coordinates linearly so that x0 is at the origin and Es and Eu are the y and x axes
respectively. Draw a box D of size ±ε(> 0) around the origin. Label the top T , the bottom B,
the left side L and the right side R.

Figure 3.9: The box D.

The equations look like

ẋ = λx+ h. o. t.
ẏ = −µy + h. o. t.
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where λ, µ > 0. For ε > 0 small enough, the flows enter through T and B and leave through L
and R. Define subsets of T as follows:

l := {x ∈ T : φ(x, t) leaves D through L}
r := {x ∈ T : φ(x, t) leaves D through R}

Note that l and r are non-empty (they contains the corners), open (by continuity of the flow)
and disjoint (flows can’t leave through both L and R). So l ∪ r 6= T . Thus there is at least one
point z+ ∈ T such that φ(z+, t) does not leave D (can’t leave through D or B). D is compact,
so ω(z+) 6= ∅. Consider V (x, y) = 1

2 (y2 − x2). V̇ = yẏ − xẋ = −µy2 − λx2 + h. o. t. < 0 for
x and y small enough. So within D, V is a Liaponov function. La Salle’s invariance principle
⇒ ω(z+) = {0}. Check that V < 0 for x2 > y2 does not affect this argument. Similarly ∃ z− ∈ B
such that ω(z−) = {0}. We need to argue that z+ and z− can’t be on the same orbit, since they
only go though T or B once and cannot leave D. So there are at least two orbits that tend to the
origin as t→∞. Now we need to show that

(I) Orbits approach tangentially to the y axis and

(II) There are exactly two orbits.

To do this,

(I) Look at the cone C in D, |x| ≤ |y|.

(a) Consider
1
2

d
dt
(∣∣x2

∣∣) ≥ 1
2
λx2

for points in D\C the |x| coordinate grows and leaves D through L or R, i.e. φ(z+, t) ⊆
C.

(b) Similarly
1
2

d
dt
(∣∣y2

∣∣) ≤ −1
2
µy2 + h. o. t.

For D small enough and inside C. So the |y| coordinate decreases if you are in C, so
φ(z+, t) ⊆ C and goes to zero as t→∞.

(c) Consider γ(t) = x(t)/y(t). Want to show γ(t) → 0 as t → ∞ for this orbit. Compute
γ̇(t):

γ̇ =
yẋ− xẏ
y2

= −(λ+ µ)y + g(x, y, γ)

where |g(x, y, γ)| ≤ h(y)→ 0 as y → 0. Note that we know already that this orbit stays
in C, so γ can’t grow exponentially. Hence we can deduce that for this orbit

|γ| ≤ |h(y)|
λ+ µ

as y → 0

So γ → 0 and the orbit is tangential to the y axis.

(II) Sketch: Suppose there are two orbits staring on T . Then orbits starting in T between
them must must remain in between them and thus also tend to 0 as t → ∞. Straight lines
joining them should therefore get shorter, but this contradicts the fact that the x direction
is increasing, so there must only be one orbit coming in from the top. �

Example 3.5.1: Application of the SMT to the damped pendulum: there are exactly two orbits
tending to the saddle point. We know by La Salle’s invariance principle that all orbits tend to a
fixed point, so all other orbits have to tend to the stable fixed point.

How does this work in dimensions greater than two?
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Figure 3.10: Illustrating part (II) of the proof.

Theorem (Stable Manifold Theorem where dim(X) > 2): If ∃ hyperbolic fixed point x such that
Df(x) has m eigenvalues with negative real part and n−m eigenvalues with positive real part (with
0 < m < n), define Es as the linear subspace spanned by eigenvectors of Df(x) with <(λ) < 0, and
Eu as the linear subspace spanned by eigenvectors of Df(x) with =(λ) > 0. Then ∃m dimensional
stable manifoldWs(x) tangential to Es on which orbits tend to x as t→∞, and ∃n−m dimensional
unstable manifold Wu(x) tangential to Eu on which orbits tend to x as t→ −∞.

Note: The SMT does not say how orbits approach x on Ws(x), only that they do; for example
if dim(Ws(x)) = 2 and the eigenvalues are −λ ± iω then orbits do not necessarily spiral into x.
Ws(x) and Wu(x) don’t have to be orthogonal.

3.6 Hartman-Grobman Theorem

The SMT only concerns orbits going to x. Can we match up orbits of non-linear and linear systems?

Theorem: Suppose x is a hyperbolic fixed point. Then ∃ a neighbourhood U of x and a home-
omorphism h : U → U such that ∀ x ∈ U , there is an interval of time T (x) 3 0 such that
h(φ(x, t)) = eAth(x) ∀ t ∈ T (x), where A = Df(x).

h gives a 1-1 map between points y and the orbits through them to points h(y) and the orbits
through them. In some senses this a strong theorem; if all orbits tend to x in the linear system,
then all orbits in the extended non-linear system do so; a sink in a linear system is a sink in the
non-linear system. In other senses it is weak - h is not a diffeomorphism, so we could map star
nodes into focii.

Example 3.6.1: See question 4 on example sheet 2. This does not contradict the theorem, but
we still can’t say anything about the nature of the orbits within U and h(U).

Remark: If f ∈ C2, then we can find h ∈ C1, but even if f ∈ C∞ then we can’t necessarily have
h ∈ C2.

Corollary: If the linear part Df has <(λ) ≤ −a < 0 for some a > 0 at a fixed point x0, then for
the non-linear system there is a norm ‖ · ‖ such that ‖φ(x, t)− x0‖ ≤ e−at‖x− x0‖.

Proof. Define ‖ · ‖ such that ‖x‖ is a local Liaponov function. �

3.7 Non-Hyperbolic Fixed points

If ẋ = Ax + h. o. t. and <(λ) = 0 for some eigenvalues λ of A, when we perturb the system they
bifurcate into one or more stable or “unstable” fixed points, so we don’t usually worry about them.

Examples 3.7.1:

(A) ẋ = ωy, ẏ = −ωx, i.e. λ = ±iω. Adding non-linear terms can make the origin an un/stable
focus (see figure 1.4), but worse can also happen; if θ̇ = ω, ṙ = r2 sin(1/r2), then the circles
become alternately stable and unstable periodic orbits accumulating on 0.

(B) If ẋ = x2, ẏ = −y we get a saddle node, but if we insist that the quadratic terms are zero,
we get a non-linear saddle.

(C) Two real eigenvalues being zero - when A 6= 0:
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(1) ẋ = y, ẏ = x2 gives a cusp.

(2) ẋ = y, ẏ = 4xy − x3 gives something more interesting. Check that y = x2/(2 ±
√

2).
The upper part is the parabolic domain, and the lower is the elliptic domain.

(D) When A = 0 there are two cases:

(1) ẋ = x3 − 2xy, ẏ − 2xy2 − y3 ⇔ ṙ = r3 cos(2θ), θ̇ = 2r2 sin(2θ).

(2) ẋ = xy + x2, ẏ = 1
2y + xy

Figure 3.11: Examples 3.7.1(A), (B) and (C): (a) As the periodic orbits (in blue) get closer to the
origin they get closer together; similar to the topologist’s sine curve. Note the alternating stability
of the periodic orbits. (b) The Saddle Node. (c) The cusp. (d) The two lines in blue are the
invariants y = x2

2±
√

2
; above them is the hyperbolic domain, in between is the parabolic domain

and below is the elliptic domain.

Figure 3.12: Example 3.7.1(D). (a) shows 1. while (b) shows 2.

Remark:
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• We can completely classify such as these, but it is complicated.

• Behaviour occurs in sectors separated by seperatices, in which behaviour is either parabolic,
hyperbolic or elliptic.

• There are a finite number of sectors: if ẋ = Pm(x, y) and ẏ = Qm(x, y), P and Q polynomials
where m is the lowest degree term in P and Q, then the number of sectors is ≤ 2(m + 1)
(maximum number of zeros for θ = 0 as r → 0 in polar coordinates).

• The number of elliptic sectors minus the number of hyperbolic sectors is even. Proof is by
the index theorem.

Figure 3.13: (a) behaviour in the parabolic domain. (b) the hyperbolic domain. (c) the elliptic
domain.
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Chapter 4

Periodic Orbits

We will mostly be looking in R2, since periodic orbits are closed curves, defining an inside and an
outside by the JCT. Other orbits can’t cross the periodic orbit, so regions inside and outside are
invariant under flows, and they don’t change size if they are finite. There are three main theorems
of interest:

1. Poincaré-Bendixson Theorem

2. Dulac’s Criterion

3. Index Theorem

4.1 The Poincaré-Bendixson Theorem

Theorem: ẋ = f(x), X = R2. If φ(x, t) ∈ Υ ∀ t ≥ 0 with Υ compact, then either

(a) ω(x) contains a fixed point, or

(b) ω(x) is a periodic orbit.

Remark: So if there are no fixed points in the region then ω(x) is a periodic orbit. The theorem
is often stated for annuli, but we do a more general proof.

Proof. Since Υ is compact, ω(x) 6= ∅. Suppose y ∈ ω(x). Consider φ(y, t) and the set ω(y), which
is non-empty, so pick z ∈ ω(y). Either z is a fixed point, in which case z ∈ ω(y) ⊆ ω(x) and we
are in (a) of the theorem, or z is not a fixed point and f(z) 6= 0. We can draw a small section Σ
through the flow containing z such that the flow is transverse to Σ.
We will show that y and z lie on a periodic orbit. Suppose they did not. The orbit through z,
φ(z), must keep returning to Σ, crossing it in the same direction each time. This follows from the
fact that z ∈ ω(y), so the orbit from y comes arbitrarily close to z at an increasing sequence of
times ti →∞. Suppose z 6= z1, where z1 is the first time that φ(z) ∩ Σ 6= ∅. The orbit from z to
z1 ∪ [z, z1] ⊆ Σ is a closed curve, so by the JCT there is an inside and an outside.
So either orbits can cross Σ into the inside and then can’t escape, or they can start inside and be
exiled, never to return. So in both cases the orbit through y eventually comes close enough to z
that it eventually gets trapped inside and can’t come close to z again or gets expelled and can’t
come close to z again. But z ∈ ω(y), so we must have z = z1.
Either y lies on this orbit (we want to show this) or φ(y, t) makes a sequence of intersections with
Σ; y1, y2, . . . → z. We can show by a similar argument that {yi}∞i=1 is a monotonic sequence of
distinct points - a contradiction unless ∀ i, yi = z and y is on the periodic orbit. This relies on the
fact that y ∈ ω(x).
We have proved that ω(y) is a periodic orbit through y and z. We need to show that ω(x) is this
periodic orbit. A similar argument implies that either x is a part of the periodic orbit or φ(x, t)
intersects Σ in a monotonic sequence of points x1, x2, . . . → z all distinct, so ω(x) is the periodic
orbit. �
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Figure 4.1: Illustration of the proof.

Figure 4.2: (a) orbits can get in but not out, or (b) they get out but can’t return. (c) The final
part of the proof.

4.2 Dulac’s Criterion or the Negative Divergence Test

Recall that div(f) := Tr(Df) =
∑n
i=1

∂fi

∂xi
.

Theorem: Given an infinitesimal volume element V = Rn, then

dV
dt

= V div(f)

Note: This doesn’t imply that volume elements can shrink to a point (except at infinity).

Proof. Assume that V is a parallelepiped with edges {b1, . . . , bn}. Write the matrix B := (b1 · · · bn).
Then Vol(V ) = det(B). Each bi evolves under the flow: ḃi = Dfbi + h. o. t..

det(B(t+ h)) = det (B(t) + hDfB(t) + h. o. t.)
= det (B(t)(I + hDf + h. o. t.))
= det(B(t)) det(I + hDf + h. o. t.)

= V (t)(1 + hTr(Df) + h2 · · · )
= V (t)(1 + div(f) + h. o. t.)

So V (t+ h)− V (t) = hV (t) div(f) + h. o. t. so

V (t+ h)− V (t)
h

= V (t) div(f) + h. o. t.⇒ dV
dt

= V div(f) �

Theorem: In R2, if f is C1, div(f) < 0 everywhere, then there is no invariant set of non-zero
finite area.

Proof. If a set is invariant, then its volume V stays the same, i.e. V̇ = 0, but this contradicts
V̇ = −div(f)V < 0 for all infinitesimal volume elements. �
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Figure 4.3: (a) The saddle has index -1. (b) The saddle node has index 0. (c) An open region not
containing a fixed point has index 0. (d) This non-hyperbolic fixed point has index 3.

Corollary: There cannot be a periodic orbit in R2 if div(f) < 0, since the area within would be
invariant.

Note: We get the same results with div(f) > 0. If X 6= Rn then be careful: Dulac’s Criterion
does not rule out a periodic orbit around the girth of R1 × S1 for example. It does rule out:

(I) Periodic orbits which don’t encircle the cylinder.

(II) Two or more periodic orbits which do encircle the cylinder.

The Corollary is true if the phase space X is such that periodic orbits enclose areas of finite volume.

Example 4.2.1: The damped pendulum with constant torque is governed by

θ̈ + kθ̇ + sin(θ) = F

With F > 0. Write θ̇ = p, ṗ = F − kp − sin(θ) and consider V = 1
2p

2 cos(θ). Use V̇ = Fp − kp2

to show that trajectories all tend to some bounded region. V is not a Liaponov function, so we
can have V̇ > 0, but V̇ < 0 if p /∈

[
0, Fk

]
, “so orbits tend to p = 0 from below and to p = F

k
from above”. Look for the maximum value of V on the boundary of the region where V ≥ 0.
max{V } = 1

2

(
F
k

)2
+ 1. The region where V = max{V } is

1
2
p2 − sin(θ) <

1
2

(
F

k

)2

+ 1

From the work on boundary functions, we may conclude that all orbits eventually enter and remain
within this region. What about fixed points? p = 0, θ = arcsin(F ), so F ∈ [0, 1)⇒ ∃ 2 solutions,
F = 1⇒ ∃! solution, and F > 1⇒ @ solutions, so by the PBT there is at least one periodic orbit
inside the region V < Vmax. div(f) = 0 − k < 0, so by Dulac’s Criterion, there are no periodic
orbits other than the one encircling the cylinder. Check that the periodic orbit goes around the
cylinder only once.

Generalisation of Dulac’s Criterion: Suppose there is a weighting ρ : Rn → R+, and div(ρf) < 0.
Then by the same argument as before, there is no invariant set of non-zero finite volume in the
flow. ρ = 1 gives the usual criterion (ρf(x) := ρ(x)f(x)).
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Example 4.2.2 (Lotka-Voltera Equations): ẋ = x(A−a1x+b2y), ẏ = y(B−a2y+b2x), a1, 12 > 0.
Check that the positive orthant is invariant. Normally div(f) = A− 2a1x+ b1y+B − 2a2y+ b2x,
which doesn’t have a well defined sign in the positive orthant {(x, y) : x, y > 0}, so consider
ρ : (x, y) 7→ 1

xy . Now

div(ρf) = div
(
A− a1x+ b1y

y
,
B − a2y + b2x

x

)
= −a1

y
− a2

x
< 0 (∀ x, y > 0)

The Generalised Dulac’s Criterion says there are no periodic orbits in the flow.

4.3 Poincaré Index in R2

Definition: The Poincaré Index I(Γ) of a closed curve Γ is the number of times the vector field
f rotates anticlockwise as you go once around Γ in an anti-clockwise direction. I(Γ) is always an
integer.

Example 4.3.1:

(1) The index of a periodic orbit Γ is +1.

(2) A loop Γ around a saddle has index -1; see figure 4.3(a).

(3) A loop around a saddle node has index 0 (figure 4.3(b)).

(4) A loop around an open space has index 0 (figure 4.3(c)).

(5) A loop around the fixed point in figure 4.3(d) has index 3.

Exercise: Check that I(Γ1∪Γ2) = I(Γ1) + I(Γ2), and that if Γ is deformed the index only changes
if it moves through a fixed point.

Figure 4.4: I(Γ1 ∪ Γ2) = I(Γ1) + I(Γ2).

Theorem: The index of a closed curve Γ is the sum of the indices of the fixed points inside Γ

Proof. Sketch. Assume fixed points are isolated to simplify the argument. Consider a closed curve
Γi around a fixed point xi. Deform the Γi like this:

Figure 4.5: The two diagrams are equivalent.

Use the exercise: each Γi has the same index as when it was smaller, and I(Γ) =
∑
i I(Γi) so

I(Γ) =
∑
i I(xi). We reach the following conclusions:
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(I) A periodic orbit with index +1 must enclose at least one fixed point (in R2).

(II) If a fixed point in R2 is hyperbolic, the index is ±1 (check).

(III) For hon-hyperbolic fixed points the index gives a clue as to what will happen if we perturb
the flow. �

This gives an alternative proof for the pendulum: F > 1 ⇒ @ periodic orbits not encircling the
cylinder since @ fixed pints.

4.4 Stability of Periodic Orbits

This is usually very hard to calculate, unless we have explicit solutions. One can use standard
software on examples to compute approximations to the quantities concerned. The main idea has
two approaches. Do orbits get closer to the periodic orbit?

(I) Think of the distance d from the periodic orbit and derive an equation ḋ = λd + h. o. t., so
λ > 0 ⇒ the orbit goes away from the periodic orbit and λ < 0 ⇒ contracting towards the
periodic orbit. λ = 0 gives the non-hyperbolic case. Such λ are the Liaponov Exponents,
but they are “pointwise”, so we need to find an average over the whole orbit. λ is measured
“per unit time”.

(II) Draw a section Σ through the periodic orbit with initial distance d0 from the orbit to the
periodic orbit. Orbits return at distance d1, with d1 = µd0. µ < 0 ⇒ they get closer,
µ > 1 ⇒ they get further away, µ = 1 ⇒ the non-hyperbolic case. µ are the Floquet
Multipliers, measured “per revolution”.

The two are related: λ = 1
T log(µ) and µ = eλT (where T is the period of the orbit). More

carefully, in Rn≥2, choose a small section Σ of dimension n− 1 transverse1 to the orbit. Σ is called
the “Poincaré Section”. The periodic orbit is Γ, and define γ0 := Σ ∩ Γ.

Definition: Define the First Return Map Φ : Σ → Σ by Φ(x) := {φ(x, T ) : T > 0 is the
smallest time such that φ(x, T ) ∈ Σ}. So γ0 is a fixed point for Φ, i.e. Φ(γ0) = γ0.

There may be other points x near γ0 such that Φ(x) = x, in which case these are also on periodic
orbits but with different periods. The discussion of the stability of the periodic orbit is in terms
of the stability of γ0 as a fixed point of Φ. Consider δ ∈ Σ:

Φ(γ0 + δ) = γ0 + δDΦ + h. o. t.

Definition: The Floquet Multipliers µ1, . . . , µn−1 are the eigenvalues of DΦ.

Lemma: The above definition is independent of the choice of Σ.

Figure 4.6: (a) The idea of Floquet Multipliers. (b) Illustration of the lemma.

1Usually orthogonal, but not tangential to γ0 will do.
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Proof. suppose we have two sections ΣA and ΣB . Define Φ1 : ΣA → ΣB and Φ2 : ΣB → ΣA. Then
ΦA : ΣA → ΣA = Φ2 ◦ Φ1, and ΦB : ΣB → ΣB = Φ2 ◦ Φ2. Moreover, DΦA = D(Φ2 ◦ Φ1) and
DΦB = D(Φ1 ◦ Φ2) have the same eigenvalues, so the µi are well-defined. �

Definition: A periodic orbit γ(t) is Hyperbolic if all of the n − 1 Floquet Multipliers satisfy
|µi| 6= 1. If γ(t) has all |µi| < 1 it is a Sink. If at least one |µi| > 1 then γ(t) is Unstable, since
in at least one direction the orbit moves away from the periodic orbit.

Theorem: If γ(t) is a sink then it is asymptotically stable.

Note: we need | · | since in Rn≥3 we can have µ < 0, i.e. the orbit can go “in” and “out” of the
loop.

Definition: for a periodic orbit γ(t) with Floquet Multipliers µ1, . . . , µn−1, define Liaponov
Exponents λ1, . . . , λn−1 by λi := 1

T log(|µi|), where T is the period of the periodic orbit.

Theorem: In R2, µ is “the area between d1 and the periodic orbit over the area between d0 and
the periodic orbit”, i.e.

µ = exp

(∫ T

0

div
(
f (γ(t))

)
dt

)
Example 4.4.1: In the damped pendulum, div(f) = −k everywhere, so for a periodic orbit of
period T , µ = e−kT < 1 so the periodic orbit is stable in terms of Floquet multipliers.

Note: For Rn>2 we have instead

n−1∏
i=1

|µi| = exp

(∫ T

0

div
(
f (γ(t))

)
dt

)

4.5 Van de Pol Oscillators

These were the first chaotic oscillators to appear in the literature. We do not study the chaotic
case, which occurs when one adds oscillating forcing. We may learn some additional techniques
which are useful in general, and we will introduce the idea of varying parameters. The equation is

ẍ+ (x2 − β)ẋ+ x = 0

with β > 0, which we will vary. Note that if the ẋ term is missing, i.e. (x2−β)ẋ = 0, then we have
simple harmonic motion. If x2 > β we have damping, and if x2 < β there is negative damping or
forcing. So is there an oscillation near x2 ≈ β? Sort of; we will show this. We will consider various
forms of the equations, which will be helpful for β � 1 and β � 1. We want to get the equations
into the Lienard Form:

ẋ = y −R(x) ẏ = −x

Note that the Van de Pol equation is a special case of equations of the form

ẍ+ f(x)ẋ+ g(x) = 0

So write y = ẋ+ F (x) where F (x) =
∫ x

0
f(s)ds. Then ẏ = ẍ+ ẋf(x) = −g(x) and ẋ = y − F (x).

So we can get the “general” Van de Pol equation in Lienard form:

ẋ = y − F (x)
ẏ = −g(x)

The particular Van de Pol equation in Lienard form we’re looking at is

ẋ = y + βx− x3

3
ẏ = −x
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It turns out to be convenient to scale x so that the oscillations expected for x2 ≈ β occur for
X2 ≈ 1. Substitute X

√
β = x to get

Ẍ + β(x2 − 1)Ẋ +X = 0

Now replace X with x to get f(x) = β(x2 − 1), F (x) = β
(
x3

3 − x
)

, g(x) = x so in Lienard form
we have

ẋ = y − β
(
x3

3
− x
)

ẏ = −x

For β � 1 we will learn the method of averaging to show the existence of a stable periodic orbit.
When β � 1 there are stable relaxation oscillators, which are rectangular and “non-sinusoidal”
periodic orbits. For equations of this type we argue that ∃! stable periodic orbit ∀β > 0. Consider
the function H : R2 → R≥0, H : (x, y) 7→ 1

2 (x2 + y2). Then

Ḣ = xẋ+ yẏ = xy − β
(
x4

3
− x2

)
− xy = −β

(
x4

3
− x2

)
Note: In the general case,

H =
y2

2
+
∫ x

0

g(s)ds, Ḣ = yẏ + g(x)ẋ = −yg(x) + g(x)(y − F (x)) = −g(x)F (x)

We now look at the two cases:

(I) β � 1. If β = 0 we get simple harmonic motion ẋ = y, ẏ = −x with period 2π. If β 6= 0,
solutions will move close to solutions of the β = 0 case, at least for finite time periods.

H =
1
2

(x2 + y2), Ḣ = −β
(
x4

3
− x2

)
So Ḣ is small if β � 1. For convenience, consider the staring position (x, 0) on the x-axis by
using its H value: 1

2x
2
0 = H0 ⇒ x0 =

√
2H0. The change in H during 1 revolution will be

small:

∆H(t) =
∫ t

0

Ḣdt =
∫ t

0

−β
(
x4

3
− x2

)
dt

Figure 4.7: Illustrating where the change in H, ∆H, comes from.

We don’t know what x(t) is, so approximate for one revolution by solutions of the β = 0 case
- this is the Method of Averaging. Take

∫ 2π

0
(approximate time, can show first order in

β). Take x(t) = x0 cos(t) =
√

2H0 cos(t) (the solution in the β = 0 case). So

∆H(2π) ≈
∫ 2π

0

−β
(

4H2
0

3
cos4(t)− 2H0 cos2(t)

)
dt

≈ 2πβ
(
H0 −

H2
0

2

)
+O(β2)
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So ∆H = 0 when H0 = 0⇔ x0 = 0 or when H0 = 2⇔ x0 = 2. So we can expect the system
to have a periodic orbit passing through (2, 0) on the x-axis with period approximately 2π,
correct to the first order in β. Note that ∆H < 0 if H0 > 2 and ∆H > 0 if H0 < 2. So
expect the orbit to be stable. In order to check the stability we must calculate the Floquet
multiplier, which in turn requires us to compute from the first return map, which is

Φ(H) = H + ∆H = H + 2πβ
(
H − H2

2

)
+ h. o. t.

So Φ′(H) = 1 + 2πβ(1 − H). If H = 2 then Φ′(H) = 1 − 2πβ so µ = 1 − 2πβ ⇒ µ = 1 if
β = 0 (which is what we would expect; the same periodic orbit for simple harmonic motion;
non-hyperbolic and neutrally stable). β > 0 ⇒ µ < 1 so the periodic orbit is stable. The
Liaponov exponent is

1
2π

log(1− 2πβ) ≈ −β +O(β2)

Note: General method: given a small parameter β and known solutions for β = 0, follow
the above method.

(II) β � 1. We already expect interesting behaviour near x ≈ 1. It is convenient to change the
y coordinate so that we have y ≈ 1. The current equation is y ≈ β for ẋ to change sign. Let
Y = y

β .

Ẏ =
ẏ

β
= −x

β
, ẋ = βY − β

(
x3

3
− x
)

The new form of the equations is

ẋ = β

(
y − x3

3
+ x

)
ẏ = −x

β

Figure 4.8: The behaviour of the equations. The periodic orbit is in blue.

Look at the curve y = x3

3 − x. Away from this, ẋ is very large and ẏ is very small. Once in
this neighbourhood of the curve, drift slowly along (ẏ = − x

β ) until you get to points A or
B. The curve is “unstable” between A and B. By a loose argument that we expect to see a
periodic orbit. Plot x against t to get relaxation oscillations.

Notice that:

(1) We haven’t proved the existence of a stable periodic orbit but will do.

(2) The “loose argument” works since numerical solutions look exactly like this.

(3) Will show, based on loose ideas, how to calculate the period of the orbit.
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Figure 4.9: Relaxation Oscillations. The flow is moving so fast on the horizontal sections that this
sort of “square sine wave” is produced.

Figure 4.10: L = (−2,− 2
3 ), A = (−1, 2

3 ). The periodic orbit is in blue.

The period of the orbit is approximately 2 times the slow phases (where the orbit moves near
y = x3

3 − x, eg from L to A), so

T ≈ 2
∫ A

L

dt = 2
∫ 2

3

− 2
3

dy
ẏ

= 2
∫ 2

3

− 2
3

−β
x

dy

But along this bit of orbit y = x3

3 − x so dy
dx along this orbit is x2 − 1. So

T ≈ 2
∫ −1

−2

−β
x

dy
dx

dx = 2
∫ −1

−2

−β
x

(x2 − 1)dx = β(3− 2 log(2))

So T varies linearly with β as one would expect. For large β this is a good approximation (but
not for small β). For the general β > 0 we will show that ∃! stable periodic orbit. Consider the
general case of

ẋ = y − F (x)
ẏ = −g(x)

where g : R→ R such that g(0) = 0, g′(x) > 0 ∀ x ∈ R and F : R→ R such that F (−a) = F (0) =
F (b) = 0, −a < 0 < b, F (x) < 0 for x ∈ (−∞,−a) ∪ (0, b), F (x) > 0 for x ∈ (−a, 0) ∪ (b,∞),
F (x)↗∞ as x↗∞ and finally F (x)↘ −∞ as x↘ −∞, i.e. F looks like a standard cubic.
Take H = y2

2 +
∫ x

0
g(s)ds so Ḣ = −g(x)F (x), so Ḣ > 0 in x ∈ (−a, b) and Ḣ < 0 in x ∈ (−a, b)C .

Draw the nullclines x = 0, ẏ = 0, then divide R2 into 4 regions:
Step (1): Show that orbits rotate through the four regions.
Step (2): Use Ḣ > 0 for small orbits, and on average Ḣ < 0 for large orbits to conclude that ∃!
stable periodic orbit.

Step (1) The only fixed point is at (0, 0). If you start in region 1 you cross into region 2, since x
increasing, y decreasing and can only fail to cross if both x and y tend to the same limit
⇒ the vector field is zero at this point - a contradiction. Start in region 2 with x and y
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Figure 4.11: The four regions with nullclines for ẋ = 0 and ẏ = 0.

decreasing. Again, orbit can’t tend to a limit in region 2. Check orbits cannot tend to −∞
in region 2: look at dy

dx along orbits. It is ẏ
ẋ = − g(x)

y−F (x) which gets small as y ↘ −∞, but

this contradicts the requirement that dy
dx ↗∞, so orbits cross into region 3. Similarly, orbits

starting in region 3 go into region 4 and orbits starting in region 4 go into region 1.

Step (2) Consider x ≥ 0. Pick y such that the orbit started at (0, y1) passes through (b, 0) and crosses
the y-axis again at (0, y2). This lies entirely in the region where Ḣ > 0, so H increases as
you go from (0, y1) to (0, y2). The same is true for y > y1. Orbits consist of 3 pieces: z1 → B
(ḣ > 0), B → B′ (Ḣ < 0) and B′ → z2 (Ḣ > 0). Calculate ∆H along each region (will
depend on z1).

∆Hz1→B =
∫ t

0

Ḣdt = −
∫ t

0

g(x)F (x)dt

= −
∫ b

0

g(x)F (x)
y − F (x)

dx =
∫ b

0

g(x)

1−
(

y
F (x)

)dx > 0

This is positive and decreasing with y. So the larger we take y = z1, the smaller ∆H1 is (but
always > 0). The same argument works for ∆H3 := δHB′→z2 . For B → B′,

∆H2 =
∫
Ḣdt = −

∫
g(x)F (x)dt =

∫ B′

B

F (x)dy < 0

from the sign of F (x > b). This integral ↘ −∞ as B ↗ ∞ provided the orbit goes further
into the region x > b, the larger B is; check that this is true as an exercise. So

∆Hz1→z2 = ∆H1 + δH3︸ ︷︷ ︸
>0,↘0 as z1↗∞

+ ∆H2︸ ︷︷ ︸
<0,↘−∞ as z1↗∞

Look at ∆H = ∆H1 + ∆H2 + ∆H3 versus x (or y2?). For b < x, ∆H is monotonically decreasing,
so ∃! point where ∆H = 0.
If F and g are symmetric as in the Van de Pol equation, then we get that ∆H = 0 when y′2 = −y
and ∆H = 0 on both sides ⇒ ∃ periodic orbit in the flow. If F and g are not symmetric then you
get two functions ∆H+ and ∆H−, both of which have a unique zero, as in figure 4.13(b). We can
sometimes compose two functions in such a way that the composition has more than one zero, so
in these cases we get more than one periodic orbit. In the case of one orbit ∆H > 0 for y < y∗

and ∆H < 0 for y > y∗ ⇒ the orbit is stable.

Remark:

(1) One can generalise this proof to relax some of the conditions on F and g.

(2) We have mainly looked hard at this example because we can do so. There are many problems
for simple vector fields in R2 where it is very difficult to show the existence of periodic orbits
or not, e.g.

ẋ = P (x, y), ẏ = Q(x, y)
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Figure 4.12: (a) When y < y1. (b) When y > y1. (c) Before (b, 0), ∆H is strictly positive, and
afterwards ∆H decreases monotonically, so there must be a unique root.

Figure 4.13: (a) The symmetric case. (b) The asymmetric case.

where P and Q are quadratic at worst. How many periodic orbits are there in the flow? This
is Hilbert’s 16th problem. The answer seems to be 4.
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Chapter 5

Bifurcations

Definition: Two flows f and g are Topologically Equivalent if the phase portraits are geomet-
rically the same.

Definition: A flow f is Structurally Stable if for all flows g in a neighbourhood of f , f and g
are topologically equivalent.

What does the space of flows look like?

(1) Are structurally stable flows dense in the space of flows? Yes under certain conditions but in
general no! It has been known since the 70’s that there are flows where open sets of nearby
flows, none of which are structurally stable.

(2) What ways are there for a phase portrait to change as you perturb a flow f? What kind of
bifurcations occur?

Typically there are rather a small number of ways to change behaviour - locally and globally:

Locally: near non-hyperbolic fixed points, periodic orbits and similar in higher dimensional spaces.

Globally: connected with occurrence of homoclinic orbits et cetera. There is not much else.

Example 5.0.1: A local bifurcation: The change is near to a fixed point. Eigenvectors at the

Figure 5.1: A stable node bifurcates to an unstable node with a stable periodic orbit.

fixed point are λ ± iω and the bifurcation occurs as λ goes through zero. This is non-hyperbolic
at “boundary” between the two cases 0± iω. This is a Hopf Bifurcation, which happens in lots of
different contexts, such as PDEs, difference equations etc.

Example 5.0.2: A global bifurcation. See the diagram on the next page.

5.1 Bifurcations in R1

Consider families {f(x, µ)} of vector fields with x ∈ X and µ ∈ Rm (usually) a set of variable
parameters. We look at lots of “neat” examples, but we need to know how typical these nice
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Figure 5.2: Example 5.0.2: A saddle with a stable node → a saddle with a stable node and a
homoclinic orbit → a saddle with a stable node and an unstable periodic orbit. Note that the
stability of stable points does not change.

examples are.

“Definition:” We say that a bifurcation is of Co-dimension n you typically see it when varying
n parameters.

Examples 5.1.1: ẋ = f(x, µ); x, µ ∈ R.

(I) ẋ = µ − x2 gives a Saddle Node Bifurcation. There is a non-hyperbolic fixed point at
x = 0 when µ = 0, no fixed points for µ < 0, a stable fixed point at x =

√
µ for µ > 0 and

an unstable fixed point at x = −√µ for µ > 0.

(II) ẋ = µx− x2 has a non-hyperbolic fixed point at x = 0 when µ = 0; stable at x = 0 for µ < 0
and x = µ for µ > 0, unstable at x = µ for µ < 0 and x = 0 for µ > 0. This is called a
Transcritical bifurcation.

(III) ẋ = µx − x3 gives the Pitchfork Bifurcation, having stable fixed points x = 0 for µ ≤ 0,
x = ±√µ for µ > 0 and an unstable fixed point x = 0 for µ > 0.

The higher the order of the polynomial, the more complicated the bifurcations get, but also the
less likely; we will see that (I) is the simplest and occurs the most often.

Figure 5.3: Example 5.1.1: (I) a saddle node bifurcation. Note the lack of fixed points for µ < 0.
(II) The transcritical bifurcation. (III) The Pitchfork bifurcation.

Suppose we consider a 2-parameter family of flows ẋ = µ1 + µ2x− x2. If µ1 = µ2 = 0 then there
is a non-hyperbolic fixed point at x = 0. We get a saddle node bifurcation if µ2 = 0 and vary µ1

and a transcritical bifurcation if µ1 = 0 and µ2 is varied. Write y = x− α. Then

ẏ = µ1 + µ2(y + α)− (y + α)2
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Set α = µ2
2 to get

ẏ =
(
µ1 +

1
4
µ2

2

)
− y2

This looks like a member of the family µ− x2, so if we vary µ1 and µ2 in some general way, then
µ1 + 1

4µ
2
2 will sometimes be zero, and will be typically passing through zero to give a saddle node

bifurcation. If not, we need to vary µ1 and µ2 in such a way that µ1 + 1
4µ

2
2 reaches zero but doesn’t

change sign, e.g. µ1 = 0, µ2 changes sign as in the transcritical case.

Figure 5.4: There are no fixed points within the red region (only partially shaded for clarity),
one on the black line (which is non-hyperbolic), and two in the white region. (a) The cyan blue
variation of the parameters µ1 and µ2 touches µ2 = ± 1

2

√
µ1 (the black line) tangentially at one

point, at which there is a transcritical bifurcation. Clearly this is less likely to happen than (b),
where the purple variation crosses µ2 = ± 1

2

√
µ1 completely, at which point there is a saddle node

bifurcation.

Alternatively, look at the graph above. As we vary µ1 and µ2, crossing µ2 = ± 1
2

√
µ1 gives a

saddle node bifurcation, but the only way to get a transcritical bifurcation is if the µ1 − µ2 curve
of variation is tangential to µ2 = ± 1

2

√
µ1, which is much less likely.

Consider ẋ = µ1 + µ2x + µ3x
2. There is a non-hyperbolic fixed point at zero when µ = 0. Scale

time T = γt, so
dx
dT

=
µ1

γ
+
µ2

γ
x+

µ3

γ
x2

set γ = −µ3 to get
dx
dT

= −µ1

µ3
− µ2

µ3
x− x2

so this is now in the previous form with µ1 replaced by −µ1
µ3

and µ2 replaced by −µ2
µ3

. So having
a different coefficient in front of x2 changes very little, provided it is non-zero. The general case
is ẋ = f(x, µ), µ ∈ R. µ = 0 ⇒ ∃ a non-hyperbolic fixed point at x = 0, so f(0, 0) = 0 and
Df(0, 0) = 0. Then for small x and µ, take the Taylor expansion of f :

f(x, u) = f(0, 0) + xDf(0, 0) + µ
∂f

∂µ
(0, 0) +

x2

2
Df(0, 0) + xµ

∂2f

∂x∂µ
(0, 0) +

µ2

2
∂2f

∂µ2
(0, 0) + h. o. t.

=
[
µ
∂f

∂µ
(0, 0) +O(µ2)

]
+ x

[
µ
∂2f

∂x2
(0, 0)

]
+ x2

[
1
2

D2f(0, 0)
]

+ h. o. t.

= µ1 + µ2x+ µ3x
2 + h. o. t.

so we understand this provided the various co-ordinate transforms are allowed, i.e. for γ 6= 0 we
need D2f(0, 0) 6= 0; this is not satisfied by the pitchfork for example.

Remark: Sometimes a system has a symmetry that you want to take as fixed. This forces deriva-
tives such as ∂2f/∂x∂µ to be zero, and we can get special bifurcations. Otherwise, if you look at
one parameter families you typically see saddle node bifurcations.
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Figure 5.5: The “manifold” is the set of non-hyperbolic fixed points. In (a) the red line has a
transcritical bifurcation where it touches the manifold tangentially and in (b) there is a saddle
mode bifurcation where the cyan blue line crosses the manifold.

Take the space {f(x, µ)} and the set of fs with non-hyperbolic fixed points. This is of co-dimension
1, so typically lines cross it transversely to give saddle node bifurcations; if lines touch the set
tangentially but do not cross we get a transcritical bifurcation. In the finite-dimensional case we
say that co dimension 1 means dimension one less then the sup-space, but we can have infinite
dimensional cases so beware of this.

5.1.1 Summary

In the one dimensional case ẋ = f(x, µ) with a fixed point at 0 when µ = 0, i.e. f(0, 0) = 0.

• If ∂f
∂x (0, 0) 6= 0 then the fixed point is hyperbolic and the system is structurally stable.

• If ∂f
∂x (0, 0) = 0 then we have three cases:

– If ∂f
∂µ (0, 0) 6= 0 and ∂2f

∂x2 (0, 0) 6= 0 then we have a saddle node bifurcation.

– If ∂2f
∂x2 (0, 0) = 0 then the simplest case is the pitchfork bifurcation.

– If ∂f
∂µ (0, 0) = 0 then the simplest case is the transcritical bifurcation.

5.2 Bifurcations in R2 and the Central Manifold Theorem

Theorem (Andronov-Pontryagin): Suppose f is a C1 vector field defined on a disc D ( R2 such
that

(I) f , and therefore the flow, points inwards on ∂D.

(II) All fixed points and periodic orbits in D are hyperbolic.

(III) No saddle connections, homoclinic orbits or heteroclinic cycles are in D.

Then f is structurally stable.

Remark: (I) is not so important; it just stops weird things happening at infinity. Usually if you
have s system defined on all of R2 you can make a change of co-ordinates y = 1

x and extend the
theorem to all of R2. The theorem is false in Rn>2, although the sense of it remains important.

If a fixed point is non-hyperbolic then Df has an eigenvalue with zero real part:

(I) λ = 0 when µ = 0 for one real eigenvalue - reduce to the one dimensional case to get saddle
nodes et cetera.

(II) λ = ±iω when µ = 0 gives a Hopf bifurcation.
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(III) λ1, λ2 real and both zero: we will not consider this case.

Example 5.2.1: Consider ẋ = µ − x2, ẏ = −y. We can analyze y and x separately. So we can
study separate bifurcations on the x and y-axes using the one dimensional methods.

Example 5.2.2: Consider ẋ = x2 + xy + y2, ẏ = x2 + xy − y.

Df =
(

0 0
0 −1

)
This has eigenvalues 0 and -1, with corresponding eigenvectors (1, 0)T and (0, 1)T respectively.

Figure 5.6: The 1-manifold tangent vertical axis (the λ = −1 direction is the stable manifold, and
the 1-manifold tangent to the horizontal axis (the λ = 0 direction) is the centre manifold.

Does the picture look like this, with the centre manifold and stable manifold tangent to their
respective eigenvectors? Yes. We can approximate the centre manifold1 using the same techniques
we used for un/stable manifolds. Assume the CM is given by y(x) = a2x

2 + a3x
3 + . . .. Then

dy
dx

= 2a2x+ 3a3x
2 + . . . =

ẏ

ẋ
=

x2 + xy − y
x2 + xy + y2

Equate coefficients to get y(x) = x2 − x3 + h. o. t. But we also need to calculate the motion along
the central manifold:

ẋ = x2 + xy + y2

= x2 + x(x2 − x3 + . . .) + (x4 + . . .)

= x2 + x3 + . . .

So the diagram is right and the fixed point is a saddle node. The calculations so far have been for
a particular parameter where the fixed point is non-hyperbolic. How to study the behaviour of a
parameterised family?

Example 5.2.3: Look at the three dimensional system ẋ = µ + x2 + xy + y2, ẏ = x2 + xy − y,
µ̇ = 0. There is a fixed point at (0, 0, 0), and

Df =

 0 0 1
0 −1 0
0 0 0


This has two zero eigenvalues, with eigenspace tangent to the (x, µ)-space, and one eigenvalue
-1. Use the same techniques on the extended system of the equation. We should expect a two
dimensional centre manifold tangent to the (x, µ)-space and a one dimensional stable manifold
tangent to the y-axis. Assume the two dimensional centre manifold is given by y(x, µ) = a11x

2 +
a12xµ+ a22µ

2 + h. o. t. Again,

dy
dx

= 2a11x+ a12µ =
x2 + xy − y

µ+ x2 + xy + y2

1But we still need to show that it exists.
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since
ẏ =

∂y

∂x
ẋ+

∂y

∂µ
µ̇︸︷︷︸
=0

⇒ dy
dx

=
ẏ

ẋ

Compare coefficients as usual to get y(x, µ) = x2 − 2xµ + 2µ2 + h. o. t. Motion on the centre
manifold: ẋ = µ + x2 + xy + y2 = µ + x2 + . . . (substituting in for y), µ̇ = 0. We can now forget
about varying µ and treat it as a parameter. See saddle node bifurcations.

Theorem (Centre Manifold): Given a non-hyperbolic fixed point in Rn such that Df has eigen-
vectors with zero real part, let Ec be the generalised eigenspace of Df corresponding to eigenvalues
with zero real part. Let

Eh := Es︸︷︷︸
<(λ)<0

⊕ Eu︸︷︷︸
<(λ)>0

Rn = Ec︸︷︷︸
<(λ)=0

⊕ Eh︸︷︷︸
<(λ) 6=0

Figure 5.7: The centre manifold W(c) in blue.

Choose coordinates c in Ec and h in Eh and write the differential equation as

ċ = C(c, h) ḣ = H(c, h)

(In a previous example we had Ec = (1, 0), c = x, h = y) Then ∃ w : Ec → Eh whose graph
Wc = {(c, h) : h = w(c)} is called the Centre Manifold. it is tangent to Ec at fixed points,
locally invariant under the flow, and such that the dynamics are topologically equivalent to

ċ = (c, w(c)) ḣ = h
∂H

∂h

∣∣∣∣
0

This is the motion in the centre manifold, written in terms of c (the motion orthogonal to the
centre manifold is, up to topological equivalence, given by the linear part of the H equation).

Example 5.2.4: In the last example Ec = (x, µ), Eu = (y), w(y) = x2 − 2xµ+ 2µ2.

Figure 5.8: Crossing the blue line µ = −x2 gives saddle node bifurcations.
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5.3 Hopf Bifurcations

These occur when the fixed points are non-hyperbolic and the eigenvalues are a complex pair with
<(λ) = 0 when µ = 0. The “normal form” is in polar coordinates:

(a)
ṙ = µr − r3

θ̇ = 1
(b)

ṙ = µr + r3

θ̇ = 1

Both have a non-hyperbolic fixed point at zero when µ = 0; µ > 0 ⇒ 0 is unstable, µ < 0 ⇒ 0
stable.

(a) Has a stable focus for µ < 0 and periodic orbits at r =
√
µ for µ > 0 and an unstable focus

at 0. This is a Super-Critical Hopf bifurcation.

(b) Has an unstable focus at 0 and periodic orbits at r =
√
−µ for µ < 0 and an unstable focus

at 0 for µ > 0. This is a Sub-Critical Hopf bifurcation.

Figure 5.9: (a) A super-critical Hopf bifurcation, with the corresponding pitchfork. (b) a sub-
critical Hopf bifurcation.

Theorem (Hopf Bifurcation): For a non-hyperbolic fixed point with a complex pair of eigenvalues
with <(λ) = 0 when µ = 0, if <(λ) passes through zero with non-zero speed as µ passes through
zero, and provided the constant γ 6= 0, then we have a Hopf bifurcation, i.e. a periodic orbit of
amplitude approximately

√
|µ| and period 2π

ω , where λ = ±iω, exists on one or the other side of
the bifurcation, depending on the sign of γ.

There are many different versions of this theorem in many different settings. In practice, ẋ =
f(x, y, µ), ẏ = g(x, y, µ), with a fixed point at the origin and

Df =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
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Calculate the eigenvalues to get a complex pair λ = ±iω when µ = 0 and

<(λ) =
(
∂f

∂x
+
∂g

∂y

)
= Tr(Df)

when µ = 0 we will have Tr(Df) = 0. The condition about <(λ) changing at non-zero speed means
<(λ) as a function of µ looks like (

∂2f

∂x∂µ
+

∂2g

∂y∂µ

)
µ

and we require
∂2f

∂x∂µ
+

∂2g

∂y∂µ
6= 0

So far these are the conditions needed to satisfy the hypotheses of the theorem. If one changes to
polar coordinates one gets

ṙ = µr+?1r
2+?2r

3 + . . .

It turns out that one can get rid of the r2 term by a change of coordinates, and then γ 6= 0 is the
condition that the r3 term does not also disappear. γ turns out to be horrific:

γ =
1
16

(
∂3f

∂x3
+

∂3g

∂x2∂y
+

∂3f

∂x∂y2
+
∂3g

∂y3

)
+

1
16

(
∂f4

∂x3∂y
+

∂f4

∂x∂y3
− ∂g

∂x3∂y
− ∂g4

∂x∂y3
− ∂f2

∂x2

∂g2

∂x2
+
∂f2

∂y2

∂g2

∂y2

)
Example 5.3.1: In the Lorenz equations with r > 1 and non-zero fixed points it is easy to show
that there is a Hopf bifurcation for some r, but it is quite complicated to see if it is super-critical
or sub-critical.

5.4 Co-Dimension 1 Bifurcations of Periodic Orbits

Recall that we analysed behavior near periodic orbits by looking at the return map Φ on a small
section Σ transverse to the periodic orbit. The critical thing here is the Floquet multipliers
{µ1, . . . , µn}. On the periodic orbit, y∗ = Φ(y∗), and in Σ \ {y∗} we have

Φ : y 7→ y∗ +A(y − y∗) + h. o. t.

So the µi are the eigenvalues of A, so the periodic orbit is non-hyperbolic in the case where |µi| = 1
for i ∈ {1, . . . , n}. Co-dimension one bifurcations occur as you change a parameter α in such a
way that a µi goes through |µi| = 1. There are three cases:

(I) µi ∈ R, passes through 1.

(II) µi ∈ R, passes through -1.

(III) A pair µi, µj ∈ C such that µi = µj and have |µi| = |µj | = 1.

(I) is a saddle node bifurcation of periodic orbits.2 Consider

ṙ = r − αr2 + r3

Vary α: ṙ = 0 when r = 0 or when r2−αr+ 1 = 0; when α < 2 there are no solutions, when α = 2
there is one and when α > 2 there are two solutions. (I) is the only situation that can happen to
periodic orbits in R2, as there is only one Floquet multiplier, ruling out (III), and flows cannot
cross the periodic orbit in R2, ruling out (II). Type(II) is a period-doubling bifurcation, which is
co-dimension 1 and seen in many examples (see figure 5.11). But in Rn≥3, types (II) and (III)
both occur.
In R3 (III) gives a bifurcation of an invariant torus. This has co-dimension 1, but resonances
between frequencies mean that the actual behaviour is very complicated

2See question 5 of example sheet 4.
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Figure 5.10: (a) The modified saddle node. (b) The modified pitchfork.

Figure 5.11: In R3, as µ varies through -1 period doubling bifurcations are observed.

5.5 Global Bifurcations

Consider the forced pendulum θ̇ = p, ṗ = F − kp − sin(θ), where F and k are two non-negative
parameters.

Figure 5.12: There are no fixed points for F > 1, one (non-hyperbolic) fixed point at F = 1 and
two fixed points for 0 ≤ F < 1. At F = 0 there are no periodic orbits.

Guess that at F = 1 there is a non-hyperbolic fixed point, and as F passes through 1 there is a
saddle node bifurcation of fixed points: F < 1⇒ ∃ two fixed points (one stable, one saddle), and
F > 1⇒ @ fixed points.3 What bifurcations occur that involve the periodic orbit?

(I) This is not a Hopf bifurcation, as analysis of the fixed points shows that the conditions of
the Hopf theorem are not satisfied, and we know that the orbit encircles the cylinder, and so
cannot arise in a Hopf bifurcation.

(II) It is also clearly not a saddle node bifurcation as we do not go from 0 to 2 periodic orbits
when F passes through 1.

3It is very worthwhile to check that you can do this through calculations and that the diagram is complete.
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The answer is that there is a unique periodic orbit in the shaded region and none in the unshaded
region.

Figure 5.13: Passing through the purple line from (0,0) to (kc, 1) gives a global homoclinic bifur-
cation, while passing through the blue line for k > kc gives “saddle node on a cycle” bifurcations.

Crossing the line (1, k > kc) gives a “Saddle Node on a Cycle Bifurcation” while crossing into
the shaded region for k ∈ [0, kc) gives a “Global Homoclinic Bifurcation”.

5.5.1 Saddle Node on a cycle

Consider the following diagram:

Figure 5.14: In the last stage of the bifurcation, the flow is slow near where the fixed point used
to be and fast on the opposite side of the periodic orbit.

Considering only the fixed points this is a standard saddle node bifurcation, but globally the
destruction of the fixed points coincides with the creation of a periodic orbit. This is what occurs
as F passes through 1 for k > kc. A proof would be hard (but just about doable), but the point
is that this is plausible - it is the only thing that fits with the theory, and numerical experiments
on the equations “confirms” this. In order to get this “proof”, you would need to do numerical
experiments on a computer. Now we want to show the existence, for small positive k and F , of a
homoclinic orbit Γ. Consider H = 1

2p
2 − cos θ. For F , k small, can we find Γ homoclinic? If so

then ∫
Γ

Ḣdt = 0

We shall suppose that Γ is close to γ+ in order to compute the integral approximately (similar to
the averaging method or the energy balance method used on the Van de Pol equations for small
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β). This integral is known as the Melnikov Integral in this context (homoclinic).∫
Γ

Ḣdt =
∫

Γ

(
pF − kp2

)
dt

≈
∫ π

−π

(
pF − kp2

)
θ̇(= p)

dθ

=
∫ π

−π
(F − kp) dθ

=
∫ π

−π

(
F − 2k cos

(
θ

2

))
dθ

= 2πF − 8k

So there is a homoclinic orbit for F = 4k
π . To compute the rest of the curve (i.e. for larger F and

k) and the point kc you will need the Computer Scientist again.

Figure 5.15: See the next two figures for the bifurcations given by cases (a) and (b).

Varying the parameters to get from A to B:

Figure 5.16: Case (a): A stable periodic orbit is created.

B has both a stable fixed point (the pendulum hanging down) and a stable periodic orbit. For
varying k along F = 1, see figure 5.17.

5.5.2 Homoclinic Orbits

It remains to understand what happens on homoclinic orbits. Assume we have a system that
behaves similarly to figure 5.2 as a parameter µ is varied through 0. Draw a box of size ±ε (ε > 0
obviously). Label the top Σy and the right hand side Σx, then follow 4 steps:

Step (1) Take a point (x0, ε) ∈ Σy with x0 > 0.

Step (2) Follow the orbit through the box to a point (ε, y0) ∈ Σx.
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Figure 5.17: Case (b): The stable periodic orbit becomes a homoclinic orbit before being lost.

Figure 5.18: Steps one and two.

Step (3) Follow the orbit from (ε, y0) back to Σy close to the unstable manifold of the fixed point.

Step (4) Get back to Σy at (x1, ε). Look for solutions to x0 = x1 ⇒ periodic orbit.

The point is that inside the box the flow travels slowly and is thus dominated by the linear terms
ẋ = λ1x, ẏ = −λ2y with λ1, λ2 > 0 (for simplification assume that these are independent of µ).
Outside of the box the flow travels relatively fast and depends on µ.

Step (2) The time T spent in the box is given by ε = x0e
λ1T ⇒ T = 1

λ1
log
(
ε
x0

)
, so y0 = εe−λ2T ⇒

y = constxλ2/λ1
0 .

Step (3) x1 = const1µ+ const2y0 = µ+ x
λ1/λ2
0 (ignoring the constants (!)).

Step (4) Look for solutions to x = µ+ x
λ2/λ1
0 in x > 0. If λ2

λ1
> 1, then

– µ < 0⇒ no solutions

– µ = 0⇒ one solution at x = 0 (the homoclinic orbit)

– µ > 0⇒ one solution (stable periodic orbit)

If λ2
λ1
< 1 then

– µ < 0⇒ one solution (unstable periodic orbit)

– µ = 0⇒ one solution at x = 0 (the homoclinic orbit)

– µ > 0⇒ no solutions

So there are two possibilities depending on whether λ1 < λ2 (contraction) or whether λ1 > λ2

(expansion).
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Figure 5.19: The number of intersections with the dark blue line gives the gives the number of
solutions. (a) when λ2

λ1
> 1. (b) When λ2

λ1
< 1.

Exercise: Check that for the damped pendulum the eigenvalues at the saddle satisfy λ2
λ1

> 1 ⇒
stable periodic orbit created in the homoclinic bifurcation.
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