Definability equals recognizability

for graphs of bounded treewidth

Mikotaj Bojanczyk, Michat Pilipczuk
Institute of Informatics, University of Warsaw

Warwick Workshop on Algorithms, Logic and Structure
December 12", 2016

Bojanczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture



How to construct graphs

Idea: Keep only a small number of vertices in memory.
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How to construct graphs

Forget a present active vertex
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Forget a present active vertex
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How to construct graphs

Introduce a new active vertex
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How to construct graphs

Forget
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How to construct graphs
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Forget
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Operations

- Introduce
— = >
. Join
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Interface graph algebra

@ Algebra A: k-interface graphs with introduce, forget, and join.
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o Algebra A,: k-interface graphs with introduce, forget, and join.

e Treewidth of a graph G:
the minimum k needed to construct G using all three operations.
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o Algebra A,: k-interface graphs with introduce, forget, and join.
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Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.
o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.
o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.
e Tree decomposition: the tree of the term over A, constructing G.
o With each node associate its bag: the vertices active at the moment.
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Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.

o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.

o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.
e Tree decomposition: the tree of the term over A, constructing G.

o With each node associate its bag: the vertices active at the moment.
e The parameter k is the width of the decomposition.
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MSO on graphs

e Monadic Second Order logic on graphs:
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e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.

Bojariczyk, Pilipczuk Courcelle’s conjecture



MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.

Bojariczyk, Pilipczuk Courcelle’s conjecture



MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability

Bojariczyk, Pilipczuk Courcelle’s conjecture



MSO on graphs

e Monadic Second Order logic on graphs:

Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.

o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity
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e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.
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o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
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@ Proof:

e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.
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e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

@ Proof:

e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.

e Transform %) into an equivalent automaton A, and run it on the
decomposition.
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MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

e Proof:
e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.
o Transform ) into an equivalent automaton A, and run it on the
decomposition.

@ Courcelle’s conjecture: If [1 can be verified by an automaton on a
tree decomposition, then I is expressible in MSO.
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Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation =, over k-interface graphs has finite index.

Al = A =4 AleBell iff Ao Bell
for every k-interface graph B.
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Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell
for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.

o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.
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Recognizability

Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.
Al = A = AioBell iff A dpBell
for every k-interface graph B.

e - gh-am

I is recognizable if it is k-recognizable for every k.

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.
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Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell

for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.

o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.

o Fact: Every MSO-definable graph property is recognizable.
e Converse: Is every recognizable graph property MSO-definable?
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Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell

for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.
o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.
o Fact: Every MSO-definable graph property is recognizable.
e Converse: Is every recognizable graph property MSO-definable?
o WRONG for multiple reasons.
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Courcelle's conjecture

Courcelle's conjecture Courcelle; ~'90

Suppose

@ [1is a recognizable graph property, and

@ 7Ty is the class of graphs of treewidth at most k, for some constant k.
Then M N Tk can be defined in MSO with modular counting predicates.
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Courcelle's conjecture

Courcelle's conjecture Courcelle; ~'90

Suppose
@ [1is a recognizable graph property, and
@ 7Ty is the class of graphs of treewidth at most k, for some constant k.

Then M N Tk can be defined in MSO with modular counting predicates.

Theorem Bojariczyk, P.; 2016

Courcelle's conjecture holds.
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Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:
o Works on tree decompositions of width k.
e Recognizes exactly tree decompositions of graphs from 1.
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@ Guess existentially the run of 4 on the tree decomposition.
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Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

@ Take a tree decomposition of the given graph G.
@ Guess existentially the run of 4 on the tree decomposition.

o Verify that it is correct and that it accepts.
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Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

Take a tree decomposition of the given graph G.
Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!
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Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

Take a tree decomposition of the given graph G.

Guess existentially the run of A on the tree decomposition.
Verify that it is correct and that it accepts.

Caveat: We are given only a graph,

not a graph together with its tree decomposition!
Everything boils down to “defining” in MSO some tree
decomposition of bounded width.
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MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.
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@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.
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Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.
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MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for
some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

e Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.
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MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for
some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

o Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

@ Now: A combinatorial notion of an “MSO-definable” decomposition.
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Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.




Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.

@ For each u € V(G), define k-tuple A(u) as
ANu) = (v, v, ..., Vi),
where v; is the root of the tree of F; that contains u.

Vi o 2} ‘3
N

A

u
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Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.

@ For each u € V(G), define k-tuple A(u) as
Au) = (v, v, ...y Vi),
where v; is the root of the tree of F; that contains u.

Vi o 2} ‘3
N

A

u

@ A vertex subset X is captured by A if X C A(u) for some vertex wu.
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Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.
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Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.

o0 O—0 O0—0 00—

o 0—>0 06—>0 0—>0 O

.—»0—»0—»0—»&
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Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.




Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.
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guidance system that captures a tree decomposition of G.
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There is a function f such that gtw(G) < f(tw(G)) for every graph G.
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Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.
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Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.

@ In our proof, we circumvent proving the Conjecture.
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Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.
@ In our proof, we circumvent proving the Conjecture.
@ Rest of the talk: Proof of the Theorem.
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Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.
@ In our proof, we circumvent proving the Conjecture.
@ Rest of the talk: Proof of the Theorem.

@ Tool: Simon’s factorization forest.
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Simon's factorization forest

@ Suppose S is a finite semigroup.
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Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-az- ... dp—2dp—-1"4dp

with a; € S. We want to "factorize” the product “efficiently”.
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Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-ad3- ... dp—2"4dp—1"4anp

with a; € S. We want to "factorize” the product “efficiently”.
e Binary factorization:

>

log n

41 92 2 3 a5 3 37 ag d9 230 11 12 13 214 315 16
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Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-ad3- ... dp—2"4dp—1"4anp

with a; € S. We want to "factorize” the product “efficiently”.
e Binary factorization:

>

log n

41 92 2 3 a5 3 37 ag d9 230 11 12 13 214 315 16

@ We need constant depth, depending only on |S]|.
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Simon's factorization forest
myp - my
@A my

Binary node
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Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node
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Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node

Simon'’s factorization forest theorem [Simon'90; Kufleitner 0]

Every word over S has a factorization of depth at most 3|S| that uses
binary and idempotent nodes.
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Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node

Simon'’s factorization forest theorem [Simon'90; Kufleitner 0]

Every word over S has a factorization of depth at most 3|S| that uses
binary and idempotent nodes.

path decomp. of width k= word over a semigroup of size f(k)

apply induction on the depth of the factorization forest
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Bi-interface graphs

e Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

right(1
SO-@—> right(2
N\

y
left(3) —> @) \.—> fight(3

G1

left(1) ——> ?—»
~
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Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
e Not every number has to be used.

left(1) ———» ?—» right(1
N

-@—> right2
N\

left(3) —> @) \.—> fight(3

G1
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Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.
o If a vertex is both a left and a right interface, its number in both
interfaces is the same.

right(1
SO-@—> right(2
N\

left(3) —> @) \.—> fight(3

G1

left(1) ——> ?—»
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Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.

o If a vertex is both a left and a right interface, its number in both
interfaces is the same.
o Natural gluing operation.

left(1) ———> ?—» right(1 left(1 9 right(1)
~
; i -@—> right2 left(2 —».\./‘ right(2)

\

/ -
left(3) —> @)~ \.—> right(3 left(3 Q @ right®)

G1 G2
left(1) right(1)
N
—a .
/
left(3) —»./ N right(3)
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Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.
o If a vertex is both a left and a right interface, its number in both
interfaces is the same.
o Natural gluing operation.
o Parameter k is the arity of the bi-interface graph.

$—> right(1 left(1) ——» ’—» right(1)
~
; i -@—> right2 left(2 —».\./‘ right(2)

\

/ -
left(3) —> @)~ \.—> right(3 left(3 Q @ right®)

left(1) ——>

G1 G2
left(1) right(1)
N
—a .
/
left(3) —»./ N right(3)
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Bojariczyk, Pilipczuk Courcelle’s conjecture



Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity kK and contains no
non-interface vertices (is basic).
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Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

@ Issue: This semigroup is infinite.
@ Define abstraction as torso with respect to interfaces.

left(1) T right(1) left(1) ————> right(1)
@ right2) right(2)

/
left(3) —> @@ right(3) left(3) —» right(3)

G [G]
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Abstraction semigroup

Bi-interface graphs of arity k with gluing & form a semigroup.

Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1) T right(1) left(1) ————> right(1)
@ right2) right(2)

/
left(3) —> @@ right(3) left(3) —» right(3)

@ Consider operation on basic bi-interface graphs of arity k:

G160 Gy = [[Gl S G2]]~
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Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

@ Issue: This semigroup is infinite.
@ Define abstraction as torso with respect to interfaces.

left(1) ——> right(1) left(1) ——> right(1)
® :.—> right(2) right(2)
left(3) *».. right(3) left(3) —» right(3)
G [G]
o Consider operation on basic bi-interface graphs of arity k:

G1 @ Gy =[Gy @ Gy].

e This forms a semigroup S of size 20(k°).
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Proof strategy

o Idea: Induction on the depth of Simon'’s factorization over S.
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o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.
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Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).
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Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).

| A

Idempotent lemma
If Gy,...,G; are bi-int. graphs of arity k with [G1] = ... = [G¢], then

gtw(G, @ ... G,) < k(4k* +5) + 8. max {gtw(G;)}.
1=1,...,t
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Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).

| A

Idempotent lemma
If Gy,...,G; are bi-int. graphs of arity k with [G1] = ... = [G¢], then

gtw(G, @ ... G,) < k(4k* +5) + 8. max {gtw(G;)}.
1=1,...,t

@ These functions stack at most 3|S| = 20(k) times and we are done.
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Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).
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Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

[0X6e)

o ©
(@) o O
@] o
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Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

Gy — I‘ight Gy — left

e Fact 1: gtw(G — u) <2 - gtw(G).
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Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

(G1 — right) W (G2 — left)

e Fact 1: gtw(G — u) <2 - gtw(G).
o Fact 2: gtw(G; W G) = max(gtw(Gy), stw(Gp)).
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Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

GG

e Fact 1: gtw(G — u) <2 - gtw(G).
o Fact 2: gtw(G; W G) = max(gtw(Gy), stw(Gp)).
e Fact 3: gtw(G) < gtw(G —v) + 1.
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Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

.....
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Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

.....

@ Apply same strategy ~» Too many interfaces to reintroduce.
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Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

gtw(G; @ ... 9 G,) < k(4k® +5) + 8~ _max t{gtw(G;)}.

=

@ Apply same strategy ~» Too many interfaces to reintroduce.
@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!
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Idempotent lemma

Idempotent lemma

If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.
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Idempotent lemma

Idempotent lemma

If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.
o Here we use that abstractions are the same.
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Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.
o Here we use that abstractions are the same.

@ Trees can be colored with O(k®) colors and grouped into forests.
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Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
e adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
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treewidth k, outputs a tree decomposition of width at most k.
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If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.
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Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size (k).

@ Thanks for attention!
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