
Definability equals recognizability
for graphs of bounded treewidth

Miko laj Bojańczyk, Micha l Pilipczuk

Institute of Informatics, University of Warsaw

Warwick Workshop on Algorithms, Logic and Structure
December 12th, 2016

Bojańczyk, Pilipczuk Courcelle’s conjecture 1/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.

Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.

Forget a present active vertex

Introduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.

Forget a present active vertex

Introduce a new active vertexForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertex

Introduce a new active vertex

ForgetIntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertex

Forget

IntroduceIntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForget

Introduce

IntroduceForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduce

Introduce

ForgetForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduce

Forget

ForgetIntroduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForget

Forget

Introduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

How to construct graphs

Idea: Keep only a small number of vertices in memory.Forget a present active vertexIntroduce a new active vertexForgetIntroduceIntroduceForgetForget

Introduce

Bojańczyk, Pilipczuk Courcelle’s conjecture 2/20

Operations

Introduce

Forget

Join

Introduce

Forget

Join

Bojańczyk, Pilipczuk Courcelle’s conjecture 3/20

Operations

Introduce

Forget

Join

Introduce

Forget

Join

Bojańczyk, Pilipczuk Courcelle’s conjecture 3/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.
The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.
The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.
The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.
The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.

The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

Interface graph algebra

Algebra Ak : k-interface graphs with introduce, forget, and join.

Treewidth of a graph G :
the minimum k needed to construct G using all three operations.

Pathwidth of a graph G :
the minimum k needed to construct G using introduce and forget.

Tree decomposition: the tree of the term over Ak constructing G .

With each node associate its bag: the vertices active at the moment.
The parameter k is the width of the decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 4/20

MSO on graphs

Monadic Second Order logic on graphs:

Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.

We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.

We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.

Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability

Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:

Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:
Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.

Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:
Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

MSO on graphs

Monadic Second Order logic on graphs:
Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
We can check incidence, belonging, etc.
Example 1: 3-Colorability
Example 2: Hamiltonicity

Courcelle’s theorem

Π expressible in MSO ⇒
Π can be verified in linear time on graphs of constant treewidth.

Proof:
Transform a formula ϕ expressing Π on a graph into an equivalent
formula ψ on a labeled tree encoding the tree decomposition.
Transform ψ into an equivalent automaton Aψ and run it on the
decomposition.

Courcelle’s conjecture: If Π can be verified by an automaton on a
tree decomposition, then Π is expressible in MSO.

Bojańczyk, Pilipczuk Courcelle’s conjecture 5/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Recognizability

Graph property Π is k-recognizable if the following Myhill-Nerode
relation ≡k over k-interface graphs has finite index.

A1 ≡k A2 ⇔ A1 ⊕ B ∈ Π iff A2 ⊕ B ∈ Π

for every k-interface graph B.

⇔ ⊕⊕

A2
BBA1

Π is recognizable if it is k-recognizable for every k .

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Converse: Is every recognizable graph property MSO-definable?

WRONG for multiple reasons.

Bojańczyk, Pilipczuk Courcelle’s conjecture 6/20

Courcelle’s conjecture

Courcelle’s conjecture Courcelle; ∼’90

Suppose

Π is a recognizable graph property, and

Tk is the class of graphs of treewidth at most k , for some constant k.

Then Π ∩ Tk can be defined in MSO with modular counting predicates.

Theorem Bojańczyk, P.; 2016

Courcelle’s conjecture holds.

Bojańczyk, Pilipczuk Courcelle’s conjecture 7/20

Courcelle’s conjecture

Courcelle’s conjecture Courcelle; ∼’90

Suppose

Π is a recognizable graph property, and

Tk is the class of graphs of treewidth at most k , for some constant k.

Then Π ∩ Tk can be defined in MSO with modular counting predicates.

Theorem Bojańczyk, P.; 2016

Courcelle’s conjecture holds.

Bojańczyk, Pilipczuk Courcelle’s conjecture 7/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

Take a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

Take a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

Take a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

Take a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

Works on tree decompositions of width k.
Recognizes exactly tree decompositions of graphs from Π.

Take a tree decomposition of the given graph G .

Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojańczyk, Pilipczuk Courcelle’s conjecture 8/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k , outputs its tree decomposition of width at most f (k), for
some function f .

MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojańczyk, Pilipczuk Courcelle’s conjecture 9/20

Guidance system

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and Fi ⊆ G for each i .

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Bojańczyk, Pilipczuk Courcelle’s conjecture 10/20

Guidance system

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and Fi ⊆ G for each i .

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Bojańczyk, Pilipczuk Courcelle’s conjecture 10/20

Guidance system

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and Fi ⊆ G for each i .

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Bojańczyk, Pilipczuk Courcelle’s conjecture 10/20

Capturing tree decompositions

A tree decomposition is captured by Λ if each of its bags is captured.

Bojańczyk, Pilipczuk Courcelle’s conjecture 11/20

Capturing tree decompositions

A tree decomposition is captured by Λ if each of its bags is captured.

Bojańczyk, Pilipczuk Courcelle’s conjecture 11/20

Capturing tree decompositions

A tree decomposition is captured by Λ if each of its bags is captured.

Bojańczyk, Pilipczuk Courcelle’s conjecture 11/20

Capturing tree decompositions

A tree decomposition is captured by Λ if each of its bags is captured.

Bojańczyk, Pilipczuk Courcelle’s conjecture 11/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Guided treewidth

Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Guided treewidth of G , denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G .

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Theorem

There is a function f such that gtw(G) ≤ f (pw(G)) for every graph G .

We would be done if Conjecture was proved.

In our proof, we circumvent proving the Conjecture.

Rest of the talk: Proof of the Theorem.

Tool: Simon’s factorization forest.

Bojańczyk, Pilipczuk Courcelle’s conjecture 12/20

Simon’s factorization forest

Suppose S is a finite semigroup.

Setting: We are given a long word

a1 · a2 · a3 · . . . · an−2 · an−1 · an

with ai ∈ S . We want to “factorize” the product “efficiently”.

Binary factorization:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

lo
g
n

We need constant depth, depending only on |S |.

Bojańczyk, Pilipczuk Courcelle’s conjecture 13/20

Simon’s factorization forest

Suppose S is a finite semigroup.

Setting: We are given a long word

a1 · a2 · a3 · . . . · an−2 · an−1 · an

with ai ∈ S . We want to “factorize” the product “efficiently”.

Binary factorization:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

lo
g
n

We need constant depth, depending only on |S |.

Bojańczyk, Pilipczuk Courcelle’s conjecture 13/20

Simon’s factorization forest

Suppose S is a finite semigroup.

Setting: We are given a long word

a1 · a2 · a3 · . . . · an−2 · an−1 · an

with ai ∈ S . We want to “factorize” the product “efficiently”.

Binary factorization:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

lo
g
n

We need constant depth, depending only on |S |.

Bojańczyk, Pilipczuk Courcelle’s conjecture 13/20

Simon’s factorization forest

Suppose S is a finite semigroup.

Setting: We are given a long word

a1 · a2 · a3 · . . . · an−2 · an−1 · an

with ai ∈ S . We want to “factorize” the product “efficiently”.

Binary factorization:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

lo
g
n

We need constant depth, depending only on |S |.

Bojańczyk, Pilipczuk Courcelle’s conjecture 13/20

Simon’s factorization forest

m1

m1 · m2

m2

Binary node

e e e e e

e
e · e = e

Idempotent node

Simon’s factorization forest theorem [Simon’90; Kufleitner’08]

Every word over S has a factorization of depth at most 3|S | that uses
binary and idempotent nodes.

path decomp. of width k ⇒ word over a semigroup of size f (k)

apply induction on the depth of the factorization forest

Bojańczyk, Pilipczuk Courcelle’s conjecture 14/20

Simon’s factorization forest

m1

m1 · m2

m2

Binary node

e e e e e

e
e · e = e

Idempotent node

Simon’s factorization forest theorem [Simon’90; Kufleitner’08]

Every word over S has a factorization of depth at most 3|S | that uses
binary and idempotent nodes.

path decomp. of width k ⇒ word over a semigroup of size f (k)

apply induction on the depth of the factorization forest

Bojańczyk, Pilipczuk Courcelle’s conjecture 14/20

Simon’s factorization forest

m1

m1 · m2

m2

Binary node

e e e e e

e
e · e = e

Idempotent node

Simon’s factorization forest theorem [Simon’90; Kufleitner’08]

Every word over S has a factorization of depth at most 3|S | that uses
binary and idempotent nodes.

path decomp. of width k ⇒ word over a semigroup of size f (k)

apply induction on the depth of the factorization forest

Bojańczyk, Pilipczuk Courcelle’s conjecture 14/20

Simon’s factorization forest

m1

m1 · m2

m2

Binary node

e e e e e

e
e · e = e

Idempotent node

Simon’s factorization forest theorem [Simon’90; Kufleitner’08]

Every word over S has a factorization of depth at most 3|S | that uses
binary and idempotent nodes.

path decomp. of width k ⇒ word over a semigroup of size f (k)

apply induction on the depth of the factorization forest

Bojańczyk, Pilipczuk Courcelle’s conjecture 14/20

Bi-interface graphs

Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

Not every number has to be used.
If a vertex is both a left and a right interface, its number in both
interfaces is the same.
Natural gluing operation.
Parameter k is the arity of the bi-interface graph.

left(1)

left(3)

right(1)

right(3)

right(2)

G1

left(1)

left(3)

left(2)

right(1)

right(3)

right(2)

G2

left(1)

left(3)

right(1)

right(3)

G1 ⊕G2

Bojańczyk, Pilipczuk Courcelle’s conjecture 15/20

Bi-interface graphs

Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

Not every number has to be used.

If a vertex is both a left and a right interface, its number in both
interfaces is the same.
Natural gluing operation.
Parameter k is the arity of the bi-interface graph.

left(1)

left(3)

right(1)

right(3)

right(2)

G1

left(1)

left(3)

left(2)

right(1)

right(3)

right(2)

G2

left(1)

left(3)

right(1)

right(3)

G1 ⊕G2

Bojańczyk, Pilipczuk Courcelle’s conjecture 15/20

Bi-interface graphs

Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

Not every number has to be used.
If a vertex is both a left and a right interface, its number in both
interfaces is the same.

Natural gluing operation.
Parameter k is the arity of the bi-interface graph.

left(1)

left(3)

right(1)

right(3)

right(2)

G1

left(1)

left(3)

left(2)

right(1)

right(3)

right(2)

G2

left(1)

left(3)

right(1)

right(3)

G1 ⊕G2

Bojańczyk, Pilipczuk Courcelle’s conjecture 15/20

Bi-interface graphs

Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

Not every number has to be used.
If a vertex is both a left and a right interface, its number in both
interfaces is the same.
Natural gluing operation.

Parameter k is the arity of the bi-interface graph.

left(1)

left(3)

right(1)

right(3)

right(2)

G1

left(1)

left(3)

left(2)

right(1)

right(3)

right(2)

G2

left(1)

left(3)

right(1)

right(3)

G1 ⊕G2

Bojańczyk, Pilipczuk Courcelle’s conjecture 15/20

Bi-interface graphs

Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

Not every number has to be used.
If a vertex is both a left and a right interface, its number in both
interfaces is the same.
Natural gluing operation.
Parameter k is the arity of the bi-interface graph.

left(1)

left(3)

right(1)

right(3)

right(2)

G1

left(1)

left(3)

left(2)

right(1)

right(3)

right(2)

G2

left(1)

left(3)

right(1)

right(3)

G1 ⊕G2

Bojańczyk, Pilipczuk Courcelle’s conjecture 15/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k, then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k , then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k , then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k , then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k , then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Abstraction semigroup

Bi-interface graphs of arity k with gluing ⊕ form a semigroup.

Lemma: If a graph has pathwidth ≤ k , then it can be written as
H1 ⊕H2 ⊕ . . .⊕Ht where Hi has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1)

left(3)

right(1)

right(3)

right(2)

G

left(1)

left(3)

right(1)

right(3)

right(2)

JGK

Consider operation on basic bi-interface graphs of arity k:

G1 ⊕t G2 = JG1 ⊕G2K.

This forms a semigroup S of size 2O(k2).

Bojańczyk, Pilipczuk Courcelle’s conjecture 16/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k, d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k, then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k , d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k, then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k , d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k, then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k , d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k , d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Proof strategy

Idea: Induction on the depth of Simon’s factorization over S.

Claim: gtw(G) ≤ f (k , d), where d is the depth of factorization.

Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

These functions stack at most 3|S| = 2O(k2) times and we are done.

Bojańczyk, Pilipczuk Courcelle’s conjecture 17/20

Binary lemma

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

G1 G2G1 − right G2 − left
(G1 − right)] (G2 − left)G1 ⊕G2

Fact 1: gtw(G − u) ≤ 2 · gtw(G).

Fact 2: gtw(G1] G2) = max(gtw(G1), gtw(G2)).

Fact 3: gtw(G) ≤ gtw(G − u) + 1.

Bojańczyk, Pilipczuk Courcelle’s conjecture 18/20

Binary lemma

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

G1 G2

G1 − right G2 − left
(G1 − right)] (G2 − left)G1 ⊕G2

Fact 1: gtw(G − u) ≤ 2 · gtw(G).

Fact 2: gtw(G1] G2) = max(gtw(G1), gtw(G2)).

Fact 3: gtw(G) ≤ gtw(G − u) + 1.

Bojańczyk, Pilipczuk Courcelle’s conjecture 18/20

Binary lemma

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

G1 G2

G1 − right G2 − left

(G1 − right)] (G2 − left)G1 ⊕G2

Fact 1: gtw(G − u) ≤ 2 · gtw(G).

Fact 2: gtw(G1] G2) = max(gtw(G1), gtw(G2)).

Fact 3: gtw(G) ≤ gtw(G − u) + 1.

Bojańczyk, Pilipczuk Courcelle’s conjecture 18/20

Binary lemma

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

G1 G2G1 − right G2 − left

(G1 − right)] (G2 − left)

G1 ⊕G2

Fact 1: gtw(G − u) ≤ 2 · gtw(G).

Fact 2: gtw(G1] G2) = max(gtw(G1), gtw(G2)).

Fact 3: gtw(G) ≤ gtw(G − u) + 1.

Bojańczyk, Pilipczuk Courcelle’s conjecture 18/20

Binary lemma

Binary lemma

If G1 and G2 are bi-interface graphs of arity k , then

gtw(G1 ⊕G2) ≤ k + 2k ·max(gtw(G1), gtw(G2)).

G1 G2G1 − right G2 − left
(G1 − right)] (G2 − left)

G1 ⊕G2

Fact 1: gtw(G − u) ≤ 2 · gtw(G).

Fact 2: gtw(G1] G2) = max(gtw(G1), gtw(G2)).

Fact 3: gtw(G) ≤ gtw(G − u) + 1.

Bojańczyk, Pilipczuk Courcelle’s conjecture 18/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Idempotent lemma

Idempotent lemma

If G1, . . . ,Gt are bi-int. graphs of arity k with JG1K = . . . = JGtK, then

gtw(G1 ⊕ . . .⊕Gt) ≤ k(4k2 + 5) + 8k · max
i=1,...,t

{gtw(Gi)}.

Apply same strategy Too many interfaces to reintroduce.

For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Solution: Instead, span only O(k2) nearby columns.

Here we use that abstractions are the same.

Trees can be colored with O(k3) colors and grouped into forests.

Bojańczyk, Pilipczuk Courcelle’s conjecture 19/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).

Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

Conclusions

Lifting pathwidth to treewidth:
If tw(G) ≤ k , then there is a tree decomposition T of G such that

adhesions of T can be captured by a guidance system of size f (k);
the torso of each bag has pathwidth at most f (k).
Combine both decompositions at the level of MSO-transductions.

Further work (BP; STACS 2017):

For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that gtw(G) ≤ f (tw(G)) for every graph G .

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size f (k).

Thanks for attention!

Bojańczyk, Pilipczuk Courcelle’s conjecture 20/20

