Definability equals recognizability

for graphs of bounded treewidth

Mikotaj Bojanczyk, Michat Pilipczuk
Institute of Informatics, University of Warsaw

Warwick Workshop on Algorithms, Logic and Structure
December 12", 2016

Bojanczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Idea: Keep only a small number of vertices in memory.

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Forget a present active vertex

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Forget a present active vertex

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Introduce a new active vertex

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Forget

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Introduce

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Introduce

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Forget

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Forget

Bojariczyk, Pilipczuk Courcelle’s conjecture

How to construct graphs

Introduce

Bojariczyk, Pilipczuk Courcelle’s conjecture

- e -

Forget

Bojariczyk, Pilipczuk Courcelle’s conjecture

Operations

- Introduce
— = >
. Join

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

@ Algebra A: k-interface graphs with introduce, forget, and join.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.

e Treewidth of a graph G:
the minimum k needed to construct G using all three operations.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.

o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.

o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.
o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.

o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.

o Tree decomposition: the tree of the term over A, constructing G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.
o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.
o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.
e Tree decomposition: the tree of the term over A, constructing G.
o With each node associate its bag: the vertices active at the moment.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Interface graph algebra

o Algebra A,: k-interface graphs with introduce, forget, and join.

o Treewidth of a graph G:
the minimum k needed to construct G using all three operations.

o Pathwidth of a graph G:
the minimum k needed to construct G using introduce and forget.
e Tree decomposition: the tree of the term over A, constructing G.

o With each node associate its bag: the vertices active at the moment.
e The parameter k is the width of the decomposition.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:

Language for expressing graph properties.
We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.

o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

@ Proof:

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

@ Proof:

e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

@ Proof:

e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.

e Transform %) into an equivalent automaton A, and run it on the
decomposition.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO on graphs

e Monadic Second Order logic on graphs:
o Language for expressing graph properties.
e We can quantify existentially/universally over
vertices, edges, vertex subsets, edge subsets.
o We can check incidence, belonging, etc.
o Example 1: 3-Colorability
o Example 2: Hamiltonicity

Courcelle’s theorem

I expressible in MSO =
I1 can be verified in linear time on graphs of constant treewidth.

e Proof:
e Transform a formula ¢ expressing I1 on a graph into an equivalent
formula v on a labeled tree encoding the tree decomposition.
o Transform) into an equivalent automaton A, and run it on the
decomposition.

@ Courcelle’s conjecture: If [1 can be verified by an automaton on a
tree decomposition, then I is expressible in MSO.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation =, over k-interface graphs has finite index.

Al = A =4 AleBell iff Ao Bell
for every k-interface graph B.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell
for every k-interface graph B.

@ [1 is recognizable if it is k-recognizable for every k.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell
for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.

o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.
Al = A = AioBell iff A dpBell
for every k-interface graph B.

e - gh-am

I is recognizable if it is k-recognizable for every k.

Idea: Recognizable properties can be verified using tree automata
working on tree decompositions.

Fact: Every MSO-definable graph property is recognizable.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell

for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.

o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.

o Fact: Every MSO-definable graph property is recognizable.
e Converse: Is every recognizable graph property MSO-definable?

Bojariczyk, Pilipczuk Courcelle’s conjecture

Recognizability

@ Graph property [1 is k-recognizable if the following Myhill-Nerode
relation = over k-interface graphs has finite index.

Al = A =4 AieBell iff Ao Bell

for every k-interface graph B.

e - gh-am

e [1is recognizable if it is k-recognizable for every k.
o ldea: Recognizable properties can be verified using tree automata
working on tree decompositions.
o Fact: Every MSO-definable graph property is recognizable.
e Converse: Is every recognizable graph property MSO-definable?
o WRONG for multiple reasons.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Courcelle's conjecture

Courcelle's conjecture Courcelle; ~'90

Suppose

@ [1is a recognizable graph property, and

@ 7Ty is the class of graphs of treewidth at most k, for some constant k.
Then M N Tk can be defined in MSO with modular counting predicates.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Courcelle's conjecture

Courcelle's conjecture Courcelle; ~'90

Suppose
@ [1is a recognizable graph property, and
@ 7Ty is the class of graphs of treewidth at most k, for some constant k.

Then M N Tk can be defined in MSO with modular counting predicates.

Theorem Bojariczyk, P.; 2016

Courcelle's conjecture holds.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:
o Works on tree decompositions of width k.
e Recognizes exactly tree decompositions of graphs from 1.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

@ Take a tree decomposition of the given graph G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

@ Take a tree decomposition of the given graph G.

@ Guess existentially the run of 4 on the tree decomposition.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

@ By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

@ Take a tree decomposition of the given graph G.
@ Guess existentially the run of 4 on the tree decomposition.

o Verify that it is correct and that it accepts.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

Take a tree decomposition of the given graph G.
Guess existentially the run of A on the tree decomposition.

Verify that it is correct and that it accepts.

Caveat: We are given only a graph,
not a graph together with its tree decomposition!

Bojariczyk, Pilipczuk Courcelle’s conjecture

Attempt on the proof

By the finiteness of the Myhill-Nerode equivalence relation, there is
a tree automaton A that:

o Works on tree decompositions of width k.
o Recognizes exactly tree decompositions of graphs from 1.

Take a tree decomposition of the given graph G.

Guess existentially the run of A on the tree decomposition.
Verify that it is correct and that it accepts.

Caveat: We are given only a graph,

not a graph together with its tree decomposition!
Everything boils down to “defining” in MSO some tree
decomposition of bounded width.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for

some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for
some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

e Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

Bojariczyk, Pilipczuk Courcelle’s conjecture

MSO transductions

Main theorem

There is a (nondeterministic) MSO transduction that, given a graph of
treewidth k, outputs its tree decomposition of width at most f(k), for
some function f.

@ MSO transduction: a formal way of describing nondeterministic
“MSO-definable” transformations of relational structures.

@ One can existentially guess some sets, and then interpret the
structure of the decomposition using MSO predicates.

o Example: Guess a subset of red edges, and for each vertex u create
a bag consisting of all vertices reachable from u via red edges.

o Fact: If a property is MSO-definable after the intepretation, then it
is also MSO-definable before.

@ Now: A combinatorial notion of an “MSO-definable” decomposition.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.

Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.

@ For each u € V(G), define k-tuple A(u) as
ANu) = (v, v, ..., Vi),
where v; is the root of the tree of F; that contains u.

Vi o 2} ‘3
N

A

u

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guidance system

Guidance system

A guidance system N in a graph G is a set of rooted forests
(F1, F2y ...y Fk)

where V(F;) = V(G) and F; C G for each i.

@ For each u € V(G), define k-tuple A(u) as
Au) = (v, v, ...y Vi),
where v; is the root of the tree of F; that contains u.

Vi o 2} ‘3
N

A

u

@ A vertex subset X is captured by A if X C A(u) for some vertex wu.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.

o0 O—0 O0—0 00—

o 0—>0 06—>0 0—>0 O

.—»0—»0—»0—»&

Bojariczyk, Pilipczuk Courcelle’s conjecture

Capturing tree decompositions

@ A tree decomposition is captured by A if each of its bags is captured.

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.

@ In our proof, we circumvent proving the Conjecture.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.
@ In our proof, we circumvent proving the Conjecture.
@ Rest of the talk: Proof of the Theorem.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Guided treewidth

e Fact: If a decomposition is captured by a guidance system of
constant size, then it can be constructed by an MSO-transduction.

o Guided treewidth of G, denoted gtw(G), is the smallest size of a
guidance system that captures a tree decomposition of G.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f such that gtw(G) < f(pw(G)) for every graph G.

@ We would be done if Conjecture was proved.
@ In our proof, we circumvent proving the Conjecture.
@ Rest of the talk: Proof of the Theorem.

@ Tool: Simon’s factorization forest.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon's factorization forest

@ Suppose S is a finite semigroup.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-az- ... dp—2dp—-1"4dp

with a; € S. We want to "factorize” the product “efficiently”.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-ad3- ... dp—2"4dp—1"4anp

with a; € S. We want to "factorize” the product “efficiently”.
e Binary factorization:

>

log n

41 92 2 3 a5 3 37 ag d9 230 11 12 13 214 315 16

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon's factorization forest

@ Suppose S is a finite semigroup.
@ Setting: We are given a long word

dy+d2-ad3- ... dp—2"4dp—1"4anp

with a; € S. We want to "factorize” the product “efficiently”.
e Binary factorization:

>

log n

41 92 2 3 a5 3 37 ag d9 230 11 12 13 214 315 16

@ We need constant depth, depending only on |S]|.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon's factorization forest
myp - my
@A my

Binary node

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node

Simon'’s factorization forest theorem [Simon'90; Kufleitner 0]

Every word over S has a factorization of depth at most 3|S| that uses
binary and idempotent nodes.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Simon’s factorization forest
m o m2 e-e=e O
@A"@ o Se oe w e © e

Binary node Idempotent node

Simon'’s factorization forest theorem [Simon'90; Kufleitner 0]

Every word over S has a factorization of depth at most 3|S| that uses
binary and idempotent nodes.

path decomp. of width k= word over a semigroup of size f(k)

apply induction on the depth of the factorization forest

Bojariczyk, Pilipczuk Courcelle’s conjecture

Bi-interface graphs

e Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.

right(1
SO-@—> right(2
N\

y
left(3) —> @) \.—> fight(3

G1

left(1) ——> ?—»
~

Bojariczyk, Pilipczuk Courcelle’s conjecture

Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
e Not every number has to be used.

left(1) ———» ?—» right(1
N

-@—> right2
N\

left(3) —> @) \.—> fight(3

G1

Bojariczyk, Pilipczuk Courcelle’s conjecture

Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.
o If a vertex is both a left and a right interface, its number in both
interfaces is the same.

right(1
SO-@—> right(2
N\

left(3) —> @) \.—> fight(3

G1

left(1) ——> ?—»

Bojariczyk, Pilipczuk Courcelle’s conjecture

Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.

o If a vertex is both a left and a right interface, its number in both
interfaces is the same.
o Natural gluing operation.

left(1) ———> ?—» right(1 left(1 9 right(1)
~
; i -@—> right2 left(2 —».\./‘ right(2)

\

/ -
left(3) —> @)~ \.—> right(3 left(3 Q @ right®)

G1 G2
left(1) right(1)
N
—a .
/
left(3) —»./ N right(3)

Bojariczyk, Pilipczuk Courcelle’s conjecture

Bi-interface graphs

o Bi-interface graph:
Graph with left and right interfaces, numbered from 1 to k.
o Not every number has to be used.
o If a vertex is both a left and a right interface, its number in both
interfaces is the same.
o Natural gluing operation.
o Parameter k is the arity of the bi-interface graph.

$—> right(1 left(1) ——» ’—» right(1)
~
; i -@—> right2 left(2 —».\./‘ right(2)

\

/ -
left(3) —> @)~ \.—> right(3 left(3 Q @ right®)

left(1) ——>

G1 G2
left(1) right(1)
N
—a .
/
left(3) —»./ N right(3)

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity kK and contains no
non-interface vertices (is basic).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

@ Issue: This semigroup is infinite.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

@ Issue: This semigroup is infinite.
@ Define abstraction as torso with respect to interfaces.

left(1) T right(1) left(1) ————> right(1)
@ right2) right(2)

/
left(3) —> @@ right(3) left(3) —» right(3)

G [G]

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

Bi-interface graphs of arity k with gluing & form a semigroup.

Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

Issue: This semigroup is infinite.

Define abstraction as torso with respect to interfaces.

left(1) T right(1) left(1) ————> right(1)
@ right2) right(2)

/
left(3) —> @@ right(3) left(3) —» right(3)

@ Consider operation on basic bi-interface graphs of arity k:

G160 Gy = [[Gl S G2]]~

Bojariczyk, Pilipczuk Courcelle’s conjecture

Abstraction semigroup

@ Bi-interface graphs of arity k with gluing & form a semigroup.

o Lemma: If a graph has pathwidth < k, then it can be written as
H; ®H, @ ...® H; where H; has arity k and contains no
non-interface vertices (is basic).

@ Issue: This semigroup is infinite.
@ Define abstraction as torso with respect to interfaces.

left(1) ——> right(1) left(1) ——> right(1)
® :.—> right(2) right(2)
left(3) *».. right(3) left(3) —» right(3)
G [G]
o Consider operation on basic bi-interface graphs of arity k:

G1 @ Gy =[Gy @ Gy].

e This forms a semigroup S of size 20(k°).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon'’s factorization over S.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).

| A

Idempotent lemma
If Gy,...,G; are bi-int. graphs of arity k with [G1] = ... = [G¢], then

gtw(G, @ ... G,) < k(4k* +5) + 8. max {gtw(G;)}.
1=1,...,t

Bojariczyk, Pilipczuk Courcelle’s conjecture

Proof strategy

o Idea: Induction on the depth of Simon’s factorization over S.
e Claim: gtw(G) < f(k,d), where d is the depth of factorization.

@ Goal: Guided treewidth increases in a controlled way when gluing as
in binary and idempotent nodes.

Binary lemma

If G; and G, are bi-interface graphs of arity k, then

gtw(G; @ Gy) < k + 25 - max(gtw(G1), gtw(G,)).

| A

Idempotent lemma
If Gy,...,G; are bi-int. graphs of arity k with [G1] = ... = [G¢], then

gtw(G, @ ... G,) < k(4k* +5) + 8. max {gtw(G;)}.
1=1,...,t

@ These functions stack at most 3|S| = 20(k) times and we are done.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

[0X6e)

o ©
(@) o O
@] o

Bojariczyk, Pilipczuk Courcelle’s conjecture

Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

Gy — I‘ight Gy — left

e Fact 1: gtw(G — u) <2 - gtw(G).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

(G1 — right) W (G2 — left)

e Fact 1: gtw(G — u) <2 - gtw(G).
o Fact 2: gtw(G; W G) = max(gtw(Gy), stw(Gp)).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Binary lemma

Binary lemma

If G1 and G, are bi-interface graphs of arity k, then

gtw(G; @ G,) < k + 25 - max(gtw(G1), gtw(G»)).

GG

e Fact 1: gtw(G — u) <2 - gtw(G).
o Fact 2: gtw(G; W G) = max(gtw(Gy), stw(Gp)).
e Fact 3: gtw(G) < gtw(G —v) + 1.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

.....

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

.....

@ Apply same strategy ~» Too many interfaces to reintroduce.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

gtw(G; @ ... 9 G,) < k(4k® +5) + 8~ _max t{gtw(G;)}.

=

@ Apply same strategy ~» Too many interfaces to reintroduce.
@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma

If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma

If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.
o Here we use that abstractions are the same.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Idempotent lemma

Idempotent lemma
If Gy, ...,G; are bi-int. graphs of arity k with [G1] = ... = [G,], then

@ Apply same strategy ~» Too many interfaces to reintroduce.

@ For each interface we add a spanning tree of the whole graph just to
span nearby columns!

e Solution: Instead, span only O(k?) nearby columns.
o Here we use that abstractions are the same.

@ Trees can be colored with O(k®) colors and grouped into forests.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
e adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

e For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size (k).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size (k).

Bojariczyk, Pilipczuk Courcelle’s conjecture

Conclusions

o Lifting pathwidth to treewidth:
If tw(G) < k, then there is a tree decomposition T of G such that
o adhesions of 7 can be captured by a guidance system of size f(k);
o the torso of each bag has pathwidth at most f (k).
o Combine both decompositions at the level of MSO-transductions.

e Further work (BP; STACS 2017):

o For all k, there is an MSO-transduction that given a graph of
treewidth k, outputs a tree decomposition of width at most k.

There is a function f such that gtw(G) < f(tw(G)) for every graph G.

There is a function f s.t. every graph of treewidth k has an optimum
width tree decomposition captured by a guidance system of size (k).

@ Thanks for attention!

Bojariczyk, Pilipczuk Courcelle’s conjecture

