Definability equals recognizability for graphs of bounded treewidth

Mikołaj Bojańczyk, Michał Pilipczuk

Institute of Informatics, University of Warsaw

Warwick Workshop on Algorithms, Logic and Structure December $12^{\rm th}$, 2016

 ${}^{\circ}$

○

Idea: Keep only a small number of vertices in memory.

 ${}^{\circ}$

○

Forget a present active vertex

Forget a present active vertex

Introduce a new active vertex

Forget

Introduce

Introduce

Forget

Forget

Introduce

• Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.

- Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.
- **Treewidth** of a graph *G*: the minimum *k* needed to construct *G* using all three operations.

- Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.
- **Treewidth** of a graph *G*: the minimum *k* needed to construct *G* using all three operations.
- Pathwidth of a graph G: the minimum k needed to construct G using introduce and forget.

- Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.
- **Treewidth** of a graph *G*: the minimum *k* needed to construct *G* using all three operations.
- **Pathwidth** of a graph G: the minimum k needed to construct G using **introduce** and **forget**.
- **Tree decomposition**: the tree of the term over \mathbb{A}_k constructing *G*.

- Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.
- **Treewidth** of a graph *G*: the minimum *k* needed to construct *G* using all three operations.
- **Pathwidth** of a graph *G*: the minimum *k* needed to construct *G* using **introduce** and **forget**.
- **Tree decomposition**: the tree of the term over \mathbb{A}_k constructing *G*.
 - With each node associate its bag: the vertices active at the moment.

- Algebra \mathbb{A}_k : *k*-interface graphs with introduce, forget, and join.
- **Treewidth** of a graph *G*: the minimum *k* needed to construct *G* using all three operations.
- **Pathwidth** of a graph *G*: the minimum *k* needed to construct *G* using **introduce** and **forget**.
- **Tree decomposition**: the tree of the term over \mathbb{A}_k constructing *G*.
 - With each node associate its *bag*: the vertices active at the moment.
 - The parameter k is the width of the decomposition.

• Monadic Second Order logic on graphs:

- Monadic Second Order logic on graphs:
 - Language for expressing graph properties.

- Monadic Second Order logic on graphs:
 - Language for expressing graph properties.
 - We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.

- Monadic Second Order logic on graphs:
 - Language for expressing graph properties.
 - We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
 - We can check incidence, belonging, etc.

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

Courcelle's theorem

 Π expressible in MSO \Rightarrow

 Π can be verified in linear time on graphs of constant treewidth.

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

Courcelle's theorem

 Π expressible in MSO \Rightarrow

 Π can be verified in linear time on graphs of constant treewidth.

• Proof:

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

Courcelle's theorem

 $\Pi \text{ expressible in MSO} \Rightarrow$

 Π can be verified in linear time on graphs of constant treewidth.

• Proof:

• Transform a formula φ expressing Π on a graph into an equivalent formula ψ on a labeled tree encoding the tree decomposition.

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

Courcelle's theorem

 $\Pi \text{ expressible in MSO} \Rightarrow$

 Π can be verified in linear time on graphs of constant treewidth.

• Proof:

- Transform a formula φ expressing Π on a graph into an equivalent formula ψ on a labeled tree encoding the tree decomposition.
- Transform ψ into an equivalent automaton \mathcal{A}_ψ and run it on the decomposition.

• Monadic Second Order logic on graphs:

- Language for expressing graph properties.
- We can quantify existentially/universally over vertices, edges, vertex subsets, edge subsets.
- We can check incidence, belonging, etc.
- Example 1: 3-Colorability
- Example 2: Hamiltonicity

Courcelle's theorem

 $\Pi \text{ expressible in MSO} \Rightarrow$

 Π can be verified in linear time on graphs of constant treewidth.

• Proof:

- Transform a formula φ expressing Π on a graph into an equivalent formula ψ on a labeled tree encoding the tree decomposition.
- Transform ψ into an equivalent automaton \mathcal{A}_ψ and run it on the decomposition.
- **Courcelle's conjecture**: If Π can be verified by an automaton on a tree decomposition, then Π is expressible in MSO.

 $A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \text{ iff } A_2 \oplus B \in \Pi$ for every *k*-interface graph *B*.

$$A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \text{ iff } A_2 \oplus B \in \Pi$$

for every k-interface graph B.

• Π is **recognizable** if it is *k*-recognizable for every *k*.

$$A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \quad \text{iff} \quad A_2 \oplus B \in \Pi$$

- Π is **recognizable** if it is *k*-recognizable for every *k*.
- Idea: Recognizable properties can be verified using tree automata working on tree decompositions.

$$A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \text{ iff } A_2 \oplus B \in \Pi$$

- Π is **recognizable** if it is *k*-recognizable for every *k*.
- Idea: Recognizable properties can be verified using tree automata working on tree decompositions.
- Fact: Every MSO-definable graph property is recognizable.

$$A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \text{ iff } A_2 \oplus B \in \Pi$$

- Π is **recognizable** if it is *k*-recognizable for every *k*.
- Idea: Recognizable properties can be verified using tree automata working on tree decompositions.
- Fact: Every MSO-definable graph property is recognizable.
- Converse: Is every recognizable graph property MSO-definable?

$$A_1 \equiv_k A_2 \quad \Leftrightarrow \quad A_1 \oplus B \in \Pi \text{ iff } A_2 \oplus B \in \Pi$$

- Π is **recognizable** if it is *k*-recognizable for every *k*.
- Idea: Recognizable properties can be verified using tree automata working on tree decompositions.
- Fact: Every MSO-definable graph property is recognizable.
- Converse: Is every recognizable graph property MSO-definable?
 - WRONG for multiple reasons.

Courcelle's conjecture

Courcelle; \sim '90

Suppose

- Π is a recognizable graph property, and
- T_k is the class of graphs of treewidth at most k, for some constant k.

Then $\Pi \cap \mathcal{T}_k$ can be defined in MSO with modular counting predicates.

Courcelle's conjecture

Courcelle; \sim '90

Bojańczyk, P.; 2016

Suppose

- Π is a recognizable graph property, and
- T_k is the class of graphs of treewidth at most k, for some constant k.

Then $\Pi \cap \mathcal{T}_k$ can be defined in MSO with modular counting predicates.

Theorem

Courcelle's conjecture holds.

- By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π .

- \bullet By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π.
- Take a tree decomposition of the given graph G.

- \bullet By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π.
- Take a tree decomposition of the given graph G.
- \bullet Guess existentially the run of ${\cal A}$ on the tree decomposition.

- By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π.
- Take a tree decomposition of the given graph G.
- Guess existentially the run of $\mathcal A$ on the tree decomposition.
- Verify that it is correct and that it accepts.

- By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π.
- Take a tree decomposition of the given graph G.
- Guess existentially the run of $\mathcal A$ on the tree decomposition.
- Verify that it is correct and that it accepts.
- **Caveat**: We are given **only** a graph, not a graph together with its tree decomposition!

- By the finiteness of the Myhill-Nerode equivalence relation, there is a tree automaton ${\cal A}$ that:
 - Works on tree decompositions of width k.
 - Recognizes exactly tree decompositions of graphs from Π .
- Take a tree decomposition of the given graph G.
- Guess existentially the run of $\mathcal A$ on the tree decomposition.
- Verify that it is correct and that it accepts.
- **Caveat**: We are given **only** a graph, not a graph together with its tree decomposition!
- Everything boils down to "defining" in MSO some tree decomposition of bounded width.

There is a (nondeterministic) MSO transduction that, given a graph of treewidth k, outputs its tree decomposition of width at most f(k), for some function f.

• MSO transduction: a formal way of describing nondeterministic "MSO-definable" transformations of relational structures.

- MSO transduction: a formal way of describing nondeterministic "MSO-definable" transformations of relational structures.
- One can existentially guess some sets, and then interpret the structure of the decomposition using MSO predicates.

- MSO transduction: a formal way of describing nondeterministic "MSO-definable" transformations of relational structures.
- One can existentially guess some sets, and then interpret the structure of the decomposition using MSO predicates.
 - **Example**: Guess a subset of **red** edges, and for each vertex *u* create a bag consisting of all vertices reachable from *u* via **red** edges.

- MSO transduction: a formal way of describing nondeterministic "MSO-definable" transformations of relational structures.
- One can existentially guess some sets, and then interpret the structure of the decomposition using MSO predicates.
 - **Example**: Guess a subset of **red** edges, and for each vertex *u* create a bag consisting of all vertices reachable from *u* via **red** edges.
- Fact: If a property is MSO-definable after the intepretation, then it is also MSO-definable before.

- MSO transduction: a formal way of describing nondeterministic "MSO-definable" transformations of relational structures.
- One can existentially guess some sets, and then interpret the structure of the decomposition using MSO predicates.
 - **Example**: Guess a subset of **red** edges, and for each vertex *u* create a bag consisting of all vertices reachable from *u* via **red** edges.
- Fact: If a property is MSO-definable after the intepretation, then it is also MSO-definable before.
- Now: A combinatorial notion of an "MSO-definable" decomposition.

Guidance system

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

 (F_1, F_2, \ldots, F_k)

where $V(F_i) = V(G)$ and $F_i \subseteq G$ for each *i*.

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

 (F_1, F_2, \ldots, F_k)

where $V(F_i) = V(G)$ and $F_i \subseteq G$ for each *i*.

• For each $u \in V(G)$, define k-tuple $\Lambda(u)$ as

$$\Lambda(u)=(v_1,v_2,\ldots,v_k),$$

where v_i is the root of the tree of F_i that contains u.

Guidance system

A guidance system Λ in a graph G is a set of rooted forests

 (F_1, F_2, \ldots, F_k)

where $V(F_i) = V(G)$ and $F_i \subseteq G$ for each *i*.

• For each $u \in V(G)$, define k-tuple $\Lambda(u)$ as

$$\Lambda(u)=(v_1,v_2,\ldots,v_k),$$

where v_i is the root of the tree of F_i that contains u.

• A vertex subset X is *captured* by Λ if $X \subseteq \Lambda(u)$ for some vertex u.

Guided treewidth

• Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.

Guided treewidth

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Guided treewidth

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $gtw(G) \le f(tw(G))$ for every graph G.
- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{tw}(G))$ for every graph G.

Theorem

There is a function f such that $gtw(G) \le f(pw(G))$ for every graph G.

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{tw}(G))$ for every graph G.

Theorem

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{pw}(G))$ for every graph G.

• We would be done if Conjecture was proved.

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{tw}(G))$ for every graph G.

Theorem

There is a function f such that $gtw(G) \le f(pw(G))$ for every graph G.

- We would be done if Conjecture was proved.
- In our proof, we circumvent proving the Conjecture.

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{tw}(G))$ for every graph G.

Theorem

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{pw}(G))$ for every graph G.

- We would be done if Conjecture was proved.
- In our proof, we circumvent proving the Conjecture.
- Rest of the talk: Proof of the Theorem.

- Fact: If a decomposition is captured by a guidance system of constant size, then it can be constructed by an MSO-transduction.
- **Guided treewidth** of *G*, denoted **gtw**(*G*), is the smallest size of a guidance system that captures a tree decomposition of *G*.

Conjecture

There is a function f such that $\mathbf{gtw}(G) \leq f(\mathbf{tw}(G))$ for every graph G.

Theorem

There is a function f such that $gtw(G) \le f(pw(G))$ for every graph G.

- We would be done if Conjecture was proved.
- In our proof, we circumvent proving the Conjecture.
- Rest of the talk: Proof of the Theorem.
- Tool: Simon's factorization forest.

• Suppose S is a finite semigroup.

- Suppose *S* is a finite semigroup.
- Setting: We are given a long word

 $a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{n-2} \cdot a_{n-1} \cdot a_n$

with $a_i \in S$. We want to "factorize" the product "efficiently".

- Suppose S is a finite semigroup.
- Setting: We are given a long word

$$a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{n-2} \cdot a_{n-1} \cdot a_n$$

with $a_i \in S$. We want to "factorize" the product "efficiently". • Binary factorization:

- Suppose S is a finite semigroup.
- Setting: We are given a long word

$$a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_{n-2} \cdot a_{n-1} \cdot a_n$$

with $a_i \in S$. We want to "factorize" the product "efficiently". • Binary factorization:

• We need **constant** depth, depending only on |S|.

Binary node

path decomp. of width $k \Rightarrow$ word over a semigroup of size f(k)

apply induction on the depth of the factorization forest

• Bi-interface graph:

Bi-interface graph:

Graph with left and right interfaces, numbered from 1 to k.

• Not every number has to be used.

Bi-interface graph:

- Not every number has to be used.
- If a vertex is both a left and a right interface, its number in both interfaces is the same.

Bi-interface graph:

- Not every number has to be used.
- If a vertex is both a left and a right interface, its number in both interfaces is the same.
- Natural gluing operation.

Bi-interface graph:

- Not every number has to be used.
- If a vertex is both a left and a right interface, its number in both interfaces is the same.
- Natural gluing operation.
- Parameter k is the **arity** of the bi-interface graph.

• Bi-interface graphs of arity k with gluing \oplus form a semigroup.

- Bi-interface graphs of arity k with gluing \oplus form a semigroup.
- Lemma: If a graph has pathwidth ≤ k, then it can be written as
 ⊞₁ ⊕ ℍ₂ ⊕ ... ⊕ ℍ_t where ℍ_i has arity k and contains no
 non-interface vertices (is *basic*).

- Bi-interface graphs of arity k with gluing \oplus form a semigroup.
- Lemma: If a graph has pathwidth ≤ k, then it can be written as
 ⊞₁ ⊕ ℍ₂ ⊕ . . . ⊕ ℍ_t where ℍ_i has arity k and contains no
 non-interface vertices (is *basic*).
- **Issue**: This semigroup is infinite.

- Bi-interface graphs of arity k with gluing \oplus form a semigroup.
- Lemma: If a graph has pathwidth ≤ k, then it can be written as
 ⊞₁ ⊕ ℍ₂ ⊕ . . . ⊕ ℍ_t where ℍ_i has arity k and contains no
 non-interface vertices (is *basic*).
- Issue: This semigroup is infinite.
- Define abstraction as torso with respect to interfaces.

- Bi-interface graphs of arity k with gluing \oplus form a semigroup.
- Lemma: If a graph has pathwidth ≤ k, then it can be written as
 ⊞₁ ⊕ ℍ₂ ⊕ . . . ⊕ ℍ_t where ℍ_i has arity k and contains no
 non-interface vertices (is *basic*).
- Issue: This semigroup is infinite.
- Define abstraction as torso with respect to interfaces.

• Consider operation on basic bi-interface graphs of arity k:

 $\mathbb{G}_1\oplus_{\mathrm{t}}\mathbb{G}_2=[\![\mathbb{G}_1\oplus\mathbb{G}_2]\!].$

- Bi-interface graphs of arity k with gluing \oplus form a semigroup.
- Lemma: If a graph has pathwidth ≤ k, then it can be written as
 ⊞₁ ⊕ ℍ₂ ⊕ . . . ⊕ ℍ_t where ℍ_i has arity k and contains no
 non-interface vertices (is *basic*).
- Issue: This semigroup is infinite.
- Define **abstraction** as torso with respect to interfaces.

• Consider operation on basic bi-interface graphs of arity k:

$$\mathbb{G}_1 \oplus_{\mathrm{t}} \mathbb{G}_2 = \llbracket \mathbb{G}_1 \oplus \mathbb{G}_2 \rrbracket.$$

• This forms a semigroup S of size $2^{\mathcal{O}(k^2)}$.

• Idea: Induction on the depth of Simon's factorization over \mathcal{S} .

- Idea: Induction on the depth of Simon's factorization over \mathcal{S} .
- Claim: $gtw(\mathbb{G}) \leq f(k, d)$, where d is the depth of factorization.

- Idea: Induction on the depth of Simon's factorization over \mathcal{S} .
- **Claim**: **gtw**(ℂ) ≤ *f*(*k*, *d*), where *d* is the depth of factorization.
- **Goal**: Guided treewidth increases in a controlled way when gluing as in binary and idempotent nodes.

- Idea: Induction on the depth of Simon's factorization over \mathcal{S} .
- **Claim**: **gtw**(ℂ) ≤ *f*(*k*, *d*), where *d* is the depth of factorization.
- **Goal**: Guided treewidth increases in a controlled way when gluing as in binary and idempotent nodes.

Binary lemma

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

 $\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).$

- Idea: Induction on the depth of Simon's factorization over \mathcal{S} .
- Claim: gtw(ℂ) ≤ f(k, d), where d is the depth of factorization.
- **Goal**: Guided treewidth increases in a controlled way when gluing as in binary and idempotent nodes.

Binary lemma

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

$$\operatorname{\mathsf{gtw}}(\mathbb{G}_1\oplus\mathbb{G}_2)\leq k+2^k\cdot\max(\operatorname{\mathsf{gtw}}(\mathbb{G}_1),\operatorname{\mathsf{gtw}}(\mathbb{G}_2)).$$

Idempotent lemma

If $\mathbb{G}_1,\ldots,\mathbb{G}_t$ are bi-int. graphs of arity k with $[\![\mathbb{G}_1]\!]=\ldots=[\![\mathbb{G}_t]\!]$, then

$$\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \leq k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} \{\mathbf{gtw}(\mathbb{G}_i)\}$$

- Idea: Induction on the depth of Simon's factorization over \mathcal{S} .
- Claim: gtw(ℂ) ≤ f(k, d), where d is the depth of factorization.
- **Goal**: Guided treewidth increases in a controlled way when gluing as in binary and idempotent nodes.

Binary lemma

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

$$\operatorname{\mathsf{gtw}}(\mathbb{G}_1\oplus\mathbb{G}_2)\leq k+2^k\cdot\max(\operatorname{\mathsf{gtw}}(\mathbb{G}_1),\operatorname{\mathsf{gtw}}(\mathbb{G}_2)).$$

Idempotent lemma

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $[\![\mathbb{G}_1]\!] = \ldots = [\![\mathbb{G}_t]\!]$, then

$$\mathsf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \leq k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} \{\mathsf{gtw}(\mathbb{G}_i)\}$$

• These functions stack at most $3|S| = 2^{O(k^2)}$ times and we are done.

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

```
\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).
```

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

 $\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).$

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

 $\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).$

• Fact 1: $gtw(G - u) \le 2 \cdot gtw(G)$.

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

 $\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).$

 $(\mathbb{G}_1-\mathrm{right}) \uplus (\mathbb{G}_2-\mathrm{left})$

- Fact 1: $gtw(G u) \le 2 \cdot gtw(G)$.
- Fact 2: $gtw(G_1 \uplus G_2) = max(gtw(G_1), gtw(G_2))$.

If \mathbb{G}_1 and \mathbb{G}_2 are bi-interface graphs of arity k, then

 $\mathbf{gtw}(\mathbb{G}_1 \oplus \mathbb{G}_2) \leq k + 2^k \cdot \max(\mathbf{gtw}(\mathbb{G}_1), \mathbf{gtw}(\mathbb{G}_2)).$

- Fact 1: $gtw(G u) \le 2 \cdot gtw(G)$.
- Fact 2: $gtw(G_1 \uplus G_2) = max(gtw(G_1), gtw(G_2))$.
- Fact 3: $gtw(G) \le gtw(G-u) + 1$.

Idempotent lemma

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} {\{\mathbf{gtw}(\mathbb{G}_i)\}}.$

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1} {}_t \{\mathbf{gtw}(\mathbb{G}_i)\}.$

• Apply same strategy ~> Too many interfaces to reintroduce.

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} \{\mathbf{gtw}(\mathbb{G}_i)\}.$

- Apply same strategy ~> Too many interfaces to reintroduce.
- For each interface we add a spanning tree of the whole graph just to span nearby columns!

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} {\mathbf{gtw}(\mathbb{G}_i)}.$

- Apply same strategy ~> Too many interfaces to reintroduce.
- For each interface we add a spanning tree of the whole graph just to span nearby columns!
- **Solution**: Instead, span only $\mathcal{O}(k^2)$ nearby columns.

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} {\mathbf{gtw}(\mathbb{G}_i)}.$

- Apply same strategy ~> Too many interfaces to reintroduce.
- For each interface we add a spanning tree of the whole graph just to span nearby columns!
- **Solution**: Instead, span only $\mathcal{O}(k^2)$ nearby columns.
 - Here we use that abstractions are the same.

If $\mathbb{G}_1, \ldots, \mathbb{G}_t$ are bi-int. graphs of arity k with $\llbracket \mathbb{G}_1 \rrbracket = \ldots = \llbracket \mathbb{G}_t \rrbracket$, then $\mathbf{gtw}(\mathbb{G}_1 \oplus \ldots \oplus \mathbb{G}_t) \le k(4k^2 + 5) + 8^k \cdot \max_{i=1,\ldots,t} {\mathbf{gtw}(\mathbb{G}_i)}.$

- Apply same strategy ~> Too many interfaces to reintroduce.
- For each interface we add a spanning tree of the whole graph just to span nearby columns!
- **Solution**: Instead, span only $\mathcal{O}(k^2)$ nearby columns.
 - Here we use that abstractions are the same.
- Trees can be colored with $\mathcal{O}(k^3)$ colors and grouped into forests.

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of \mathcal{T} can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).

• Lifting pathwidth to treewidth:

- If $\mathbf{tw}(\overline{G}) \leq k$, then there is a tree decomposition \mathcal{T} of G such that
 - adhesions of \mathcal{T} can be captured by a guidance system of size f(k);
 - the torso of each bag has pathwidth at most f(k).
 - Combine both decompositions at the level of MSO-transductions.

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(\overline{G}) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of T can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).
- Combine both decompositions at the level of MSO-transductions.
- Further work (BP; STACS 2017):

• Lifting pathwidth to treewidth:

- If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that
 - adhesions of T can be captured by a guidance system of size f(k);
 - the torso of each bag has pathwidth at most f(k).
 - Combine both decompositions at the level of MSO-transductions.
- Further work (BP; STACS 2017):
 - For all k, there is an MSO-transduction that given a graph of treewidth k, outputs a tree decomposition of width at most k.

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of T can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).
- Combine both decompositions at the level of MSO-transductions.

• Further work (BP; STACS 2017):

• For all k, there is an MSO-transduction that given a graph of treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that $gtw(G) \le f(tw(G))$ for every graph G.

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of T can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).
- Combine both decompositions at the level of MSO-transductions.
- Further work (BP; STACS 2017):
 - For all k, there is an MSO-transduction that given a graph of treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that $gtw(G) \le f(tw(G))$ for every graph G.

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum width tree decomposition captured by a guidance system of size f(k).

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of T can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).
- Combine both decompositions at the level of MSO-transductions.
- Further work (BP; STACS 2017):
 - For all k, there is an MSO-transduction that given a graph of treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that $gtw(G) \le f(tw(G))$ for every graph G.

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum width tree decomposition captured by a guidance system of size f(k).

• Lifting pathwidth to treewidth:

If $\mathbf{tw}(G) \leq k$, then there is a tree decomposition \mathcal{T} of G such that

- adhesions of T can be captured by a guidance system of size f(k);
- the torso of each bag has pathwidth at most f(k).
- Combine both decompositions at the level of MSO-transductions.
- Further work (BP; STACS 2017):
 - For all k, there is an MSO-transduction that given a graph of treewidth k, outputs a tree decomposition of width at most k.

Conjecture

There is a function f such that $gtw(G) \le f(tw(G))$ for every graph G.

Conjecture

There is a function f s.t. every graph of treewidth k has an optimum width tree decomposition captured by a guidance system of size f(k).

• Thanks for attention!