
Logic and
Graphons

Mirna Džamonja
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Our friend the graphon

A graphon is a limit of a convergent sequence of finite
graphs in the graphon space, which is the completion of
the metric space consisting of the set of finite graphs
endowed with the cut metric.

The graphon space is a compact space and this fact is
equivalent to strong forms of the Szemeredi Regularity
Lemma from graph theory. Graphons can be realised as
symmetric, Lebesgue measurable functions from [0,1]2 to
[0,1], and we can also view them as certain weighted
graphs on [0,1].

More importantly for us, the graphon space is actually a
subspace of an ultraproduct of a sequence of finite
graphs, as discovered by Elek and Szegedy in 2007.



Logic and
Graphons

Mirna Džamonja
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Ultrafilters

A filter F on a set κ is a family of non-empty subsets of κ
such that:

if A ⊆ B and A ∈ F then B ∈ F and
F is closed under the intersection of two, hence
finitely many, elements.

A filter U that is maximal wrto these properties is an
ultrafilter. Equivalently, an ultrafilter is a filter that contains
exactly one among {X , κr X} for every X ⊆ κ. An
example are the principal ultrafilters given by
{X ⊆ κ : α ∈ X} for some α ∈ κ. We are interested in
non-principal ultrafilters U on an infinite cardinal κ, which
always exist thanks to the Axiom of Choice.
We can think of an ultrafilter as a 2-valued finitely additive
measure on κ. ‘In U ’ means a lots’.
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Ultraproducts

If 〈Aα : α < κ〉 is a sequence of sets, U an ultrafilter on κ,
the ultraproduct

∏
α<κ Aα/U of these sets is

the set of
equivalence classes of

∏
α<κ Aα with respect to x̄ =U ȳ iff

{α < κ : xα = yα} ∈ U . Similarly, we can define the
ultraproduct of structures Aα of the same signature. An
important theorem is

Theorem (Łoś 1955) For any first-order formula ϕ(x) and
ā ∈

∏
α<κAα/U we have∏
α<κ

Aα/U |= ϕ[ā] iff {α < κ : Aα |= ϕ[aα]} ∈ U .
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ā ∈

∏
α<κAα/U we have∏
α<κ
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Ultraproduct the superstar

Many beautiful theorems in model theory of the 1950-60s
were proved using the ultraproducts. Set theorists love
ultraproducts since they give rise to elementary
embeddings, a staple of large cardinal theory. But since a
few years ago, everybody loves ultraproducts since
Terrence Tao wrote about them in his blog :-). Why?
Let F be a field (finite), M ∈ ω, we consider subsets of F
definable by a formula of complexity M.
Theorem (Tao 2013) (Algebraic Regularity Lemma) For
every M there is C = CM > 0 such that for any finite field
F of characteristic ≥ C, ∅ 6= V ,W ⊆ F ,E ⊆ V ×W all
definable of complexity ≤ M, there exist partitions of V
into a ≤ C and W into b ≤ C pieces Vi(i < a),Wj(j < b) :

such that |Vi | ≥ |V |/C, |Wj | ≥ |W |/C and Vi , Wj are
definable of complexity ≤ C and
if A ⊆ Vi ,B ⊆Wj then

||E ∩ (A× B)| −
|E ∩ (Vi × Vj)|
|Vi ||Wj |

≤ C|F |−1/4|Vi ||Wj |.
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Pillay and Starchenko

Tao gave a spectral methods proof ant noticed that the
absence of irregular pairs resembles Malliaris-Shelah’s
characterisation of the absence of irregular pairs in stable
pairs. But he was not aware of the technology available
for definable formulas in ultraproducts of fields, developed
by Hrushovski and Pillay in the 1990s.

Pillay and Starchenko (2013) used this technology to give
a different proof of Tao’s algebraicity lemma and were
able to replace ‘characteristic of F ≥ C’ by ‘|F | ≥ C’ (so
the theorem works for characteristic 0 too). Tao very
much liked the proof and gave a very nice publicity to it
and the ultraproducts in his blog. A very nice proof but it
uses a lot of machinery from the model theory of fields
(dimensions and measures), previously developed by
Chatzidakis, van den Dries and Macintyre (1992).
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uses a lot of machinery from the model theory of fields
(dimensions and measures), previously developed by
Chatzidakis, van den Dries and Macintyre (1992).
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A proof using graphons

With Tomašić we observe a proof using graphons.

Let ϕ(x) be a parameter-free formula in the language of
rings. There is a finite set T = T (ϕ) of primes and a
constant M = M(ϕ) such that ϕ(Fq) 6= ∅ whenever
char(Fq) /∈ T and q ≥ M.

Theorem Let Γ be a parameter-free definable bipartite
graph. The set of accumulation points of the family of
finite graphs

{Γ(Fq) : q large enough so that Γ(Fq) 6= ∅}

in the space of graphons is a finite set of stepfunctions.

The same ideas apply to schemes more generally.
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Erdös-Hajnal conjecture

Another theorem recently re-proved using the ultrapowers
of finite sets is the following:

Theorem (Malliaris and Shelah (2014)) Suppose that H
is a stable graph. Then there is a δ > 0 such that every
finite H-free graph has either a clique or an independent
set of size ≥ |V |δ.

This is part of their regularity lemma for stable graphs
proof. Uses lots of machinery about ranks in stable
theories. Redone later by Malliaris and Pillay using
geometric stability theory.

Chernikov and Starchenko (to appear) give an elegant
short proof of the above theorem using dimensions in
ultraproducts developed by Hrushovski. Ivan and I are
looking to get a proof using graphons and to extend it to
NIP.
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Queen Mary)

Erdös-Hajnal conjecture

Another theorem recently re-proved using the ultrapowers
of finite sets is the following:

Theorem (Malliaris and Shelah (2014)) Suppose that H
is a stable graph. Then there is a δ > 0 such that every
finite H-free graph has either a clique or an independent
set of size ≥ |V |δ.

This is part of their regularity lemma for stable graphs
proof. Uses lots of machinery about ranks in stable
theories. Redone later by Malliaris and Pillay using
geometric stability theory.

Chernikov and Starchenko (to appear) give an elegant
short proof of the above theorem using dimensions in
ultraproducts developed by Hrushovski.

Ivan and I are
looking to get a proof using graphons and to extend it to
NIP.



Logic and
Graphons

Mirna Džamonja
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Mirna Džamonja
(work in progress
with Ivan Tomašić,
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Measures on ultraproducts : Loeb

To derive a generalisation of graphons to hypergraphs
Elek and Szegedi (2007) used an ultraproduct and
re-developed (a special case) of a measure introduced by
Loeb in 1975.

In this, we work again with an ultraproduct
∏
α<κAα/U

but assume that each Aα is equipped with a finitely
additive probability measure µα. In a natural way we
define a product measure µ on the sets of the form∏
α<κ Xα/U (the internal sets) where each Xα is

measurable. By a result of Keisler (1961), if we assume
that U is not closed under countable unions, then this
measure is countably additive on the algebra of internal
sets (which is not necessarily a σ-algebra). But then
apply Charatheodory’s extension to extend to the
σ-algebra generated.
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Queen Mary)

Measures on ultraproducts : Loeb

To derive a generalisation of graphons to hypergraphs
Elek and Szegedi (2007) used an ultraproduct and
re-developed (a special case) of a measure introduced by
Loeb in 1975.

In this, we work again with an ultraproduct
∏
α<κAα/U

but assume that each Aα is equipped with a finitely
additive probability measure µα. In a natural way we
define a product measure µ on the sets of the form∏
α<κ Xα/U (the internal sets)

where each Xα is
measurable. By a result of Keisler (1961), if we assume
that U is not closed under countable unions, then this
measure is countably additive on the algebra of internal
sets (which is not necessarily a σ-algebra). But then
apply Charatheodory’s extension to extend to the
σ-algebra generated.



Logic and
Graphons

Mirna Džamonja
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This measure is not separable so the algebra is not
isomorphic to that of [0,1] with Lebesgue measure, rather
to that of [0,1]λ with the product measure, for some λ
(Maharam’s theorem).

Elek and Szegedi use the special case of finite Aα and
separable approximations to develop a hypergraphon (by
projecting to [0,1]). This is called separable realisations.
Elek and Szegedy and Aroskar and Cummings both
wrote about this, but the best reference is : Tao’s blog. :-)
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Queen Mary)

This measure is not separable so the algebra is not
isomorphic to that of [0,1] with Lebesgue measure, rather
to that of [0,1]λ with the product measure, for some λ
(Maharam’s theorem).

Elek and Szegedi use the special case of finite Aα and
separable approximations to develop a hypergraphon (by
projecting to [0,1]). This is called separable realisations.
Elek and Szegedy and Aroskar and Cummings both
wrote about this, but the best reference is : Tao’s blog. :-)



Logic and
Graphons

Mirna Džamonja
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Measures on ultraproducts : Loeb II

We can use that same construction but forget about the
separable approximations to work with the general case
of objects with a finitely additive measure (e.g. Boolean
algebras) and obtain a limit object as a measurable
function from of ([0,1]λ)2 to [0,1]. The construction of the
measure was known since Loeb but the identification of
the limiting object is new and inspired by graphons. The
fact that we do not get a real graphon is not surprising as
it resembles the situation with Fraı̈ssé limits, for example
for classes of groups or semi-groups (no countable one in
general).

The advantage of an ultraproduct construction is that it
includes objects with a function symbol.

But are there any ultrafilters which are not closed under
countable unions (countably incomplete)? Plenty.

Theorem (Kunen 1972) For every κ there are 22κ
many

countably incomplete ’good’ ultrafilters over κ.
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Queen Mary)

Measures on ultraproducts : Loeb II
We can use that same construction but forget about the
separable approximations to work with the general case
of objects with a finitely additive measure (e.g. Boolean
algebras) and obtain a limit object as a measurable
function from of ([0,1]λ)2 to [0,1]. The construction of the
measure was known since Loeb but the identification of
the limiting object is new and inspired by graphons. The
fact that we do not get a real graphon is not surprising as
it resembles the situation with Fraı̈ssé limits, for example
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the limiting object is new and inspired by graphons. The
fact that we do not get a real graphon is not surprising as
it resembles the situation with Fraı̈ssé limits, for example
for classes of groups or semi-groups (no countable one in
general).

The advantage of an ultraproduct construction is that it
includes objects with a function symbol.

But are there any ultrafilters which are not closed under
countable unions (countably incomplete)? Plenty.

Theorem (Kunen 1972) For every κ there are 22κ
many

countably incomplete ’good’ ultrafilters over κ.
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for classes of groups or semi-groups (no countable one in
general).

The advantage of an ultraproduct construction is that it
includes objects with a function symbol.

But are there any ultrafilters which are not closed under
countable unions (countably incomplete)? Plenty.

Theorem (Kunen 1972) For every κ there are 22κ
many

countably incomplete ’good’ ultrafilters over κ.



Logic and
Graphons

Mirna Džamonja
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Large cardinals

Incomplete filters give saturated ultraproducts, which is
essential for Loeb’s measure. Exactly the opposite are
the super-complete’ ultrafilters’ i.e. closed under the
union of < κ-many elements (this is only interesting for
κ > ℵ0). They give strong versions of Łoś’s theorem,
reflecting infinitary formulas.
For example, forming an ultraproduct of infinite graphs
that avoid a fixed infinite configuration over a κ-complete
U , gives an ultraproduct graph which also avoids such a
configuration. Or such an ultraproduct of well founded
structures gives a well-founded structure (a favourite in
set theory since it allows for elementary embeddings of
the universe V of set theory to another well founded
universe).
These ultrafilters do not give rise to the Loeb meaasure,
but we can develop the theory of definability and
dimensions similar to what was done in geometric stablity
theory fo the countable case.
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Queen Mary)

Large cardinals
Incomplete filters give saturated ultraproducts, which is
essential for Loeb’s measure. Exactly the opposite are
the super-complete’ ultrafilters’ i.e. closed under the
union of < κ-many elements (this is only interesting for
κ > ℵ0). They give strong versions of Łoś’s theorem,
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Queen Mary)

But do the ‘super-complete’ ultrafilters exist?

We hope so
but will never be able to prove it (in ZFC): the existence of
such an ultrafilter on κ means that κ is measurable and
implies that Vκ is a set model of ZFC. Hence by Goedel’s
incompleteness theorem, such a κ cannot be proved to
exist just by using ZFC.
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