Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Structural Limits

Jaroslav Nešetřil

Patrice Ossona de Mendez

Charles University Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS Paris, France

- Warwick
$$\binom{2^{\binom{2^2}{2}}}{2}$$
 -

(日)、(四)、(日)、(日)、

Contents

Introduction

Structural Limits

General Representation Theorems

Stone Spaces

Interpretations

Near the Limit

Modelings

Perspectives

Introduction

・ロト ・ 日 ・ ・ ヨ ・ ・

∃⇒

Issues

- How to describe/approximate a network?
- How much is a network structured? How much is it random-like?
- How to check whether a network has (or is close to have) some property?
- How to compare the structures of two networks?
- How to represent limits of networks?
- Asymptotic structure of the networks in a convergent sequence?

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ Ē

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Structural Limits

・ロト ・日下・ ・日下

Structural Limits

Definition (Stone pairing)

Let ϕ be a first-order formula with p free variables and let G = (V, E) be a graph.

The *Stone pairing* of ϕ and *G* is

$$\langle \phi, G \rangle = \Pr(G \models \phi(X_1, \dots, X_p)),$$

for independently and uniformly distributed $X_i \in G$. That is:

$$\langle \phi, G \rangle = \frac{|\phi(G)|}{|G|^p}.$$

ъ

Structural Limits

Definition

A sequence (G_n) is *X*-convergent if, for every $\phi \in X$, the sequence $\langle \phi, G_1 \rangle, \ldots, \langle \phi, G_n \rangle, \ldots$ is convergent.

FO_{0}	Sentences	Elementary limits
QF	Quantifier free formulas	Left limits
$\mathrm{FO}^{\mathrm{local}}$	Local formulas	Local limits
FO	All first-order formulas	FO-limits

3

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

General Representation Theorems

・ロト ・個ト ・モト ・モト

Three Types of Limits Objects

	Non-Standard	Distributional	Analytic
Dense (Left limit)	Ultraproduct + Loeb measure (Elek, Szegedy '07)	Exchangeable random graph (Aldous '81, Hoover '79)	Graphon (Lovász et al. '06)
Sparse (Local limit)	_	Unimodular distribution (Benjamini, Schramm '01)	Graphing (Elek '07)
General (Structural limit)	Ultraproduct + Loeb measure (Nešetril, POM '12)	Invariant distribution (Nešetril, POM '12)	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■

Non-Standard Limit: Ultraproduct with Loeb Measure

Theorem (Nešetril, POM 2012)

Let $(G_n)_{n \in \mathbb{N}}$ be FO-convergent and let U be a non-principal ultrafilter on \mathbb{N} . Then there exists a probability measure ν on the ultraproduct $\prod_U G_n$ such that for every first-order formula ϕ with p free variables it holds:

$$\int \cdots \int \mathbf{1}_{\phi}([x_1], \dots, [x_p]) \, \mathrm{d}\nu([x_1]) \, \dots \, \mathrm{d}\nu([x_p]) = \lim_{U} \langle \psi, G_i \rangle.$$

Not product σ -algebra, but Fubini-like properties ____

(Follows Elek, Szegedy '07; See also Keisler '77)

Distributionual Limit

Theorem (Nešetřil, POM 2012)

There are maps $G \mapsto \mu_G$ and $\phi \mapsto k(\phi)$, such that

- $G \mapsto \mu_G$ is injective
- $\langle \phi, G \rangle = \int_S k(\phi) \, \mathrm{d} \mu_G$
- A sequence $(G_n)_{n \in \mathbb{N}}$ is X-convergent iff μ_{G_n} converges weakly.

Thus if $\mu_{G_n} \Rightarrow \mu$, it holds

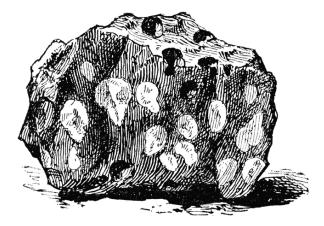
$$\int_{S} k(\phi) \,\mathrm{d}\mu = \lim_{n \to \infty} \int_{S} k(\phi) \,\mathrm{d}\mu_{G_n} = \lim_{n \to \infty} \langle \phi, G_n \rangle.$$

Note: $FO_p \to \mathfrak{S}_p$ -invariance;

 $\mathrm{FO} \to \mathfrak{S}_{\omega}$ -invariance.

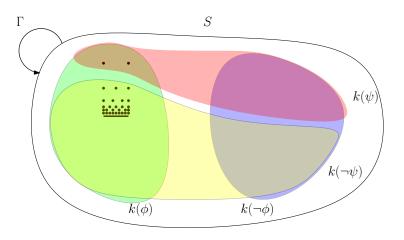
Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Stone Spaces



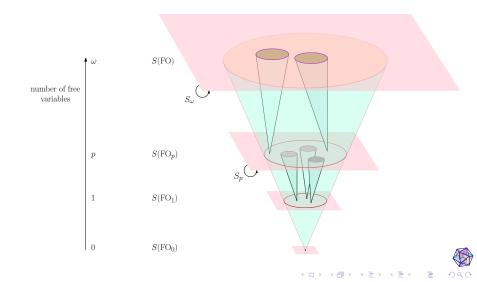
◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ◇

Stone Space



A topological version of Venn diagrams

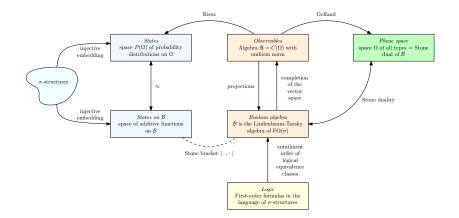
Stone Spaces



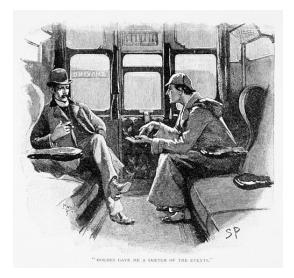
Structural Limits

Boolean algebra $\mathcal{B}(X)$	Stone Space $S(\mathcal{B}(X))$
Formula ϕ	Continuous function f_{ϕ}
Vertex v	"Type of vertex" ${\cal T}$
Structure A	probability measure $\mu_{\mathbf{A}}$
$\langle \phi, {f A} angle$	$\int f_{\phi}(T) \mathrm{d}\mu_{\mathbf{A}}(T)$
X-convergent (\mathbf{A}_n)	weakly convergent $\mu_{\mathbf{A}_n}$
$\Gamma = \operatorname{Aut}(\mathcal{B}(X))$	Γ -invariant measure

Ingredients of the proof



The Elementary Convergence Case



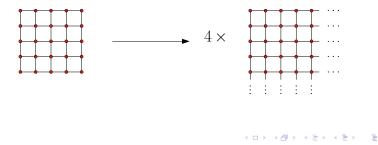
・ロト ・四ト ・ヨト ・ヨト

Elementary convergence

For $\phi \in FO_0$, we have

$$\langle \phi, G \rangle = \begin{cases} 1 & \text{if } G \models \phi, \\ 0 & \text{otherwise.} \end{cases}$$

FO₀-convergence is called elementary convergence.



Limit Object

Proposition (Gödel+Löwenheim-Skolem)

Every elementarily convergent sequence of finite graphs has a limit, which is an at most countable graph.

Complete theories with Finite Model Property form a closed subset of the Stone dual of FO_0 but ...

No characterization of elementary limits

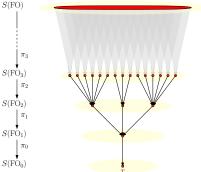
Trakhtenbrot's theorem states that the problem of existence of a finite model for a single first-order sentence is undecidable.

Special Elementary Limits 1: ω -categorical

A complete theory T is ω -categorical if it has a unique countable model.

 $\iff \forall p \in \mathbb{N}, \text{ the Stone dual} \\ \text{of FO}_p/T \text{ is finite}$

 \iff every countable model Gof T has an oligomorphic automorphism group: $\forall n \in \mathbb{N}$, G^n has finitely many orbits under the action of $\operatorname{Aut}(G)$.



A D F A D F A D F A D F

Special Elementary Limits 2: Ultrahomogeneous

A graph G is *ultrahomogeneous* if every isomorphism between two of its induced subgraphs can be extended to an automorphism. The only countably infinite homogeneous graphs are:

- ωK_n , nK_{ω} , ωK_{ω} , and complements;
- the Rado graph;
- the Henson graphs and complements.

Proposition

If $(G_n)_{n \in \mathbb{N}}$ is elementarily convergent to an ultrahomogeneous graph, then $(G_n)_{n \in \mathbb{N}}$ is FO-convergent if and only if $(G_n)_{n \in \mathbb{N}}$ is QF-convergent.

Example

Theorem (Nešetril, Ossona de Mendez)

Let $0 and let <math>G_n \in G(n, p)$ be independent random graphs with edge probability p. Then $(G_n)_{n \in \mathbb{N}}$ is almost surely FO-convergent.

Proof.

 $(G_n)_{n \in \mathbb{N}}$ almost surely converges elementarily to the Rado graph, and almost surely QF-converges.

Problem (Cherlin)

Is the generic countable triangle-free graph elementary limit of finite graphs?

The Quantifier-Free Case

・ロト ・個ト ・モト ・モト

Left Convergence

$$F \mapsto \phi_F = \bigwedge_{ij \in E(F)} (x_i \sim x_j)$$

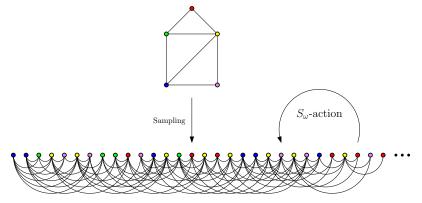
Then

$$\langle \phi_F, G \rangle = \frac{\hom(F,G)}{|G|^{|F|}} = t(F,G).$$

Hence, if $|G_n| \to \infty$

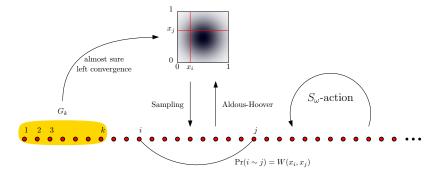
 $(G_n)_{n \in \mathbb{N}}$ is left convergent if and only if it is QF-convergent.

The Infinite Exchangeable Graph



. . .

The Infinite Exchangeable Graph



. . .

Extensions

- ✓ colored, directed, decorated graphs (Lovász, Szegedy '10);
- ✓ regular hypergraphs (Elek, Szegedy '12; Zhao '14);
- ✓ relational structures (Aroskar '12; Aroskar, Cummings '14);
- algebraic structures.

Algebraic Structures

Signature $\sigma = (f_0, \ldots, f_d), f_i$ involution

- \longrightarrow encodes graphs with maximum degree d;
- \longrightarrow QF₁-limit equivalent to local limit;
- \longrightarrow limit object with same signature, f_i measure preserving involution (= graphing).

Thus...

General QF-convergence extends both left limits and local limits of graphs with bounded degrees.

The Local Case

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

Local Formulas

Definition

A formula ϕ is *local* if there exists r such that satisfaction of ϕ only depends on the r-neighborhood of the free variables:

$$G \models \phi(v_1, \dots, v_p) \iff G[N_r(\{v_1, \dots, v_p\})] \models \phi(v_1, \dots, v_p).$$

Definition

A sequence (G_n) is *local-convergent* if, for every $\phi \in \text{FO}^{\text{local}}$, the sequence $\langle \phi, G_1 \rangle, \ldots, \langle \phi, G_n \rangle, \ldots$ is convergent.

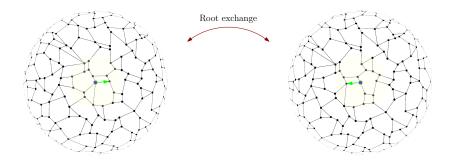
 (G_n) is local-convergent if, for every local formula ϕ , the probability that G_n satisfies ϕ for a random assignment of the free variables converges.

Local Convergent Sequence of Bounded Degree Graphs

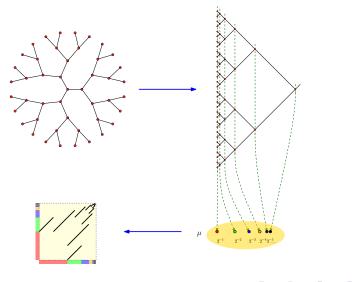
For a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs with degree $\leq d$ the following are equivalent:

- 1. the sequence $(G_n)_{n \in \mathbb{N}}$ is local convergent (in the sense of Benjamini and Schramm);
- 2. the sequence $(G_n)_{n \in \mathbb{N}}$ is FO₁^{local}-convergent;
- 3. the sequence $(G_n)_{n \in \mathbb{N}}$ is local-convergent (in our sense).

The Unimodular Distribution



Example



Why Formulas?

Consider extension of local convergence: $(G_n)_{n \in \mathbb{N}}$ converges if, for every d and rooted (F, r) there is some $t_d(F)$ such that $\Pr[B_d(G_n, X) \simeq (F, r)] \longrightarrow t_d(F).$

Why Formulas?

Consider extension of local convergence: $(G_n)_{n \in \mathbb{N}}$ converges if, for every d and rooted (F, r) there is some $t_d(F)$ such that $\Pr[B_d(G_n, X) \simeq (F, r)] \longrightarrow t_d(F).$

No limit probability distribution!

Example: G_n any *n*-regular graph. Then for every d and every (F, r) it holds

$$\Pr[B_d(G_n, X) \simeq (F, r)] \longrightarrow 0.$$

ъ

Why Local Convergence?

Proposition (Nešetřil, Ossona de Mendez)

A sequence G_1, \ldots, G_n, \ldots of graphs is FO-convergent if and only if it is both local convergent and elementarily convergent.

Theorem (Gaifman)

Every formula ϕ is equivalent to a Boolean combination of local formulas and sentences of the form

$$\exists y_1 \dots \exists y_m \left(\bigwedge_{1 \le i < j \le m} \operatorname{dist}(y_i, y_j) > 2r \land \bigwedge_{1 \le i \le m} \psi(y_i) \right)$$

where ψ is local.

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Interpretations

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Interpretation



イロト イポト イヨト イヨト 三日

Basic Properties

Every interpretation I of σ' -structures in σ -structures define

- a mapping $\mathbf{A} \mapsto \mathsf{I}(\mathbf{A})$ from $\operatorname{Rel}(\sigma)$ to $\operatorname{Rel}(\sigma')$
- a mapping $\phi \mapsto \mathsf{I}(\phi)$ from $\mathrm{FO}(\sigma')$ to $\mathrm{FO}(\sigma)$

such that for every $\mathbf{v}_1, \ldots, \mathbf{v}_p$ it holds

$$\mathsf{I}(\mathbf{A}) \models \phi(\mathbf{v}_1, \dots, \mathbf{v}_p) \quad \iff \mathbf{A} \models \mathsf{I}(\phi)(\mathbf{v}_1, \dots, \mathbf{v}_p).$$

In other words:

$$\phi(\mathsf{I}(\mathbf{A})) = \mathsf{I}(\phi)(\mathbf{A}).$$

Thus if the domain of $I(\mathbf{A})$ is $\eta(\mathbf{A})$ and if ϕ has p free variables it holds

$$\langle \phi, \mathsf{I}(\mathbf{A}) \rangle = \frac{\langle \mathsf{I}(\phi), \mathbf{A} \rangle}{\langle \eta, \mathbf{A} \rangle^p}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Near the Limit

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

Negligible Sequences

Definition

Let $\mathbf{G} = (G_n)_{n \in \mathbb{N}}$ be a local-convergent sequence. A sequence $\mathsf{X} = (X_n)_{n \in \mathbb{N}}$ of subsets $X_n \subseteq V(G_n)$ is *negligible* and we note $\mathsf{X} \approx \mathbf{0}$ if

$$\forall d \in \mathbb{N} \quad \limsup_{n \to \infty} \frac{|\mathcal{N}_{G_n}^d(X_n)|}{|G_n|} = 0.$$

Something you can safely remove

・ロト ・四ト ・ヨト ・ヨト

What is a cluster?

Definition

Let ${\boldsymbol{\mathsf{G}}}$ be a local-convergent sequence of graphs. A sequence ${\mathsf{X}}$ is a *cluster* of ${\boldsymbol{\mathsf{G}}}$ if the following conditions hold:

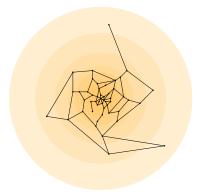
- 1. If one marks the elements of X_n in G_n the sequence of marked graphs is still local-convergent;
- 2. $\partial_{\mathbf{G}} \mathbf{X} \approx \mathbf{0}$ (i.e. the sequence $(\partial_{G_n} X_n)_{n \in \mathbb{N}}$ is negligible).

Remark

- condition 1 means that clusters are not "forced";
- condition 2 means that clusters can be separated.

↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @

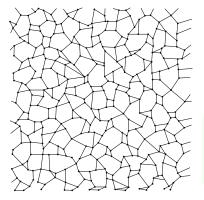
Globular Cluster



$$\begin{aligned} \forall \epsilon > 0 \ \exists d \in \mathbb{N} :\\ \liminf_{n \to \infty} \ \sup_{v_n \in X_n} \frac{|\mathcal{N}^d_{G_n}(v_n)|}{|X_n|} > 1 - \epsilon. \end{aligned}$$

(Almost) connected limit

Residual Cluster



$$\forall d \in \mathbb{N} :$$
$$\limsup_{n \to \infty} \sup_{v_n \in X_n} \frac{|\mathcal{N}_{G_n}^d(v_n)|}{|X_n|} = 0.$$

Zero-measure limit connected components

・ロト ・御ト ・ヨト ・ヨト 三臣

Marking of all Globular Clusters

Theorem (Nešetřil, Ossona de Mendez, 2015+)

Let **G** be a local convergent sequence of graphs. Then there exists (for all n) a marking G_n^+ of G_n by $S, R, M_1, \ldots, M_i, \ldots$ such that

- marks $S, R, M_1, \ldots, M_i, \ldots$ induce a partition of $V(G_n)$ and each mark M_i marks one of the connected components of $G_n \setminus S$;
- the sequence G^+ is local convergent;
- $S(\mathbf{G})$ is negligible in \mathbf{G}^+ ;
- $M_i(\mathbf{G})$ is a globular cluster of \mathbf{G}^+ ;
- $R(\mathbf{G})$ is a residual cluster of \mathbf{G}^+ .

Asymptotic Structure (Staphylococcus Aureus)



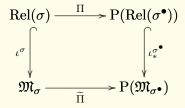
Asymptotic Structure (Milky Way)

Generic Point

How to transform a random point into a constant?

Theorem (1-point random lift theorem)

There exists a (unique) continuous function $\widetilde{\Pi} : \mathfrak{M}_{\sigma} \to P(\mathfrak{M}_{\sigma^{\bullet}})$ such that the following diagram commutes:



ъ

(日) (四) (同) (同)

Ingredients of the Proof

Local Stone pairing of ϕ and **A** at v:

$$\langle \phi, \mathbf{A} \rangle_{v} = \Pr(\mathbf{A} \models \phi(v, X_{2}, \dots, X_{p}))$$

$$\Psi_{5,7,9}$$

$$\Psi_{5,7,9}$$

$$\langle \Psi_{5,7,9}, \mathbf{A} \rangle = \mathbb{E}_{v} \Big[\langle \phi_{1}, \mathbf{A} \rangle_{v}^{5} \langle \phi_{2}, \mathbf{A} \rangle_{v}^{7} \langle \phi_{3}, \mathbf{A} \rangle_{v}^{9} \Big].$$

Characteristic function:

$$\gamma(\mathbf{t}) = \mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{D}}\right] = \sum_{w_1 \ge 0} \cdots \sum_{w_d \ge 0} \langle \psi_{\mathbf{w}}, \mathbf{A} \rangle \prod_{j=1}^d \frac{(it_j)^{w_j}}{w_j!}.$$

Application: Sizes of the Globular Clusters

Let

$$\varpi_d := \operatorname{dist}(x_1, x_2) \le d.$$

Then

$$m_d(k) = \lim_{n \to \infty} \langle \overbrace{\overline{\varpi_d \otimes_{x_1} \cdots \otimes_{x_1} \overline{\varpi_d}}^k, G_n \rangle = \lim_{n \to \infty} \mathbb{E}_v[\langle \overline{\varpi}, G_n \rangle_v^k].$$

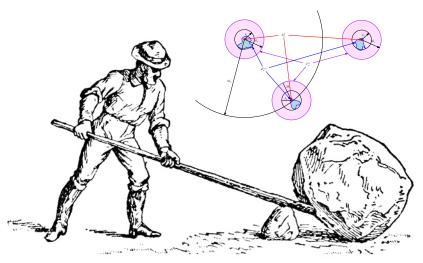
Thus $\forall \lambda > 0$, the number of globular clusters of measure λ is:

$$N(\lambda) = \frac{1}{\lambda} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \left[\sum_{k \ge 1} \lim_{d \to \infty} m_d(k) \, \frac{(is)^k}{k!} \right] e^{-i\lambda s} \, \mathrm{d}s$$

ъ

・ロト ・四ト ・ヨト ・ヨト

Keep digging...



(オロト オ創 と オミト オミト 「ヨート

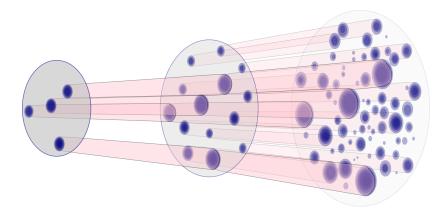
Details

$$\begin{split} \epsilon_z &= 2^{-z}, \, z_0(\lambda) = \left\lceil 5 - 2\log_2 \lambda \right\rceil, \\ \alpha_1(\lambda) &< \alpha_2(\lambda) < \dots < \lambda < \dots < \beta_2(\lambda) < \beta_1(\lambda) \text{ s.t. } \Lambda \cap [\alpha_1(\lambda), \beta_1(\lambda)] = \{\lambda\}, \\ \alpha_z(\lambda), \beta_z(\lambda) &\in \mathcal{R}, \, |\beta_z(\lambda) - \alpha_z(\lambda)| < \epsilon_z. \\ \delta_1(\lambda) &< \delta_2(\lambda) < \dots \text{ s.t. } \forall d \geq \delta_z(\lambda): \\ \left\{ \begin{array}{c} |F_d(\alpha_z(\lambda)) - F(\alpha_z(\lambda))| < \epsilon_z \\ |F_d(\beta_z(\lambda)) - F(\beta_z(\lambda))| < \epsilon_z \\ \eta_1(\lambda) < \eta_2(\lambda) < \dots \text{ s.t. } \forall z \in \mathbb{N}, \, \forall n \geq \eta_z(\lambda) \text{ and } \forall k \in \{1, \dots 8\}: \\ \left\{ \begin{array}{c} |F_{k\delta_z(\lambda), n}(\alpha_z(\lambda)) - F_{k\delta_z(\lambda)}(\alpha_z(\lambda))| < \epsilon_z \\ |F_{k\delta_z(\lambda), n}(\beta_z(\lambda)) - F_{k\delta_z(\lambda)}(\beta_z(\lambda))| < \epsilon_z. \end{array} \right. \\ Z_n^{\lambda, z} &= \left\{ v : D_{8\delta_z, n}(v) \leq \beta_z(\lambda) \text{ and } D_{\delta_{z'}, n}(v) > \alpha_{z'}(\lambda) \; (\forall z' \in \{z_0(\lambda), \dots, z\}) \right\}. \\ S_n^{\lambda} = \text{maximal set of vertices } v \in Z_n^{\lambda, z}, \text{ pairwise at distance at least } 7\delta_z, \text{ where } \eta_z \leq n < \eta_{z+1}. \\ \text{ and eventually...} \end{split}$$

 $C_n^{\lambda} = \begin{cases} \emptyset, & \text{if } n < \eta_{z_0(\lambda)} \\ \mathbf{N}_{\mathbf{G}_n}^{2\delta_z}(S_n^{\lambda}), & \text{otherwise, if } z \text{ is such that } \eta_z \leq n < \eta_{z+1} \end{cases}$

(日) (월) (문) (문) 문

Cluster Structure



Typical shape of a structure sequence continuously segmented by a clustering.

- 2

・ロト ・四ト ・ヨト ・ヨト

Modelings

(日)、

Modelings

Definition

A *modeling* \mathbf{A} is a graph on a standard probability space s.t. every first-order definable set is measurable.

The Stone pairing extends to modelings:

 $\langle \phi, \mathbf{A} \rangle = \nu_{\mathbf{A}}^{\otimes p}(\phi(\mathbf{A})).$

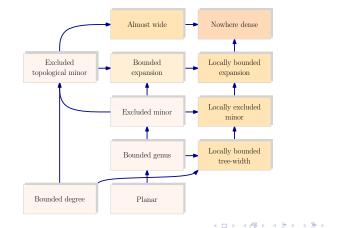
By Fubini's theorem, it holds:

$$\langle \phi, \mathbf{A} \rangle = \int \cdots \int \mathbf{1}_{\phi(\mathbf{A})}(x_1, \dots, x_p) \, \mathrm{d}\nu_{\mathbf{A}}(x_1) \, \dots \, \mathrm{d}\nu_{\mathbf{A}}(x_p).$$

(日) (四) (日) (日)

Modelings as FO-limits?

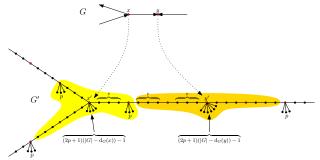
Theorem (Nešetřil, Ossona de Mendez 2013) If a monotone class C has modeling FO-limits then the class C is nowhere dense.



ъ

Proof (sketch)

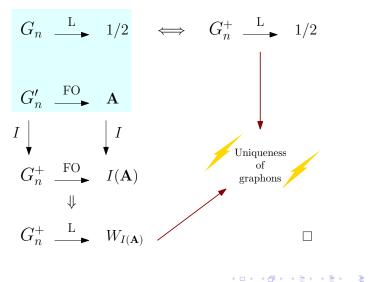
- Assume C is somewhere dense. There exists $p \ge 1$ such that $\operatorname{Sub}_p(K_n) \in C$ for all n;
- For an oriented graph G, define $G' \in \mathcal{C}$:



• \exists basic interpretation I, such that for every graph G, $I(G') \cong G[k(G)] \stackrel{\text{def}}{=} G^+$, where k(G) = (2p+1)|G|.

(日)、(四)、(日)、(日)、

Proof (sketch)



Modelings as FO-limits?

Theorem (Nešetřil, Ossona de Mendez 2013)

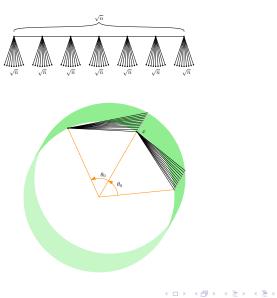
If a monotone class ${\mathcal C}$ has modeling FO-limits then the class ${\mathcal C}$ is nowhere dense.

Conjecture (Nešetřil, Ossona de Mendez)

Every nowhere dense class has modeling FO-limits.

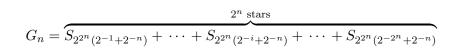
- true for bounded degree graphs (Nešetřil, Ossona de Mendez 2012)
- true for bounded tree-depth graphs (Nešetřil, Ossona de Mendez 2013)
- true for trees (Nešetřil, Ossona de Mendez 2016)
- true for plane trees and for graphs with bounded pathwidth (Gajarský, Hliněný, Kaiser, Kráľ, Kupec, Obdržálek, Ordyniak, Tůma 2016)

Example I

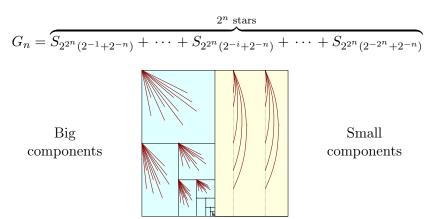


ž

Example II



Example II



ž

イロト 不得下 イヨト イヨト

Friedman's $\mathcal{L}(Q_m)$ Logic

First-Order Logic + special quantifier $\mathbf{Q}_{\mathbf{m}}$ with intended interpretation

$$\mathbf{M} \models \mathbf{Q}_{\mathbf{m}} x \ \psi(x, \overline{a})$$
$$\iff \{x \in M : \ \mathbf{M} \models \psi(x, \overline{a})\} \text{ is not of measure } 0.$$

System of rules of inference K_m

Theorem (Friedman '79, Steinhorn '85)

A set of sentences T in $\mathcal{L}(Q_m)$ has a totally Borel model if and only if T is consistent in K_m .

ъ

Modeling FO₁-Limits

Theorem (Nešetřil, POM 2016+)

Every FO₁-convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs (or structures with countable signature) has a modeling FO₁-limit **L**. If $(G_n)_{n \in \mathbb{N}}$ is FO-convergent then $\forall \phi$ it also holds

$$\langle \phi, \mathbf{L} \rangle = 0 \quad \iff \quad \lim_{n \to \infty} \langle \phi, G_n \rangle = 0.$$

We denote this by

 $G_n \xrightarrow{\mathrm{FO}_1^*} \mathbf{L}.$

Sketch of the Proof

- Construct a limit **U** as an ultraproduct with a Loeb measure;
- The structure \mathbf{U} is a model of the $\mathbf{L}(Q_m)$ -theory, which is the union of the complete FO theory and sentences

$$Q_m x_1 \ldots Q_m x_p \phi(x_1, \ldots, x_p)$$

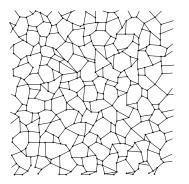
for each ϕ such that $\lim_{n\to\infty} \langle \phi, G_n \rangle > 0$.

- Let **L** be a totally Borel model.
- For $r \in \mathbb{N}$ let $\theta_1^r, \ldots, \theta_{N(r)}^r$ be the 1-types of rank r. Define

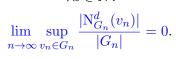
$$\pi_r(X) = \sum_{i \in \lambda(\theta_i^r(\mathbf{L})) \neq 0} \frac{\lambda(X \cap \theta_i^r(\mathbf{L}))}{\lambda(\theta_i^r(\mathbf{L}))} \lim_{n \to \infty} \langle \theta_i^r, G_n \rangle.$$

• The desired probability measure is weak limit π of π_r .

Modeling Limits of Residual Sequences



 $\forall d \in \mathbb{N}$:





Zero-measure limit connected components

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Nešetřil, POM 2016+)

Every residual FO-convergent sequence $(G_n)_{n \in \mathbb{N}}$ of graphs has a modeling FO-limit L.

Modeling Limits of Quasi-Residual Sequences

 (G_n) is (d, ϵ) -residual if

$$\lim_{n \to \infty} \sup_{v_n \in G_n} \frac{|\mathcal{N}_{G_n}^d(v_n)|}{|G_n|} < \epsilon.$$

 (G_n) is quasi-residual if $\forall d, \epsilon > 0 \exists (S_n)$ s.t. $|S_n| \leq N(d, \epsilon)$ and $(G_n - S_n)$ is (d, ϵ) -residual.

 (G_n) is marked quasi-residual if $S_n = \{c_1, \ldots, c_{N(d,\epsilon)}\}$ and marks Z_d s.t. $Z_d(G_n) = \{c_1, \ldots, c_{F(d,n)}\}$ with

$$\lim_{n \to \infty} \frac{|B_d(G_n, \{c_1, \dots, c_{F(d,n)}\})|}{|G_n|} = \lim_{m \to \infty} \lim_{n \to \infty} \frac{|B_d(G_n, \{c_1, \dots, c_m\})|}{|G_n|}.$$

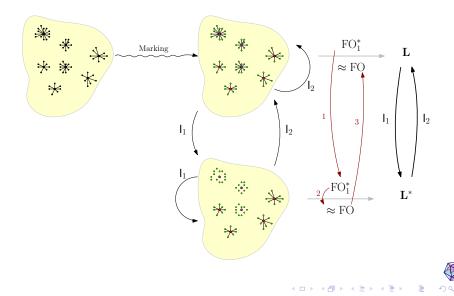
Modeling Limits of Quasi-Residual Sequences

Lemma
If
• (G_n) is marked quasi-residual $(4d, \epsilon)$ -residual
• $G_n \xrightarrow{\operatorname{FO}_1^*} \mathbf{L}$
then L is (d, ϵ) -residual.
Lemma

Assume $(G_n)_{n \in \mathbb{N}}$ is FO-convergent and G_n is $(2d, \epsilon)$ -residual. If $G_n \xrightarrow{\text{FO}_1} \mathbf{L}$ and \mathbf{L} is $(2d, \epsilon)$ -residual then $\forall d$ -local formula ϕ with p free variables it holds

$$|\langle \phi, \mathbf{L} \rangle - \lim_{n \to \infty} \langle \phi, G_n \rangle| < p^2 \epsilon.$$

Modeling Limits of Quasi-Residual Sequences



Modeling Limits of Nowhere Dense Sequences

Theorem (Nešetřil, POM 2016+)

Every FO-convergent quasi-residual sequence of graphs has a modeling FO-limit.

Theorem (Nešetřil, POM 2016)

A hereditary class of graphs C is nowhere dense if and only if $\forall d, \forall \epsilon > 0, \forall G \in C, \exists S \subseteq G \text{ with } |S| \leq N(d, \epsilon)$ such that

$$\sup_{v \in G-S} \frac{|B_d(G-S,v)|}{|G|} \le \epsilon.$$

・ロト ・雪ト ・ヨト ・ヨト

Theorem (Nešetřil, POM 2016+)

A monotone class C is nowhere dense if and only if every FO-convergent sequence of graphs in C has a modeling FO-limit.

ъ

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Perspectives



・ロト ・四ト・ ・ヨト

Local-Global Convergence

• Defined from colored neighborhood metric (Bollobás and Riordan '11)

Definition (General Setting)

Let σ, σ^+ be countable signature with $\sigma \subseteq \sigma^+$, and let X be a fragment of FO(σ^+).

A sequence $(\mathbf{A}_n)_{n \in \mathbb{N}}$ is *X*-local global convergent if the sequence of the sets

$$\Omega_{\mathbf{A}_n} = \{\mathbf{A}_n^+ : \text{Shadow}(\mathbf{A}_n^+) = \mathbf{A}_n\}$$

converges with respect to Hausdorff distance.

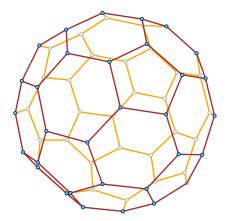
Properties

- (Using Blaschke theorem):
 Every sequence (A_n)_{n∈ℕ} has an X-local global convergent subsequence.
- FO₀-local-global convergence. (Using Fagin theorem): For every NP property π,
 - either all but finitely many G_n satisfy π ;
 - or all but finitely many G_n do not satisfy π .
- FO^{local}-local-global convergence with monadic lifts. This is standard local-global convergence.

 \rightarrow graphings are still limits of graphs with bounded degrees (Hatami, Lovász, and Szegedy '14)

 \rightarrow allows a finer study of the residue and marking of expander parts.

Expanding Cluster



$$\begin{split} \forall \epsilon > 0 \ \exists d \in \mathbb{N} : \\ \forall \mathsf{Z} \subseteq \mathsf{X} \ \text{with} \ |Z_n| > \epsilon |X_n| \\ \liminf_{n \to \infty} \frac{|\mathsf{N}^d_{\mathbf{A}_n}(Z_n)|}{|X_n|} > 1 - \epsilon. \end{split}$$

For bounded degree: $\iff \forall \epsilon > 0 \ \exists N_{\epsilon} \subseteq X,$ such that

- $|\mathsf{N}_{\epsilon}| < \epsilon |\mathsf{C}|;$
- $G[X \setminus N_{\epsilon}]$ is a vertex expander sequence.

æ

Thank you for your attention.

