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Issues

• How to describe/approximate a network?
• How much is a network structured? How much is it
random-like?

• How to check whether a network has (or is close to have)
some property?

• How to compare the structures of two networks?
• How to represent limits of networks?
• Asymptotic structure of the networks in a convergent
sequence?
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Structural Limits
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Structural Limits

Definition (Stone pairing)

Let φ be a first-order formula with p free variables and let
G = (V,E) be a graph.

The Stone pairing of φ and G is

〈φ,G〉 = Pr(G |= φ(X1, . . . , Xp)),

for independently and uniformly distributed Xi ∈ G.
That is:

〈φ,G〉 =
|φ(G)|
|G|p .



Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Structural Limits

Definition
A sequence (Gn) isX-convergent if, for every φ ∈ X, the sequence
〈φ,G1〉, . . . , 〈φ,Gn〉, . . . is convergent.

FO0 Sentences Elementary limits

QF Quantifier free formulas Left limits

FOlocal Local formulas Local limits

FO All first-order formulas FO-limits
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General Representation Theorems
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Three Types of Limits Objects

Non-Standard Distributional Analytic

Dense
(Left limit)

Ultraproduct +
Loeb measure
(Elek, Szegedy ’07)

Exchangeable
random graph
(Aldous ’81, Hoover ’79)

Graphon
(Lovász et al. ’06)

Sparse
(Local limit)

—
Unimodular
distribution
(Benjamini, Schramm ’01)

Graphing
(Elek ’07)

General
(Structural limit)

Ultraproduct +
Loeb measure
(Nešetril, POM ’12)

Invariant
distribution
(Nešetril, POM ’12)
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Non-Standard Limit: Ultraproduct with Loeb Measure

Theorem (Nešetril, POM 2012)

Let (Gn)n∈N be FO-convergent and let U be a non-principal
ultrafilter on N. Then there exists a probability measure ν on
the ultraproduct

∏
U Gn such that for every first-order formula φ

with p free variables it holds:

∫
· · ·
∫

(
∏
U Gn)p

1φ([x1], . . . , [xp]) dν([x1]) . . . dν([xp]) = lim
U
〈ψ,Gi〉.

Not product σ-algebra, but Fubini-like properties

(Follows Elek, Szegedy ’07; See also Keisler ’77)
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Distributionual Limit

Theorem (Nešetřil, POM 2012)

There are maps G 7→ µG and φ 7→ k(φ), such that
• G 7→ µG is injective
• 〈φ,G〉 =

∫
S k(φ) dµG

• A sequence (Gn)n∈N is X-convergent iff µGn converges
weakly.

Thus if µGn ⇒ µ, it holds
∫

S
k(φ) dµ = lim

n→∞

∫

S
k(φ) dµGn = lim

n→∞
〈φ,Gn〉.

Note: FOp → Sp-invariance; FO→ Sω-invariance.
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Stone Spaces
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Stone Space

S

k(φ) k(¬φ)

Γ

k(ψ)

k(¬ψ)

A topological version of Venn diagrams
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Stone Spaces

S(FO)

S(FOp)

S(FO0)

number of free
variables

S(FO1)

0

1

p

ω

Sω

Sp
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Structural Limits

Boolean algebra B(X) Stone Space S(B(X))

Formula φ Continuous function fφ

Vertex v “Type of vertex” T

Structure A probability measure µA

〈φ,A〉
∫
fφ(T ) dµA(T )

X-convergent (An) weakly convergent µAn

Γ = Aut(B(X)) Γ-invariant measure
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Ingredients of the proof

Observables
Algebra A = C(Ω) with

uniform norm

States
space P (Ω) of probability

distributions on Ω

Phase space
space Ω of all types = Stone

dual of B

Boolean algebra
B is the Lindenbaum-Tarsky

algebra of FO(σ)

Stone duality

projections

completion
of the
vector
space

injective
embedding

entailment
order of
logical

equivalence
classes

States on B
space of additive functions

on B

≈
σ-structures

injective
embedding

Stone bracket 〈 · , · 〉

GelfandRiesz

Logic
First-order formulas in the
language of σ-structures
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The Elementary Convergence Case
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Elementary convergence

For φ ∈ FO0, we have

〈φ,G〉 =





1 if G |= φ,

0 otherwise.

FO0-convergence is called elementary convergence.

4×
. . .

. . .

. . .

. . .

. . .
...

...
...

...
...
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Limit Object

Proposition (Gödel+Löwenheim–Skolem)

Every elementarily convergent sequence of finite graphs has a
limit, which is an at most countable graph.

Complete theories with Finite Model Property form a closed
subset of the Stone dual of FO0 but . . .

No characterization of elementary limits

Trakhtenbrot’s theorem states that the problem of existence of a
finite model for a single first-order sentence is undecidable.
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Special Elementary Limits 1: ω-categorical

A complete theory T is ω-categorical if it has a unique countable
model.

⇐⇒ ∀p ∈ N, the Stone dual
of FOp/T is finite

⇐⇒ every countable modelG
of T has an oligomorphic au-
tomorphism group: ∀n ∈ N,
Gn has finitely many orbits
under the action of Aut(G).

S(FO0)
T

S(FO1)

S(FO2)

S(FO3)

S(FO)

π2

π1

π0

π3
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Special Elementary Limits 2: Ultrahomogeneous

A graph G is ultrahomogeneous if every isomorphism between two
of its induced subgraphs can be extended to an automorphism.
The only countably infinite homogeneous graphs are:
• ωKn, nKω, ωKω, and complements;
• the Rado graph;
• the Henson graphs and complements.

Proposition

If (Gn)n∈N is elementarily convergent to an ultrahomogeneous
graph, then (Gn)n∈N is FO-convergent if and only if (Gn)n∈N is
QF-convergent.
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Example

Theorem (Nešetril, Ossona de Mendez)

Let 0 < p < 1 and let Gn ∈ G(n, p) be independent random
graphs with edge probability p. Then (Gn)n∈N is almost surely
FO-convergent.

Proof.
(Gn)n∈N almost surely converges elementarily to the Rado graph,
and almost surely QF-converges.

Problem (Cherlin)

Is the generic countable triangle-free graph elementary limit of
finite graphs?
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The Quantifier-Free Case
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Left Convergence

F 7→ φF =
∧

ij∈E(F )

(xi ∼ xj)

Then
〈φF , G〉 =

hom(F,G)

|G||F | = t(F,G).

Hence, if |Gn| → ∞
(Gn)n∈N is left convergent if and only if it is QF-convergent.
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The Infinite Exchangeable Graph

Sampling
Sω-action
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The Infinite Exchangeable Graph

1 2 3 i j

0 1
0

1

xi

xj

Pr(i ∼ j) =W (xi, xj)

Sampling Aldous-Hoover

k

Gk

almost sure
left convergence

Sω-action
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Extensions

4 colored, directed, decorated graphs (Lovász, Szegedy ’10);
4 regular hypergraphs (Elek, Szegedy ’12; Zhao ’14);
4 relational structures (Aroskar ’12; Aroskar, Cummings ’14);
* algebraic structures.



Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Algebraic Structures

Signature σ = (f0, . . . , fd), fi involution

−→ encodes graphs with maximum degree d;
−→ QF1-limit equivalent to local limit;
−→ limit object with same signature, fi measure preserving

involution (= graphing).

Thus. . .
General QF-convergence extends both left limits and local limits
of graphs with bounded degrees.
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The Local Case
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Local Formulas

Definition
A formula φ is local if there exists r such that satisfaction of φ
only depends on the r-neighborhood of the free variables:

G |= φ(v1, . . . , vp) ⇐⇒ G[Nr({v1, . . . , vp})] |= φ(v1, . . . , vp).

Definition
A sequence (Gn) is local-convergent if, for every φ ∈ FOlocal, the
sequence 〈φ,G1〉, . . . , 〈φ,Gn〉, . . . is convergent.

(Gn) is local-convergent if, for every local formula φ, the prob-
ability that Gn satisfies φ for a random assignment of the free
variables converges.
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Local Convergent Sequence of Bounded Degree Graphs

For a sequence (Gn)n∈N of graphs with degree ≤ d the following
are equivalent:
1. the sequence (Gn)n∈N is local convergent (in the sense of

Benjamini and Schramm);
2. the sequence (Gn)n∈N is FOlocal

1 -convergent;
3. the sequence (Gn)n∈N is local-convergent (in our sense).
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The Unimodular Distribution

Root exchange
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Example

2−1 2−2 2−3 2−42−5. . .

µ
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Why Formulas?

Consider extension of local convergence: (Gn)n∈N converges if,
for every d and rooted (F, r) there is some td(F ) such that

Pr[Bd(Gn, X) ' (F, r)] −→ td(F ).

No limit probability distribution!

Example: Gn any n-regular graph. Then for every d and every
(F, r) it holds

Pr[Bd(Gn, X) ' (F, r)] −→ 0.
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Why Formulas?

Consider extension of local convergence: (Gn)n∈N converges if,
for every d and rooted (F, r) there is some td(F ) such that

Pr[Bd(Gn, X) ' (F, r)] −→ td(F ).

No limit probability distribution!

Example: Gn any n-regular graph. Then for every d and every
(F, r) it holds

Pr[Bd(Gn, X) ' (F, r)] −→ 0.
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Why Local Convergence?

Proposition (Nešetřil, Ossona de Mendez)

A sequence G1, . . . , Gn, . . . of graphs is FO-convergent if and only
if it is both local convergent and elementarily convergent.

Theorem (Gaifman)

Every formula φ is equivalent to a Boolean combination of local
formulas and sentences of the form

∃y1 . . . ∃ym
( ∧

1≤i<j≤m
dist(yi, yj) > 2r ∧

∧

1≤i≤m
ψ(yi)

)

where ψ is local.
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Interpretations
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Interpretation

G = (V,E)
I(G) = (η(G), φ(G))

I = (η, φ)

η(x1, x2) := (deg(x1) = 3) ∧ (deg(x2) = 3)

φ(x1, x2; y1, y2) := ((x1 ∼ y1) ∧ (x2 = y2)) ∨ ((x1 = y1) ∧ (x2 ∼ y2))
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Basic Properties

Every interpretation I of σ′-structures in σ-structures define
• a mapping A 7→ I(A) from Rel(σ) to Rel(σ′)

• a mapping φ 7→ I(φ) from FO(σ′) to FO(σ)

such that for every v1, . . . ,vp it holds

I(A) |= φ(v1, . . . ,vp) ⇐⇒ A |= I(φ)(v1, . . . ,vp).

In other words:
φ(I(A)) = I(φ)(A).

Thus if the domain of I(A) is η(A) and if φ has p free variables
it holds

〈φ, I(A)〉 =
〈I(φ),A〉
〈η,A〉p
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Near the Limit
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Negligible Sequences

Definition
Let GGG = (Gn)n∈N be a local-convergent sequence. A sequence
X = (Xn)n∈N of subsets Xn ⊆ V (Gn) is negligible and we note
X ≈ 0 if

∀d ∈ N lim sup
n→∞

|Nd
Gn

(Xn)|
|Gn|

= 0.

Something you can safely remove
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What is a cluster?

Definition
Let GGG be a local-convergent sequence of graphs.
A sequence X is a cluster of GGG if the following conditions hold:
1. If one marks the elements of Xn in Gn the sequence of

marked graphs is still local-convergent;
2. ∂GGGX ≈ 0 (i.e. the sequence (∂GnXn)n∈N is negligible).

Remark

• condition 1 means that clusters are not “forced”;
• condition 2 means that clusters can be separated.
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Globular Cluster

∀ε > 0 ∃d ∈ N :

lim inf
n→∞

sup
vn∈Xn

|Nd
Gn

(vn)|
|Xn|

> 1−ε.

(Almost) connected limit
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Residual Cluster

∀d ∈ N :

lim sup
n→∞

sup
vn∈Xn

|Nd
Gn

(vn)|
|Xn|

= 0.

Zero-measure limit
connected components
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Marking of all Globular Clusters

Theorem (Nešetřil, Ossona de Mendez, 2015+)

Let GGG be a local convergent sequence of graphs. Then there exists
(for all n) a marking G+

n of Gn by S,R,M1, . . . ,Mi, . . . such that

• marks S,R,M1, . . . ,Mi, . . . induce a partition of V (Gn)
and each mark Mi marks one of the connected components
of Gn \ S;

• the sequence GGG+ is local convergent;
• S(GGG) is negligible in GGG+;
• Mi(GGG) is a globular cluster of GGG+;
• R(GGG) is a residual cluster of GGG+.
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Asymptotic Structure
(Staphylococcus Aureus)
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Asymptotic Structure
(Milky Way)
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Generic Point
How to transform a random point into a constant?

Theorem (1-point random lift theorem)

There exists a (unique) continuous function Π̃ : Mσ → P(Mσ•)
such that the following diagram commutes:

Mσ P(Mσ•)
Π̃

//

Rel(σ)

Mσ

� _

ισ

��

Rel(σ) P(Rel(σ•))
Π // P(Rel(σ•))

P(Mσ•)

� _

ισ
•
∗

��
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Ingredients of the Proof

Local Stone pairing of φ and A at v:

〈φ,A〉v = Pr(A |= φ(v,X2, . . . , Xp))

x1

φ1

φ2

φ3

Ψ5,7,9

〈Ψ5,7,9,A〉 = Ev
[
〈φ1,A〉5v 〈φ2,A〉7v 〈φ3,A〉9v

]
.

Characteristic function:

γ(t) = E
[
eit·D

]
=
∑

w1≥0

· · ·
∑

wd≥0

〈ψw,A〉
d∏

j=1

(itj)
wj

wj !
.



Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives

Application: Sizes of the Globular Clusters

Let
$d := dist(x1, x2) ≤ d.

Then

md(k) = lim
n→∞

〈
k︷ ︸︸ ︷

$d ⊗x1 · · · ⊗x1 $d, Gn〉 = lim
n→∞

Ev[〈$,Gn〉kv ].

Thus ∀λ > 0, the number of globular clusters of measure λ is:

N(λ) =
1

λ
lim
T→∞

1

2T

∫ +T

−T

[∑

k≥1

lim
d→∞

md(k)
(is)k

k!

]
e−iλs ds
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Keep digging. . .

8δz

2δz

δz

δz

2δz

δz

2δz

Zλ,zn

Sλn

Cλn
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Details

εz = 2−z , z0(λ) = d5− 2 log2 λe,
α1(λ) < α2(λ) < · · · < λ < · · · < β2(λ) < β1(λ) s.t. Λ ∩ [α1(λ), β1(λ)] = {λ},
αz(λ), βz(λ) ∈ R, |βz(λ)− αz(λ)| < εz .
δ1(λ) < δ2(λ) < . . . s.t. ∀d ≥ δz(λ):{

|Fd(αz(λ))− F (αz(λ))| < εz

|Fd(βz(λ))− F (βz(λ))| < εz
η1(λ) < η2(λ) < . . . s.t. ∀z ∈ N, ∀n ≥ ηz(λ) and ∀k ∈ {1, . . . 8}:{

|Fkδz(λ),n(αz(λ))− Fkδz(λ)(αz(λ))| < εz

|Fkδz(λ),n(βz(λ))− Fkδz(λ)(βz(λ))| < εz .

Zλ,zn =
{
v : D8δz ,n(v) ≤ βz(λ) and Dδz′ ,n(v) > αz′ (λ) (∀z′ ∈ {z0(λ), . . . , z})

}
.

Sλn =maximal set of vertices v ∈ Zλ,zn , pairwise at distance at least 7δz , where
ηz ≤ n < ηz+1.
and eventually. . .

Cλn =

{
∅, if n < ηz0(λ)

N2δz
Gn

(Sλn), otherwise, if z is such that ηz ≤ n < ηz+1
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Cluster Structure

Typical shape of a structure sequence continuously segmented
by a clustering.
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Modelings
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Modelings

Definition
A modeling A is a graph on a standard probability space s.t.
every first-order definable set is measurable.

The Stone pairing extends to modelings:

〈φ,A〉 = ν⊗pA (φ(A)).

By Fubini’s theorem, it holds:

〈φ,A〉 =

∫
· · ·
∫

1φ(A)(x1, . . . , xp) dνA(x1) . . . dνA(xp).
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Modelings as FO-limits?

Theorem (Nešetřil, Ossona de Mendez 2013)

If a monotone class C has modeling FO-limits then the
class C is nowhere dense.

Nowhere denseAlmost wide

Bounded

expansion

Excluded

topological minor

Locally bounded

expansion

Locally excluded

minor
Excluded minor

Bounded genus
Locally bounded

tree-width

PlanarBounded degree
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Proof (sketch)

• Assume C is somewhere dense. There exists p ≥ 1 such that
Subp(Kn) ∈ C for all n;

• For an oriented graph G, define G′ ∈ C:

p

p

G

p

p

x y

x′ y′

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(x))− 1

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(y))− 1

p︷ ︸︸ ︷ p︷ ︸︸ ︷ p︷ ︸︸ ︷G′

• ∃ basic interpretation I, such that for every graph G,
I(G′) ∼= G[k(G)]

def
= G+, where k(G) = (2p+ 1)|G|.
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Proof (sketch)

Gn

G′
n

L

FO

1/2

A

I I

G+
n

FO
I(A)

G+
n WI(A)

L

⇓

⇐⇒ G+
n

L
1/2

Uniqueness
of

graphons
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Modelings as FO-limits?

Theorem (Nešetřil, Ossona de Mendez 2013)

If a monotone class C has modeling FO-limits then the class C is
nowhere dense.

Conjecture (Nešetřil, Ossona de Mendez)

Every nowhere dense class has modeling FO-limits.

• true for bounded degree graphs (Nešetřil, Ossona de Mendez
2012)

• true for bounded tree-depth graphs (Nešetřil, Ossona de Mendez
2013)

• true for trees (Nešetřil, Ossona de Mendez 2016)
• true for plane trees and for graphs with bounded pathwidth
(Gajarský, Hliněný, Kaiser, Kráľ, Kupec, Obdržálek, Ordy-
niak, Tůma 2016)
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Example I

θ0

x

θ0

√
n

√
n

√
n

√
n

√
n

√
n

√
n

√
n
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Example II

Gn =

2n stars︷ ︸︸ ︷
S22n (2−1+2−n) + · · · + S22n (2−i+2−n) + · · · + S22n (2−2n+2−n)

Big
components

Small
components
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Example II

Gn =

2n stars︷ ︸︸ ︷
S22n (2−1+2−n) + · · · + S22n (2−i+2−n) + · · · + S22n (2−2n+2−n)

Big
components

Small
components
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Friedman’s L(Qm) Logic

First-Order Logic + special quantifier Qm with intended interpre-
tation

M |= Qmx ψ(x, a)

⇐⇒ {x ∈M : M |= ψ(x, a)} is not of measure 0.

System of rules of inference Km

Theorem (Friedman ’79, Steinhorn ’85)

A set of sentences T in L(Qm) has a totally Borel model if and
only if T is consistent in Km.
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Modeling FO1-Limits

Theorem (Nešetřil, POM 2016+)

Every FO1-convergent sequence (Gn)n∈N of graphs (or structures
with countable signature) has a modeling FO1-limit L.
If (Gn)n∈N is FO-convergent then ∀φ it also holds

〈φ,L〉 = 0 ⇐⇒ lim
n→∞

〈φ,Gn〉 = 0.

We denote this by

Gn
FO∗1−−→ L.
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Sketch of the Proof

• Construct a limit U as an ultraproduct with a Loeb
measure;

• The structure U is a model of the L(Qm)-theory, which is
the union of the complete FO theory and sentences

Qmx1 . . . Qmxp φ(x1, . . . , xp)

for each φ such that limn→∞〈φ,Gn〉 > 0.
• Let L be a totally Borel model.
• For r ∈ N let θr1, . . . , θrN(r) be the 1-types of rank r. Define

πr(X) =
∑

i∈λ(θri (L)) 6=0

λ(X ∩ θri (L))

λ(θri (L))
lim
n→∞

〈θri , Gn〉.

• The desired probability measure is weak limit π of πr.
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Modeling Limits of Residual Sequences

∀d ∈ N :

lim
n→∞

sup
vn∈Gn

|Nd
Gn

(vn)|
|Gn|

= 0.

Zero-measure limit
connected components

Theorem (Nešetřil, POM 2016+)

Every residual FO-convergent sequence (Gn)n∈N of graphs has a
modeling FO-limit L.
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Modeling Limits of Quasi-Residual Sequences

(Gn) is (d, ε)-residual if

lim
n→∞

sup
vn∈Gn

|Nd
Gn

(vn)|
|Gn|

< ε.

(Gn) is quasi-residual if ∀d, ε > 0 ∃(Sn) s.t. |Sn| ≤ N(d, ε) and
(Gn − Sn) is (d, ε)-residual.

(Gn) is marked quasi-residual if Sn = {c1, . . . , cN(d,ε)} and marks
Zd s.t. Zd(Gn) = {c1, . . . , cF (d,n)} with

lim
n→∞

∣∣Bd(Gn, {c1, . . . , cF (d,n)})
∣∣

|Gn|
= lim

m→∞
lim
n→∞

∣∣Bd(Gn, {c1, . . . , cm})
∣∣

|Gn|
.
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Modeling Limits of Quasi-Residual Sequences

Lemma
If
• (Gn) is marked quasi-residual (4d, ε)-residual

• Gn
FO∗1−−→ L

then L is (d, ε)-residual.

Lemma
Assume (Gn)n∈N is FO-convergent and Gn is (2d, ε)-residual.
If Gn

FO1−−→ L and L is (2d, ε)-residual then ∀d-local formula φ
with p free variables it holds

|〈φ,L〉 − lim
n→∞

〈φ,Gn〉| < p2ε.
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Modeling Limits of Quasi-Residual Sequences

I1 I2

I2

I1

FO∗
1 L

I1

L∗FO∗
1

≈ FO

I21

2

≈ FO

3

Marking
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Modeling Limits of Nowhere Dense Sequences

Theorem (Nešetřil, POM 2016+)

Every FO-convergent quasi-residual sequence of graphs has a
modeling FO-limit.

Theorem (Nešetřil, POM 2016)

A hereditary class of graphs C is nowhere dense if and only if
∀d, ∀ε > 0, ∀G ∈ C, ∃S ⊆ G with |S| ≤ N(d, ε) such that

sup
v∈G−S

|Bd(G− S, v)|
|G| ≤ ε.

Theorem (Nešetřil, POM 2016+)

A monotone class C is nowhere dense if and only if every
FO-convergent sequence of graphs in C has a modeling FO-limit.
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Perspectives
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Local-Global Convergence

• Defined from colored neighborhood metric
(Bollobás and Riordan ’11)

Definition (General Setting)

Let σ, σ+ be countable signature with σ ⊆ σ+, and let X be a
fragment of FO(σ+).
A sequence (An)n∈N is X-local global convergent if the sequence
of the sets

ΩAn = {A+
n : Shadow(A+

n ) = An}
converges with respect to Hausdorff distance.
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Properties

• (Using Blaschke theorem):
Every sequence (An)n∈N has an X-local global convergent
subsequence.

• FO0-local-global convergence. (Using Fagin theorem):
For every NP property π,

• either all but finitely many Gn satisfy π;
• or all but finitely many Gn do not satisfy π.

• FOlocal-local-global convergence with monadic lifts.
This is standard local-global convergence.

→ graphings are still limits of graphs with bounded degrees
(Hatami, Lovász, and Szegedy ’14)
→ allows a finer study of the residue and marking of
expander parts.
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Expanding Cluster

∀ε > 0 ∃d ∈ N :

∀Z ⊆ X with |Zn| > ε|Xn|

lim inf
n→∞

|Nd
An

(Zn)|
|Xn|

> 1− ε.

For bounded degree:
⇐⇒ ∀ε > 0 ∃Nε ⊆ X,
such that
• |Nε| < ε|C|;
• GGG[X \ Nε] is a vertex
expander sequence.
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Thank you for your
attention.
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