# Workshop on Algorithmic Graph Structure Theory

University of Warsaw, July 14 2017

- 3 Lectures/Tutorials
- 3 Contributed Talks
- Costs: ~ 50 Euro





#### INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING

University of Warsaw, July 10-13 2017





On Neighbourhood Complexity and Kernels for Distance-r Dominating Sets on Nowhere Dense Classes of Graphs

Sebastian Siebertz

Uniwersytet Warszawski

University of Warwick, 13.12.2016

# Graph Classes



# Neighbourhood Complexity

Definition

Let G be a graph and let  $r \in \mathbb{N}$ . The *r*-neighbourhood complexity of a subset  $A \subseteq V(G)$  in G is

$$\nu_r(G,A) = |\{N_r(v) \cap A : v \in V(G)\}|.$$



Theorem (Sauer-Shelah Lemma) [VC71, S72, S72]

If G has VC-dimension d, then

 $\nu_1(G,A)\leq |A|^d.$ 

Theorem [Gajarski et al. 2013]

If C is nowhere dense and  $G \in C$ , then

 $\nu_1(G,A) \leq f(\varepsilon) \cdot |A|^{1+\varepsilon}.$ 

Theorem [RSS 2016]

If C has bounded expansion and  $G \in C$ , then

 $\nu_r(G,A) \leq f(r) \cdot |A|.$ 

This talk

### Theorem [EGKKPRS 16+]

A class C is nowhere dense if and only if there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ ,  $G' \subseteq G \in C$  and  $A \subseteq V(G)$ 

$$\nu_r(G',A) \leq f(r,\varepsilon) \cdot |A|^{1+\varepsilon}.$$

### An application [EGKKPRS 16+]

If C is nowhere dense then there is a function  $f : \mathbb{N} \to \mathbb{R}$  and a polynomial time algorithm which on input  $G \in C$ ,  $k, r \in \mathbb{N}$ ,  $\varepsilon > 0$ , either concludes that  $\gamma_r(G) > k$ , or computes a subgraph G' and  $Z \subseteq V(G')$  such that

- $|V(G')| \le g(r,\varepsilon) \cdot k^{1+\varepsilon}$  and
- G has a distance-r dominating set of size k if and only if Z has a distance-r dominating set in G' of size k.

# The Distance-r Dominating Set Problem

Linear kernels on

- Planar (dominating set) [Albers et al. 04]
- Bounded genus (dominating set) [Bodlaender et al. 09]
- Apex-minor free (dominating set) [Fomin et al. 10]
- *H*-minor free (dominating set) [Fomin et al. 12]
- H-topological minor free (dominating set) [Fomin et al. 13]
- Bounded expansion (distance-r dominating set) [Drange et al. 14]

Almost linear kernels on nowhere dense classes for distance-r dominating set for every value of r.

# **Proof Outline**

### Theorem [EGKKPRS 16+]

A class C is nowhere dense if and only if there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ ,  $G' \subseteq G \in C$  and  $A \subseteq V(G)$ 

 $\nu_r(G',A) \leq f(r,\varepsilon) \cdot |A|^{1+\varepsilon}.$ 

- **(**) Reduce the graph size to  $|A|^k$ , for a constant k, using NIP.
- Identify interfaces of size |A|<sup>ε/2</sup> which control all connections to A using weak colouring numbers.
- Show that there are at most |A|<sup>1+ε/2</sup> interfaces using uniform quasi-wideness and weak colouring numbers.

### Independence and Number of Types

### Definition

Let G be a graph,  $A \subseteq V(G)$  and  $r \in \mathbb{N}$ . The distance-r-profile of  $v \in V(G) \setminus A$  on A is  $(d_1, \ldots, d_{|A|}) \in \{1, \ldots, r, \infty\}^{|A|}$ , where

$$d_i = \begin{cases} \operatorname{dist}(v, a_i) & \text{ if } \operatorname{dist}(v, a_i) \leq r \\ \infty & \text{ otherwise.} \end{cases}$$

#### Theorem

If C is NIP, then for all  $r \in \mathbb{N}$  there is  $k \in \mathbb{N}$  such that for all  $G \in C$  and  $A \subseteq V(G)$ , the number of realised distance-r-profiles is bounded by  $|A|^k$ .

# Reducing Graph Size

### Corollary

If C is NIP, then  $\nu_r(G, A) \leq |A|^k$  for some k depending on r only.

### Corollary

If C is NIP, then on input  $G \in C$ ,  $A \subseteq V(G)$  and  $r \in \mathbb{N}$ , we can compute in polynomial time a subgraph  $G' \subseteq G$  with  $A \subseteq V(G')$  and  $|V(G')| \leq r \cdot |A|^{k+1}$ , for some k, such that  $\nu_r(G', A) \geq \nu_r(G, A)$ .

• Take one vertex  $v_{\kappa}$  from each equivalence class  $\kappa$  and for each  $a \in A \cap N_r(v_{\kappa})$  a path of length at most r from  $v_{\kappa}$  to a.

# **Proof Outline**

### Theorem [EGKKPRS 16+]

A class C is nowhere dense if and only if there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ ,  $G' \subseteq G \in C$  and  $A \subseteq V(G)$ 

 $\nu_r(G',A) \leq f(r,\varepsilon) \cdot |A|^{1+\varepsilon}.$ 

- **(**) Reduce the graph size to  $|A|^k$ , for a constant k, using NIP.  $\checkmark$
- Identify interfaces of size |A|<sup>ε/2</sup> which control all connections to A using weak colouring numbers.
- Show that there are at most |A|<sup>1+ε/2</sup> interfaces using uniform quasi-wideness and weak colouring numbers.

# Generalised Colouring Numbers

Is there an order L of V(G) such that every vertex  $v \in V(G)$  can reach only few smaller vertices w by paths of length at most r such that w is the smallest vertex on the path?



### Definition

For  $v \in V(G)$ , let  $\operatorname{WReach}_r[G, L, v]$  be the set of vertices reachable from v in the above way. Define

$$\operatorname{wcol}_r(G) \coloneqq \min_{L \ L.O.} \max_{v \in V(G)} |\operatorname{WReach}_r[G, L, v]|.$$

# Generalised Colouring Numbers

#### Theorem

Let G be a graph,  $A \subseteq V(G)$  and  $v \in V(G)$ . Then WReach<sub>r</sub>[G, L, v]  $\cap$  WReach<sub>r</sub>[G, L, A] intersects every path of length at most r between v and A.



# Generalised Colouring Numbers

#### Theorem

If C is nowhere dense, then there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $G' \subseteq G \in C$ , all  $r \in \mathbb{N}$  and  $\varepsilon > 0$  we have

 $\operatorname{wcol}_r(G') \leq f(r,\varepsilon) \cdot |V(G')|^{\varepsilon}.$ 

### Corollary

The graph G' we constructed satisfies  $\operatorname{wcol}_{2r}(G') \leq f(2r, \varepsilon/(2k)) \cdot |A|^{\varepsilon/2}$ .

# **Proof Outline**

### Theorem [EGKKPRS 16+]

A class C is nowhere dense if and only if there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ ,  $G' \subseteq G \in C$  and  $A \subseteq V(G)$ 

 $\nu_r(G',A) \leq f(r,\varepsilon) \cdot |A|^{1+\varepsilon}.$ 

- **(**) Reduce the graph size to  $|A|^k$ , for a constant k, using NIP.  $\checkmark$
- Identify interfaces of size |A|<sup>ε/2</sup> which control all connections to A using weak colouring numbers. √
- Show that there are at most |A|<sup>1+ε/2</sup> interfaces using uniform quasi-wideness and weak colouring numbers.

# Bounding the Number of Interfaces

#### Theorem

Let *L* be an order such that  $\operatorname{WReach}_{2r}[G, L, v]$  is small. Denote by  $\mathcal{Y}$  the family of sets of the form  $Y[v] = \operatorname{WReach}_{r}[G, L, v] \cap \operatorname{WReach}_{r}[G, L, A]$ . Define

$$\gamma: \mathcal{Y} \to \operatorname{WReach}_r[G, L, A]: Y[v] \mapsto \max Y.$$

Then  $\gamma^{-1}(w) \subseteq \operatorname{WReach}_{2r}[G, L, w]$  for all  $w \in \operatorname{WReach}_{r}[G, L, A]$ .



# Bounding the Number of Interfaces

#### Theorem

Let *L* be an order such that  $\operatorname{WReach}_{2r}[G, L, v]$  is small. Denote by  $\mathcal{Y}$  the family of sets of the form  $Y[v] = \operatorname{WReach}_{r}[G, L, v] \cap \operatorname{WReach}_{r}[G, L, A]$ . Define

$$\gamma: \mathcal{Y} \to \operatorname{WReach}_{r}[G, L, A]: Y[v] \mapsto \max Y.$$

Then  $\gamma^{-1}(w) \subseteq \operatorname{WReach}_{2r}[G, L, w]$  for all  $w \in \operatorname{WReach}_{r}[G, L, A]$ .

### Corollary

There are at most  $2^{\operatorname{wcol}_{2r}(G)} \cdot f(r,\varepsilon) \cdot |A|^{1+\varepsilon}$  many interfaces.

# Improving the Bound

#### Theorem

Let C be nowhere dense and let  $r \in \mathbb{N}$ . There is a number d such that for all  $G \in C$  and all orders L of V(G) it holds that the graph G' with V(G') = V(G) and  $\{u, v\} \in E(G')$  if and only if  $u \in \operatorname{WReach}_r[G, L, v]$  has VC-dimension at most d.

### Corollary

Let  $G \in C$  and  $Y \subseteq V(G)$ . Then there are at most  $|Y|^d$  subsets of A of the form  $Y[v] = Y \cap \operatorname{WReach}_r[G, L, v]$  for  $v \in V(G)$ .

### Corollary

By rescaling  $\varepsilon$  again we get the main theorem.

# Uniform Quasi-Wideness

### Definition

A class C of graphs is *uniformly quasi-wide* if there are functions  $N : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$  and  $s : \mathbb{N} \to \mathbb{N}$  such that for all  $r, m \in \mathbb{N}$  and all subsets  $A \subseteq V(G)$  for  $G \in C$  of size  $|A| \ge N(r, m)$  there is a set  $S \subseteq V(G)$  of size  $|S| \le s(r)$  and a set  $B \subseteq A$  of size  $|B| \ge m$  which is *r*-independent in G - S.

#### Theorem

A class C of graphs is uniformly quasi-wide if and only if it is nowhere dense.

### The Final Proof

Assume the VC-dimension of G' is high. Take a large subset A which is shattered in G', that is, for each subset X ⊆ A we have a vertex v ∈ V(G) with X = WReach<sub>r</sub>[G, L, v] ∩ A.



# The final proof

 As G comes from a nowhere dense class, there is a large subset B ⊆ A which is 2r-independent after removing a set S of size at most s(2r) from G.



### The final proof



- The set *B*, as a subset of *A*, must also be shattered, however, every vertex *v* weakly reaching two elements of *B* must make its connection via *S* (otherwise *B* is not 2*r*-independent).
- There are not enough different ways to connect to the constant size set *S* to shatter the large set *B*. A contradiction.

# Summary

### Theorem [EGKKPRS 16+]

A class C is nowhere dense if and only if there is  $f : \mathbb{N} \times \mathbb{R} \to \mathbb{N}$  such that for all  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ ,  $G' \subseteq G \in C$  and  $A \subseteq V(G)$ 

 $\nu_r(G',A) \leq f(r,\varepsilon) \cdot |A|^{1+\varepsilon}.$ 

- **(**) Reduce the graph size to  $|A|^k$ , for a constant k, using NIP.  $\checkmark$
- Identify interfaces of size |A|<sup>ε/2</sup> which control all connections to A using weak colouring numbers. √
- Show that there are at most |A|<sup>1+ε/2</sup> interfaces using uniform quasi-wideness and weak colouring numbers. √