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Introduction

Task. Choose a programme committee

You are the PC chair and want to put together a PC for a conference.

You may choose 15 people for your PC. 

Idea. Use DBLP and create a co-author graph.
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Dominating Set

Input: Graph 𝐺, number 𝑘

Problem: Find a set 𝑆 ⊆ 𝑉(𝐺) with |𝑆| ≤ 𝑘 such that for 

all 𝑣 ∈ 𝑉 𝐺 ∖ 𝑆 there is a 𝑢 ∈ 𝑆 with 𝑢, 𝑣 ∈ 𝐸(𝐺).
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Distance d Dominating Set

Input: Graph 𝐺, numbers 𝑘, 𝑑

Problem: Find a set 𝑆 ⊆ 𝑉(𝐺) with |𝑆| ≤ 𝑘 such that for 

all 𝑣 ∈ 𝑉 𝐺 ∖ 𝑆 there is a 𝑢 ∈ 𝑆 with 𝑑𝑖𝑠𝑡 𝑢, 𝑣 ≤ 𝑑.



Task. Judge the invited talk

Now you have chosen the invited speaker and want feedback on her talk.

You want to ask about 10 people from the audience. 

Idea. Create audience graph. Connect people with similar taste/research area.

Introduction
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Independent Set

Input: Graph 𝐺, number 𝑘

Problem: Find a set 𝑆 ⊆ 𝑉(𝐺) with 𝑆 ≥ 𝑘 such that 

𝑢, 𝑣 ∉ 𝐸(𝐺) for all 𝑢, 𝑣 ∈ 𝑆.
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Distance d Independent Set

Input: Graph 𝐺, numbers 𝑘, 𝑑

Problem: Find a set 𝑆 ⊆ 𝑉(𝐺) with 𝑆 ≥ 𝑘 such that 

dist 𝑢, 𝑣 > 𝑑 for all 𝑢, 𝑣 ∈ 𝑆.



Complexity

These are only two examples of standard algorithmic problems on graphs.

Examples.

• Network Centres / Facility location problems / dominating sets

• Clique, Independent Set, Subgraph Containment

• Network design problems: Steiner trees or networks 

• k-disjoint paths, Hamiltonian paths

• k-Colourability

Complexity.

The corresponding decision problems are all NP-complete in general.

Hence, it is expected that no efficient algorithms solving them exist.
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Managing Complexity

Dealing with the complexity.

• Design heuristics

• Design exact algorithms optimising the (exponential) running time.

• Approximation algorithms

• Identify special classes of admissible inputs on which the problems
become tractable.

Restricted cases sufficient for applications.

We may have additional information about the structure of inputs.

Examples.

road maps: almost planar

communication networks: sparse (moderate number of edges) 

Aim. Develop efficient algorithms restricted to special classes of graphs.
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Structural Graph Theory to the Rescue
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all graph classes

bd expansion

planar

bd degree

bd local tree-w.

excluded minors

locally excl. minors

nowhere dense

trees

bd tree-width

apex minor free
bd genus



Models of Efficiency

Models of efficiency.

Solvability in polynomial time. 

But Dominating Set is NP-hard on very restricted classes of graphs.

In concrete applications.

The dominating set might be rather small (PC size 15). 

So 2𝑂( 𝑘) ⋅ 𝑛 may be ok but 2 𝑛 would not.

Parameterized Complexity.

Restrict the exponential behaviour to a specific/small part of the input.

For instance the size of the solution or some structural parameter.

Try to find algorithms running in time

2𝑂( 𝑘) ⋅ 𝑛 or 2𝑂(𝑘) ⋅ 𝑛 or    𝑓(𝑘) ⋅ 𝑛𝑐
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Parameterized Complexity

Parameterized Problem. Pair (𝑷, 𝒌).

Definition.

A parameterized problem (𝑃, 𝑘) is called fixed-parameter tractable if it can 

be solved in time 𝑓(𝑘) ⋅ 𝑛𝑐 for some computable function 𝑓 and constant c.

Parameterized intractability. W[1]-hardness, W[2] …..

Problems such as Independent/Dominating Set … W[1]-hard on general graphs
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Independent Set

Input: Graph 𝐺, number 𝑘

Parameter: k (or k+d or a structural par.: tree width, excluded 𝐾𝑡)

Problem: Find 𝑆 ⊆ 𝑉(𝐺) with 𝑆 ≥ 𝑘 st 𝑢, 𝑣 ∉ 𝐸(𝐺) for all 𝑢, 𝑣 ∈ 𝑆.



Algorithmic Graph Structure Theory

Design of Algorithms.

A lot of research has gone into developing and improving algorithms for 
specific problems on certain classes of graphs.

How far can we go up in this hierarchy of graph classes for problems such as 
dominating sets? 

Is tractability of dominating set on degenerate graphs merely a special case or 
a witness of a general phenomenon with broad algorithmic applications. 
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Algorithmic Graph Structure Theory

In this talk.

Explore the general frontier of tractability for natural types of problems.

Identify natural classes of problems!

Simple way of proving that a problem is tractable on a specific graph class. 

How can we identify promising classes of graphs?
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Enters Logic



Meta-Theorems

Meta-Theorems.

Every problem satisfying certain criteria 𝐿 are tractable on 
every class of graphs satisfying a property 𝑃.

Ideally, infer tractability of a problem directly from its mathematical description.

Theorem. Every graph property that can be described using only

• there is a/for all sets of edges/vertices

• there is a/for all vertices/edges

• Boolean combinations

• there is an edge between u and v …

can be solved in linear time on any class of graphs of bounded tree-width.

Example. 3-Colourability

A graph 𝐺 is 3-Colourable if there are 3 sets of vertices such that every vertex 
of 𝐺 belongs to a set and for all edges both endpoints have different colours.
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Courcelle’s Theorem

Courcelle’s Theorem. (Courcelle’90)

Every algorithmic property definable in monadic second-order logic can be 
decided in linear time on any class of graphs of bounded tree width.

Monadic Second-Order Logic (MSO).

Hamiltonian path.   ∃𝑃 ⊆ 𝐸 𝐺 . (𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ ∧ ∀𝑥. 𝑥 ∈ 𝑉 𝑃 )

3-Colourability.       

∃𝐶1𝐶2𝐶3. ∀𝑥 𝑥 ∈ 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∧ ∀ 𝑢, 𝑣 ∈ 𝐸 𝐺 𝑖=1ڀ¬.
3 (𝑢 ∈ 𝐶𝑖 ∧ 𝑣 ∈ 𝐶𝑖)

Efficient implementation. Sequoia project by Langer, Rossmanith … ‘10

• Implementation of MSO evaluation on graphs using tree width

• Has been used for real world tasks: computing optimal placement of 
radio transmitters for Hannover urban train network

• For some problems even beats ILP-based approaches using CPLEX

• Run time very close to optimal (theoretical) lower bounds for 
Dominating Set
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Algorithmic Meta-Theorems

Theorem.                                                                                        (Courcelle ’90)

Every graph property definable in Monadic Second-Order Logic can be 
decided in linear time on any class of graphs of bounded tree width.

General form of an algorithmic meta theorem.

Every problem definable in a given logic 𝓛 is tractable on any class 𝒞 of 
graphs satisfying a certain property.

Rephrased in parameterized complexity. Let 𝒞 be a class of graphs.

Then the following problem is fixed parameter tractable
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MC(𝓛, 𝓒)

Input: Graph 𝐺 ∈ 𝒞, formula 𝜑 ∈ 𝓛

Parameter: |𝜑| (or 𝜑 + 𝑡𝑤(𝐺) or 𝜑 + 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 𝐾𝑡 )

Problem: Decide 𝐺 ⊨ 𝜑?



Algorithmic Meta-Theorems

Rephrased in parameterized complexity. Let 𝒞 be a class of graphs.

Then the following problem is fixed parameter tractable

Research programme.

For important logics 𝓛 such as first-order or monadic second-order logic: 

identify structural parameter 𝒫 such that

MC(𝒞, 𝓛) is FPT for a class 𝒞 if, and only if, 𝒞 has property 𝒫.
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Algorithmic Meta-Theorems
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Characterising MSO Tractability

Theorem. (K., Tazari ’10)

Let 𝒞 be a class of graphs closed under sub-graphs.

If the tree width of 𝒞 is not poly-logarithmically, or log28𝑛, bounded then 
MC(MSO, 𝒞) is not fpt unless SAT can be solved in sub-exponential time.

Theorem.                                                                                       (Courcelle ’90)

Monadic Second-Order Logic (MSO) is fixed-parameter tractable on any 
class of graphs of constant tree width.

Note. This applies to MSO2 and MSO1 and tree width. The lower bound for 
MSO1 and clique-width is open.

Theorem.                                                                                                (Seese ‘96)

Every graph property definable in first-order logic can be decided in linear 
time on any class of graphs of bounded maximum degree.
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Algorithmic Meta-Theorems
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K., Schweikardt 06)

FO (Dawar, Grohe, K. 07)
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FO Enum (Kazana, Segoufin ‘12)

FO intractable if closed under subgraphs and not nowhere dense

(K. ’09, Dvorak, Kral, Thomas 11)

FO in FPT
(Grohe, K., Siebertz ’14)

FO (Frick, Grohe 01)



Logic vs. Structure vs. Algorithms

Logic

Feferman-Vaught Theorems.

A                      B

Knowing the set of formulas true at 𝑆
in 𝐴 and the set of formulas true at 𝑆
in 𝐵 is enough to compute the set of 
formulas true at 𝑆 in 𝐴 ∪ 𝐵.
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Structure

Tree width. 

Recursively split along constant 
size separators. 

S



Algorithmic Meta-Theorems
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Model Checking on Nowhere Dense Classes

Theorem.   (Grohe, K., Siebertz ‘14)

Every problem definable in first-order logic can be decided in time
𝑂(𝑛1+𝜖), for every 𝜀 > 0, on any class of graphs that is nowhere dense.

Examples of first-order definable problems.

• Dominating Sets, Independent Sets, … (for fixed solution size)

• Steiner trees (for fixed solution size) etc.

• Subgraph Homo- or Isomorphism   𝐻 →ℎ𝑜𝑚 𝐺 (for fixed 𝐻)

Theorem.   (K. 09,    Dvorak, Kral, Thomas ’11)

If a class C closed under subgraphs is not nowhere dense, then FO-
model-checking is not fixed-parameter tractable (unless AW[∗] = FPT).

Corollary. 

Let 𝒞 be a class of graphs closed under taking subgraphs.

𝑀𝐶 𝐹𝑂, 𝒞 ∈ 𝐹𝑃𝑇 if, and only if, 𝒞 is nowhere dense.
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Nowhere Dense Classes of 
Graphs



Sparse Classes of Graphs

Observation.

The classes of graphs studied so far exhibit very different properties.

But they are all relatively sparse, i.e. a low number of edges.
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Sparse Classes of Graphs

Question. What are sparse graphs or sparse classes of graphs?

Attempt 1. Bounded average degree

Study classes of graphs 𝐺 where 
|𝐸 𝐺 |

|𝑉 𝐺 |
≤ 𝑑 for some constant d.

Property 1. A sparse class of graphs should be preserved by taking subgraphs.
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Sparse Classes of Graphs

Property 1. A sparse class of graphs should be preserved by taking subgraphs.

Attempt 2. Bounded degeneracy

A graph is d-degenerate if every subgraph 𝐻 ⊆ 𝐺 contains a vertex of degree ≤ 𝑑.

Property 2. A sparse class of graphs should be preserved by “undoing” 
subdivisions of bounded length.

Nowhere dense classes of graphs. 

Exactly the classes with Property 1 and 2.
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Topological Minors

Definition.

Let 𝐻 be a graph.

1. A subdivision of 𝐻 is a graph obtained from 𝐻 by replacing edges by 
pairwise vertex disjoint paths.

2. 𝐻 is a topological minor of 𝐺, 𝐻 ≼𝑡 𝐺, if a subdivision of 𝐻 is isomorphic 
to a subgraph of 𝐺.

An 𝑟-subdivision of 𝐻 is a graph obtained from 𝐻 by replacing edges by pairwise 
vertex disjoint paths of length at most 𝑟.

𝐻 is an 𝑟 -shallow topological minor of 𝐺, 𝐻 ≼𝑟
𝑡 𝐺, if an 𝑟 -subdivision of 𝐻 is 

isomorphic to a subgraph of 𝐺.
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Nowhere Dense Classes of Graphs

Definition.                                                                (Nešetril, Ossona de Mendez)

A class 𝒞 of graphs is nowhere dense if for every 𝑟 ≥ 1 there is a number 
𝑓 𝑟 such that 𝐾𝑓(𝑟) ⋠𝑟 𝐺 for all 𝐺 ∈ 𝒞.

If the function 𝑓 ∶ 𝑟 → 𝑓(𝑟) is computable then we call 𝒞 effectively nowhere 
dense.

Examples.

• Graph classes excluding a fixed minor

• Graph classes of bounded local tree width or locally excluding a minor.

• Classes of bounded expansion.

Non-Examples.

• 2-degenerate graphs.

• Bounded average degree classes.

• Classes of bounded rank or clique width.
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Equivalent Definition

Nowhere dense classes of graphs have many equivalent characterisations, making 
it a very robust and seemingly natural concept.

Definition through density. (Nešetril, Ossona de Mendez)

A class 𝒞 is nowhere dense if, and only if, 

lim
𝑟,𝑛→∞

max
log |𝐸 𝐻 |

log |𝑉 𝐻 |
: 𝐺 ∈ 𝒞, 𝐺 = 𝑛 𝑎𝑛𝑑 𝐻 ≼𝑟 𝐺 ≤ 1 .

Theorem. 

For every class 𝒞

lim
𝑟,𝑛→∞

max
log |𝐸 𝐻 |

log |𝑉 𝐻 |
: 𝐺 ∈ 𝒞, 𝐺 = 𝑛 𝑎𝑛𝑑 𝐻 ≼𝑟 𝐺 ∈ {0, 1, 2} .
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Characterisations of Nowhere Dense Graphs

Theorem.

A class 𝒞 is nowhere dense if, and only if,

1. for every r there is a graph not contained as r-shallow topological minor

2. the edge density of every 𝑟-shallow minor is bounded by 𝑛𝑜(1)

3. Splitter wins the Splitter-Game

4. for every 𝑘, every graph 𝐺 ∈ 𝐶 can be coloured by 𝑛𝑜(1) colours so that 
every k colour classes induce a subgraph of tree-width ≤ k.

5. 𝒞 is uniformly quasi-wide

6. the weak colouring numbers on 𝒞 are bounded for every 𝑟.

7. …
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Back to Model Checking



Model Checking on Sparse Graphs

Theorem.

Every problem definable in first-order logic can be decided in time
O(n1+𝜀), for every 𝜀>0, on any class of graphs that is nowhere dense.

Proof. 

Proof combines logical aspects and algorithmic/graph structural parts.

Logical part is the most complicated part.

Structural and algorithmic tools of independent interest.

• Efficient neighbourhood covers
Neighbourhood covers improving the known bounds for planar and 
excluded minor classes

• Splitter game
A new game based characterisation of nowhere dense classes.
Yields bounded search tree techniques.
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Subgraph Isomorphism 

We illustrate the main proof ideas by the following example.

Example. Fix a connected graph H with |V(H)| = r.

H-Subgraph Problem.

Input:       Graph G

Problem: Does G contain a subgraph isomorphic to H ? 

Goal. show that it can be solved in time O(n1+𝜀), for every 𝜀>0, on nowhere 
dense graph classes.

Observation. If 𝐻 ⊆ 𝐺, then 𝐻 ⊆ 𝑁𝑟(𝑣) for some 𝑣 ∈ 𝑉(𝐺).

Hence, it suffices to look at r-neighbourhoods in G.

But 𝑟 - neighbourhoods are not well behaved in nowhere dense graphs.
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The Splitter Game
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(l, d, r)-Splitter Game on G

Graph G, parameters l, d, r>0

Players Connector and Splitter

Initialisation: 𝐺0 ∶= 𝐺

Round 𝑖 + 1:

1. C chooses 𝑣𝑖 + 1 ∈ 𝑉(𝐺𝑖)

2. S chooses 𝑊𝑖 ⊆ 𝑁𝑟
𝐺𝑖(𝑣𝑖+1) of size at most d

We set 𝐺𝑖+1 ≔ 𝐺𝑖[𝑁𝑟
𝐺𝑖 𝑣𝑖+1 ∖𝑊𝑖+1].

S wins if 𝐺𝑖+1 = ∅. Otherwise the game continues.

If S has not won after l rounds, then C wins.

v1

Nr(v1)



Bounded Depth Search Trees
Theorem. (Grohe, K. Siebertz ‘14)

A class C is nowhere dense if, and only if, for all r there are l, d such that
Splitter wins the (l, d, r)-splitter game on every graph in C. 
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G

l = l(r)

v1

v1

Nr(v1)-W1

v2

Nr(v2)-W2

Nr(vi)-Wi

vn

Nr(vn)-Wn
u1

u1

Nr(u1)-W1

un

Nr(un)-Wn

The entire search tree has size 𝑙 𝑟 ⋅ 𝑛𝑂 𝑙 .
This is bad as 𝑙 depends on 𝑟 = |𝑉 𝐻 |.
Hence, this way we can decide 𝐻 ⊆ 𝐺 in time 

𝑂(𝑛|𝐻|) which is trivial.



Neighbourhood Covers
Definition.      Fix a radius 𝑟 > 0.

1. An r-neighbourhood cover 𝒩 of a graph G is a set of connected

subgraphs of G called clusters such that for every 𝑣 ∈ 𝑉(𝐺) there is 

some 𝑁 ∈ 𝒩 with 𝑁𝑟(𝑣) ⊆ 𝑁.

2. The radius of 𝒩 is the maximum radius of any of its clusters.

3. The degree of 𝒩 is max |{ 𝑁 ∈ 𝒩 ∶ 𝑣 ∈ 𝑉(𝐺) }| over all 𝑣 ∈ 𝑉(𝐺).
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Neighbourhood Covers
Definition.      Fix a radius 𝑟 > 0.

1. An r-neighbourhood cover 𝒩 of a graph G is a set of connected

subgraphs of G called clusters such that for every 𝑣 ∈ 𝑉(𝐺) there is 

some 𝑁 ∈ 𝒩 with 𝑁𝑟(𝑣) ⊆ 𝑁.

2. The radius of 𝒩 is the maximum radius of any of its clusters.

3. The degree of 𝒩 is max |{ 𝑁 ∈ 𝒩 ∶ 𝑣 ∈ 𝑉(𝐺) }| over all 𝑣 ∈ 𝑉(𝐺).

Neighbourhood covers are studied in

• distributed algorithms

• graph spanners

The goal usually is to mimimise the radius and the degree of the cover.
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Neighbourhood Covers
Theorem. 

Let 𝒞 be a nowhere dense class of graphs.

There are neighbourhood covers of radius 2r and degree O(n𝜀).

Precisely: For every radius 𝑟 > 0 and 𝜀 > 0 there is an 𝑛0 such that 

for every 𝐺 ∈ 𝒞 with |𝑉(𝐺)| = 𝑛 > 𝑛
0
we can compute an

r-neighbourhood cover 𝒩 of G with radius 2r and degree 𝑛𝜀

in time 𝑂(𝑛1+𝜖).

If 𝒞 is closed under taking subgraphs then this is if, and only if, i.e. constant 

radius and O(n𝜀) degree neighbourhood covers imply nowhere dense.

Furthermore, for classes of bounded expansion the degree is constant.
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Bounded Depth Search Trees
Theorem. (Grohe, K. Siebertz ‘14)

A class C is nowhere dense if, and only if, for all r there are l, d such that
Splitter wins the (l, d, r)-splitter game on every graph in C. 
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G

l = l(r)

v1

v1

Nr(v1)-W1

v2

Nr(v2)-W2

Nr(vi)-Wi

vn

Nr(vn)-Wn
u1

u1

Nr(u1)-W1

un

Nr(un)-Wn

The entire search tree has size 𝑙 𝑟 ⋅ 𝑛𝑂 𝑙 .
This is bad as 𝑙 depends on 𝑟 = |𝑉 𝐻 |.
Hence, this way we can decide 𝐻 ⊆ 𝐺 in time 

𝑂(𝑛|𝐻|) which is trivial.



Bounded Depth Search Trees
Theorem. (Grohe, K. Siebertz ‘14)

A class C is nowhere dense if, and only if, for all r there are l, d such that
Splitter wins the (l, d, r)-splitter game on every graph in C. 
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G

l = l(r)

v1

v1

Nr(v1)-W1

v2

Nr(v2)-W2

Nr(vi)-Wi

vn

Nr(vn)-Wn
u1

u1

Nr(u1)-W1

un

Nr(un)-Wn

If instead of 𝑁𝑟(𝑣) for all 𝑣 ∈ 𝑉(𝐺) we use a neighbourhood 

cover at each level, the entire search tree has size 𝑂(𝑙 𝑟 ⋅ 𝑛1+𝜖).
In this way, we can decide 𝐻 ⊆ 𝐺 in time 𝑂(𝑛1+𝜖) .



Back to Logic: Gaifman Normal Form

The connection to model checking is given by Gaifman’s Normal Form.

Definition.

1. A formula 𝜓𝑟(𝑥) is 𝑟-local, if for all G and all 𝑣 ∈ 𝑉 𝐺 :

𝐺 ⊨ 𝜓𝑟(𝑣) only depends on 𝑁𝑟(𝑣).

2. A formula 𝜑 ∈ 𝐹𝑂 with no free variables is in Gaifman Normal Form, 
if it is a Boolean combination of basic local sentences of the form

∃𝑥1…∃𝑥𝑘 ሥ
1≤𝑖<𝑗≤𝑘

𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑗 > 2𝑟 ∧ሥ
𝑖=1

𝑘

𝜓𝑟(𝑥𝑖)

where 𝜓𝑟(𝑥𝑖) is an 𝑟-local formula.

Theorem. (Gaifman ‘82)

Every formula is effectively equivalent to a formula in Gaifman Normal 
Form.
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First-Order Model Checking
Problem.

Input: 𝜑 ≔ ∃𝑥1…∃𝑥𝑘 𝑖<𝑗≤𝑘≥1ٿ 𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑗 > 2𝑟 ∧ 𝑖=1ٿ
𝑘 𝜓𝑟 𝑥𝑖

𝐺 ∈ 𝒞

Problem: decide 𝐺 ⊨ 𝜑?

Step 1. For every 𝑣 ∈ 𝑉(𝐺) compute 𝑁𝑟(𝑣) and decide whether 𝑁𝑟 𝑣 ⊨ 𝜓𝑟(𝑣).

If yes then colour v red.
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First-Order Model Checking
Problem.

Input: 𝜑 ≔ ∃𝑥1…∃𝑥𝑘 𝑖<𝑗≤𝑘≥1ٿ 𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑗 > 2𝑟 ∧ 𝑖=1ٿ
𝑘 𝜓𝑟 𝑥𝑖

𝐺 ∈ 𝒞

Problem: decide 𝐺 ⊨ 𝜑?

Step 2. Find a red 2r-independent set of size k.
a. take a greedy approach.

b. If unsuccessful, all red nodes are in at most k different 2r neighbourhoods.
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Back to Logic: Gaifman Normal Form

The connection to model checking is given by Gaifman’s Normal Form.

Definition.

1. A formula 𝜓𝑟(𝑥) is 𝑟-local, if for all G and all 𝑣 ∈ 𝑉 𝐺 :

𝐺 ⊨ 𝜓𝑟(𝑣) only depends on 𝑁𝑟(𝑣).

2. A formula 𝜑 ∈ 𝐹𝑂 with no free variables is in Gaifman Normal Form, 
if it is a Boolean combination of basic local sentences of the form

∃𝑥1…∃𝑥𝑘 ሥ
1≤𝑖<𝑗≤𝑘

𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑗 > 2𝑟 ∧ሥ
𝑖=1

𝑘

𝜓𝑟(𝑥𝑖)

where 𝜓𝑟(𝑥𝑖) is an 𝑟-local formula.

Theorem. (Gaifman ‘82)

Every formula is effectively equivalent to a formula in Gaifman Normal 
Form.
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Model Checking on Nowhere Dense Classes

Theorem.   (Grohe, K., Siebertz ‘14)

Every problem definable in first-order logic can be decided in time
𝑂(𝑛1+𝜖), for every 𝜀 > 0, on any class of graphs that is nowhere dense.

Examples of first-order definable problems.

• Dominating Sets, Independent Sets, … (for fixed solution size)

• Steiner trees (for fixed solution size) etc.

• Subgraph Homo- or Isomorphism   𝐻 → 𝐺 (for fixed 𝐻)

Theorem.   (K. 09,    Dvorak, Kral, Thomas ’11)

If a class C closed under subgraphs is not nowhere dense, then FO-
model-checking is not fixed-parameter tractable (unless AW[∗] = FPT).

Corollary. 

Let 𝒞 be a class of graphs closed under taking subgraphs.

𝑀𝐶 𝐹𝑂, 𝒞 ∈ 𝐹𝑃𝑇 if, and only if, 𝒞 is nowhere dense.
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Algorithmic Meta-Theorems
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all graph classes

bd expansion

planar

bd degree

bd local tree-w.

excluded minors

locally excl. minors

nowhere dense

trees

bd tree-width

apex minor free
bd genus

MSO (Courcelle 90)

FO (Seese 96)

FO (Frick, Grohe 01)

FO (Flum, Frick, Grohe 01)

FO PTAS (Dawar, Grohe, 

K., Schweikardt 06)

FO (Dawar, Grohe, K. 07)

FO (Dvorak, Kral, Thomas ‘11)

FO Enum (Kazana, Segoufin ‘12)

FO intractable if closed under subgraphs and not nowhere dense

(K. ’09, Dvorak, Kral, Thomas 11)

FO in FPT
(Grohe, K., Siebertz ’14)

FO (Frick, Grohe 01)



Conclusion

Nowhere dense classes of graphs.

• A natural concept with many alternative characterisations

• Natural limit of algorithmic tractability (if closed under sungraphs).

• Occur naturally in practical applications.

Digraphs.

Bounded expansion can be generalised to digraphs. 

We get very similar characterisations and applications.
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Conclusion

Research programme.

For important logics 𝓛 such as first-order or monadic second-order logic: 

identify structural parameter 𝒫 such that

MC(𝒞, 𝓛) is FPT for a class 𝒞 if, and only if, 𝒞 has property 𝒫.

Monadic Second-Order Logic with edge set quantification:

More or less completed.

Monadic Second-Order Logic without edge set quantification:

Tractability on graph classes of bounded rank or clique width.

No lower bound.

First-Order Logic. 

Completed for classes of graphs closed under taking subgraphs.
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Future Work
What if our classes are no longer sparse? And no longer closed under taking 
subgraphs?

Wait till tomorrow.
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