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Introduction

The theory of Euler systems is one of the most powerful tools available for studying the arithmetic of global
Galois representations. However, constructing Euler systems is a difficult problem, and the list of known
constructions was until recently accordingly rather short. In these lecture notes, we outline a general strategy
for constructing new Euler systems in the cohomology of Shimura varieties: these Euler systems arise via
pushforward of certain units on subvarieties.

We study in detail the Euler system of Beilinson–Flach elements, where the underlying Shimura variety is
the fibre product of two modular curves

The lecture notes are structured as follows.

• In Chapter 1, we introduce L-functions and Selmer groups attached to global p-adic Galois repre-
sentations, and we state the Bloch–Kato conjecture. We also define Euler systems, and we explain
their arithmetic applications to the Bloch–Kato conjecture.
• In Chapter 2, we introduce motivic cohomology as a tool for constructing global cohomology classes

for Galois representations arising from geometry. We illustrate this theory by some examples,
assuming the existence of a supply of subvarieties of appropriate codimension and units on them.
• In Chapter 3, we introduce Siegel units, which are the basic input to many Euler system con-

structions. We then describe the construction of the Beilinson–Flach Euler system, attached to
pairs of modular forms of weight 2. We motivate this construction by explaining its relation to the
Rankin–Selberg integral formula.
• In Chapter 4, we discuss the question of proving the non-vanishing of the Euler system of Beilinson–

Flach elements. We introduce syntomic cohomology and Fontaine’s theory of rings of periods, which
we use to relate the evaluation of the Euler system under the syntomic regulator to certain cup
products in coherent cohomology. These cup products closely resemble the Rankin–Selberg integral
formula and can be interpreted as values of a p-adic L-function.

Updated September 9, 2021.
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CHAPTER 1

Galois representations and Galois cohomology

References: for §§1.1—1.3, an excellent source is Bellaiche’s CMI notes on the Bloch–Kato conjecture.

1.1. Galois representations

1.1a. Definitions. Let K be a number field, K its algebraic closure, GK = Gal(K/K); and let p be
a prime, and E a finite extension of Qp. We’re interested in representations of GK on finite-dimensional
E-vector spaces V .

We always assume that

(1) ρ : GK → Aut(V ) ∼= GLd(E) is continuous (where d = dim(V )), with respect to profinite topology
of GK and the p-adic topology on GLd(E).

(2) V is “unramified almost everywhere”: for all but finitely many prime ideals v of K, we have
ρ(Iv) = {1}, where Iv is an1 inertia group at v.

1.1b. Examples.

The representation Zp(1). Let µpn = {x ∈ K× : xp
n

= 1}. Then µpn is finite cyclic of order pn and GK
acts on it.

The p-power map sends µpn+1 → µpn and we define

Zp(1) := lim←−
n

µpn , Qp(1) := Zp(1)⊗Qp.

This is a 1-dimensional continuous Qp-linear representation, unramified outside the primes dividing p; GK
acts by “cyclotomic character” χcyc : GK → Z×p .

(Notation: for any V , n ∈ Z, we set V (n) = V ⊗Qp(1)⊗n.)

Tate modules of elliptic curves. If A/K is an elliptic curve, then A(K) is a finitely generated abelian
group with a continous GK-action. Let A(K)[pn] denote the subgroup of pn-torsion points.

Define the p-adic Tate module

Tp(A) := lim←−
n

A(K)[pn] (w.r.t. multiplication-by-p maps), Vp(A) := Tp(A)⊗Qp.

This is a 2-dimensional continuous GK-representation, unramified outside the set {v : v | p} ∪ {v : A
has bad reduction at v}. (The same works for abelian varieties of any dimension g, giving 2g-dimensional
representations of GK .)

Etale cohomology. Let X/K be a smooth algebraic variety. We can define vector spaces

Hi
ét(XK ,Qp) for 0 ≤ i ≤ 2 dimX,

which are finite-dimensional p-adic Galois representations, unramified outside p and primes of bad reduction2

of X.

1Iv depends on a choice of prime of K above v, but only up to conjugation in GK , so whether or not V is unramified at v
is well-defined.

2This is a little delicate to define properly if we don’t assume X to be proper over K. Formally, we say X has “good
reduction” at v if it’s isomorphic to the complement of a relative normal crossing divisor in a smooth proper OK,v-scheme.
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1.1c. Representations coming from geometry. Our second example is a special case of the third:
for an elliptic curve A, it turns out that we have Vp(A) ∼= H1

ét(AK ,Qp)(1).

Definition. We say an E-linear Galois rep V comes from geometry if it is a subquotient of

Hi
ét(XK ,Qp)(j)⊗Qp

E,

for some variety X/K and some integers i, j.

So all of the examples above come from geometry. In these lectures we’re only ever going to be interested in
representations coming from geometry.

Remark. Conjecturally the representations coming from geometry should be exactly those which are contin-
uous, unramified almost everywhere, and potentially semistable at the primes above p (a technical condition
from p-adic Hodge theory). This is called the Fontaine–Mazur conjecture. �

1.2. L-functions of Galois representations

1.2a. Local Euler factors. Let V as above, v unramified prime. Then ρ(Frobv) is well-defined up to
conjugacy, where Frobv is the arithmetic Frobenius.

Definition. The local Euler factor of V at v is the polynomial

Pv(V, t) := det(1− t · ρ(Frob−1
v )) ∈ E[t].

Examples:

V Pv(V, t)
Qp 1− t

Qp(n) 1− t
qnv
, qv = #Fv

H1(AK ,Qp) 1− av(A)t+ qvt
2, av(A) := 1 + qv −#A(Fv)

1.2b. Global L-functions (sketch). Assume V comes from geometry, and V is semisimple (direct
sum of irreducibles). Then Pv(V, t) has coefficients in Q (Deligne); and there is a way of defining Pv(V, t)
for bad primes v (case v | p is hardest).

Fix an embedding ι : Q ↪→ C. Then we consider the product

L(V, s) :=
∏

v prime

Pv(V, q
−s
v )−1.

Miraculously, this converges for <(s)� 0.

E.g. for V = Qp(n) this is ζK(s+n), where ζK is the Dedekind zeta function of K (which is just the Riemann
zeta for K = Q). For V = H1(AK ,Qp), A an elliptic curve, it is the Hasse–Weil L-function L(A/K, s).

Conjecture 1. For V semisimple and coming from geometry, L(V, s) has meromorphic continuation to
s ∈ C with finitely many poles, and satisfies a functional equation relating L(V, s) and L(V ∗, 1− s).

Note that if V is semisimple and comes from geometry, the same is true3 of V ∗, so the conjecture is well-
posed. This conjecture is of course super-super-hard – the only cases where it is known is where we can
relate V to something automorphic, e.g. a modular form.

There are lots of conjectures (and a rather smaller set of theorems) relating properties of arithmetic objects
to values of their L-functions; the Birch–Swinnerton-Dyer conjecture is perhaps the best-known of these.
As we’ve just seen, all the information about an elliptic curve you need to define its L-function is encoded
in the Galois action on its Tate module; so can we express the BSD conjecture purely in terms of Galois
representations? This will be the topic of the next section.4

3It is not obvious if this holds without the semisimplicity assumption.
4Actually the answer is “no, we can’t” – as far as I’m aware, there is no purely Galois-representation-theoretic statement

that is precisely equivalent to BSD. But we can get pretty close, as we’ll shortly see.
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1.3. Galois cohomology

1.3a. Setup. There is a cohomology theory for Galois representations5: for V an E-linear GK-rep, we
get E-vector spaces Hi(K,V ), zero unless i = 0, 1, 2. Mostly we care about H0 and H1, which are given as
follows

H0(K,V ) = V GK

H1(K,V ) =
{cts fcns s : GK → V such that s(gh) = s(g) + gs(h)}
{fcns of the form s(g) = gv − v for some v ∈ V }

.

These are well-behaved: short exact sequences of V ’s give long exact sequences of cohomology, for instance.
Unfortunately they’re not finite-dimensional in general.

1.3b. The Kummer map. For V = Qp(1) the Galois cohomology is related to the multiplicative
group K∗. To see this, we have to first think a bit about cohomology with finite coefficients.

For any n, we have a short exact sequence

0 - µpn - K
× [pn]- K

× - 0

which leads to a long exact sequence

0 - µGK
pn

- K×
[pn]- K× - H1(K,µpn)

and thus an injection6

K× ⊗ Z/pnZ ⊂ - H1(K,µpn).

Passing to the inverse limit we get a map (Kummer map)

κp : K× ⊗ Zp ⊂ - H1(K,Zp(1)) or K× ⊗Qp
⊂ - H1(K,Qp(1)).

Remark. This already shows that H1(K,Qp(1)) can’t be finite-dimensional, because K× has countably
infinite rank. �

The same argument works for elliptic curves: we get an embedding

E(K)⊗Qp
⊂ - H1(K,Vp(E)).

1.3c. Selmer groups. Since the groups H1(K,V ) can be infinite-dimensional, it’s useful to “cut down
to size” by imposing extra conditions on our H1 elements. We’ll do this by localising at primes of K. Note
that we have maps

Hi(K,V )→ Hi(Kv, V ) for all primes v,

and the local groups Hi(Kv, V ) are finite-dimensional.

Definition. A local condition on V at prime v is an E-linear subspace Fv ⊆ H1(Kv, V ).

Examples:

• strict local condition Fv,strict = {0}
• relaxed local condition Fv,rel = all of H1(Kv, V )
• unramified local condition (usually only interesting for v - p)

Fv,ur = image
(
H1(GKv

/Iv, V
Iv )→ H1(Kv, V )

)
• Bloch–Kato “finite” local condition Fv,BK (for v | p) – defined using p-adic Hodge theory.7

5Technical point: our representations are all continuous, so we shall work with cohomology defined by continuous cochains,
which is slightly different from the cohomology of GK as an abstract group.

6In fact this is an isomorphism, because H1(K,K
×

) is zero (“Hilbert’s theorem 90”)
7We will see the precise definition in Section 4.1c.
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Definition. A Selmer structure is a collection F = (Fv)v prime of K , satisfying the following condition: for
almost all v we have Fv = Fv,ur. If F is a Selmer structure we define the corresponding Selmer group by

SelF (K,V ) = {x ∈ H1(K,V ) : locv(x) ∈ Fv ∀v}.

Theorem 2 (Tate). For any Selmer structure F , the space SelF (K,V ) is finite-dimensional over Qp.

Sketch of proof. It’s easy to see that if this statement is true for one F , it’s true for any F , since the
local Galois cohomology groups H1(Kv, V ) are all finite-dimensional. We now choose a particular Selmer
structure F (exercise: which?) such that SelF (K,V ) is the image of the map

H1
(
Gal(KΣ/K), V

)
↪→ H1(K,V ),

where KΣ is the maximal extension of K unramified outside some finite set of places Σ containing all infinite
places, all places above p, and all places where V is ramified. This reduces us to what Tate actually proved,
which is that the cohomology groups of Gal

(
KΣ/K

)
are finite-dimensional. �

We’re mostly interested in three specific choices of Selmer structure, differing only in the choices of the
Fv at primes v | p: we define the strict Selmer group Selstrict(K,V ) by taking Fv = Fv,ur for v - p, and
Fv = Fv,strict for v | p; and similarly the relaxed Selmer group and the Bloch–Kato Selmer group.

Hence the strict and Bloch–Kato Selmer groups satisfy

Selstrict(K,V ) ⊆ SelBK(K,V ) ⊆ Selrel(K,V ).

Remark. As will soon become clear, it is SelBK(K,V ) which is the most important of all. We care about
Selstrict(K,V ) and Selrel(K,V ) because they are easier to study, and they give us upper and lower bounds
for the thing we care about. �

Example. Recall that for V = Qp(1) we had the Kummer map

K× ⊗Qp
⊂ - H1(K,Qp(1)).

One can check that this induces an isomorphism

O×K ⊗Qp

∼=- SelBK(K,Qp(1)),

and similarly

OK [1/p]× ⊗Qp

∼=- Selrel(K,Qp(1)).

The strict Selmer group, on the other hand, should be zero, but we can’t prove this: it’s exactly Leopoldt’s
conjecture for K. �

1.3d. The Bloch–Kato conjecture. Let V be a representation coming from geometry.

Conjecture 3 (Bloch–Kato). We have

dim SelBK(K,V )− dimH0(K,V ) = ords=0 L(V ∗(1), s).

There are refined versions using Zp-modules in place of Qp-vector spaces, which predict the leading term of
the L-function up to a unit; but we won’t go into these here.

Let’s look at what the conjecture says in some example cases.

Example 1: V = Qp. Here L(V ∗(1), s) = L(Qp, s + 1) = ζK(s + 1), so the right-hand side is the order
of vanishing of ζK(s) at s = 1, which is −1 for every K (there’s a simple pole). The left-hand side is
dim SelBK(K,Qp)− 1, so the conjecture predicts that SelBK(K,Qp) = 0.

Exercise: Prove this. You’ll need to use the finiteness of the ideal class group of K, together with the fact
that for this representation the local condition Fv,BK agrees with Fv,ur for primes v | p.
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Example 2: V = Qp(1). Here L(V ∗(1), s) = ζK(s). Inspecting the functional equation for Dedekind
zeta functions, we see that ords=0 ζK(s) = r1 + r2 − 1, where r1, r2 are the numbers of real and complex
places respectively. (In particular, if K = Q, then ζ(0) = − 1

2 is finite and non-zero.) On the algebraic side,

we have H0(K,Qp(1)) = 0 and

dim SelBK(K,V ) = dimQp

(
O×K ⊗Qp

)
= rankO×K .

So the Bloch–Kato conjecture here is exactly Dirichlet’s unit theorem.

Example 3: Elliptic curves. If V is Vp(E) for an elliptic curve E, then:

• the H0 term is zero;
• the Kummer map lands inside the BK Selmer group, and gives an embedding

E(K)⊗Qp ↪→ SelBK(K,V ),

so that dim SelBK ≥ rank(E/K), with equality iff the p-part of Sha is finite;
• ords=0 L(V ∗(1), s) = ords=1 L(E/K, s).

So this instance of Bloch–Kato is closely related to (but not quite the same as) the Birch–Swinnerton-Dyer
conjecture.

Remark. Notice that L(V ∗(1), s) is expected to be related to L(V,−s) via a functional equation; but this
functional equation will involve various Γ functions as factors, which can have poles, so the orders of vanishing
of the two functions at 0 are not the same in general, as we saw for Qp and Qp(1). On the Selmer-group
side there’s a corresponding relation between SelBK(K,V ) and SelBK(K,V ∗(1)) coming from the Poitou–
Tate global duality theorem in Galois cohomology. One can check that these factors precisely cancel out: if
L(V, s) has a functional equation of the expected form, then the Bloch–Kato conjecture holds for V ∗(1) if
and only if it holds for V . This is a wonderful (but rather involved) exercise. �

1.4. Euler systems

We’ll now introduce the key subject of these lectures: Euler systems, which are tools for studying and control-
ling Selmer groups. In this section we’ll give the abstract definition of an Euler system, and explain (without
proofs) why the existence of an Euler system for some Galois representation has powerful consequences for
Selmer groups.

References: The standard work on this topic is Karl Rubin’s orange book Euler Systems [Rub00]. There
are also two alternative accounts in Rubin’s 2004 Park City lecture notes, and in the book Kolyvagin Systems
[MR04] by Mazur and Rubin.

1.4a. The definition. Let:

• V a GQ-representation (for simplicity)
• T ⊂ V a GQ-stable Zp-lattice
• Σ a finite set of primes containing p and all ramified primes for V

Since V is a GQ-rep, we can consider it as a GK-rep for any number field K and form Hi(K,V ), and there
are corestriction or norm maps

normL
K : Hi(L, V )→ Hi(K,V ) if L ⊃ K.

If K is Galois, Hi(K,V ) is a module over Qp[Gal(K/Q)]. Similarly for cohomology of lattices Hi(K,T ).

Definition. An Euler system for (T,Σ) is a collection c = (cm)m≥1, where cm ∈ H1(Q(µm), T ), satisfying
the following compatibility for any m ≥ 1 and ` prime:

norm
Q(µm`)
Q(µm) (cm`) =

{
cm if ` ∈ Σ or ` | m
P`(V

∗(1), σ−1
` ) · cm otherwise

where σ` is the image of Frob` in Gal(Q(µm)/Q). An Euler system for V is an Euler system for (T,Σ), for
some T ⊂ V and some Σ.
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Intuitively, these are cohomological avatars of an L-function – the norm relation reflects the way we build
up L(V, s) as an Euler product.

1.4b. Bounding Selmer groups. The main reason to care about these objects is the following theorem
(called the Euler system machine), which is due to Rubin [Rub00], building on earlier work of Kato [Kat04],
Kolyvagin [Kol90], and Thaine [Tha88]:

Theorem 4. Suppose c is an Euler system for (T,Σ) with c1 non-zero, and suppose V satisfies various
technical conditions. Then dim Selrel(Q, V ) ≤ dim(V c=−1), where c denotes complex conjugation.

So we are “not far away” from controlling the Bloch–Kato Selmer group (and there are finer versions
incorporating more local information at p, which allow us to get at the Bloch–Kato Selmer group itself).
This is the key step in many of the known cases of the Bloch–Kato conjecture.

For the purposes of these lectures we don’t need to know how this theorem is proved – our goal is to
understand how to build Euler systems, which is a separate problem. If you do want to know about the
proof, then see the references listed above.

Remark.

• The technical conditions are to do with the image of GQ in GL(V ). This needs to be “large enough”
in a certain precise sense, which in particular implies that V is irreducible.

• For the proof of the theorem, we don’t actually need cm to be defined for all m; it’s enough to have
cm for all integers m of the form pkm0, where k ≥ 0 and m0 is a square-free product of primes not
in Σ.

• More generally, one can also define Euler systems for GK-representations, for K a number field.
In place of cyclotomic fields, one has to have classes over different ray class fields of K. However,
we’ll only work with K = Q here.

• There is also a notion of “anticyclotomic Euler system”, which applies when you have a represen-
tation V of GK , a quadratic extension L/K, and cohomology classes for V over the anticyclotomic
extensions of L, which are the abelian extensions of L such that conjugation by Gal(L/K) acts
on their Galois groups by −1. The most important example of an anticyclotomic Euler system
is Kolyvagin’s Euler system of Heegner points [Kol90], where K = Q, V = Vp(E) for E
an elliptic curve, and L is an imaginary quadratic field. Other examples of anticyclotomic Euler
systems have recently been found by Cornut, and by Jetchev and his collaborators. �

1.4c. Cyclotomic units. As a first example, we’re going to build an Euler system for V = Qp(1).
Recall that we have Kummer maps κp : K× → H1(K,Zp(1)). Also, for L/K finite, the Galois corestriction
map corresponds to the usual field norm. So we want to find good elements of the multiplicative groups of
cyclotomic fields, satisfying compatibilities under the norm maps.

Fix an embedding Q ↪→ C× and let ζm = ι−1(e2πi/m) ∈ µm.

Definition. For m > 1, set um = 1− ζm ∈ Q(µm)×. For all m (including m = 1), set

vm =

{
um if p | m,
norm

Q(µpm)

Q(µm) (upm) if p - m.

A pleasant computation (exercise!) shows that v1 = p, and that

norm
Q(µm`)
Q(µm) vm` =

{
vm if ` | m or ` = p,

(1− σ−1
` ) · vm otherwise.

Theorem 5. The classes cm = κp(vm) are an Euler system for (Zp(1), {p}). �
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1.4d. Twisting Euler systems. Recall that V (n) = V ⊗Qp(1)⊗n.

Theorem 6 (Soulé twists). There is a canonical bijection Twn sending Euler systems for V to Euler systems
for V (n), for any n.

It’s important to note that if d = Twn(c), then we can’t find out d1 just from c1 (we need to know all the
cmpk for k ≥ 0). This matters, because we need the ‘bottom’, m = 1 class to be non-zero to apply Theorem
4. Determining the class c1 of the twisted Euler system is a very deep problem; results describing these
classes are called explicit reciprocity laws.

Twisting cyclotomic units. What do we get if we twist the cyclotomic-unit Euler system?

For all odd n, the n-th twist trivially has c1 = 0 (because the units of Q(µm) live in the real subfield Q(µm)+

up to finite index). The even twists are more subtle.

Theorem 7 (Soulé). For n even, the bottom class in the n-th twist of the cyclotomic units is non-zero, and
is a basis of the 1-dimensional space H1

rel(Q,Q(n+ 1)).

The Bloch–Kato Selmer group depends sharply on whether n is positive or negative. For even n > 0, the
relaxed Selmer and Bloch–Kato Selmer agree, so SelBK(Q,Qp(n+ 1)) is one-dimensional (consistently with
the Bloch–Kato conjecture, since L(V ∗, 1) = ζ(−n) vanishes to degree 1).

For even n < 0, the Bloch–Kato Selmer agrees with the strict Selmer, and the twisted cyclotomic-unit class is
not in this space; its localisation at p is related to the algebraic part of ζ(−n) (the |n|-th Bernoulli number).
Hence SelBK(Q,Qp(n + 1)) is zero in this range, consistently with the fact that ζ(−n) 6= 0. So we obtain
the Bloch–Kato conjecture for V = Qp(n+ 1) for all even n (and by duality one can obtain the result for all
n).
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CHAPTER 2

A toolkit for building Euler systems

2.1. Etale cohomology and the Hochschild–Serre spectral sequence

(References: not as many as there should be. Jannsen’s article “Continuous étale cohomology” [Jan88] has
some of the details, but it is not an easy read.)

We saw before that, for a variety X/K, the étale cohomology groups Hi
ét (XK ,Qp) were an interesting source

of Galois representations.

But this isn’t the only thing we can do with étale cohomology. Rather than base-extending to K, we can also
take étale cohomology of X/K directly1; there are groups Hi

ét(X,Qp(m)) for all i and m. These “absolute”
étale cohomology groups are not themselves Galois representations, but it turns out that these are related
to the Galois cohomology of the étale cohomology over K:

Theorem 8 (Jannsen). For any variety X/K, and any n, there is a convergent “Hochschild–Serre” spectral
sequence

Eij2 = Hi
(
K,Hj

ét(XK ,Qp)(n)
)
⇒ Hi+j

ét (X,Qp(n)).

In particular, we get edge maps Hi(X,Qp(n))→ Hi
ét(XK ,Qp(n))GK , and if F 1Hi denotes the kernel of this

map (the “homologically trivial” classes), there is a map

F 1Hi(X,Qp(n))→ H1
(
K,Hi−1

ét (XK ,Qp)(n)
)
.

So, if X is defined over Q and V is the Galois representation Hi−1(XQ) (or a quotient of it), we can try to

construct an Euler system for V by building classes in F 1Hi(XQ), and more generally in F 1Hi(XQ(µm)) for
varying m, and then projecting these to V .

How will we do this? We’ll use a tool called motivic cohomology.

2.2. Motivic cohomology

References: Mazza–Voevodsky–Weibel, Lecture notes on motivic cohomology [MVW06]; Beilinson, Higher
regulators and values of L-functions [Bĕı84].

2.2a. Definitions. There is a cohomology theory for algebraic varieties called motivic cohomology,
introduced by Beilinson and greatly refined by the late Vladimir Voevodsky.

Definition. If X is a regular scheme, we define motivic cohomology groups

Hi
mot(X,Q(n)) = GrγnK2n−i(X)⊗Q,

the n-th graded piece of the γ-filtration of the (2n− i)-th algebraic K-theory of X.

Voevodsky defined integral versions of these, Hi
mot(X,Z(n)), which have a reasonably concrete description

via Bloch’s higher Chow groups. These groups vanish for i > 2n, or for n < 0 (but, rather disturbingly, it is
not known whether Hi

mot(X,Z(n)) vanishes for i < 0).

1Technical point: what we actually want here is “continuous étale cohomology” in the sense of Jannsen. This is consistent
with our use of continuous cochains to define cohomology of Galois representations.
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For small i and n the motivic cohomology groups have explicit descriptions:

• If X is connected, then H0
mot(X,Z(0)) = Z.

• H1
mot(X,Z(1)) ∼= O(X)×.

• (Landsburg [Lan91]) If S is an algebraic surface over a field k, then H3
mot(S,Z(2)) is isomorphic

to the quotient
formal sums

∑
i

(Zi, ui), Zi ⊂ S irreducible curve,

ui ∈ k(Zi)
×, with

∑
i

div ui = 0

 / ∼

where ∼ is some equivalence relation (involving K2 of the function field of S).

Motivic cohomology has good functorial properties, e.g. the following:

• Cup products: for a variety X and any i, j, n,m, there are products

Hi
mot(X,Q(m))×Hj

mot(X,Q(n))→ Hi+j
mot(X,Q(m+ n));

• Pushforward maps: if ι : Z → X is a finite morphism (e.g. the inclusion of a closed subvariety),
then there are pushforward maps

ι? : Hi
mot(Z,Z(n))→ Hi+2c

mot (X,Z(n+ c)).

where c is the codimension of Z. In particular, the pushforward of the identity class 1Z ∈
H0

mot(Z,Z(0)) is a class in H2c
mot(X,Z(c)), the cycle class of Z.

We can build up elements in Hi(X,Z(n)) for various different values of i and n by combining units, push-
forward from subvarieties, and cup-products.

Example. Let X be a smooth variety.

• For any c ≥ 0, mapping a codimension c subvariety ι : Z ↪→ X to its cycle class ι?(1Z) defines an
isomorphism beteween H2c(X,Z(c)) and the Chow group CHc(X) of codimension c cycles up to
rational equivalence.

• If X = S is a smooth surface, and ι : Z ↪→ S is a smooth curve, then for any u ∈ O(Z)×,
ι?(u) ∈ H3

mot(S,Z(2)) is just the class of (Z, u).

�

2.2b. Regulators. Crucially, motivic cohomology is related to étale cohomology. If X is a smooth
variety over some field K, and p is a prime (nonzero in K), then there are étale regulator maps

rét : Hi
mot(X,Z(n))⊗ Zp → Hi

ét(X,Zp(n)).

Remark. If X = SpecK, then the étale regulator on this group is the Kummer map

κp : O(X)× = K× - H1
ét(K,Zp(1)),

which we saw before. �

This is why motivic cohomology is useful here: it allows us to construct classes in étale cohomology via the
map rét. This is just one of several regulator maps; the others we’ll use are:

• the Beilinson regulator into Deligne cohomology when K = R:

rB : Hi
mot(X,Z(n))⊗R - Hi

D(X,R(n));

• the syntomic regulator into syntomic cohomology, when K = Qp:

rsyn : Hi
mot(X,Z(n))⊗Qp

- Hi
syn(X,Qp(n)).

(This will be discussed in more detail in Chapter 4.)
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If X is defined over Q, then we can base-extend it to either C or Qp, so we get a choice of cohomology
theories, and these fit into a rather elaborate diagram:

motivic coh of XQ

Deligne coh of XR étale coh of XQ syntomic of XQp

etale of XR étale of XQp

rB rét

rsyn

expBK

Here “expBK” is the Bloch–Kato exponential map of p-adic Hodge theory2. The kernel of this map is well-
understood, and its image is, roughly, the local H1

f space giving the local condition for the Selmer group.

Crucially, this diagram is much less symmetric than it looks. The Galois group of R is finite, and hence
Hi(R,−) vanishes for i > 1; so the étale cohomology of XR is just the complex conjugation invariants in
Betti cohomology. However, the Galois group of Qp is big and interesting! So the lower left corner of the
diagram only detects if a class in étale coh lives in F 1 or not, and it says nothing about the higher filtration
steps; but the lower right arrow can see these.

2.2c. Games with theories. We’re now going to play a rather delicate game with these theories.
Suppose now that X is defined over Q, and we want to build Euler systems for V , where V is the Galois
representation Hr

ét(XQ)(n) (for some r and n), or a direct summand of it. It’s the étale cohomology of XQ

we really want to study, since this is related to the Galois cohomology of V . But this is very inexplicit (it’s
a nightmare to check whether a class is 0 or not).

The other two theories, Deligne and syntomic, are analytic in nature, given by complexes of differential
forms (real-analytic for Deligne cohohomology, p-adic analytic for syntomic) which are, at least in principle,
computable; this is fairly easy for Deligne cohomology, and possible – although much more difficult – for
syntomic cohomology.

So, we will try to construct an Euler system for V as follows:

• First, we will try to write down classes in the correct group, Hr+1
mot (X,Q(n)), using units, pushfor-

ward from subvarieties, etc.
• We’ll choose a class z so that rC(z) can be computed, and is interesting and non-zero (so in

particular z is nonzero).
• We’ll rig things so rC(z) goes to 0 in Betti cohomology of XC. Commutativity of the left diamond

now tells us that rét(z) is homologically trivial, i.e. lands in the filtration step F 1Hr+1
ét (X,Qp(n)).

This gives us a class zV ∈ H1(Q, V ).

• The image of this class under H1(Q, V )
locp−−−−→ H1(Qp, V ) is given by

locp (zV ) = expBK(rsyn(z)).

So if we can compute rsyn(z), and show that it’s non-zero, we deduce that zV isn’t zero either.

If we can get this to work, then we have an interesting, nontrivial cohomology class for V ; and we can try
to build an Euler system on top of this.

Sadly, for a “random” variety X, we get stuck at the first step: it’s not clear how to find lots of subvarieties,
or lots of units, on X. But we’re going to home in on the case where X is a Shimura variety – a variety

2The commutativity of the right-hand diamond is a very deep theorem, due to Nekovar and Niziol [NN16]
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coming from automorphic theory, such as a modular curve. Then we can try and write down units and
subvarieties using automorphic tools, and feed them into the above machine.

2.3. Numerology

2.3a. For a curve. Suppose C is a curve. Then the interesting Galois representations in étale coho-
mology live in degree 1: we want V = H1

ét(CQ,Qp), or a direct summand of it. Since we can twist Euler

systems, we can choose to work with the twist V (n) for any integer n.

I’m going to suppose C is an affine curve3, which implies H2(CQ,Zp) = 0 (Artin vanishing). So the
Hochschild–Serre spectral sequence gives us a map

H2
ét(C,Zp(n))→ H1

(
Q, H1

ét(CQ,Zp)(n)
)
→ H1(Q, V (n)).

Using the étale regulator, we can get classes in this group if we can construct motivic classes in H2
mot(C,Z(n)).

How can we build classes in this group geometrically?

• For n ≤ 0 this is hopeless, because the motivic cohomology is 0 in this range.
• For n = 1, you can use cycle classes of codimension 1 subvarieties of C – i.e., points. For C an

elliptic curve, this is Kolyvagin’s original approach [Kol90]: he built an Euler system for elliptic
curves using cycle classes of Heegner points. However, this gives an anticyclotomic Euler system
(relative to some choice of imaginary quadratic field), not a full Euler system in the sense of §1.4a.

• For n = 2, you can use cup-products of units: given units on C, we get classes in H1
mot(C,Z(1)),

and the cup-product of two such classes lands in H2
mot(C,Z(2)). This is Kato’s approach [Kat04],

when C is an elliptic curve (or more generally a modular curve); the units he used were so-called
Siegel units, which we will define in the next section.

• n ≥ 3 can also be made to work (but gives no more information than for n = 2).

2.3b. For a surface. Now let’s consider a surface S. Here the interesting cohomology of SQ appears in

degree 2, so we want to take V a direct summand of H2
ét

(
SQ,Qp(n)

)
for some n. So, in order to construct

an Euler system for V , we want to write down classes in H3
mot(S,Z(n)) for some n. Again, if S is affine,

H3
ét(SQ,Zp(n)) vanishes and so all classes are homologically trivial.

We need n ≥ 2, since otherwise the motivic cohomology vanishes. The sensible choices for a twist n are:

(1) n = 3: we can get classes here as cup-products κp(u1)∪κp(u2)∪κp(u3), where u1, u2, u3 are units
on S.

(2) n = 2: we can get classes by taking a curve Z ⊂ S and a unit u ∈ O(Z)×, and considering
the pushforward ι?(u) ∈ H3

mot (S,Z(2)) (or more generally formal sums of curves and units as in
Landsburg’s description).

Case (1) never been carried out (and people have tried very hard to make it work without success). Case
(2) leads to the construction of the Euler system of Beilinson–Flach elements, which will discuss in the next
chapter. Here, S is the product of two modular curves, and like in Kato’s construction, the basic input are
Siegel units.

3If we start with a projective curve, then we can just delete points to make it affine, without modifying the H1 too much
– we just add copies of the trivial representation to H1.
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CHAPTER 3

An Euler system for the tensor product of modular forms

In this chapter, we’ll build an explicit example of an Euler system for a 4-dimensional Galois representation
V , given as the tensor product of two 2-dimensional representations arising from modular forms.

3.1. Modular curves and modular forms

(References: Diamond–Shurman [DS05], Darmon–Diamond–Taylor [DDT97].)

We’re particularly interested in the Galois representations associated to modular forms, which come from
geometry via modular curves. We’ll mostly stick to weight 2 modular forms, as these are the simplest to
handle; everything we’ll say generalises to any weight ≥ 2 with a bit more work (but weight 1 is more
difficult).

3.1a. Modular curves. For N ≥ 1 let

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c = 0, d = 1 mod N

}
.

This acts on the upper half-plane H via τ 7→ aτ+b
cτ+d . It turns out that the quotient is naturally an algebraic

variety:

Theorem 9. For N ≥ 4 there is an algebraic variety Y1(N) over Q with the following properties:

• Y1(N) is a smooth geometrically connected affine curve.
• For any field extension1 F/Q, the F -points of Y1(N) biject with isomorphism classes of pairs (E,P ),

where E/F is an elliptic curve and P ∈ E(F ) is a point of order N on E.
• Y1(N)(C) ∼= Γ1(N)\H, via the map sending τ ∈ H to (Eτ , Pτ ) where Eτ = C/(Z + Zτ) and
Pτ = 1/N mod Z + Zτ .

(Much stronger theorems are known – for instance, Y1(N) has a canonical smooth model over Z[1/N ] – but
we won’t need this just now.)

Remark. There are two different choices of conventions for Q-models for Y1(N); everyone agrees what Y1(N)
means over C, but there are two different ways to descend it to Q, classifying elliptic curves with either a
point of order N (our convention) or an embedding of the group scheme µN (the alternative convention). �

3.1b. Galois representations. We can use these rational models of modular curves to attach Galois
representations to modular forms. Let f =

∑
anq

n be a cuspidal modular eigenform of weight 2 and level
Γ1(N), normalised so that a1 = 1. By a theorem of Shimura, there is a number field L such that all an ∈ L.
We shall fix an embedding ι : L ↪→ Qp, and assume that our p-adic coefficient field E/Qp contains the image
of ι.

Definition. We let Vp(f) be the largest subspace of H1
ét(Y1(N)Q,Qp) ⊗ E on which the Hecke operators

T (`), for ` - N , act as multiplication by a`(f).

We’re mostly interested in the case when f is new (i.e. doesn’t come from level M for any smaller M | N),
in which case Vp(f) is a direct summand, not just a subspace, and we have the following:

1Any Q-algebra, in fact; this is important if you want to make precise the idea that Y1(N) represents a functor.
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(1) Vp(f) is 2-dimensional and irreducible.
(2) The L-function is given by

L(Vp(f), s) = L(f, s) :=
∑
n≥1

ann
−s.

When constructing Euler systems, we’ll generally work with the dual Vp(f)∗. Since Vp(f) is a subspace
of H1(Y1(N)Q, E) one can show (using Poincaré duality for the compactified modular curve X1(N)) that

Vp(f)∗ is a quotient of H1(Y1(N)Q, E(1)) [note the twist by 1 here].

3.2. Siegel units

(References: §§1–2 of [Kat04] are the definitive source.)

3.2a. The construction. Let L be any subfield of C.

Definition. A modular unit of level Γ1(N), defined over L, is a unit in the coordinate ring of the algebraic
variety Y1(N)/L.

Since the C-points of the modular curve Y1(N) are Γ1(N)\H, we can identify(
modular units of level
Γ1(N) defined over C

)
-
(

nowhere-zero holomorphic fcns on
Γ1(N)\H with finite-order poles at cusps

)
.

In particular, a modular unit has a q-expansion in C((q)), of the form
∑∞
n=−R anq

n. One might expect that
the modular units defined over L are exactly the ones with an ∈ L for all n, and this is almost true, but not
quite: we have to mess around a bit with powers of the N -th root of unity ζN = exp(2πi/N).

Proposition 10. A modular unit u is defined over L if, and only if, the coefficients lie in L(ζN ) and satisfy

an(u)σ = an (〈κN (σ)〉 · u)

for every σ ∈ Gal(L(ζN )/L), where κN is the mod N cyclotomic character, and 〈d〉 denotes the action of
any matrix in SL2(Z) congruent to ( ∗ ∗0 d ) mod N .

We’re going to construct some “special” modular units, using nothing but classical 19th-century elliptic
function theory. These functions are called Siegel units and they are really amazingly powerful gadgets.
In fact, you can recover virtually every known example of an Euler system by starting from Siegel units!

Definition. Let β ∈ Q/Z be non-zero. Define the function gβ : H → C as follows:

gβ(τ) = e2πiτ/12
∏
n≥0

(
1− e2πi(nτ+β)

) ∏
n≥1

(
1− e2πi(nτ−β)

)
.

This is almost a modular unit, but not quite: if β ∈ 1
NZ, then acting on gβ by an element of Γ1(N) multiplies

it by a root of unity. These error terms can be killed by a very simple modification:

Definition (Siegel units). For c > 1 coprime to 6 and to the order of β, let

cgβ =
(gβ)c

2

gcβ
.

Proposition 11. If β ∈ 1
NZ, then cgβ is a modular unit of level Γ1(N), defined over Q. �

We can also get rid of c in a different way, by tensoring the group of modular units with Q: this gives us a
well-defined element

g1/N ∈ O(Y1(N))× ⊗Q = H1
mot(Y1(N),Q(1)).

One can check that the units g1/N and cg1/N for varying N (coprime to c in the latter case) are compatible
under pushforward morphisms along the quotient maps Y1(M)→ Y1(N). See Kato for details.
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Remark. More generally we can define a unit cgα,β , for any (α, β) ∈ (Q/Z)2, with cgβ = cg0,β . However,
the cgα,β with α 6= 0 don’t live at Γ1(N) level, but rather at level Γ(N), where Γ(N) ⊂ SL2(Z) is the
“principal congruence subgroup” of matrices congruent to the identity mod N . In these lectures we’ll only
use the cgβ . �

3.3. The construction

We want to study the 4-dimensional Galois representation

V = Vp(f)∗ ⊗ Vp(g)∗,

for f , g two weight 2 newforms. By the Künneth formula, V appears in H2 of the affine surface X =
Y1(Nf ) × Y1(Ng). Note also that H3(XQ,Qp(n)) = 0 for all n, since the étale cohomology of an affine
variety vanishes in degrees above the dimension.

For m ≥ 1, let us define Zm = Y1(m2N), where N is the lowest common multiple of Nf and Ng.

Proposition 12. There is a finite map ιm : Zm → X which corresponds to τ 7→ (τ, τ + 1
m ) on the upper

half-plane. This map is defined over Q(µm) [but not over Q in general].

Definition. Define the class

cΞm = (ιm)∗
(
cg1/m2N

)
∈ H3

mot(XQ(µm),Q(2)).

Define

cBF(f,g)
m ∈ H1(Q(µm), V )

to be the image of cΞm under the composition of maps

H3
mot(XQ(µm),Q(2))

rét- H3
ét(XQ(µm),Qp(2))

- H1(Q(µm), H2
ét(XQ,Qp(2))

- H1(Q(µm), V ).

These classes all land in a lattice (the image of the étale cohomology with Zp coefficients). Surprisingly they
are almost, but not quite, an Euler system! There are polynomials Q`(t) such that

norm(cBF
(f,g)
m` ) = Q`(σ

−1
` )cBF(f,g)

m ,

and we have

Q`(t) ∼= P`(V
∗, t) (mod `− 1),

which is sufficient: we can find an Euler system (cm) with

cm = cBF(f,g)
m + (linear combination of cBF

(f,g)
m′ for m′ < m),

so in particular c1 = cBF
(f,g)
1 .

Remark. By working with cohomology with coefficients in a suitable local system, we can similarly construct
an Euler system for the representation V = Vp(f)∗ ⊗ Vp(g)∗(−j), where f, g are of weights k + 2, `+ 2 ≥ 2,
respectively, and 0 ≤ j ≤ min{k, `}. �

3.4. Siegel units and Eisenstein series

We want to focus on the following question: why should we expect the Beilinson–Flach element to have any
interesting properties? The key is its relation to values of the Rankin–Selberg L-function, via Beilinson’s
regulator. To build up to this, we need to revisit the Siegel units, and explain why they are “motivic
incarnations” of Eisenstein series.
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3.4a. Relation to algebraic Eisenstein series. For any curve Y over a field k, there is a map dlog,
f 7→ df

f , which sends O(Y )× ⊗ k to differential forms on Y with (at worst) simple poles along the boundary
points.

If Y = Y1(N) these differentials are exactly the weight 2 modular forms of level Γ1(N) (while the differential
forms regular at the cusps are the cusp forms).

Proposition 13. For β ∈ ( 1
NZ)/Z, the Siegel unit gβ maps to a weight 2 Eisenstein series E

(2)
β .

This is easy to check: dlog maps products to sums, and gβ is defined by an infinite product, so we just apply

it term-by-term to get the Fourier expansion of E
(2)
β , and recognise it as a linear combination of the standard

basis of weight 2 Eisenstein series (see e.g. Miyake or Diamond+Shurman).

3.4b. Relation to real-analytic Eisenstein series.

Definition. Let β ∈ Q/Z− {0}, and k ∈ Z≥0.

For s ∈ C with <(s) > 1− k
2 , let ∞E

(k)
β (τ, s) be the function on the upper half-plane H defined by

∞E
(k)
β (τ, s) = (−2πi)−kπ−sΓ(s+ k)

∑
(c,d)∈Z2

=(τ)s

(cτ + d+ β)k|cτ + d+ β|2s
.

This function is holomorphic in s for fixed τ (although not in τ , of course), and it can be extended to all
s ∈ C by analytic continuation in s, with a functional equation relating s and 1− k− s. As a function of τ ,
it transforms like a modular form of weight k and level Γ1(N), where N is the denominator of β. (One can
roughly think of it as an “L-series valued in weight k modular forms”.)

If we specialising at s = 0 or s = 1 − k, we do get a holomorphic function of τ ; if k = 2, the specialisation

at s = 1− k is exactly the algebraic Eisenstein series E
(2)
β above. More generally, for any 0 ≥ s ≥ 1− k, the

function ∞E
(k)
β (−, s) is an algebraic object: a nearly-holomorphic modular form in the sense of Shimura (a

section of a certain vector bundle over Y1(N)Q). We call this range of integers 0 ≥ s ≥ 1 − k the critical
range.

The following result (Kronecker’s second limit formula) relates Siegel units to values of ∞E outside the
critical range:

Theorem 14 (Kronecker). We have ∞E
(0)
β (τ, 0) = − log |gβ(τ)|, for any τ ∈ Γ1(N)\H.

3.4c. Relation to p-adic analytic Eisenstein series. There is a theory of “p-adic modular forms”
due to Katz and Hida (among others), and we can build a family

pE
(k)
β (−, s), s a p-adic parameter

of weight k p-adic Eisenstein series, for any fixed k.

If k ≥ 1 and s is an integer with 1 − k ≤ s ≤ 0, then we saw above that ∞E
(k)
β (−, s) is the image of an

algebraic section of a vector bundle; and it turns out that pE
(k)
β (−, s) is the image of the same algebraic

object in p-adic geometry. However, for other values of s, pE
(k)
β (−, s) is a genuinely p-adic analytic object.

Theorem 15 (p-adic Kronecker limit formula). We have

pE
(0)
β (−, 0) = −(1− ϕ

p ) logp(gβ)

where logp is the p-adic logarithm, and ϕ the Frobenius at p.
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3.4d. Interpretation in terms of cohomology. Recall that we had two “analytic” cohomology
theories:

• Deligne–Beilinson cohomology, represented by pairs of an algebraic differential form and a real-
analytic integral of it;
• syntomic cohomology, represented by pairs of an algebraic differential form and a p-adic integral.

Using the above formulae, we can write the image of gβ in either theory using Eisenstein series:

• the class rB(gβ) is represented by (E
(2)
β ,∞E

(0)
β (−, 0));

• the class rsyn(gβ) is represented by (E
(2)
β , pE

(0)
β (−, 0)).

This is the key input in relating our Euler system to values of L-functions.

3.5. The Rankin–Selberg integral formula

3.5a. The Rankin–Selberg L-function. The L-function attached to representation V ∗ = Vp(f) ⊗
Vp(g) is a rather classical object: it’s the so-called Rankin–Selberg convolution L-function of f and g, denoted
by L(f ⊗ g, s). This makes sense for any two newforms f , g of weights k + 2, `+ 2, with k, ` ≥ 0 as before;
up to finitely many bad Euler factors, this agrees with the Dirichlet series

L(χfχg, 2s− 2− k − `)
∑
n≥1

an(f)an(g)n−s. (‡)

3.5b. Integral formulae. In the 1930s, Rankin and Selberg discovered the following integral formula
for the L-function:

Theorem 16. Suppose k ≥ `. Then we have∫
Γ1(N)\H

f(−τ̄)g(τ)∞E
(k−`)
1/N (τ, s− k − 1)=(τ)k dτ ∧ dτ̄ = (∗) · L(f ⊗ g, s), (1)

where (∗) is an explicit factor.

This is surprisingly simple to prove: after substituting in the sum defining the Eisenstein series, and in-
terchanging summation and integration, you get the integral of f(−τ̄)g(τ) times a power of =(τ), over the
region {x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ ∞}. Substituting in the q-expansions of f and g and integrating
term-by-term gives the result. (This way of evaluating integrals involving Eisenstein series is sometimes
referred to as “unfolding”.)

Although simple, this has a lot of important consequences; for instance, it follows easily from this formula

and the properties of ∞E
(k−`)
β (τ, s) that L(f ⊗g, s) has meromorphic continuation to all s ∈ C (holomorphic

unless f = ḡ), and satisfies a functional equation relating s and k + `+ 3− s.

3.5c. P-adic L-functions. We can write the Rankin–Selberg integral more compactly as a Petersson
scalar product

〈f∗, g · ∞E(k−`)
1/N (−, s− k − 1)〉,

where f∗(τ) = f(−τ̄) =
∑
an(f)qn is the eigenform with conjugate Fourier coefficients.

Hida has defined a version of the Petersson product for p-adic modular forms (under an additional hypothesis:
f must be ordinary). We can then define a p-adic L-function by

Lp(f, g, s) =
〈
f∗, g · pE(k−`)

1/N (−, s− k − 1)
〉

where now s is a p-adic variable.
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3.5d. Critical values. As we saw above, if k > ` and we take s in a certain range, then ∞E
(k−`)
1/N (τ, s−

k − 1) and pE
(k−`)
1/N (τ, s − k − 1) are both the images of the same algebraic object (a nearly-holomorphic

modular form). The p-adic and real-analytic Petersson products are compatible for such forms, so we
conclude that the p-adic and complex L-functions agree (up to an explicit correction factor) for integers s
with `+ 2 ≤ s ≤ k + 1. These are the so-called critical values of the L-function.

More geometrically, we can interpret the integral as a cup-product in the cohomology of coherent sheaves
on the compactified modular curve X1(N) over Q. For simplicity, take s = k + 1; then we have :

ηf ∪ ωg ∪ Eis(k−`) = (∗) · L(f ⊗ g, k + 1),

where ηf ∈ H1(X1(N), ω2−k(−D)) and ωg ∈ H0(X1(N), ω`) are coherent cohomology classes attached to f

and g, and E
(k−`)
1/N ∈ H0(X1(N), ωk−`) is an algebraic Eisenstein series.

3.5e. A Beilinson regulator formula. Let’s now go back to the case k = ` = 0, so f, g both have
weight 2. Thus we don’t have any critical values, but we do have Euler system classes.

Recall from Section 2.2 that as well as the étale regulator rét, there is also the Beilinson regulator on motivic
cohomology, taking values in Hodge cohomology. Applied to H3

mot(S,Z(2)) for a surface S, and composing
it with the natural map from Hodge into de Rham cohomology, we can regard it as a map

rB : H3
mot(S,Z(2)) -

(
Fil1H2

dR(SC)
)∗
.

For a class of the form z = ι?(u), where Z is a curve, ι : Z ↪→ S is finite, and u ∈ O(Z)×, we have an explicit
formula for this map (due to Beilinson): rB(z) is the linear functional

ω 7→
∫
Z(C)

ι?(ω) log |u|. (2)

If we apply this formula to the element z = Ξ1 ∈ H3
mot(Y1(Nf )× Y1(Ng),Q(2)), and we take

ω = (f(−τ̄) dτ̄) ∧ (g(τ) dτ)

for f, g of weight 2, then thanks to Theorem 14 we get

〈rB(Ξ1), ω〉 =

(∫
Γ1(N)\H

f(−τ̄)g(τ)E
(0)
1/N (τ, s) dτ ∧ dτ̄

)∣∣∣∣∣
s=0

= (∗) · L′(f ⊗ g, 1). (3)

(The derivative appears because the factor (?) has a pole at s = 1, forcing L(f ⊗ g, s) to vanish there.) In

other words, the Beilinson regulator of the motivic class we used to define BFf,g1 , paired with a differential
coming from f and g, computes a value of the L-function L(f ⊗ g, s)! Since L′(f ⊗ g, 1) is never zero, this
implies that Ξ1 is non-zero (and moreover its projection to the (f, g)-eigenspace is nonzero).

This is pretty strong evidence that the Beilinson–Flach class is the right class to consider: it’s the image
under the étale regulator of the motivic class Ξ1, which is a “motivic incarnation” of the Rankin–Selberg
integral. Similarly, one can show that the Ξm are related to the twisted L-functions L′(f × g × χ, 1) where
χ is a character mod m.

Remark. To recap: for some values of k, ` and integers s (the critical values) we have previously given a
algebro-geometric interpretation of the Rankin–Selberg integral via coherent cohomology; and just now, for
k = ` = 0 and s = 1 (which is not a critical value), we’ve given it a different geometric interpretation, via
Deligne–Beilinson cohomology. Using cohomology with non-constant coefficients, this extends to any k, `, s
with 1 ≤ s ≤ min(k, `) + 1; in particular, this range is always disjoint from the critical range.

Sadly, there are other values of L(f × g, s) which we don’t know how to interpret geometrically, although
the Bloch–Kato conjecture predicts it should be possible. (I would love to know how to relate the leading
term of L(f, g, s) at s = 0 to anything in algebraic geometry; this is related to the unsuccessful approach (1)
in Section 2.3b.) �
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3.6. Other Rankin–Selberg-type formulae

[This section was not presented in the live lectures, due to lack of time]

The Rankin–Selberg integral is only the first of a very wide class of formulae, which express the L-values of
an automorphic form for some reductive group G in terms of its integral against an Eisenstein series on some
subgroup H (a “period integral”). There is a survey article by Bump [Bum05]) which catalogues dozens of
constructions of this kind.

So we can play the following game: if we want to build an Euler system for some class of automorphic Galois
representations, then we can look for known formulae expressing the L-function of our representation in
terms of periods of automorphic forms. Then we can stare at the resulting integrals and try to recognise
them as Beilinson regulators of motivic cohomology classes. If we can do this, then the étale versions of these
classes should be non-zero (although we can’t prove this), and they are clearly the right building blocks for
an Euler system for our representation.

Remark. This won’t always work, sadly. Firstly, in many of the known Rankin–Selberg formulae the
groups G and H do not have Shimura varieties, so they lie outside the world of algebraic geometry; there is
a perfectly good Rankin–Selberg integral for GLm×GLn for any integers (m,n), but it doesn’t correspond
to anything motivic unless (m,n) = (2, 2).

Secondly, even if G corresponds to a Shimura variety (and H to a Shimura subvariety), then there is
a second stumbling block: the Eisenstein series. For most Rankin–Selberg formulae, these will not be
Eisenstein series for GL2, but for other, more general reductive groups; and we need a way to relate these
to motivic cohomology, generalising the way that GL2 Eisenstein series are related to units via Kronecker’s
limit formula. This seems to be a difficult problem in general. �

Despite these apparently gloomy remarks, all is not lost: there are surprisingly many Rankin–Selberg formu-
lae in which only GL2 Eisenstein series appear! There’s now an ongoing project, being pursued by several
research groups, to build Euler systems for each such integral formula. Some examples are

• an Euler system for the Asai representation attached to quadratic Hilbert modular forms [LLZ18],

[Gro20], with H = GL2 and G = ResFQ GL2, where F is a real quadratic field;
• an Euler system for the spin representations attached to genus 2 Siegel modular forms [LSZ17],

with H = GL2×GL1
GL2 and G = GSp4;

• an Euler system for Picard modular forms [LSZ21], with H = GL2×GL1
ResKQ GL1 and G =

GU(2, 1), where K is an imaginary quadratic field and GU(2, 1) a unitary group split over K. In
this case, we get an Euler system over K: in other words, we construct cohomology classes over all
the finite abelian extensions of K.
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CHAPTER 4

Evaluating syntomic regulators

4.1. Fontaine’s theory

We will summarize here briefly some results from p-adic Hodge theory that we will need in what follows. For
a more detailed account of this beautiful theory, see [Ber05].

4.1a. Period rings. Let V be a p-adic representation of GQp of dimension d, and we write Bcris ⊂ BdR

for Fontaine’s rings of periods. We can then attach to V invariants

Dcris(V ) = (V ⊗Qp
Bcris)

GQp , DdR(V ) = (V ⊗Qp
BdR)GQp

which are finite-dimensional Qp-vector space, of dimension ≤ d, equipped with a decreasing filtration Fil• and

- in the case of Dcris(V ) - with a Frobenius operator ϕ. The filtration has the property that Fil0 DdR(V (n)) =
Filn DdR(V ).

Definition. We say that V is crystalline if dimQp
Dcris(V ) = d and de Rham if dimQp

DdR(V ) = d.

Remark. In particular, any crystalline representation is automatically de Rham. In this case, we have
Dcris(V ) = DdR(V ), and we get an action of ϕ on DdR(V ) by transport of structure: it is a “filtered
ϕ-module”. �

We have DdR(Qp(1)) ∼= Qp, so we get a pairing

〈 , 〉dR : DdR(V )×DdR(V ∗(1)) - Qp, (4)

which is perfect if V (and hence V ∗(1))) are de Rham.

4.1b. Comparison isomorphisms. The “purpose” of the period rings is to relate étale cohomology
with other theories:

Theorem 17 (Faltings, Tsuji). If X/Qp is a smooth variety, then there are canonical isomorphisms

DdR(Hi
ét(X,Qp)) ∼= Hi

dR(X)

compatible with filtrations.

If furthermore X has good reduction, we have another canonical isomorphism

Dcris(H
i
ét(X,Qp)) ∼= Hi

cris(X0)

compatible with ϕ, where Hi
cris denotes crystalline cohomology and X0/Fp is the special fibre of X.

4.1c. Exponential maps. A remarkable theorem of Bloch–Kato [BK90] shows that the period rings
fit into an exact sequence

0→ Qp → Bcris → Bcris ⊕BdR/Fil0 → 0 (5)

where the middle map is x 7→ ((1− ϕ)x, x mod Fil0). Tensoring with V and taking cohomology, we get

0→ V GQp → Dcris(V )→ Dcris(V )⊕DdR(V )/Fil0
expBK−−−−→ H1(Qp, V )→ . . .

The image of expBK is exactly the Bloch–Kato subspace H1
f (Qp, V ) which we saw in Chapter 1.

If V is crystalline, then restricting expBK to Dcris gives an isomorphism

expBK : DdR(V )/(1− ϕ) Fil0 DdR(V )
∼=- H1

f (Qp, V ).
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4.2. Syntomic cohomology

The idea of syntomic cohomology is to “build a cohomology theory around” the fundamental sequence (5).

4.2a. Syntomic cohomology. Let X be a smooth Zp-scheme with special fibre X0 and generic fibre
XQp

. We can the consider de Rham cohomology RΓdR(XK), equipped with a decreasing filtration Fil•,
and rigid cohomology RΓrig(X0) equipped with a Frobenius operator ϕ. (Rigid cohomology is isomorphic to
crystalline cohomology, but easier to write down.)

We have a specialisation map

sp : RΓdR(XK) - RΓrig(X0),

which is a quasi-isomorphism if X is nice enough.

Definition. Let n ∈ Z. Define syntomic cohomology RΓsyn(X,n) to be the mapping fibre

RΓsyn(X,n) = MF

[
FilnRΓdR(XK)

(
1− ϕ

pn

)
◦ sp
- RΓrig(X0)

]
. (†)

We can now state, carefully, the comparison between motivic, étale, and syntomic cohomology:

Theorem 18 (Nekovar–Niziol). For any i, n there is a commutative diagram of maps

Hi
mot(X,Q(n)) Hi

mot(XQp ,Q(n))

Hi
syn(X,n) Hi

ét(XQp
,Qp(n))

rsyn rét

comp

Moreover, there is a morphism of spectral sequences, from the spectral sequence of the mapping fibre converg-
ing to Hi

syn(X,n), to the Hochschild–Serre sequence converging to Hi
ét. So if Fil1Hi

syn denotes the kernel of

Hi
syn(X,n)→ FilnHi

dR(XQp
), then we have a second diagram

Fil1Hi
syn(X,n) Fil1Hi

ét(XQp
, n)

Hi−1
dR /(1− p−nϕ) Filn H1(Qp, H

i−1
ét (XQp

,Qp)(n))

comp

expBK

4.2b. Finite-polynomial cohomology. From the mapping fibre (†), we see that: if ω ∈ FilnHi
dR(XK),

and sp(ω) lands in the ϕ = pn eigenspace of Hi
rig(X0), then ω lifts to some ω̃ ∈ Hi

syn(X,n) (in general non-

uniquely).

In op.cit., Besser defines finite polynomial cohomology by replacing 1−ϕ/pn with more general polynomials
P (p−nϕ), where P ∈ 1 + tQp[t]. If we are given any class in ω ∈ FilnHi

dR(XK), we can always choose P
so that P (p−nϕ) kills sp(ω), so ω lifts to fp-cohomology. We can think of this lifting as a generalisation of
Coleman integration; this is the point of view taken by Besser [Bes12].

4.2c. Duality. We also have a version with compact support, RΓfp,c(X,n, P ), which is defined simi-
larly; and there are cup-products

Hi
syn(X,n)×Hj

fp,c(X,m,P ) - Hi+j
fp,c(X,m+ n, P ). (6)

If the polynomial P (t) satisfies P (p−1) 6= 0, and if X is connected of dimension d, then there is a canonical
isomorphism

trfp,X : H2d+1
fp,c (X, d+ 1;P )

∼=- Qp.

We hence obtain a pairing

〈−,−〉fp,X : Hi
syn(X,n)×H2d+1−i

fp,c (X, d+ 1− n, P ) - Qp. (7)
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Pushforward and pullback along closed immersions are adjoint with respect to this pairing. In particular,
if we consider a closed embedding ι : Z ↪→ S of a curve into a surface, and we take x ∈ H1

syn(Z, 1) and

y ∈ H2
fp,c(S, 1;P ), then

〈ι∗(x), y〉fp,X = 〈x, ι∗(y)〉fp,Z .

4.3. Strategy

We now go back to the situation in the previous chapter: let V = Vp(f)∗ ⊗ Vp(g)∗, where f , g are cuspidal
new eigenforms of weight 2 and level N . We’ll write Y for Y1(N) here.

We assume that both modular forms are p-ordinary, so their p-th Fourier coefficients af,p, ag,p are p-adic
units. (Actually we only need this for f .) One can show that

• the representation V |GQp
is crystalline;

• one can identify DdR(V ) with a direct summand of H2
dR(Y 2);

• the operator (1− ϕ) is invertible on DdR(V ).

By (†) we obtain a map

H3
syn(Y 2, 2) - DdR(V )/Fil0 DdR(V )

which fits into the commutative diagram

H3
mot(Y

2,Q(2))

H3
syn(Y 2, 2)

�

r sy
n

H3
ét(Y

2,Qp(2))

ŕ
et

-

DdR(V )

Fil0 DdR(V )

pr(f,g)

?
expBK - H1

f (Qp, V )

pr(f,g)

?

Now under the pairing (4), we have an identification

DdR(V )

Fil0 DdR(V )
∼=
(
Fil1 DdR(V ∗)

)∗
.

Idea. Evaluate the pairing 〈
pr(f,g) ◦rsyn ◦ ι∗(g1/N ), λ

〉
dR

(8)

for a suitable λ ∈ Fil1 DdR(V ∗). We will take λ = η ⊗ ω, for carefully chosen elements

η ∈ Fil0 DdR(Vp(f)) and ω ∈ Fil1 DdR(Vp(g)).

These elements have the following properties:

(1) They are p-adic analogues of the differentials

f(−τ̄)dτ̄ and g(τ)dτ

which we saw in the Rankin–Selberg integral formula.
(2) For ? ∈ {f, g}, write α?, β? for the roots of the Hecke polynomial

t2 − ap(?)t+ pε?(p),

and suppose αf denotes the unit root. Then we arrange that ηf is in the ϕ = αf eigenspace.

25



It follows that λ is annihilated by R(ϕp ), where

R(t) = (1− pt
αfαg

)(1− pt
αfβg

).

Remark. The roles of f and g are not symmetric! �

Step 1: Lift to fp-cohomology

Thanks to (†), there are distinguished lifts η̃ and ω̃ to fp-cohomology with compact support. Then

λ̃ = η̃ ⊗ ω̃ ∈ H2
fp,c(Y

2, 1;R),

and we have 〈
pr(f,g) ◦rsyn ◦ ι∗(g1/N ), λ

〉
dR

=
〈
rsyn ◦ ι∗(g1/N ), λ̃

〉
fp,Y×Y

=
〈
ι∗
(
rsyn(g1/N )

)
, λ̃
〉

fp,Y×Y

=
〈
rsyn(g1/N ), ι∗(λ̃)

〉
fp,Y

(push-pull adjunction)

= trfp,Y

(
rsyn(g1/N ) ∪ η̃ ∪ ω̃

)
. (9)

Step 2: An explicit formula

As we saw in the last lecture, rsyn(g1/N ) is described explicitly via a p-adic analogue of Kronecker’s limit
formula:

Proposition 19. rsyn(g1/N ) is given by the pair of Eisenstein series

(E
(2)
1/N ,

pE
(0)
1/N (−, 0)).

We have a similar description of η̃c and ω̃ as pairs of global sections, which involve the differentials ηf and
ωg (c.f. Section 3.5d) and p-adic integrals of these. By using Besser’s explicit formulae for the cup product
pairing for fp-cohomology, we finally deduce that (9) is equal to

1

R(1)
〈f∗, g · pE(0)

1/N (−, 0)〉.

where the bracket is Hida’s Petersson product. By construction, this is the p-adic L-value Lp(f, g, 1), giving
a p-adic analogue of (3).

4.3a. Twisting. We have only dealt with weight 2 forms above, but a similar argument shows that if
f, g have any weights k+2, `+2 ≥ 2, then our geometrically-defined cohomology class for [Vp(f)⊗Vp(g)]∗(−j)
is related to the p-adic L-value Lp(f, g, 1 + j), for all 0 ≤ j ≤ min(k, `).

By p-adic analytic continuation (not just in j but also in k, `), we can pass from this “geometric” range
0 ≤ j ≤ min(k, `) to the “critical” range where k > ` and ` + 1 ≤ j ≤ k. The analytically-continued
statement relates the Soulé twists of our Euler system, landing in the cohomology of [Vp(f) ⊗ Vp(g)]∗(−j)
for these j, to the critical L-values L(f, g, 1 + j).

This relation, together with the general Euler system machine for bounding Selmer groups, gives the proof
of the Bloch–Kato conjecture for all non-zero critical values of Rankin–Selberg L-functions.
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