
Galois Cohomology (Study Group)

1 Some P -adic Hodge Theory (by Chris Williams)

1.1 p-adic Hodge Theory

Aim: Study local Galois representation in the case l = p.

Notation. Let K/Qp be a �nite extension, V/Ql a �nite dimensional vector space with continuous action of GK :=
Gal(K/K)

In the case l 6= p, the topologies are not compatible - there are not many representations and they are of algebraic
nature.

In the case l = p, the topologies are compatible - we end up with far too many representations! So the study of
them becomes p-adic analytic

Example. Let χ be the cyclotomic character. De�ne weight space W := Homcts(Zχp ,Cχp ) =
∐
p−1 copies Zp ⊃ Z.

Then for all s ∈ W, χs is a p-adic representations. We are only really �interested� in χs where s ∈ Z.

Idea: Isolate �interesting� subcategories.
Fontaine's Strategy: De�ne ring of periods, i.e., topological Qp-algebra B with a continuous action of GK .

The idea is for some p-adic representation V , the invariant DB(V ) := (V ⊗Qp
B)GK .

Fact. With stronger assumptions of B (GK-regular) we have dimBGk DB(V ) ≤ dimQp
V . (The stronger assumption

will always be met in this section)

We say that V is B-admissible if we have an equality.
Question: What are good choices of B?

Theorem. There exists a ring of periods BdR such that

1. There is a natural �ltration FiliBdR,i ∈ Z

2. A p-adic representation V is BdR-admissible if it �comes from geometry�

We call such representation de Rham.

Example. Let E be an elliptic curve over Qp, VpE := TpE ⊗Zp
Qp. Then VpE is de Rham

Let X be a proper, smooth variety over K, then Hi
ét(XK ,Qp) are de Rham.

Theorem. There exists a ring of periods Bcrys ⊂ BdR such that

1. There exists a natural Frobenius operator φ, and

2. A p-adic representation V is Bcrys-admissible is de Rham, and representation that comes from geometry �with�
good reduction at p are Bcrys-admissible.

We call such representation Crystalline.

Example. VpE is crystalline if and only if E has good reduction at p.
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Remark.

1. BdR and Bcrys are huge (in fact, they surject onto Cp = K̂)

2. BGK

dR = K and BGK
crys = K0 = maximal unrami�ed sub�eld of K.

3. We said BdR, Bcrys had extra structure. This passes to DdR(V ) := DBdR
(V ) = (V ⊗ BdR)

GK and Dcrys(V ) :=
DBcrys

(V ) = (V ⊗ Bcrys)
GK .

1.2 Relation to Galois Cohomology

1.2.1 The group H1
∗ (K,V )

Recall: Elements of H1(K,V ) bijects with isomorphism classes of extension 0 → V → E → Qp → 0 of the trivial
representation by V . (Recap: given such an extension, we take the Galois cohomology, get 0 → V GK → EGK →
Qp

δ→ H1(K,V ), and E correspond to δ(1) ∈ H1(K,V ).
Let V be de Rham. Then consider the complex

0 // V //

��

E //

��

Qp //

��

0

0 // V ⊗ BdR
// E ⊗ BdR

// BdR
// 0

We can take Galois cohomology:

0 // V GK //

��

EGK //

��

Qp
δ //

α

��

H1(K,V )

β

��
0 // DdR(V ) // DdR(E) // K

γ
// H1(K,V ⊗ BdR)

E is de Rham if and only if

dimK DdR(E) = dimQp
(E)

= dimQp
V + 1

= dimK DdR(V ) + 1

if and only if 0→ DdR(V )→ DdR(E)→ K → 0 is exact, if and only if, γ is identically 0.
E correspond to φ = δ(1) ∈ H1(K,V ). Now β(φ) = βδ(1) = γα(1). So E is de Rham implies β(φ) = 0.

Conversely, if β(φ) = 0, then δα(1) = 0, but α is the inclusion, hence δ is identically 0.
So E is de Rham if it is in the kernel of β.

De�nition. We set:

• H1
g (K,V ) = ker(H1(K,V )→ H1(K,V ⊗ BdR))

• H1
f (K,V ) = ker(H1(K,V )→ H1(K,V ⊗ Bcrys))

• H1
e (K,V ) = ker(H1(K,V )→ H1(K,V ⊗ Bφ=1

crys ))

Note. We have H1
g (K,V ) ⊃ H1

f (K,V ) ⊃ H1
e (K,V ).

Proposition. Let V be de Rham (respectively crystalline), and 0 → V → E → Qp → 0 be an exact sequence
corresponding to φ ∈ H1(K,V ). Then E is de Rham (respectively crystalline) if and only if φ ∈ H1

g (K,V )
(respectively in H1

f (K,V )).
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1.2.2 Tate's Duality.

Recall: V ∗ = HomQp(V,Qp), and V (1) = V ⊗ χ = V ⊗ lim←−µpn .
There exists a natural pairing V × V ∗(1)→ Qp(1) given by (v, µ) 7→ µ(v). Under cup product, we get a perfect

pairing, Hi(K,V )×H2−i(K,V ∗(1))→ H2(K,Qp(1))
Tate

∼= Qp.

Theorem (Bloch - Kato). Under this pairing:

• H1
g (K,V ) and H1

e (K,V
∗(1)) are exact annihilators

• H1
f (K,V ) and H1

f (K,V
∗(1)) are exact annihilators

• H1
e (K,V ) and H1

g (K,V
∗(1)) are exact annihilators.

Example. For V = VpE, dimH1(K,VpE) = 2, by the above theorem, dimH1
g = dimH1

f = dimH1
e = 1. Hence

H1
g = H1

f = H1
e in this case. (In fact, this happens for a large class of examples in which we are interested)

1.2.3 The exponential map

Fact. There exists an exact sequence 0→ Qp → Bφ=1
crys → BdR/Fil

0BdR → 0.

If we tensor with V and then taking Galois cohomology, we get

0 // H0(K,V ) // Dφ=1
crys (V ) // DdR(V )/Fil0DdR(V )

exp // H1(K,V ) // H1(K,V ⊗ Bφ=1
crys )

Conclusion: We get a map exp : DdR(V )/Fil0DdR � H1
e (K,V ).

Remark. Usually, Dφ=1
crys (V ) is trivial, which implies exp is an isomorphism.

3


