Galois Cohomology (Study Group)

1 Selmer Groups and Kummer Theory for Elliptic Curves (by Céline Maistret)

Let K be a number field, E an elliptic curve over K. In order to prove the Mordell - Weil Theorem, one breaks it in to parts, proving E(K)/mE(K) is finite, and then using descent.

Let $G_{\overline{K}/K} = \operatorname{Gal}(\overline{K}/K)$, then we have $G_{\overline{K}/K}$ acts on E[m], $E(\overline{K})$. Consider the multiplication by m-isogeny, we have a short exact sequence: $0 \to E[m] \to E(\overline{K}) \stackrel{[m]}{\to} 0$. Taking Galois Cohomology:

$$0 \to E(K)[m] \to E(K) \to E(K) \to H^1(G_{\overline{K}/K}, E(\overline{K})[m]) \to H^1(G_{\overline{K}/K}, E(\overline{K})) \to H^1(G_{\overline{K}/K}, E(\overline{K})) \to \dots$$

We can extract the Kummer Sequence for E/K:

$$0 \longrightarrow E(K)/mE(K) \stackrel{k}{\longrightarrow} H^1(G_{\overline{K}/K}, E(\overline{K})[m]) \stackrel{\phi}{\longrightarrow} H^1(G_{\overline{K}/K}, E(\overline{K}))[m] \longrightarrow 0 \ .$$

The connecting homomorphism is the Kummer map: $k: E(K) \to H^1(G_{\overline{K}/K}, E(K)[m])$ defined by $P \mapsto [\xi]: \sigma \mapsto Q^{\sigma} - Q$, where $Q \in E(\overline{K})$ such that mQ = P.

Properties of k:

- 1. It is well defined
- 2. The left kernel is mE(K).

Consider $L = K\left([m]^{-1}E(K)\right)$, which is the composium of all K(Q), where $Q \in E(\overline{K})$ with mQ = P. Define $S = \{\nu \in M_K^0 | E \text{ has bad reduction at } \nu\} \cup \{\nu \in M_K^0 | \nu(m) \neq 0\} \cup M_K^{\infty}$. We have $\operatorname{im}(E(K)) \subset H^1(G_{\overline{K}/K}, E[m])$ consists of unramified classes of cocycles outside of S. So $\operatorname{im}(k) = \ker(\phi : H^1(G_{\overline{K}/K}, E[m]) \to H^1(G_{\overline{K}/K}, E(\overline{K}))[m])$, so let us analyse $H^1(G_{\overline{K}/K}, E(\overline{K})) \cong \operatorname{WC}(E/K)$.

Local consideration: Let $\nu \in M_K$, fix an extension of ν in \overline{K} , we get an embedding of $\overline{K} \subset \overline{K}_{\nu}$, and a decomposition group $G_{\nu} \subset G_{\overline{K}/K}$. G_{ν} acts on $E(\overline{K}_{\nu})$.

$$0 \longrightarrow E(K_{\nu})/mE(K_{\nu}) \longrightarrow H^{1}(G_{\nu}, E[m]) \longrightarrow H^{1}(G_{\nu}, E(K_{\nu}))[m] \longrightarrow 0$$

We get the commutative diagram

$$0 \longrightarrow E(K)/mE(K) \xrightarrow{k} H^{1}(G_{\overline{K}/K}, E[m]) \xrightarrow{\phi} H^{1}(G_{\overline{K}/K}, E(\overline{K}))[m] \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

Definition 1.1. The *m-Selmer group* is the subgroup of $H^1(G_{\overline{K}/K}, E(\overline{K})[m])$ given by:

$$S^{(m)}(E/K) = \ker \left\{ H^1(G_{\overline{K}/K}, E[m]) \to \prod_{\nu} H^1(G_{\nu}, E(\overline{K_{\nu}})[m] \right\}.$$

The Tate - Shaferevich group, $\mathrm{III}(E/K)$ is defined as $\ker\Big\{H^1(G_{\overline{K}/K},E(\overline{K}))\to\prod_{\nu}H^1(G_{\nu},E(\overline{K_{\nu}}))\Big\}$.

So we get the commutative diagram:

$$0 \longrightarrow E(K)/mE(K) \longrightarrow S^{(m)}(E/K) \longrightarrow \mathrm{III}(E/K)[m] \longrightarrow 0 \ .$$

More general construction: Embed $\overline{\mathbb{Q}} \subset \overline{K_{\nu}}$, get an embedding of $\overline{K} \subset \overline{K_{\nu}}$, consider $E[p^{\infty}] \subset E_{\text{tor}} \subset E(\overline{\mathbb{Q}})$.

Definition 1.2. $E[p^{\infty}]$ is the *p*-primary subgroup of E_{tor} , i.e., union of $E[p^n]$.

We get a new (more general) Kummer map: $k: E(K) \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z}) \to H^1(G_K, E_{\text{tor}})$ defined by $P \otimes (\frac{1}{n} + \mathbb{Z}) \mapsto [\xi]: \sigma \mapsto Q^{\sigma} - Q$, where $Q \in E(\overline{K})$ such that nQ = P. We have a restriction map: Res: $H^1(G_K, E_{\text{tor}}) \to H^1(G_{\nu}, E_{\text{tor}})$.

Definition 1.3. $\operatorname{Sel}_E(K) := \ker \{ H^1(G_K, E_{\operatorname{tor}}) \to \prod_{\nu} H^1(G_{\nu}, E_{\operatorname{tor}}) / \operatorname{im} k_{\nu} \}.$ $\coprod_E(K) := \operatorname{Sel}(K) / \operatorname{im} k.$

To study $\mathrm{Sel}_E(K)$, one breaks it down into its p-primary subgroups $\mathrm{Sel}_E(K)_p$, where p is a fixed prime. We define $k_{\nu,p}: E(K_{\nu}) \otimes_{\mathbb{Z}} (\mathbb{Q}_p/\mathbb{Z}_p) \to H^1(G_K, E[p^{\infty}])$.

 $\operatorname{Sel}_E(K)_p := \ker \left\{ H^1(G_K, E[p^\infty]) \to \prod_{\nu} H^1(G_{\nu}, E[p^\infty]) / \operatorname{im} k_{\nu,p} \right\}.$

Two cases could happen:

- 1. $\nu \in M_K^0$ with residue field of K at ν of characteristic $l \neq p$. This case can be generalised to $\nu \in M_K^\infty$. In this case im $k_{\nu,p} = 0$.
- 2. $\nu \in M_K^0$, with residue field of K at ν of characteristic l = p. In this case we use Hodge theory: Recall: $H_f^1(G_{\nu}, V_p E) = \ker \{H^1(G_{\nu}, V_p E) \to G^1(G_{\nu}, V_p E \otimes \mathbb{B}_{crys})\}$. Now $V_p E/T_p E \cong E[p^{\infty}]$. Then im $k_{\nu,p} = \operatorname{im}(H_f^1(G_{\nu}, V_p E) \to H^1(G_{\nu}, E[p^{\infty}])$.