
Galois Cohomology (Study Group)

1 Further properties of group cohomology; relations to topological co-
homology (by Matthew Spencer)

1.1 Homology Topological space

Let X be a topological space, a singular complex, σ : ∆n → X. We form Cn(X), which has elements of the form∑
niσi. We de�ne dnσ =

∑
(−1)iσ|[v0,...,v̂i,...,vn] ∈ Cn−1(X). We get a chain

Cn(X)→ Cn−1(X)→ Cn−2(X)→ · · · → C0(X)→ 0

We can check that d2 = 0. We de�ne

Hn(X) =
ker(dn)

im(dn+1)

Example. If X is path connected we have that H0(X) ∼= Z.

We have that a map f : X → Y induce maps on homology.

Fact. If f : X → Y and g : X → Y are homotopic maps then the maps Hn(X)→ Hn(Y ) induces by f and g agree

for all n.

Example.
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We have the sequence

0
d3 // C2(X)

d2 // C1(X)
d1 // C0(X)

d0 // 0

= 〈U,L〉 = 〈a, b, c〉 = 〈v〉

We see that im d2 = a+ b− c. We have

H1(T ) ∼= 〈a, b, a+ b− c〉 / 〈a+ b− c〉 ∼= 〈a, b〉
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1.1.1 Cohomology

We take a pair X,A where X is a topological space and A an Abelian group. We take the sequence

Cn(X)→ Cn−1(X)→ Cn−2(X)→ · · · → C0(X)→ 0

and apply HomZ(−, A) to it, to get another chain which we denote Cn(X,A). We de�ne the map δ between them
by δf(a) = f(da), again we see δ2 = 0. Again we de�ne Hn(X,A) = ker δn/ im(δn−1).

Universal Coe�cient Theorem. Hn(X,A) ∼= Hom(Hn(X), A)⊕ ExtZ(Hn−1(X), A)

1.1.2 Cup product

Let A be a ring and let φ ∈ Ck(X,A) and ψ ∈ Cl(X,A). We de�ne the cup product as

(φ ∪ ψ)(σ) = φ(σ|[v0,...,vk]) · ψ(σ|[vk+1,...,vk+l]) ∈ C
k+l(X,A)

We have
δ(φ ∪ ψ) = δφ ∪ ψ + (−1)kφ ∪ δψ

So we have a well de�ned map Hk(X,A)×H l(X,A)→ Hk+l(X,A) de�ned as [φ]× [ψ] 7→ [φ ∪ ψ].
Let H∗(X,A) = ⊕Hn(X,A), this is (by the previous map) a graded ring. Note that α ∪ β = (−1)klβ ∪ α.

1.1.3 Cap product

Let n ≥ p, φ ∈ Cp(X,A) and σ ∈ Cn(X,A) (note that Cn(X,A) is taken by considering Cn(X) and applying
−⊗Z A to it). We de�ne the cap product as

σ ∩ φ = φ(σ|[v0,...,vp])σ[vp+1,...,vn] ∈ Cn−p(X,A)

We have
d(σ ∩ φ) = (−1)p(dσ ∩ φ− σ ∩ δφ)

Let K be a commutative ring with unit. Using the above, we have the map

∩ : Hn(X,K)×Hp(X,K)→ Hn−p(X,K)

Theorem 1.1. Let M be a compact manifold without boundary, K-orientable with fundamental class [m] ∈
Hn(M,K). The map D : Hk(M,K)→ Hn−k(M,K) de�ned by D(α) = [m] ∩ α is an isomorphism.

1.2 Group Cohomology

Let G be a discrete group. Let F be a projective resolution of Z over Z[G], let M be a Z[G]-module. Consider the
resolution

Fi → Fi−1 → · · · → F0 → Z→ 0

We want to apply (− ⊗Z M)G = (Fi ⊗M)/ mod G − action, to it and get another chain sequence. We de�ne
Hn(G,M) to be the homology of that chain. If instead we apply HomZ[G](Fi,M), then we call its homology
Hn(G,M).

We de�ne G-complex. A CW-complex with a G-action which respects CW-complex structure. We say that this
is free if G acts freely. If X is contractible, then Hn(X) = Hn{pt}. In particular

Cn(X)→ Cn−1(X)→ · · · → C0(X)→ Z→ 0

is a projective resolution of Z by Z[G]-module.
There exists a space k(G, 1) =: Y such that

1. Y is connected
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2. π1(Y ) = G

3. If X is the universal cover, X is contractible.

Fact. If X is a free G-complex, Y the orbit X/G, then C∗(Y ) = C∗(X)G, where (−)G = Z⊗Z[G] −.

This gives H∗(G) = H∗(Y ).
Let us now assume that G acts trivially on M , then Hn(Y,M) = Hn(G,M) and Hn(Y,M) = Hn(G,M).
If M has non-trivial G action, then Hn(G,M) = Hn(Y,M) and Hn(G,M) = Hn(Y,M) where M is a local

coe�cient system on k(G, 1).
k(G, 1) is an example of a classifying space for G, we call it BG.

Fact. If H ≤ G, we have a mapBH → BG. This induce a map on the cohomology (resGH) : Hn(G,A)→ Hn(H,A)

This is motivation for the next sentence: Suppose if we have a �nite map f : X → Y , where this time X and Y
are manifolds with dimension n

Hk(X)

=

Hk(Y )oo

=

Hn−k(X) // Hn−k(Y )

Now let H ≤ G with |G : H| <∞, we have corHG : Hn(H,A)→ Hn(G,A) de�ned by

(corx)(σ0, . . . , σn) =
∑

c∈H\G

c−1x(cσ0(cσ0)−1, . . . , cσn(cσn)−1)

We get the identity
cor(α ∪ resβ) = (corα) ∪ β
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