
Selmer Groups and Kummer Theory for Elliptic Curves

0.1 Introduction

For a given elliptic curve E/K where K is a number field and m ≥ 2 an integer, we first present

the m-Selmer group of E/K corresponding to the multiplication by m isogeny. Then, we give a more

general definition of the Selmer group of E/K and its p-primary subgroups.

0.2 The m-Selmer group of E/K : S(m)(E/K)

Let K be a number field and E/K an elliptic curve. We propose to follow the proof of the weak

Mordell-Weil theorem for E/K to motivate and give the definition of S(m)(E/K).

Theorem 0.2.1. Weak Mordell-Weil Theorem

E(K)/mE(K)

is a finite group

Remark 0.2.1. It will be enough to assume E[m] ⊂ E(K) in what follows using the following lemma:

Lemma 0.2.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite, then E(K)/mE(K) is

also finite.

proof : cf The Arithmetic of Elliptic Curves, VIII,1.1.1

Let GK = Gal(K̄/K) and consider the short exact sequence of GK-modules induced by the multi-

plication by m map :

0 // E(K̄)[m] // E(K̄) m // E(K̄) // 0 .
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taking Galois cohomology yields :

0 // E(K)[m] // E(K) m // E(K)

rr
H1(G,E(K̄)[m]) // H1(G,E(K̄)) m // H1(G,E(K̄)),

from which we can extract the Kummer sequence for E/K :

0 // E(K)/mE(K) δ // H1(GK , E(K̄)[m])
φ // H1(GK , E(K̄))[m] // 0 .

where the connecting homomorphism δ is induced by the following pairing :

Definition 0.2.1. Kummer Pairing

k :E(K)×GK → E[m]

(P, σ) 7→ Qσ −Q

where Q ∈ E(K̄) s.t. mQ = P .

Proposition 0.2.1. 1. The Kummer pairing is well defined

2. The Kummer pairing is bilinear

3. The left kernel of k is mE(K)
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4. The right kernel of k is GK̄/L where

L = K([m]−1E(K))

is the composium of all fields K(Q) as Q ranges over points of E(K̄) satisfying [m]Q ∈ E(K).

proof : k is well defined by Remark 0.2.1. The rest of the proof is given in The Arithmetic of Elliptic

Curves,VIII.1.

Using previous proposition, we obtain a perfect bilinear pairing

E(K)/mE(K)×GL/K → E[m]

which reduces the problem to proving that GL/K is finite.

This last step can be achieved by showing that L/K is unramified outside of

S = {v ∈M0
K |E has bad reduction at v} ∪ {v ∈M0

K |v(m) 6= 0} ∪M∞
K

In term of Galois cohomology, this translates into the following statement :

Im(E(K)) ⊂ H1(GK , E[m]) consists of cohomology classes that are unramified outside of S.

One completes the proof by showing that extensions such as L/K above are necessarly finite (see The

Arithmetic of Elliptic Curves,VIII, Prop 1.6).

We stop here our study of the weak Mordell-Weill theorem and concentrate on locating E(K)/mE(K)

in H1(GK , E[m]).

Since we assumed E[m] ⊂ E(K), we have that E(K)/mE(K) ⊂ H1(GK , E[m]) = Hom(GK , E[m]). It

remains to identify elements of Hom(GK , E[m]) that are coming from E(K)/mE(K).
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Remark 0.2.2. H1(GK , E(K̄)) is isomorphic to the Weil-Chatelet group of E/K : WC(E/K). There-

fore, identifying elements in ker(φ) is the same as deciding wether or not a given homogenous space

C/K for E/K has a K-rational point.

As this can be done easily locally using Hensel’s lemma, we will reformulate the Kummer sequence

from a local point of view :

For v ∈MK , fix an extension of v in K̄ which fixes an embedding K̄ ⊂ K̄v and a decomposition group

Gv ⊂ GK .

Gv acts on E(Kv), hence we obtain :

0 // E(Kv)/mE(Kv) // H1(Gv, E[m]) // H1(Gv, E(K̄v))[m] // 0 .

Gathering all places of K gives the following commutative diagram :

0 // E(K)/mE(K) k //

resv

��

H1(GK , E(K̄)[m]) //

resv
��

H1(GK , E(K̄))[m]

resv
��

// 0

0 // E(Kv)/mE(Kv) //
∏

v∈MK
H1(Gv, E(K̄)[m]) //

∏
v∈MK

H1(Gv, E(K̄))[m] // 0

where resv denotes the restriction homomorphism relative to the inclusion Gv ⊂ GK .

We finally define the m-Selmer group from the above diagram :

Definition 0.2.2. The m-Selmer group of E/K ,denoted S(m)(E/K), is the subgroup of H1(GK , E[m])

defined by :

S(m)(E/K) := ker{H1(GK , E[m])→
∏
v∈MK

H1(Gv, E(K̄))}

Definition 0.2.3. The Shafarevich-Tate group of E/K, denoted X(E/K), is defined as :

X(E/K) := ker{H1(GK , E(K̄))→
∏
v∈MK

H1(Gv, E(K̄))}
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To sum up, we have the following exact sequence :

0 // E(K)/mE(K) // S(m)(E/K) //X(E/K)[m] // 0

0.3 The Selmer group of E/K

We now generalize the definitions above by considering the torsion subgroup of E(Q̄) and its p-

primary subgroups.

Fix an embedding of K ⊂ Q̄ and consider E[p∞] ⊂ Etors ⊂ E(Q̄) where E[p∞] is the p-primary subgroup

of Etors i.e. the union of all E[pn].

Consider GK = Gal(Q̄/K). Its action on Etors allows us to define the Kummer map :

k :E(K)⊗Z (Q/Z)→ H1(GK , Etors)

P ⊗ (
1

n
+ Z) 7→ [ζ]

where [ζ] : σ 7→ Qσ −Q, with Q ∈ E(K̄) and nQ = P .

Moreover, for v a prime of K, we similarly define the v-adic Kummer map :

k :E(Kv)⊗Z (Q/Z)→ H1(Gv, Etors)

where Kv denotes the completion of K at v.

On the cohomology side, by embedding Q̄ ⊂ K̄v, we obtain a restriction map

H1(GK , Etors)→ H1(Gv, Etors)

which exists for all v ∈MK .

We can now define the Selmer group of E/K :

Definition 0.3.1. Selmer Group SelE(K)
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SelE(K) := ker{H1(GK , Etors)→
∏
v∈MK

H1(Gv, Etors)/Im(kv)}

Definition 0.3.2. Shafarevich-Tate Group XE(K)

XE(K) := SelE(K)/im(k)

In order to study SelE(K), one breaks it down into its p-primary subgroups :

Let p be a prime, following the construction above, we define the Kummer map at p :

kv,p : E(Kv)⊗Z (Qp/Zp)→ H1(Gv, E[p∞])

which yields the definition of the p-primary subgroup of SelE(K) :

Definition 0.3.3. The p-primary subgroup SelE(K)p is given by :

SelE(K)p := ker{H1(GK , E[p∞])→
∏
v∈MK

H1(Gv, E[p∞])/Im(kv,p)}

We can now distinguish two cases :

1. v is archimedean or v is non archimedian and the residue field of K at v has characteristic l 6= p :

In this case, Im(kv,p) = 0

2. v is non archimedian and the residue field of K at v has characteristic l = p :

In this case, referring to Chrisw’ talk on p-adic Hodge Theory, recall that

H1
f (Gv, VpE) = ker{H1(Gv, VpE)→ H1(Kv, VpE ⊗Bcrys)}

Now using VpE/TpE ' E[p∞], we have that Im(kv,p) = Im(H1
f (Gv, VpE)) ⊂ H1(Gv, E[p∞])
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