Selmer Groups and Kummer Theory for Elliptic Curves

0.1 Introduction

For a given elliptic curve E/K where K is a number field and m > 2 an integer, we first present
the m-Selmer group of E/K corresponding to the multiplication by m isogeny. Then, we give a more

general definition of the Selmer group of E/K and its p-primary subgroups.

0.2 The m-Selmer group of E/K : S"(E/K)

Let K be a number field and E/K an elliptic curve. We propose to follow the proof of the weak
Mordell-Weil theorem for E/K to motivate and give the definition of S (E/K).
Theorem 0.2.1. Weak Mordell-Weil Theorem

E(K)/mE(K)
is a finite group
Remark 0.2.1. [t will be enough to assume E[m] C E(K) in what follows using the following lemma:

Lemma 0.2.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite, then E(K)/mE(K) is

also finite.

proof : cf The Arithmetic of Elliptic Curves, VIII,1.1.1

Let Gx = Gal(K/K) and consider the short exact sequence of Gg-modules induced by the multi-
plication by m map :

0 —— E(K)[m] — BE(K) "~ B(K) —0.



taking Galois cohomology yields :

E(K)[m] E(K) - E(K)

H'(G, E(K)[m]) —= H'(G, E(K)) = H'(G, E(K)),

from which we can extract the Kummer sequence for £/K :
0—>E(K)/mE(K)—6>H1(GK,E(K')[m])L—Hl(GK,E(K))[m]—>0.

where the connecting homomorphism 4 is induced by the following pairing :

Definition 0.2.1. Kummer Pairing

k:E(K) x Gx — E[m]

(PaU)HQU_Q

where Q € F(K) s.t. mQ = P.

Proposition 0.2.1. 1. The Kummer pairing is well defined

2. The Kummer pairing is bilinear

3. The left kernel of k is mE(K)



4. The right kernel of k is G, where

L = K(m] " E(K))

is the composium of all fields K(Q) as Q ranges over points of E(K) satisfying [m]Q € E(K).

proof : k is well defined by Remark 0.2.1. The rest of the proof is given in The Arithmetic of Elliptic
Curves, VIII.1.

Using previous proposition, we obtain a perfect bilinear pairing

which reduces the problem to proving that Gk is finite.

This last step can be achieved by showing that L/K is unramified outside of

S = {v € M}|E has bad reduction at v} U {v € Mj-Jv(m) # 0} U M?

In term of Galois cohomology, this translates into the following statement :
Im(E(K)) C H' (G, E[m]) consists of cohomology classes that are unramified outside of S.
One completes the proof by showing that extensions such as L/K above are necessarly finite (see The

Arithmetic of Elliptic Curves,VIII, Prop 1.6).

We stop here our study of the weak Mordell-Weill theorem and concentrate on locating E(K)/mE(K)
in H'(Gg, E[m)]).
Since we assumed E[m] C E(K), we have that F(K)/mE(K) C H (G, E[m]) = Hom(Gg, E[m]). Tt

remains to identify elements of Hom(G g, E[m]) that are coming from E(K)/mE(K).



Remark 0.2.2. H'(Gg, E(K)) is isomorphic to the Weil-Chatelet group of E/K : WC(E/K). There-
fore, identifying elements in ker(¢) is the same as deciding wether or not a given homogenous space

C/K for E/K has a K -rational point.

As this can be done easily locally using Hensel’s lemma, we will reformulate the Kummer sequence
from a local point of view :

For v € M, fix an extension of v in K which fixes an embedding K C K, and a decomposition group
G, C Gg.

G, acts on E(K,), hence we obtain :
0— E(K,)/mE(K,) —= H'(G,, E[m]) — H"(G,, E(K,))[m] —=0.

Gathering all places of K gives the following commutative diagram :
0 BE(K)/mE(K) —*— H'(Gye, B(K)[m]) HY (G, E(K))m]

lresv Lr@sv lresv

0—= E(K,)/mE(K,) — [Ler, H'(Go, E(K)[m]) —=[1,enr,, H(Go, B(K))[m] —=0

where res, denotes the restriction homomorphism relative to the inclusion G, C G.

We finally define the m-Selmer group from the above diagram :

Definition 0.2.2. The m-Selmer group of E/K ,denoted S"™ (E/K), is the subgroup of H' (G, E[m])
defined by :
SUNE/K) = ker{H"(Gx, E[m]) » [[ H'(G., E(K))}

vEME

Definition 0.2.3. The Shafarevich-Tate group of E/K, denoted II(E/K), is defined as :

II(E/K) := ker{H'(Gx,E(K)) —» [][ H'(G., E(K))}

veEMg



To sum up, we have the following exact sequence :

0—— E(K)/mE(K) — S (E/K) —= IL(E/K)[m] —= 0

0.3 The Selmer group of E/K

We now generalize the definitions above by considering the torsion subgroup of E(Q) and its p-
primary subgroups.
Fix an embedding of K C Q and consider E[p>] C Ejos C E(Q) where E[p™] is the p-primary subgroup
of Eiys 1.6, the union of all E[p"].

Consider Gx = Gal(Q/K). Its action on Ej,,, allows us to define the Kummer map :

k:B(K)®z (Q/Z) = H' (Gk, Eyors)

P®(%+Z)n—>[g‘]

where [(] : 0+ Q% — Q, with Q € E(K) and nQ = P.

Moreover, for v a prime of K, we similarly define the v-adic Kummer map :
k E(Kv) &z (@/Z) — H1<GU7 Etors)

where K, denotes the completion of K at v.

On the cohomology side, by embedding Q C K,,, we obtain a restriction map

HI(GKa Etors) — Hl(Gva Etors)

which exists for all v € M.

We can now define the Selmer group of E/K :

Definition 0.3.1. Selmer Group Selg(K)



Selp(K) = ker{H"(Gx, Eors) = [ H'(Gv, Euors)/Im(ky)}

vEME

Definition 0.3.2. Shafarevich-Tate Group Il g(K)

Mg(K) = Selg(K)/im(k)

In order to study Selg(K), one breaks it down into its p-primary subgroups :

Let p be a prime, following the construction above, we define the Kummer map at p :
kop : B(K,) @2 (Qy/Z,) — H' (G, E[p™))

which yields the definition of the p-primary subgroup of Selg(K) :
Definition 0.3.3. The p-primary subgroup Selg(K)p is given by :
Selp(K)p = ker{ H' (G, E[p>]) — H HY(G,, E[p™])/Im(k,,)}
vEMK
We can now distinguish two cases :

1. v is archimedean or v is non archimedian and the residue field of K at v has characteristic [ # p :

In this case, Im(k,,) =0

2. v is non archimedian and the residue field of K at v has characteristic [ = p :

In this case, referring to C'hris,,’ talk on p-adic Hodge Theory, recall that
H(Gy,V,E) = ker{H"(G,,V,E) = H" (K, V,E @ Beys)}

Now using V, E/T,E ~ E[p™], we have that Im(k,,) = Im(H(G,,V,E)) C H'(G,, E[p>])



