
Computing with algebraic automorphic forms

David Loeffler

Abstract These are the notes of a five-lecture course presented at the Computations
with modular forms summer school, aimed at graduate students in number theory
and related areas. Sections 1–4 give a sketch of the theory of reductive algebraic
groups over Q, and of Gross’s purely algebraic definition of automorphic forms in
the special case when G(R) is compact. Sections 5–9 describe how these automor-
phic forms can be explicitly computed, concentrating on the case of definite unitary
groups; and sections 10 and 11 describe how to relate the results of these computa-
tions to Galois representations, and present some examples where the corresponding
Galois representations can be identified, giving illustrations of various instances of
Langlands’ functoriality conjectures.

1 A user’s guide to reductive groups

Let F be a field. An algebraic group over F is a group object in the category of alge-
braic varieties over F . More concretely, it is an algebraic variety G over F together
with:

• a “multiplication” map G×G→ G,
• an “inversion” map G→ G,
• an “identity”, a distinguished point of G(F).

These are required to satisfy the obvious analogues of the usual group axioms. Then
G(A) is a group, for any F-algebra A. It’s clear that we can define a morphism of
algebraic groups over F in an obvious way, giving us a category of algebraic groups
over F .

Some important examples of algebraic groups include:
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• The additive and multiplicative groups (usually written Ga and Gm),
• Elliptic curves (with the group law given by the usual chord-and-tangent pro-

cess),
• The group GLn of n× n invertible matrices, and the subgroups of symplectic

matrices, orthogonal matrices, etc.

We say an algebraic group G over F is linear if it is isomorphic to a closed
subgroup of GLn for some n. In particular, every linear algebraic group is an affine
variety, so elliptic curves are not linear groups. One can show that the converse is
true: every affine algebraic group is linear. In this course we’ll be talking exclusively
about linear groups.

Exercise 1. Show that PGL2, the quotient of GL2 by the subgroup of diagonal ma-
trices, is a linear algebraic group, without using the above theorem.

We’re mostly interested in algebraic groups satisfying a certain technical condi-
tion. Let Unip(n) be the group of upper-triangular matrices with 1’s on the diagonal
(unipotent matrices). We say G is reductive if there is no connected normal subgroup
H /G which is isomorphic to a subgroup of Unip(n) for any n.

This is a horrible definition; one can make it a bit more natural by developing
some general structure theory of linear algebraic groups, but we sadly don’t really
have time. I’ll just mention that reductive groups have many nice properties non-
reductive groups don’t; if G is reductive (and the base field F has characteristic 0),
the category of representations1 of G is semisimple (every representation is a direct
sum of irreducibles). For non-reductive groups this can fail. For instance Unip(2),
which is just another name for the additive group Ga, has its usual 2-dimensional
representation, and this representation has a trivial 1-dimensional sub with no in-
variant complement.

For instance, the group GLn is reductive for any n, as are the symplectic and or-
thogonal groups. If F is algebraically closed (and let’s say of characteristic 0, just
to be on the safe side), then there is a classification of reductive groups over F us-
ing linear algebra widgets called root data. One finds that they are all built up from
products of copies of GL1 (“tori”) and other building blocks called “simple” alge-
braic groups. The simple algebraic groups are: four infinite families An,Bn,Cn,Dn;
and five exceptional simple groups E6,E7,E8,F4,G2.

Over non-algebraically-closed fields F , life is much more difficult, since we can
have pairs of groups G,H which are both defined over F , with G not isomorphic to
H over F , but G∼= H over some finite extension of F . For instance, let F = R, and
consider the “circle group”

C = {(x,y) ∈ A2 : x2 + y2 = 1}, (x,y) · (x′,y′) = (xx− yy′,xy′+ yx′).

One can show that C becomes isomorphic to Gm over C, although these two groups
are clearly not isomorphic over R.

1 Here “representation” is in the sense of algebraic groups: just a morphism of algebraic groups
from G to GLn for some n.
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Exercise 2. Check this.

If G and H are groups over F which become isomorphic after extending to
some extension E/F , then we say H is an E/F-form of G. One can show that if
E/F is Galois, the E/F-forms of G are parametrised by the cohomology group
H1(E/F,Aut(GE)), where Aut(GE) is the (abstract) group of algebraic group au-
tomorphisms of G over E. To return to our circle group example for a moment, if
G =Gm then Aut(GE) =±1 for any E, and H1(C/R,±1) has order 2, so the only
C/R-forms of G are the circle group C and Gm itself.

If G is connected and reductive, then there’s a unique “best” form of G, the split
form, which is characterised by the property that it contains a subgroup isomorphic
to a product of copies of Gm (a split torus) of the largest possible dimension. So the
group C above is not split, and its split form is Gm.

For more details on linear algebraic groups, consult a book. There are several ex-
cellent references for the theory over an algebraically closed field, such as the books
of Humphreys [10] and Springer [16]. For the theory over a non-algebraically-closed
field, the book by Platonov and Rapinchuk [14] is a good reference; this is also use-
ful reading for some of the later sections of this course.

2 Algebraic groups over number fields

Let’s consider a linear algebraic group over a number field F .
In fact, it’ll suffice for everything we do here to consider an algebraic group

over Q. That’s because there’s a functor called “restriction of scalars” (sometimes
“Weil restriction”) from algebraic groups over F to algebraic groups over Q; if G
is an algebraic group over F , there is a unique algebraic group H over Q with the
property that for any Q-algebra A we have

H(A) = G(F⊗Q A).

This group H is the restriction of scalars of G, and we call it ResF/Q(G). See Paul
Gunnells’ lectures at this summer school for an explicit description of this func-
tor and lots of examples; alternatively, see [14, §2.1.2]. If G is reductive, so is
ResF/Q(G), so we can forget about the original group over F and just work with
this new group over Q.

So let G be a linear algebraic group over Q, which (for simplicity) we’ll suppose
is connected. Then we can consider the groups G(Qv) for each place v of Q. These
are topological groups, since the field Qv has a topology.

If v is a finite prime p, then G(Qp) “looks like the p-adics”; it’s totally discon-
nected. In particular, it has many open compact subgroups, and these form a basis
of neighbourhoods of the identity. (This is obvious for GLn – the subgroups of ma-
trices in GLn(Zp) congruent to the identity mod pm, for m ≥ 1, work – and hence
follows for any linear algebraic group.) In the other direction, one can show that
G(Qp) has maximal compact subgroups if and only if G is reductive; compare the
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additive group Ga, whose Qp-points clearly admit arbitrarily large open compact
subgroups. There is a beautiful theory due to Bruhat and Tits which describes the
maximal compact subgroups of G(Qp), for connected reductive groups G over Qp,
in terms of a geometric object called a building, but we won’t go into that here.

One thing that’ll be useful to us later is this: if we fix a choice of embedding of
G into GLn, and let Kp = G(Zp) = G(Qp)∩GLn(Zp), then for all but finitely many
primes p, Kp is a maximal compact subgroup. In fact we can do better than this;
for all but finitely many p, Kp is hyperspecial, a technical condition from Bruhat–
Tits theory, which will crop up again later when we talk about Hecke algebras. For
instance, GLn(Zp) is a hyperspecial maximal compact subgroup of GLn(Qp) for all
p.

Exercise 3. Find an embedding ι : GL2 ↪→ GLn of algebraic groups over Qp, for
some n, such that ι−1(GLn(Zp)) is a proper subgroup of GL2(Zp).

For the real points of a reductive group, the story is a bit different. If G is Zariski
connected, then it needn’t be the case that G(R) is connected (for instance Gm),
but G(R) will have finitely many connected components. Hence it can’t have open
compact subgroups unless it’s compact itself.

It turns out that the maximal compact subgroups can be very nicely described
in terms of Lie group theory (more specifically, in terms of the action of complex
conjugation on the Lie algebra of G(C)). In particular, they’re all conjugate, so in
most applications it doesn’t matter very much which one you work with.

For example, in SL(2,R) the maximal compact subgroups are conjugates of the
group

SO(2,R) =

{(
x y
−y x

)
: x2 + y2 = 1

}
.

Exercise 4. Check that the group SO(2,R) is the stabiliser of i, for the usual left
action of SL(2,R) on the upper half-plane h; the action of SL(2,R) on h is transitive;
and the resulting bijection

h∼= SL(2,R)/SO(2,R)

is a diffeomorphism.

In general, if K ⊆ G(R) is maximal compact, the quotient G(R)/K is a very
interesting manifold, called a symmetric space. As the above exercise shows, these
are the appropriate generalisations of the upper half-plane h, so they will come up
all over the theory of automorphic forms. Many of these symmetric spaces have
names, such as “hyperbolic 3-space” or the “Siegel upper half-space”.

Now let’s consider all primes simultaneously. Let A be the ring of adeles of Q,
and consider the group G(A). This inherits a topology2 from the topology of A.

2 One has to be a little careful in defining this topology. One can equip GLn(A) with the subspace
topology that comes from regarding it as an open subset of Matn×n(A), where Matn×n(A)∼=An has
the product topology; but this is not the right topology, as inversion is not continuous (exercise!).
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Since A is a restricted direct product of the completions of Q, we have a corre-
sponding decomposition

G(A) = ∏
′

v
G(Qv),

where the dash means to take elements whose component at v lies in G(Zp) for all
but finitely many3 primes p.

We’ll also need to consider the finite adeles A f = ∏
′
v<∞

Qv, and the correspond-
ing group

G(A f ) = ∏
′

v<∞

G(Qv)

of A f -points of G. Note that G(Q) sits inside G(A), via the diagonal embedding
Q ↪→ A. We will also sometimes consider G(Q) as a subgroup of G(A f ), by ne-
glecting the component at ∞; hopefully it will always be clear which we are using!

The first key result about these groups is the following (see e.g. chapter 5 of
[14]):

Theorem 5 (Harish-Chandra, Borel). The group G(Q) is discrete in G(A); and if
G has no quotient isomorphic to Gm, then the quotient G(Q)\G(A) has finite Haar
measure.

The quotient space G(Q)\G(A) is immensely important for us, as it is the home
of automorphic forms.

3 Automorphic forms

Let G be a connected reductive group over Q, as above. Let K∞ ⊆ G(R) be a maxi-
mal compact subgroup, and V a finite-dimensional irreducible complex representa-
tion of K∞.

Definition 6. An automorphic form for G of weight V is a function

φ : G(Q)\G(A)→V

such that:

1. φ(gk) = φ(x) for all g ∈ G(A) and k ∈ K f , where K f is some open compact
subgroup of G(A f );

2. φ(gk∞) = k−1
∞ ◦ f (g) for all g ∈ G(A) and k ∈ K∞;

3. various conditions of smoothness and boundedness hold.

Much better is to regard GLn(A) as a closed subset of Matn×n(A)×A∼= An+1, given by {(m,x) :
det(m)x = 1}. We then get a topology on G(A) for every linear group G by embedding it in GLn
for some n.
3 Note that to define G(Zp) we need to choose an embedding into GLn, as above; but changing
our choice of embedding will only affect finitely many primes, so it introduces no ambiguity in the
restricted product.
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If φ satisfies (1) for some specific open compact subgroup K f , we say φ is an
automorphic form of level K f .

I won’t explain exactly what kind of smoothness and boundedness conditions are
involved here; for a precise statement, see the books of Bump [1] or of Gelbart.

Let’s now see how this relates to more familiar things, like modular curves. For
an open compact subgroup K f ⊂ G(A) as above, we write

Y (K f ) = G(Q)\G(A)/K f K∞.

This might look like a horrible mess, but it’s actually not so bad. A general theorem
(again due to Borel and Harish-Chandra) shows that the double quotient

Cl(K f ) = G(Q)\G(A f )/K f ,

which we call the class set of K f , is finite. Moreover, from the discreteness of G(Q)
in G(A) it follows that any µ ∈ G(A f ), the group

Γµ = G(Q)∩µK f µ
−1

is discrete in G(R). Unravelling the definitions, we find that if µ1, . . . ,µr is a set of
representatives for Cl(K f ), we have

Y (K f ) =
r⊔

i=1

Γµ\Y∞

where Y∞ is the symmetric space G(R)/K∞. Automorphic forms show up as sec-
tions of various vector bundles on these spaces, with the line bundle encoding the
representation V of K∞.

If G is SL2, the space Y∞ is the upper half-plane, as we saw above; so each of the
pieces Γµ\Y∞ is just the quotient of the upper half-plane by a discrete subgroup of
SL2(R) – in other words, a modular curve!

Exercise 7. To get some idea of the power of the theorems of Borel and Harish-
Chandra, let’s use them to prove the two most important basic results of algebraic
number theory.

1. Show that if G = ResF/QGm where F is a number field, and K f is ∏v-∞ O×K,v, the
class set Cl(K f ) is just the ideal class group of the field F .

2. Describe the groups Γµ in the above case, and the space Y∞. How is this related
to Dirichlet’s units theorem?

In general, working with automorphic forms involves lots of hard analysis with
functions on the symmetric spaces Y∞, and it’s not at all clear how one might hope
to explicitly compute these objects. But there’s a special case where everything be-
comes very easy:

Definition 8. We say G is definite if the group G(R) is compact.
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If G is definite, then the only possible maximal compact subgroup K∞ ⊆G(R) is
G(R) itself; so the quotient Y∞ is just a point, and the quotients Y (K f ) are just the
finite sets Cl(K f ). As was apparently first noticed by Gross in his beautiful paper
“Algebraic modular forms” ([9]), automorphic forms on these groups are in many
ways much simpler than in the non-definite case, and yet are still very interesting
objects.

4 Algebraic automorphic forms (after Gross)

Let’s take a definite connected reductive group G/Q. Since any automorphic form
for G of weight V must transform in a specified way under K∞, which is the whole
of G(R), it is uniquely determined by its restriction to G(A f ), and we can precisely
describe what this restriction must look like:

Definition 9 (Gross). An algebraic automorphic form for G of level K f and weight
V is a function

φ : G(A f )→V

such that

1. φ(gk) = φ(g) for all g ∈ G(A f ) and k ∈ K f ;
2. φ(γg) = γ ◦φ(g) for all g ∈ G(A f ) and γ ∈ G(Q).

We write Alg(K f ,V ) for the space of algebraic automorphic forms of level K f
and weight V .

Exercise 10. Show that if φ : G(Q)\G(A)→V is any function satisfying conditions
(1) and (2) in the definition of an automorphic form from the previous section, then
φ |G(A f ) is an algebraic automorphic form (of the same weight and level).

It’s clear that any φ ∈Alg(K f ,V ) is uniquely determined by its values on any set
µ1, . . . ,µr of representatives of the class set Cl(K f ) = G(Q)\G(A f )/K f . In particu-
lar, the space Alg(K f ,V ) is finite-dimensional.

We can actually do a little better than this. Recall that for µ ∈ G(A f ) we defined
groups

Γµ = G(Q)∩µK f µ
−1.

Notice that in the definite case these groups are finite (since they are discrete sub-
groups of the compact group G(R)). If g ∈ Γµ , then we have

g◦φ(µ) = φ(gµ) (as g ∈ G(Q))

= φ(µ ·µ−1gµ)

= φ(µ) (as µ
−1gµ ∈ K f .)

So f (µ) ∈VΓµ . Hence if µ1, . . . ,µr are a set of representatives for Cl(K f ), as above,
we have a map
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Alg(K f ,V )→
r⊕

i=1

VΓµi ,

φ 7→ ( f (µ1), . . . , f (µr)).

This is clearly well-defined, and injective (since φ is determined by its values on
the µi). In fact it is also surjective, and thus an isomorphism.

Exercise 11. Prove carefully that the above map is surjective.

Remark 12. There’s a possible risk of confusion in the terminology here, in that var-
ious authors (notably [2]) have proposed a variety of definitions of what it should
mean for an automorphic form, or an automorphic representation, on a general non-
definite reductive group to be “algebraic”. For instance, a lot of important research
has been done recently on “RAESDC” (regular algebraic essentially self-dual cusp-
idal) automorphic representations of GLn. These are very different, and much more
complicated, objects than our algebraic automorphic forms (which are the “alge-
braic modular forms” of [9]).

5 Hecke operators

We’ve now seen how to define spaces Alg(K f ,V ) of algebraic automorphic forms,
for a definite reductive group. As with classical modular forms, spaces alone are
not terribly interesting, but they come with a natural family of operators – Hecke
operators – and the deep number-theoretical importance of automorphic forms is
encoded in the action of these operators.

Let’s run through some general formalism. The Hecke algebra H (G(A f ),K f ) is
the free Z-module with basis the set of double cosets {KgK : g ∈G(A f )}, equipped
with an algebra structure which I won’t define. Two properties we’ll need of this
space are:

• If K f = ∏p Kp for open compact subgroups Kp ⊆ G(Qp), then H (G(A f ),K f )
decomposes as a restricted tensor product of local Hecke algebras,

H (G(A f ),K f ) =
⊗′

p
H (G(Qp),Kp).

• If Kp is hyperspecial – which, as we saw in lecture 1, is the case for all but
finitely many p – the algebra H (G(Qp),Kp) is commutative and is generated by
an explicit finite set of elements lying in a maximal torus.

For example, the local Hecke algebra H (GLn(Qp),GLn(Zp)) is isomorphic to
Z[T1, . . . ,Tn,T−1

n ], where Ti is the double coset of a diagonal matrix with i diagonal
entries equal to p and the remaining (n− i) equal to 1.

Exercise 13. Prove this, by Googling the phrase “Smith normal form”.
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It’s a general fact that if Π is a representation of G(A f ), the K f -invariants Π
K f

pick up an action of H (G(A f ),K f ). To see how these Hecke operators act on the
space Alg(K f ,V ), note that any KgK can be written as a finite union of left cosets⊔t

s=1 gsK. We then define, for φ ∈ Alg(K f ,V ),

([KgK] ·φ)(x) =
t

∑
s=1

φ(xgs).

Exercise 14. Show that [KgK] ·φ is in Alg(K f ,V ).

We’ll need to make this operator [KgK] on Alg(K f ,V ) a little more explicit, using
our isomorphism from last time

Alg(K f ,V )→
r⊕

i=1

VΓµi ,

φ 7→ ( f (µ1), . . . , f (µr)).

where µ1, . . . ,µr ∈ G(A f ) are a set of representatives for Cl(K f ). To find

([KgK] ·φ)(µi) =
t

∑
s=1

φ(µigs),

we need to find out in which double cosets the products µigs lie. Indeed, if γ ∈G(Q)
is such that µigs ∈ γµ jK, then we have

φ(µigs) = φ(γµ j) = γ · f (µ j).

There won’t be very many possibilities for γ . The possibilities are the elements of
the set

G(Q)∩µigsKµ
−1
j ,

and any two elements of this set differ by right multiplication by an element of the
group Γµ j , which we already know is finite.

So for each pair (i,s) we need to find the unique j such that µigsKµ
−1
j ∩G(Q) is

non-empty. If we consider all s at once, we can present this in the following way:

• For each (i, j) ∈ {1, . . . ,r}2, let Ai j(g) = G(Q)∩µiKgKµ
−1
j , a finite set.

• Let Bi j(g) = Ai j(g)/Γµ j (which is well-defined, as Ai j(g) is preserved by right
multiplication by Γµ j ).

• Then for any φ ∈ Alg(K,V ), we have

([KgK] ·φ)(µi) = ∑
[γ]∈Bi j(g)

γ · f (µ j).

Much of the work in computing with algebraic automorphic forms goes into
finding the sets Bi j(g), for various g in the Hecke algebra. Once you know the data
of: a set of representatives µ1, . . . ,µr; the corresponding groups Γµ1 , . . . ,Γµr ; and the
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sets Bi j(g) for all i, j and your favourite g, it’s essentially routine to calculate a basis
of Alg(K,V ) and the matrix of [KgK] acting on this basis for absolutely any V . That
is, the hard part of the computation is independent of the weight, which is perhaps
surprising if you’re used to computing with modular forms and modular symbols.

Remark 15. The matrix whose i, j entry is bi j = #Bi j is called the Brandt matrix of g,
and it gives the action of KgK on the automorphic forms of level K f and weight the
trivial representation (sometimes called the Brandt module of level K f ). The term
“Brandt matrix” goes back to the very first case in which algebraic automorphic
forms were studied, for G the group of units of a definite quaternion algebra over Q;
here Cl(K f ) is in bijection with the left ideal classes in D.

6 Examples of this idea in the literature

As far as I know, the examples of definite (or definite-modulo-centre) groups G
where people have computed algebraic automorphic forms are:

• D×, where D is a definite quaternion algebra over Q: [13]
• ResF/Q(D×), where F is a totally real number field and D a totally definite

quaternion algebra over F : [5, 6, 7]
• Unitary groups: [12], Dembele (unpublished), Greenberg–Voight (unpublished)
• Compact forms of the symplectic group Sp4 and the exceptional Lie group G2:

[11]
• Compact forms of Sp2n, n≥ 2: [4]

Over the remaining two lectures, I’m going to explain one specific example, the
case of definite unitary groups.

7 Hermitian spaces and unitary groups

Let F be a number field, and E/F a quadratic extension. For x ∈ E, we write x̄ for
the image of x under the nontrivial element of Gal(E/F).

Definition 16. A Hermitian space for E/F is a finite-dimensional E-vector space
V with a pairing 〈 , 〉 : V ×V → E which is linear in the first variable and skew-
symmetric, in the sense that

〈y,x〉= 〈x,y〉.

If V is a Hermitian space, then there is an associated algebraic group U over F
whose F-points are given by

U(F) = {u ∈ AutE(V ) : 〈ux,uy〉= 〈x,y〉 ∀x,y ∈V} .
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This group becomes isomorphic to GLd over E, where d = dimE V . In particular,
it’s connected and reductive.

Exercise 17. Prove this. (You should find that there are two possible isomorphisms,
related by the inverse transpose map GLd → GLd .)

We say that V is totally positive definite if F is totally real, and 〈x,x〉 is totally
positive for all x ∈ V . (Note that 〈x,x〉 is in F , so this makes sense.) Note that this
in particular implies that λλ̄ is totally positive for all λ ∈ E, so E/F must be a CM
extension (a totally imaginary quadratic extension of a totally real field). Then we
have the following fact:

Proposition 18. If V is totally positive definite, then the group G = ResF/Q(U) is a
definite reductive group.

We’ll also need (occasionally) to consider some integral structures on these ob-
jects. A lattice in V is an OE -lattice L ⊂ V (a finitely-generated OE -module con-
taining an E-basis of V ). Any choice of such a lattice L defines an integral structure
on G, for which G(Z) is the stabilizer of L .

Theorem 19. If V is totally positive definite, L ⊂ V is a lattice, and r ∈ OF , then
the set

{x ∈L : 〈x,x〉= r}

is finite and can be algorithmically computed.

Proof. By choosing a basis for L as a Z-module, and equipping it with the
quadratic form q(x) = TrF/Q〈x,x〉, this reduces to the problem of enumerating all
short vectors for a quadratic form, which can be solved using the LLL (Lenstra-
Lenstra-Lovasz) reduction method. ut

From this, we have the following corollary:

Theorem 20. For any lattice L as above, and any r ∈ OF , the set

{ϕ ∈ EndE(V ) : ϕ(L )⊆L ,〈ϕx,ϕy〉= r · 〈x,y〉∀x,y} (†)

is finite and algorithmically computable.

Proof. There are clearly only finitely many possibilities for where ϕ can send each
vector in a set of generators4 of L . ut

For example, if V is the “standard” rank d Hermitian space, by which I mean
E⊕d with the Hermitian form

〈(x1, . . . ,xd),(y1, . . . ,yd)〉=
d

∑
i=1

xiȳi,

4 Note that I didn’t write “basis” here, since it may very well happen that L is not free as an
OE -module if the class number of E is > 1.
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and L is the obvious sublattice O⊕d
E , then this set is simply the set of all matrices

whose columns (or rows) are orthogonal vectors in V with entries in OE and length
r. So one can enumerate them pretty quickly by simply listing all vectors of length
r, and then looking for d-tuples that are orthogonal.

How does this help? Let’s define

L̂ = ∏
p
(L ⊗Z Zp) .

This is contained in V ⊗Q A f , which has an action of G(A f ), and one easily checks
that the stabilizer of L̂ is an open compact subgroup KL . (More concretely, KL =

∏p Kp where Kp is the stabilizer of L ⊗Z Zp in V ⊗Q Qp.)
Let K ⊆G(A f ) be an open compact subgroup contained in KL , for some choice

of lattice L .
We want to find the following data for K:

1. a set of representatives µ1, . . . ,µr for Cl(K);
2. the finite groups Γµi ;
3. the sets Ai j(g) = G(Q)∩µiKgKµ

−1
j , for each pair (i, j) and various g ∈ G(A f ).

Note that (2) is in fact a special case of (3), by taking g = 1 and j = i.
Let’s assume that we know the solution to (1). Then we can solve (3) as follows:

we choose

λ ∈ OE such that λ µiL̂ ⊆ L̂ ;

λ
′ ∈ OE such that λ

′gL̂ ⊆ L̂ ;

λ
′′ ∈ OE such that λ

′′
µ
−1
j L̂ ⊆ L̂ .

It’s clear that we can always do this: we just need to make the λ ’s divisible by
sufficiently high powers of a certain finite set of primes. Then if γ ∈ Ai j(g), the
element γ̃ = λ ·λ ′ ·λ ′′ · γ ∈ EndE(V ) lies in the set (†), where r = NE/F(λλ ′λ ′′).
Not every element of (†) comes from an element of Ai j(g), of course, but for each
element of (†) it is a finite, purely local computation to check whether it gives us an
element of Ai j(g), and we know that we must get every element of Ai j(g) this way.

So how do we solve problem (1), of finding the class set? We can do this using a
“bootstrap” technique. We know one double coset – the identity – so we can start by
letting µ1 = 1 and plunging on with calculating the sets A11(g) for some elements g.
For each such g, we can calculate by purely local methods how many single cosets
the double coset KgK should break up into. Either they all have representatives in
G(Q), in which case these appear in A11(g) and we’re done; or we’ll be able to
identify one that doesn’t, and then we’ve found an explicit element of G(A f ) that
isn’t in G(Q)K. We can then define µ2 to be this, and continue.

The only question now is: when do we stop? One way to do this is to use a mass
formula.
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8 Mass Formulae

Let’s return (temporarily) to thinking about a general connected reductive group G.
Recall that the quotient G(Q)\G(A f ) is compact. This implies that it has finite Haar
measure; but the Haar measure h on a locally compact group such as G(A f ) is only
defined up to scaling.

Definition 21. If K is an open compact subgroup of G(A f ), we define the mass of
K to be the ratio

m(K) =
h
(
G(Q)\G(A f )

)
h(K)

This is independent of the normalisation we use for the Haar measure h, obvi-
ously; and it’s easy to see that we can write it as

m(K) = ∑
µ∈Cl(K)

1
#Γµ

.

(This sum is well-defined, since although #Γµ depends on the choice of µ , if µ and
µ ′ are in the same class in Cl(K) the groups Γµ and Γµ ′ are conjugate, and hence
have the same order.)

Notice that if K′ ⊆ K, then we have m(K′) = [K : K′]m(K). So if we know the
mass of one open compact K, we know them all, as all open compact subgroups of
G(A f ) are commensurable.

Theorem 22 (Gan–Hanke–Yu, [8]). If G is a definite unitary group of rank n for
E/Q, where E is imaginary quadratic, and KL is the open compact subgroup cor-
responding to a lattice L satisfying a certain maximality property, we have

m(KL ) =
1

2n−1 L(M)∏
p∈S

λp,

where L(M) is a product of special values of Dirichlet L-functions, S is a finite set
of primes and λp are certain explicit constants depending on V .

(This is actually a special case of the theorem of Gan–Hanke–Yu, which applies
more generally to definite unitary groups and definite orthogonal groups over arbi-
trary totally real fields.)

So we can find the mass by evaluating a special value of an L-function! This
allows us to tell when we have found the whole set Cl(K), by comparing the result
of the mass formula with the sizes of the groups Γµi for the coset representatives µi
we know so far.
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9 An example in rank 2

I carried out the above computation for various standard Hermitian spaces of ranks 2
and 3 attached to imaginary quadratic fields E/Q of class number 1, taking K = KL

for L the statndard lattice.
For n= 2, and E =Q(

√
−d) for d = 1,2,3,7, we find that the mass of the obvious

double coset equals the whole mass. The first case where something interesting
happens is d = 11. Here the mass formula gives m(K) = 5

24 . The obvious double
coset G(Q)K has corresponding Γ group

G(Z) =
(
±1 0
0 ±1

)
∪
(

0 ±1
±1 0

)
of order 8. That leaves a mass of 5

24 −
1
8 = 1

12 unaccounted for. So we launch into
decomposing some Hecke operators.

The prime p = 3 splits in E, so we know that G(Q3) ∼= GL3(Q3), and the local
factor of our level group at 3 maps to GL3(Z3). So the interesting element of the

local Hecke algebra corresponds to the double coset of
(

1 0
0 3

)
∈ GL3(Q3), which

splits into p+1= 4 double cosets. We find that only two of them contain an element
of G(Q) integral at all other primes, so either of the other two gives a new element
of Cl(K); and if we calculate the order of the corresponding Γ group, it turns out to
be 12, so we are done.

Since #Cl(K) = 2, we must in particular have a 2-dimensional space of automor-
phic forms of level K and weight the trivial representation. This space contains the
1-dimensional space of constant functions, which are obviously Hecke eigenvectors,
with the eigenvalue for the Hecke operator at a split prime p being 1+ p; this is not
especially interesting. However, there is another eigenfunction, and we find that its
Hecke eigenvalues at the split primes are:

Prime 3 5 23 31 37 47 53
Eigenvalue -1 1 -1 7 3 8 -6
Maybe this isn’t so easy to guess, but these are also the Hecke eigenvalues of

a modular form! We’ve rediscovered (half of) the Hecke eigenvalues of the unique
newform of weight 2 and level 11.

10 Galois representations

In the last section, we saw an example of a (non-constant) automorphic form for
a unitary group of rank 2 for Q(

√
−11)/Q, and I said that the Hecke eigenvalues

“look like” those of a modular form. In this section, we’ll see an interpretation of
how and why this works.

Recall that if f is a modular eigenform of weight k and level N, which is new,
cuspidal, normalized, and a Hecke eigenform, then for any prime `, we can construct
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a Galois representation

ρ f ,` : Gal(Q/Q)→ GL2(Q`)

which is continuous, semisimple, unramified outside N`, and for each prime p - N`,
satisfies

Trρ f ,`(Frobp) = ap( f )

where ap( f ) is the Tp-eigenvalue of f .
Much more is known about the properties of ρ f ,`, of course, but the properties

I’ve just written down specify it uniquely, so we’ll content ourselves with those.
Now let G be a definite unitary group of rank n attached to an imaginary quadratic

field E/Q, and π an algebraic automorphic form for G of some level K f . Let S be the
set of primes that are split in E, so G(Qp)∼= GLn(Qp), and such that K f ∩G(Qp) =
GLn(Zp). Suppose that for all primes p ∈ S, π is an eigenvector for the Hecke
operator corresponding to 

1
. . .

1
p


under the isomorphism G(Qp)∼=GLn(Qp) determined by a choice of prime p above
p. Let ap(π) be the corresponding eigenvalue. Then we have the following theorem:

Theorem 23 (Shin [15], Chenevier–Harris [3]). There exists a unique semisimple
Galois representation

ρπ,` : Gal(E/E)→ GLn(Q`)

satisfying
Trρ f ,`(Frobp) = ap(π)

for all primes p of E above a prime p ∈ S.

The set S contains all but finitely many degree 1 primes of E, so the Frobenius
elements at these primes are dense in Gal(E/E); thus ρπ,` is clearly unique.

Note that Gal(E/E) is an index 2 subgroup of Gal(Q/Q), and conjugation by the
nontrivial element σ ∈Gal(Q/Q)/Gal(E/E) interchanges the conjugacy classes of
Frobp and Frobp for p = pp̄ ∈ S. So unless we have ap̄(π) = ap(π) for all such
p, which doesn’t usually happen, the conjugate ρσ

π,` can’t be isomorphic to ρπ,`

and hence ρπ,` cannot be extended to a representation of Gal(Q/Q). However, the
representations ρπ,` and ρσ

π,` are related: we have an isomorphism

ρ
σ
π,`
∼= ρ

∨
π,`(n−1) (“polarization”)

where ρ∨
π,` is the dual representation and (n−1) denotes twisting by the (n−1)-st

power of the `-adic cyclotomic character χ` : Gal(E/E)→ Z×` .
So our observation about the non-constant trivial weight form on the standard

rank 2 unitary group for Q(
√
−11)/Q can be explained as follows: if π is this form
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(and ` is any prime), the Galois representation ρπ,` is isomorphic to the restriction
of ρ f ,` to Gal(E/E), where f is the weight 2 cusp form of level 11.

Exercise 24. Show that ρ = ρ f ,`|Gal(E/E) satisfies the polarization identity. (Note
that in this case ρσ ∼= ρ , so we need to check that ρ ∼= ρ∨(1).)

There is a very general philosopy, sometimes referred to as the “global Langlands
program”, which predicts (among other things) that:

• “Nice” automorphic forms on ResK/Q GLn, where K is any number field, should
correspond to compatible families of n-dimensional `-adic representations of
Gal(K/K).

• Automorphic forms on a subgroup G⊆ResK/Q GLn should correspond to Galois
representations preserving some extra structure (such as a symplectic form on
Qn

` , or a polarization as above).
• Natural operations on Galois representations correspond to maps between auto-

morphic forms (“Langlands functoriality”).

These are all very much open conjectures in general, although many important
special cases are known. Let me just give a few examples of what I mean by “natural
operations on Galois representations”.

For instance, let’s say f is a modular eigenform; then, thanks to Deligne, we
know how to construct the corresponding 2-dimensional `-adic representations ρ f ,`.
For each m ≥ 2, we can take the symmetric power Symm

ρ f ,`; this is an (m+ 1)-
dimensional `-adic representation of Gal(Q/Q), and one might reasonably expect
that it corresponds to some automorphic form on GLm+1. This form – which, I
stress, is only conjectured to exist – is called the “symmetric power lifting” of f . At
the moment I believe the existence of the symmetric power lifting is only known for
m = 2,3,4 and 9.

Here’s another example. Let’s say we take two definite unitary groups U(n1) and
U(n2) associated to the same CM extension E/F , and we consider eigenforms π1
and π2 on U(n1) and U(n2) respectively. We know these have Galois representations
ρπ1,` and ρπ2,`, of dimensions n1 and n2. So we can consider the representation
ρπ1,`⊕ρπ2,`, and ask: does this come from an automorphic form on U(n1+n2)? This
can’t quite work as I’ve stated it, since the direct sum doesn’t satisfy the polarization
identity; but we can fix this by twisting the two representations by appropriately
chosen characters. The corresponding automorphic forms on U(n1 +n2) are known
as endoscopic lifts, since they are associated to the endoscopic subgroup5 U(n1)×
U(n2) of U(n1 +n2).

5 Informally, an endoscopic subgroup is “the Levi factor of a parabolic subgroup that isn’t there”.
Notice that definite groups cannot have parabolic subgroups, since their split rank is 0.
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11 Some examples in rank 3

I’ve done some calculations of automorphic forms on the definite unitary group
attached to the standard 3-dimensional Hermitian space for Q(

√
−7)/Q. I took the

level group to be the group KL attached to the standard lattice O⊕3
E .

In this case, the possible weights are the irreducible representations of the
compact Lie group G(R) ∼= U(3). These are indexed by pairs6 of integers (a,b),
with the representation corresponding to (a,b) being a certain explicit subspace of
Syma(W )⊗Symb(W∨) where W is the 3-dimensional standard representation.

It turns out that if a 6= b, then Galois representation attached to a form of weight
(a,b) cannot possibly extend from Gal(E/E) to Gal(Q/Q), because if π has weight
(a,b), the conjugate representation ρσ

π,` is the Galois representation attached to an
eigenform of weight (b,a) and thus cannot be isomorphic to ρπ,`. So let’s look at
some examples in “parallel” weights (a,a).

In table 1, I’ve listed each form of parallel weight ≤ 4 (or, rather, each orbit
of forms up to the Galois action on the coefficients). For each of these, one can
try to test whether the Galois representation looks like it might extend to Q, by
checking whether the Hecke eigenvalues at pairs of primes above the same prime
of Q coincide. One can also try to recognise the form as an endoscopic lift from
U(1)×U(2), in which case the form will have Hecke eigenvalues at split primes
given by ap(π) = ω1(p) +ω2(p)ap( f ), for some modular form f and Groessen-
characters ω1,ω2 of E, and the Galois representation of ρπ,` is isomorphic to

ω1,` ⊕
(

ω2,`⊗ρ f ,`|Gal(E/E)

)
, where ωi,` are the `-adic characters attached to the

Groessencharacters ωi via class field theory. (It may even happen that the modular
form f has CM by E, in which case ρ f ,`|Gal(E/E) is reducible and ρπ,` is a direct
sum of three characters.)

Table 1 Galois orbits of automorphic forms for the group U(3) attached to Q(
√
−7 in parallel

weights ≤ 4)

a Form Endoscopic? Extends to Q? Notes
0 0a Yes Yes Constant fcn; ρπ,`

∼= 1⊕χ`⊕χ2
`

0b Yes Yes Direct sum of 3 characters
1 - - - (no forms in this weight)
2 2a Yes Yes Direct sum of 3 characters

2b Yes Yes Character ⊕ twist of a weight 7 modular form
3 3a Yes Yes Character ⊕ twist of a weight 9 modular form

3b No No First “interesting” example
4 4a Yes Yes Direct sum of 3 characters

4b No Yes Sym2(ρ f ,`) for a weight 6 modular form
4c Yes Yes Character ⊕ twist of a weight 11 modular form
4d Yes No Character ⊕ twist of a weight 6 modular form
4e No No

6 Actually triples, but the third parameter is a twist by a power of the determinant and so doesn’t
give you anything new.
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So one can see here explicit examples of several kinds of Langlands functoriality
at work, as well as some examples of automorphic forms that genuinely come from
U(3) and not from any simpler group.
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4. Cunningham, C., Dembélé, L.: Computing genus-2 Hilbert-Siegel modular forms over Q(
√

5)
via the Jacquet-Langlands correspondence. Experiment. Math. 18(3), 337–345 (2009). URL
http://projecteuclid.org/getRecord?id=euclid.em/1259158470
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