TCC Homological Algebra: Assignment #2

David Loeffler, d.a.loeffler@warwick.ac.uk

4th November 2016

This is the second of 4 problem sheets. Solutions should be submitted to me (via any appropriate method) by **noon on 16th November**. This problem sheet will be marked out of a total of 25; the number of marks available for each question is indicated.

Note that rings are assumed to be unital (i.e. having a multiplicative identity element 1), ring homomorphisms are assumed to map 1 to 1, and modules are left modules, unless otherwise stated.

- 1. [3 points] For each of the following functors, determine whether it is exact, right exact, left exact, or neither. (Here *G* denotes an arbitrary group.)
 - (a) The forgetful functor $\mathbf{Z}[G]$ -Mod \to Ab.
 - (b) The functor $\mathbf{Z}[G]$ - $\underline{\mathrm{Mod}} \to \underline{\mathrm{Ab}}$ sending M to the G-coinvariants M_G (the quotient of M by the subgroup generated by $\{gm-m:g\in G,m\in M\}$.
- 2. Let $\operatorname{Pro}(\underline{\operatorname{Ab}})$ be the category whose objects are sequences $(C_i)_{i\geq 0}$ of abelian groups with homomorphisms $f_i:C_{i+1}\to C_i$ for every $i\geq 0$, with morphisms $(C_i)\to (D_i)$ being collections of morphisms $C_i\to D_i$ for every i commuting with the f_i .

(You may assume that a sequence $0 \to (A_i) \to (B_i) \to (C_i) \to 0$ is exact in $Pro(\underline{Ab})$ if and only if $0 \to A_i \to B_i \to C_i \to 0$ is exact for every i.)

- (a) [1 point] Show that the functor $Pro(\underline{Ab}) \to \underline{Ab}$ mapping (C_i) to the inverse limit $\varprojlim_i C_i$ is left-exact.
- (b) [1 point] Give an example to show that it is not exact. (*Hint: Contemplate the sequence* $\ldots \longrightarrow \mathbf{Z} \xrightarrow{[2]} \mathbf{Z} \xrightarrow{[2]} \mathbf{Z}$.)
- 3. [2 points] Show that $\mathbb{Z}/3\mathbb{Z}$ is projective as a module over $\mathbb{Z}/6\mathbb{Z}$.
- 4. [3 points] Let $R = \mathbf{Q}[X, Y, Z]$, and I the ideal (X, Y, Z) of R. Show that the complex

is a projective resolution of R/I.

- 5. [4 points] Let *R* be a ring.
 - (a) Let $R^{\vee} = \operatorname{Hom}_{\underline{Ab}}(R, \mathbf{Q}/\mathbf{Z})$, considered as an R-module via $(r \cdot \phi)(s) = \phi(sr)$. Show that $\operatorname{Hom}_R(M, R^{\vee}) = \operatorname{Hom}_{\operatorname{Ab}}(M, \mathbf{Q}/\mathbf{Z})$ for any R-module M (naturally in M). Hence show that R^{\vee} is an injective R-module.
 - (b) Show that for any R-module M and any non-zero $m \in M$, there is a homomorphism $\psi : M \to R^{\vee}$ such that $\psi(m) \neq 0$.
 - (c) Show that if *X* is a set and $(I_x)_{x \in X}$ are injective *R*-modules, then $\prod_{x \in X} I_x$ is injective.
 - (d) Hence deduce that <u>R-Mod</u> has enough injectives.

- 6. [2 points] Give a detailed proof of the existence of the chain homotopy $(s^i)_{i \in \mathbb{Z}}$ in the uniqueness proposition for injective resolutions.
- 7. [2 points] *The Hom complex*. Let X^{\bullet} , Y^{\bullet} be two cochain complexes over some abelian category \mathcal{C} . Let $\underline{Hom}(X^{\bullet}, Y^{\bullet})$ be the complex of abelian groups with i-th term $\prod_{j \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}(X^{j}, Y^{i+j})$, and differential given by

$$d^{i}\left((f^{j})_{j\in\mathbf{Z}}\right) = \left(d_{Y}^{i+j}\circ f^{j} + (-1)^{i+1}f^{j+1}\circ d_{X}^{j}\right)_{i\in\mathbf{Z}}.$$

Check that this is a cochain complex. Show that the 0-cocycles in this complex are the cochain maps $X^{\bullet} \to Y^{\bullet}$, and the 0-coboundaries are the null-homotopic ones.

- 8. [4 points] *Mapping cones*. Let $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ be a morphism of cochain complexes (over some abelian category \mathcal{C}). The **mapping cone** of f is the complex C_f^{\bullet} defined as follows:
 - C_f^i is the direct sum $X^{i+1} \oplus Y^i$;
 - the differential $d^i: C^i_f \to C^{i+1}_f$ is given by $\begin{pmatrix} -d^{i+1}_X & 0 \\ f^{i+1} & d^i_Y \end{pmatrix}$.
 - (a) Show that C_f^{\bullet} is a cochain complex.
 - (b) Let $X[1]^{\bullet}$ denote the cochain complex with i-th term X^{i+1} , and with differential $d_{X[1]}^i = -d_X^{i+1}$. Show that there is a short exact sequence of cochain complexes $0 \to Y^{\bullet} \to C_f^{\bullet} \to X^{\bullet}[1] \to 0$.
 - (c) Assume that $C = \underline{R\text{-Mod}}$ for some ring R. Show that in the long exact sequence of cohomology attached to the SES of complexes in (b), the coboundary map $\partial^i : H^i(X^{\bullet}[1]) = H^{i+1}(X) \to H^{i+1}(Y)$ coincides with the map $H^{i+1}(f^{\bullet})$.
- 9. [3 points] Let C^{\bullet} be the mapping cone of $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$, as before.
 - (a) Show that a morphism of complexes $g: W^{\bullet} \to X^{\bullet}$ factors through the canonical map $C_f^{\bullet}[-1] \to X$ if and only if $f \circ g$ is null-homotopic.
 - (b) Show that a morphism of complexes $g: Y^{\bullet} \to Z^{\bullet}$ factors through the canonical map $Y^{\bullet} \to C_f^{\bullet}$ if and only if $g \circ f$ is null-homotopic. (*Hint: Look for a way to deduce this from part (a).*)

¹Here we're identifying a morphism $F: A_1 \oplus A_2 \to B_1 \oplus B_2$ with a 2×2 matrix whose i, j term is the morphism $F_{pq}: A_q \to B_p$ given by $\operatorname{pr}_p \circ F \circ \iota_q$. Note that some books use slightly different sign conventions for the differential on C_f , which give isomorphic but not quite identical complexes.