TCC Homological Algebra: Assignment #3

David Loeffler, d.a.loeffler@warwick.ac.uk

18th November 2016

This is the third of 4 problem sheets. Solutions should be submitted to me (via any appropriate method) by **noon on 30th November**. This problem sheet will be marked out of a total of 25; the number of marks available for each question is indicated.

Note that rings are assumed to be unital (i.e. having a multiplicative identity element 1), ring homomorphisms are assumed to map 1 to 1, and modules are left modules, unless otherwise stated.

- 1. [2 points] Let C be an abelian category with enough injectives, and X an object of C. Show that X is injective if and only if it is F-acyclic for every left-exact functor F from C to an abelian category.
- 2. [2 points] Let $0 \to X \to Y \to Z \to 0$ be a short exact sequence of abelian groups, and I_X^{\bullet} , I_Y^{\bullet} , I_Z^{\bullet} injective resolutions of X, Y, Z. Is it necessarily the case that the maps in the short exact sequence lift to a short exact sequence of complexes $0 \to I_X^{\bullet} \to I_Y^{\bullet} \to I_Z^{\bullet} \to 0$? Give a proof or counterexample as appropriate.
- 3. Let $S: 0 \to X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to 0$ be a short exact sequence in an abelian category \mathcal{C} . We say the sequence S is *split* if there is an isomorphism $Y \xrightarrow{\cong} X \oplus Z$ compatible with the maps $X \to Y$ and $Y \to Z$.
 - (a) [1 point] Show that the following are equivalent:
 - (i) The exact sequence *S* is split.
 - (ii) There exists a morphism $\pi: Y \to X$ such that $\pi \circ \alpha = \mathrm{id}_X$.
 - (iii) There exists a morphism $\phi : Z \to Y$ such that $\beta \circ \phi = \mathrm{id}_Z$.
 - (b) [1 point] Show that if either *X* is injective, or *Z* is projective, then *S* must be split.
 - (c) [2 points] Assume C is R-Mod for some ring R. Prove the following converse to (b): if X is such that *every* short exact sequence starting with X is split, then X is an injective object.
- 4. [3 points] Let k be a field, and let R be the ring $k[X,Y]/(X^2,XY,Y^2)$. Let I=(X,Y) be the unique maximal ideal of R, so that $R/I \cong k$. Find a projective resolution of R/I as an R-module, and hence compute the groups $\operatorname{Ext}^i_R(R/I,R)$. (Hint: Do not expect your projective resolution to have only finitely many terms!)
- 5. [2 points] Let *R* be a commutative ring, and *A*, *B*, *C* any three *R*-modules, with *A* projective. Show that

$$\operatorname{Ext}_R^i(A \otimes_R B, C) = \operatorname{Hom}_R(A, \operatorname{Ext}_R^i(B, C))$$

for every $i \ge 1$. (You may assume the statement is true for i = 0).

- 6. Let *G* be a group. Recall the "bar resolution" $X_n(G)$ of the trivial $\mathbf{Z}[G]$ -module \mathbf{Z} , discussed in lectures.
 - (a) [2 points] Write down the differential $d_1: X_2(G) \to X_1(G)$ explicitly. Use this and the formula for d_0 given in lectures to show that for any G-module M we have $H^1(G,M) = Z^1(G,M)/B^1(G,M)$ where

$$Z^1(G, M) = \{ \text{functions } \sigma : G \to M \text{ such that } \sigma(gh) = \sigma(g) + g\sigma(h) \}$$

and

$$B^1(G, M) = \{ \text{functions such that } \sigma(g) = gm - m \text{ for some } m \in M \}.$$

(b) [2 points] Let M be a G-module. An extension of **Z** by M is a short exact sequence of G-modules

$$0 \longrightarrow M \longrightarrow E \longrightarrow \mathbf{Z} \longrightarrow 0$$
,

for some E; two such extensions are equivalent if there is a morphism between the two short exact sequences which is the identity on M and on \mathbb{Z} . Show that there is a bijection between $H^1(G, M)$ and the equivalence classes of extensions of \mathbb{Z} by M.

7. [2 points] Let G be a group and M a k[G]-module, where k is a field of characteristic 0. Show that for any normal subgroup $H \subseteq G$ of finite index, the restriction map

$$\operatorname{res}_{G/H}: H^1(G,M) \to H^1(H,M)^{G/H}$$

is an isomorphism.

- 8. [3 points] Let $G = C_2 = \{1, \sigma\}$.
 - (a) Show that

$$\dots \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G] \xrightarrow{\sigma+1} \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G]$$

is a projective resolution of the trivial module, as a $\mathbb{Z}[G]$ -module.

- (b) Hence compute the cohomology groups of
 - i. **Z** with the trivial *G*-action;
 - ii. **Z** with the generator σ acting as -1.
- 9. [3 points] Let G be the "infinite dihedral group", which has two generators a, b satisfying $b^2 = 1$ and $bab = a^{-1}$. Let H be the normal subgroup generated by a. Write down the E_2 sheet of the Hochschild–Serre spectral sequence for the cohomology of the trivial G-module \mathbf{Z} in terms of cohomology of H and G/H, and hence show that the groups $H^k(G, \mathbf{Z})$ (for trivial G-action on \mathbf{Z}) are \mathbf{Z} for k = 0, trivial for k odd, and have order k for k even.

(You may assume that the generator of $G/H \cong C_2$ acts on $H^1(H, \mathbf{Z})$ as -1.)

10. [Not assessed] Find an pair of δ-functors $S = (S^n)^{n \ge 0}$ and $T = (T^n)^{n \ge 0}$ such that $S^0 = T^0$ but S is not isomorphic to T.