TCC Homological Algebra: Assignment #4

David Loeffler, d.a.loeffler@warwick.ac.uk

2nd December 2016

This is the last of 4 problem sheets. Solutions should be submitted to me (via any appropriate method) by **noon on Monday 9th January**. This problem sheet will be marked out of a total of 25; the number of marks available for each question is indicated.

Note that rings are assumed to be unital (i.e. having a multiplicative identity element 1), ring homomorphisms are assumed to map 1 to 1, and modules are left modules, unless otherwise stated. Calligraphic letters \mathcal{C} and \mathcal{D} refer to arbitrary abelian categories.

- 1. [1 point] A first-quadrant homological spectral sequence in C is exactly the same data as a first-quadrant cohomological spectral sequence in C^{op} . Write out carefully a formulation of this definition in terms of objects and morphisms in C (i.e. without mentioning C^{op}).
- 2. (a) [2 points] Let R be a commutative ring. For $n \ge 0$, the Tor functor $\operatorname{Tor}_n^R : R-\operatorname{\underline{Mod}} \times R-\operatorname{\underline{Mod}} \to R-\operatorname{\underline{Mod}}$ is defined by

$$\operatorname{Tor}_{n}^{R}(A,B) = L_{n}\left(-\otimes_{R}B\right)(A) = L_{n}\left(A\otimes_{R}-\right)(B).$$

Show that if A_{\bullet} is a chain complex of projective R-modules, with $A_i = 0$ for i < 0, and B is any R-module, then we have the following:

i. a first-quadrant homological spectral sequence in R-Mod

$$E_{pq}^2 = \operatorname{Tor}_p^R(H_q(A_{\bullet}), B) \Rightarrow H_q(A_{\bullet} \otimes_R B).$$

ii. a first-quadrant cohomological spectral sequence in R-Mod

$$E_2^{pq} = \operatorname{Ext}_R^p(H_q(A_{\bullet}), B) \Rightarrow H^q(\operatorname{Hom}_R(A_{\bullet}, B)).$$

(b) [2 points] Show that if $R = \mathbf{Z}$ we have short exact sequences

$$0 \to H_n(A_{\bullet}) \otimes B \to H_n(A_{\bullet} \otimes B) \to \operatorname{Tor}_1^{\mathbf{Z}}(H_{n-1}(A_{\bullet}), B) \to 0$$

and

$$0 \to \operatorname{Ext}^1_{\mathbf{Z}}(H_{n-1}(A_{\bullet}), B) \to H^n(\operatorname{Hom}(A_{\bullet}, B)) \to \operatorname{Hom}(H_n(A_{\bullet}), B) \to 0$$

for every $n \ge 0$.

3. Let X^{\bullet} be an object of $Ch^{\bullet}(\mathcal{C})$. We say X^{\bullet} is *split exact* if all cohomology objects $H^n(X^{\bullet})$ are zero and the short exact sequences

$$0 \longrightarrow Z^n(X^{\bullet}) \longrightarrow X^n \stackrel{d^n}{\longrightarrow} B^{n+1}(X^{\bullet}) \longrightarrow 0$$

are split for every n.

- (a) [2 points] Show that the identity map $id_{X^{\bullet}}$ is null-homotopic if and only if X^{\bullet} is split exact.
- (b) [2 points] Suppose X^{\bullet} is an injective object in $Ch^{\bullet}(\mathcal{C})$. Show that X^{\bullet} is a split exact complex of injective objects of \mathcal{C} . [Hint: To show that injective \Rightarrow split exact, consider the injective map of complexes $X^{\bullet} \to \operatorname{cone}(\operatorname{id}_{X^{\bullet}})$. By assumption the identity map $X^{\bullet} \to X^{\bullet}$ must extend to $\operatorname{cone}(\operatorname{id}_{X})$. What does this imply?]

- (c) [1 point] Prove the converse: split exact sequences of injective objects of \mathcal{C} are injective objects of $\operatorname{Ch}^{\bullet}(\mathcal{C})$.
- 4. [1 point] Let $\underline{\text{Vect}}(k)$ denote the category of vector spaces over some field k. Show that every cochain complex over $\underline{\text{Vect}}(k)$ is quasi-isomorphic to a complex with all differentials zero.
- 5. [3 points] Let R be a left-Noetherian ring, and let X^{\bullet} be a bounded-above cochain complex of R-modules, such that $H^{i}(X)$ is finitely-generated as an R-module for all i.
 - (a) Show that there exists a subcomplex Y^{\bullet} of X^{\bullet} such that every Y^{i} is finitely-generated as an R-module, and the inclusion $Y^{\bullet} \hookrightarrow X^{\bullet}$ is a quasi-isomorphism.
 - (b) Show that if there exists $M \in \mathbf{Z}$ such that $H^i(X)$ is zero for i < M, there exists a bounded cochain complex of finitely-generated modules Z^{\bullet} and a quasi-isomorphism $Y^{\bullet} \to Z^{\bullet}$.
- 6. Let E_r^{pq} be a first-quadrant cohomological spectral sequence in \underline{Ab} (starting at some $r = r_0$). Suppose that $E_{r_0}^{pq}$ is a finite group for all p, q, and there is some N such that $E_{r_0}^{pq}$ is zero when p + q > N.
 - (a) [1 point] Show that for all $r > r_0$, E_r^{pq} is finite for all p, q, and is zero if p + q > N.
 - (b) [3 points] Show that the product

$$\prod_{\substack{p,q \geq 0 \\ p+q \leq N}} \left(\# E_r^{pq} \right)^{(-1)^{p+q}}$$

is independent of $r \ge r_0$.

(c) [1 point] Show that in the above setting, if E_r^{pq} converges to some limit $(X^n)^{n\geq 0}$, then X^n is finite for all n and $X^n=0$ for n>N, and the product

$$\prod_{n=0}^{N} (\#X^n)^{(-1)^n}$$

is equal to the common value of the products from part (b).

(d) [1 point] Hence show that if G is the group \mathbb{Z}^m , for any $m \ge 1$, then for every finite $\mathbb{Z}[G]$ -module M, the cohomology groups $H^i(G, M)$ are finite for all i and zero for i > m, and we have

$$\prod_{i=0}^{m} \left(\#H^{i}(G, M) \right)^{(-1)^{i}} = 1.$$

7. [2 points] Let $X \xrightarrow{f} Y$ be a morphism in $Ch^{\bullet}(\mathcal{C})$, and C_f its mapping cone (see sheet 2). Let α_f and β_f denote the natural maps $Y \to C_f$ and $C_f \to X[1]$, so there is a triangle

$$X \xrightarrow{f} Y \xrightarrow{\alpha_f} C_f \xrightarrow{\beta_f} X[1].$$

If D denotes the mapping cone of α_f , construct an isomorphism of triangles in $K(\mathcal{C})$ between the triangles

$$Y \xrightarrow{\alpha_f} C_f \xrightarrow{\alpha_{\alpha_f}} D \xrightarrow{\beta_{\alpha_f}} Y[1]$$

and

$$Y \xrightarrow{\alpha_f} C_f \xrightarrow{\beta_f} X[1] \xrightarrow{f[1]} Y[1].$$

(This is one of the axioms for K(C) being a triangulated category.)

8. [3 points] Let I^{\bullet} and X^{\bullet} be two cochain complexes over C, supported in degrees ≥ 0 (that is, $I^p = X^p = 0$ for all p < 0), with I^p an injective object for all p. Let $f^{\bullet}: I^{\bullet} \to X^{\bullet}$ be a quasi-isomorphism.

Show that there is a cochain map $g^{\bullet}: X^{\bullet} \to I^{\bullet}$ such that $g \circ f$ is homotopic to $id_{I^{\bullet}}$.