MA4H9 Modular Forms: Problem Sheet 3

David Loeffler

December 3, 2010

This is the third of three problem sheets, each of which amounts to 5\% of your final mark for the course. This problem sheet will be marked out of a total of 40; the number of marks available for each question is indicated. You should hand in your work to the Undergraduate Office by 3pm on Monday 10th January 2011.

Throughout this sheet, Γ is a finite-index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and $k \in \mathbb{Z}$ (some questions will make additional assumptions on k).

1. [6 points] Let f be a nonzero modular function of level Γ and weight k. Recall that the total valence $V_{\Gamma}(f)$ was defined by

$$
V_{\Gamma}(f)=\sum_{c \in C(\Gamma)} v_{\Gamma, c}(f)+\sum_{z \in \Gamma \backslash \mathcal{H}} \frac{v_{z}(f)}{n_{\Gamma}(z)} .
$$

Give a careful proof of Lemma 2.4.5, which states that for $g \in \mathrm{SL}_{2}(\mathbb{Z})$ the total valence of f and $\left.f\right|_{k} g$ are related by

$$
V_{g^{-1} \Gamma g}\left(\left.f\right|_{k} g\right)=V_{\Gamma}(f) .
$$

2. [3 points] In my first research paper, I found myself needing the following identity of weight 0 modular functions of level $\Gamma_{0}(2)$:

$$
\frac{E_{6}^{2}}{\Delta}=\frac{\left(1+2^{6} f_{2}\right)\left(1-2^{9} f_{2}\right)^{2}}{f_{2}}
$$

where $f_{2}(z)=\frac{\Delta(2 z)}{\Delta(z)}$. I verified by a computer calculation that the q-expansions of both sides agreed up to q^{N}, for some sufficiently large N. How large an N did I need to use? (Hint: Clear denominators and apply Corollary 2.4.7).
3. [2 points] Show that commensurability is an equivalence relation on the set of subgroups of a fixed group G.
4. [3 points] Let $k \geq 1$ and let $N_{k}(\Gamma)$ be the Eisenstein subspace of $M_{k}(\Gamma)$ (defined as the orthogonal complement of $S_{k}(\Gamma)$ with respect to the Petersson product). Show that $N_{k}(\Gamma)$ is preserved by the action of $[\Gamma g \Gamma]$ for any $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.
5. [3 points] Let f be the unique normalised eigenform in $S_{2}\left(\Gamma_{0}(11)\right)$, and let $g=f^{2}$. Calculate the first two terms of the q-expansions of g and of $T_{2}(g)$, and hence show that $\operatorname{dim} S_{4}\left(\Gamma_{0}(11)\right) \geq 2$.
6. [6 points] Let $N \geq 2$ and let χ be a Dirichlet character $\bmod N$. Let $a \in \mathbb{Z} / N \mathbb{Z}$ and define the Gauss sum

$$
\tau(a, \chi)=\sum_{b \in(\mathbb{Z} / N \mathbb{Z})^{\times}} e^{2 \pi i a b / N} \chi(b) .
$$

(a) Show that $\tau(a, \chi)=\overline{\chi(a)} \tau(1, \chi)$ if $a \in(\mathbb{Z} / N \mathbb{Z})^{\times}$.
(b) Let $M \mid N$. Show that if χ does not factor through $(\mathbb{Z} / M \mathbb{Z})^{\times}$, then we have

$$
\sum_{\substack{b \in(\mathbb{Z} / N \mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(b)=0 .
$$

Hence show that if χ is primitive, $\tau(a, \chi)=0$ for $a \neq(\mathbb{Z} / N \mathbb{Z})^{\times}$.
(c) Calculate $\tau(1, \chi)$ when $N=p^{j}(p$ prime, $j \geq 1)$ and χ is the trivial character $\bmod p^{j}$.
7. [4 points] Let $N \geq 2$ and let H be a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{\times}$. Define \hat{H} to be the subgroup of Dirichlet characters $\chi \bmod N$ such that $\chi(d)=1$ for all $d \in H$.
(a) Show that $\Gamma_{H}(N)=\left\{\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N): a, d \in H\right\}$ is a finite-index subgroup of $\operatorname{SL}_{2}(\mathbb{Z})$.
(b) Show that for any $k \geq 1$ we have

$$
S_{k}\left(\Gamma_{H}(N)\right)=\bigoplus_{\chi \in \widehat{H}} S_{k}\left(\Gamma_{1}(N), \chi\right)
$$

8. [4 points] Suppose p is a prime, $\Gamma=\Gamma_{1}(p)$ and $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. Find p matrices $\left(g_{j}\right)_{j=0, \ldots, p-1}$ in $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ such that

$$
\Gamma g \Gamma=\bigsqcup_{0 \leq j<p} \Gamma g_{j}=\bigsqcup_{0 \leq j<p} g_{j} \Gamma .
$$

9. [5 points] Let V be a finite-dimensional complex vector space endowed with a positive definite inner product (a finite-dimensional Hilbert space). Let $A: V \rightarrow V$ be a linear operator.
(a) Show that if A is selfadjoint, $\langle A x, x\rangle$ is real for all $x \in V$.
(b) We say A is positive semidefinite if it is selfadjoint and $\langle A x, x\rangle \geq 0$ for all $x \in V$. Show that if A is positive semidefinite, there is a unique positive semidefinite B such that $B^{2}=A$. (We write $B=\sqrt{A}$.
(c) Show that for any linear operator A, the operator $A^{*} A$ is positive semidefinite, and if $P=$ $\sqrt{A^{*} A}$, then we may write $A=U P$ with U unitary. Show conversely that if $A=U P$ with U unitary and P positive semidefinite, we must have $P=\sqrt{A^{*} A}$. Is U uniquely determined?
(d) Show that A is normal if and only if we can find a unitary U and positive semidefinite P such that $A=U P$ and U and P commute.
(e) Find an example of a nondegenerate (but not positive definite!) inner product space V and a linear operator $A: V \rightarrow V$ which is normal but not diagonalisable.
10. [4 points] Let f be weakly modular of level Γ and weight k. Let $f^{*}: \mathcal{H} \rightarrow \mathbb{C}$ be the function defined by $f^{*}(z)=\overline{f(-\bar{z})}$. Show that f^{*} is weakly modular of weight k and level $\Gamma^{*}=\sigma^{-1} \Gamma \sigma$, where $\sigma=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
Show that f^{*} is a modular function, modular form, or cusp form if and only if f is, and that the q-expansions of f^{*} and f at ∞ are related by $a_{n}\left(f^{*}\right)=\overline{a_{n}(f)}$.
11. [Non-assessed and for amusement only] Let $M(\Gamma)=\bigoplus_{k \geq 0} M_{k}(\Gamma)$, which is clearly a ring. Show that for any $\Gamma, M(\Gamma)$ is finitely generated as an algebra over \mathbb{C}, and we may take the generators to have weight at most 12 .
