MA4H9 Modular Forms: Problem Sheet 3

David Loeffler

December 3, 2010

This is the third of three problem sheets, each of which amounts to 5% of your final mark for the course. This problem sheet will be marked out of a total of 40; the number of marks available for each question is indicated. You should hand in your work to the Undergraduate Office by **3pm on Monday 10th January 2011**.

Throughout this sheet, Γ is a finite-index subgroup of $SL_2(\mathbb{Z})$ and $k \in \mathbb{Z}$ (some questions will make additional assumptions on k).

1. [6 points] Let *f* be a nonzero modular function of level Γ and weight *k*. Recall that the total valence $V_{\Gamma}(f)$ was defined by

$$V_{\Gamma}(f) = \sum_{c \in C(\Gamma)} v_{\Gamma,c}(f) + \sum_{z \in \Gamma \setminus \mathcal{H}} \frac{v_z(f)}{n_{\Gamma}(z)}.$$

Give a careful proof of Lemma 2.4.5, which states that for $g \in SL_2(\mathbb{Z})$ the total valence of f and $f \mid_k g$ are related by

$$V_{g^{-1}\Gamma g}(f\mid_k g) = V_{\Gamma}(f).$$

2. [3 points] In my first research paper, I found myself needing the following identity of weight 0 modular functions of level $\Gamma_0(2)$:

$$\frac{E_6^2}{\Delta} = \frac{(1+2^6f_2)(1-2^9f_2)^2}{f_2}$$

where $f_2(z) = \frac{\Delta(2z)}{\Delta(z)}$. I verified by a computer calculation that the *q*-expansions of both sides agreed up to q^N , for some sufficiently large *N*. How large an *N* did I need to use? (*Hint: Clear denominators and apply Corollary 2.4.7*).

- 3. [2 points] Show that commensurability is an equivalence relation on the set of subgroups of a fixed group *G*.
- 4. [3 points] Let $k \ge 1$ and let $N_k(\Gamma)$ be the Eisenstein subspace of $M_k(\Gamma)$ (defined as the orthogonal complement of $S_k(\Gamma)$ with respect to the Petersson product). Show that $N_k(\Gamma)$ is preserved by the action of $[\Gamma g\Gamma]$ for any $g \in GL_2^+(\mathbb{Q})$.
- 5. [3 points] Let *f* be the unique normalised eigenform in $S_2(\Gamma_0(11))$, and let $g = f^2$. Calculate the first two terms of the *q*-expansions of *g* and of $T_2(g)$, and hence show that dim $S_4(\Gamma_0(11)) \ge 2$.
- 6. [6 points] Let $N \ge 2$ and let χ be a Dirichlet character mod N. Let $a \in \mathbb{Z}/N\mathbb{Z}$ and define the *Gauss sum*

$$\tau(a,\chi) = \sum_{b \in (\mathbb{Z}/N\mathbb{Z})^{\times}} e^{2\pi i a b/N} \chi(b).$$

- (a) Show that $\tau(a, \chi) = \overline{\chi(a)} \tau(1, \chi)$ if $a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.
- (b) Let $M \mid N$. Show that if χ does not factor through $(\mathbb{Z}/M\mathbb{Z})^{\times}$, then we have

$$\sum_{\substack{b \in (\mathbb{Z}/N\mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(b) = 0$$

Hence show that if χ is primitive, $\tau(a, \chi) = 0$ for $a \neq (\mathbb{Z}/N\mathbb{Z})^{\times}$.

- (c) Calculate $\tau(1, \chi)$ when $N = p^j$ (*p* prime, $j \ge 1$) and χ is the trivial character mod p^j .
- 7. [4 points] Let $N \ge 2$ and let H be a subgroup of $(\mathbb{Z}/N\mathbb{Z})^{\times}$. Define \widehat{H} to be the subgroup of Dirichlet characters $\chi \mod N$ such that $\chi(d) = 1$ for all $d \in H$.
 - (a) Show that $\Gamma_H(N) = \left\{ \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Gamma_0(N) : a, d \in H \right\}$ is a finite-index subgroup of $SL_2(\mathbb{Z})$.
 - (b) Show that for any $k \ge 1$ we have

$$S_k(\Gamma_H(N)) = \bigoplus_{\chi \in \widehat{H}} S_k(\Gamma_1(N), \chi).$$

8. [4 points] Suppose *p* is a prime, $\Gamma = \Gamma_1(p)$ and $g = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$. Find *p* matrices $(g_j)_{j=0,\dots,p-1}$ in $\operatorname{GL}_2^+(\mathbb{Q})$ such that

$$\Gamma g \Gamma = \bigsqcup_{0 \le j < p} \Gamma g_j = \bigsqcup_{0 \le j < p} g_j \Gamma.$$

- 9. [5 points] Let *V* be a finite-dimensional complex vector space endowed with a positive definite inner product (a finite-dimensional Hilbert space). Let $A : V \to V$ be a linear operator.
 - (a) Show that if *A* is selfadjoint, $\langle Ax, x \rangle$ is real for all $x \in V$.
 - (b) We say *A* is *positive semidefinite* if it is selfadjoint and $\langle Ax, x \rangle \ge 0$ for all $x \in V$. Show that if *A* is positive semidefinite, there is a unique positive semidefinite *B* such that $B^2 = A$. (We write $B = \sqrt{A}$.)
 - (c) Show that for any linear operator *A*, the operator A^*A is positive semidefinite, and if $P = \sqrt{A^*A}$, then we may write A = UP with *U* unitary. Show conversely that if A = UP with *U* unitary and *P* positive semidefinite, we must have $P = \sqrt{A^*A}$. Is *U* uniquely determined?
 - (d) Show that *A* is normal if and only if we can find a unitary *U* and positive semidefinite *P* such that A = UP and *U* and *P* commute.
 - (e) Find an example of a nondegenerate (but not positive definite!) inner product space *V* and a linear operator $A : V \to V$ which is normal but not diagonalisable.
- 10. [4 points] Let *f* be weakly modular of level Γ and weight *k*. Let $f^* : \mathcal{H} \to \mathbb{C}$ be the function defined by $f^*(z) = \overline{f(-\overline{z})}$. Show that f^* is weakly modular of weight *k* and level $\Gamma^* = \sigma^{-1}\Gamma\sigma$, where $\sigma = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Show that f^* is a modular function, modular form, or cusp form if and only if f is, and that the q-expansions of f^* and f at ∞ are related by $a_n(f^*) = \overline{a_n(f)}$.

11. [Non-assessed and for amusement only] Let $M(\Gamma) = \bigoplus_{k\geq 0} M_k(\Gamma)$, which is clearly a ring. Show that for any Γ , $M(\Gamma)$ is finitely generated as an algebra over \mathbb{C} , and we may take the generators to have weight at most 12.