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1. [6 points] Let GL2(R) be the group of 2× 2 invertible real matrices, and GL+
2 (R) the subgroup of

matrices with positive determinant.

(a) Show that the formula (
a b
c d

)
◦ z =

az + b
cz + d

,

gives an action of GL2(R) on C \R.

Solution: Recall that in the course of proving proposition 1.1.2 we derived the identity

Im
((

a b
c d

)
◦ z
)
=

ad− bc
|cz + d|2 Im(z).

This is valid for any a, b, c, d ∈ R and z ∈ C with cz+ d 6= 0, and shows that
(

a b
c d

)
◦ z /∈ R

if z /∈ R and
(

a b
c d

)
is invertible. The proof we gave that g1 ◦ (g2 ◦ z) = (g1g2) ◦ z is still

valid in this generality, so we obtain a well-defined action of GL2(R) on C \R.

(b) Show that the stabiliser in GL2(R) ofH is GL+
2 (R).

Solution: From the above identity it’s clear that
(

a b
c d

)
preservesH andH if ad− bc > 0,

and swaps them around if ad− bc < 0, so the stabiliser ofH is GL+
2 (R).

(c) Show that g ∈ GL+
2 (R) maps i to itself if and only if g is of the form

(
x y
−y x

)
for x, y ∈ R (not

both zero). Give a corresponding characterisation of the elements which send i to −i.

Solution: Straightforward algebra shows that ai+b
ci+d = i if and only if ad − bc = c2 + d2

and bd + ac = 0. For each choice of sign, this is a pair of simultaneous linear equations
for a, b (regarding c, d as fixed); the determinant is c2 + d2 6= 0, and the unique solution is

a = d, b = −c. Similarly, one shows that g ◦ i = −i if and only if g is of the form
(

x y
y −x

)
.

2. [2 points] Show that if f , f ′ are functions on H, k, k′ ∈ Z, and g ∈ SL2(R), then ( f |kg)( f ′|k′g) =
( f f ′)|k+k′g.

Solution: Recall that the weight k action is defined by ( f |kg)(z) = j(g, z)−k f (g ◦ z). So we have

( f |kg)(z)( f ′|k′g)(z) = j(g, z)−k f (g ◦ z)j(g, z)−k′ f ′(g ◦ z)

= j(g, z)−(k+k′) f (g ◦ z) f ′(g ◦ z) = ( f f ′|k+k′g)(z).
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3. [6 points] Let λ ∈ R with 0 < λ < 2, and let Γλ ⊆ SL2(R) be the group generated by
(

0 −1
1 0

)
and

(
1 λ
0 1

)
.

(a) Show that every Γλ-orbit inH contains a point in the set

Dλ = {z : |z| ≥ 1,− λ
2 ≤ Re z ≤ λ

2 }.

(b) Find a point z ∈ Dλ whose stabiliser in Γλ has order > 4.
(c) Show that if every point of H has finite stabiliser in Γλ, then there exists t ∈ Q such that

λ = 2 cos tπ.

Solution: The first part follows exactly as in the special case λ = 1, which we covered in
lectures.

Let θ ∈ (0, π
2 ) be such that λ = 2 cos θ, and consider z = eiθ . This is a “corner” of Dλ. One

checks that (
0 −1
1 0

)(
1 λ
0 1

)−1
z =

−1
eiθ − 2 cos θ

= eiθ = z.

So this group element stabilises z, and its order is clearly > 4 (since θ < π/2).

One checks that the derivative of z 7→ −1
z−2 cos θ at z = eiθ is eiθ . If the stabiliser of z is finite, this

had better be a root of unity of finite order, so θ is a rational multiple of π.

4. [4 points] (a) Let f and g be modular forms of the same weight k. Show that F(z) = f (z)g(z)(Im z)k

satisfies F(γz) = F(z) for all γ ∈ G.

Solution: One checks that

F(γz) = f (γz)g(γz)(Im γz)k

=
(

j(γ, z)k f (z)
)
·
(

j(γ, z)kg(z)
)
·
(

Im z
|j(γ, z)|2

)k

=
j(γ, z)k j(γ, z)k

|j(γ, z)|2k · F(z)

= F(z).

(b) Hence (or otherwise) show that if f is a cuspidal modular form of weight k, then | f (z)| (Im z)k/2

is bounded onH.

Solution: If f is cuspidal, then F(z) = | f (z)| (Im z)k/2 is a continuous function on D. It
tends to 0 as Im z → ∞ (because f is cuspidal); so it is bounded on D. But it is also G-
invariant, by part (a). Since every G-orbit in H contains a point of D, it follows that any
upper bound for F(z) on D is actually an upper bound for F onH.

5. [2 points] Show that σt(mn) = σt(m)σt(n) for m, n coprime integers.

Solution: Since m and n are coprime, every divisor d of mn can be uniquely written in the form
d1d2 where d1 | m and d2 | n. Hence

∑
d|mn

dt = ∑
d1|m,d2|n

dt
1dt

2 =

∑
d1|m

dt
1

∑
d2|n

dt
2

 .
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6. [4 points] Show that for any z ∈ H which is not in the G-orbit of ρ or i, there exists a nonzero
f ∈ M12 such that f (z) = 0; this f is unique up to scaling; and it has a simple zero at every point in
the G-orbit of z and no other zeroes in H. What is the corresponding statement for the two “bad”
orbits?

Solution: We know that ∆ has no zeroes in H. Hence ∆(z) 6= 0. So there is a unique λ for
which E12 − λ∆ vanishes at z. By the valence formula, this must be a simple zero, and there
can be no other zeroes. If there were two linearly independent functions in M12 vanishing at z,
then we could take a suitable linear combination of them to find a function vanishing to order
2 at z, which is impossible.

If z = i or z = ρ, then there exists a nonzero f ∈ M12 vanishing at z, for exactly the same reason.
It’s clear from the valence formula that any such f vanishes at z to order exactly 2 (if z = i) or 3
(if z = ρ), and has no other zeroes. As before, it must be unique up to scaling because otherwise
we could take a linear combination to construct a nonzero form vanishing to higher order at z.

7. [6 points] Show that the q-expansion coefficients of ∆ lie in Z, where we define ∆ = (E3
4−E2

6)/1728.
(You may not use the product formula for ∆ in this question.)

Solution: (I love this question.) It suffices to show that E3
4 and E2

6 are congruent modulo 1728,
where we say that two power series in q with integer coefficients are congruent if all of their
coefficients are.

We have E4 = 1 + 240 ∑n σ3(n)qn. When we cube this we get

E3
4 = 1 + 720

(
∑
n

σ3(n)qn

)
+ 172800

(
∑
n

σ3(n)qn

)2

+ 13824000

(
∑
n

σ3(n)qn

)3

.

The coefficients 172800 and 13824000 are divisible by 1728, so we conclude that

E3
4 = 1 + 720 ∑

n
σ3(n)qn (mod 1728).

Similarly,

E2
6 = 1− 1008

(
∑
n

σ5(n)qn

)
+ 254016

(
∑
n

σ5(n)qn

)2

.

Clearly −1008 = 720 (mod 1728), and 254016 is a multiple of 1728, so

E2
6 = 1 + 720 ∑

n
σ5(n)qn (mod 1728).

So we need to check that 720σ3(n) = 720σ5(n) (mod 1728). Cancelling out the greatest com-
mon factor of 720 and 1728 (which is 144), this is equivalent to σ3(n) = σ5(n) (mod 12). But
it’s trivial to check that d3 = d5 mod 12 for all d ∈ N, so summing over the divisors of n gives
the result.

8. [6 points] Recall that for any modular function f , ai( f ) denotes the coefficient of qi in the q-expansion
of f .

(a) Show that if f ∈ M16 satisfies a1( f ) = a2( f ) = 0, then f = 0.

Solution: The space M16 is spanned by E4
4 and E4∆. Using the formulae for E4 and ∆

given on the sheet, we calculate that the q-expansions (to order 2) of these are 1 + 960q +
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354240q2 + . . . and q + 216q2 + . . . . Since the determinant
∣∣∣∣960 354240

1 216

∣∣∣∣ = −146880 6= 0,

there is no non-vanishing linear combination of these two forms with a1 = a2 = 0.

(b) Find constants λ1, λ2 such that g = λ1E4
4 + λ2E4∆ satisfies a1(g) = 1 and a2(g) = σ15(2).

Solution: We need to solve the matrix equation

(
λ1 λ2

)
·
(

960 354240
1 216

)
=
(
1 32769

)
.

The unique solution is λ1 = 3617/16320, λ2 = −3600/17.

(c) Hence calculate the constant γ16 such that E16 = 1 + γ16 ∑n≥1 σ15(n)qn.

Solution: We know that γ−1
16 E16 = γ−1

16 + q + σ15(2)q2 + . . . , and λ1E4
4 + λ2E4∆ has the

same coefficient of q and q2. So it must have the same constant term as well, by part (a).
We deduce that γ16 = λ−1

1 = 16320
3617 .

9. [4 points] Find constants λ1, λ2 such that E3
4 = λE12 + µ∆. Hence prove “Ramanujan’s congru-

ence”: if τ(n) = an(∆), then τ(n) = σ11(n) (mod 691).

Solution: We’d better have λ = 1, otherwise the constant terms won’t match. Comparing the
linear terms, we find that µ = 432000

691 . Thus the coefficient of qn in E3
4 must be 65520/691σ11(n)+

432000
691 τ(n). But E3

4 has coefficients in Z, so

432000τ(n) = −65520σ11(n) (mod 691).

Since 432000 = −65520 = 125 (mod 691), and 125 is obviously coprime to 691, we conclude
that τ(n) = σ11(n) (mod 691).

10. (For amusement only – not assessed) Let H be the abstract group generated by two elements a, b such
that a2 = b3 = 1, with no other relations.

(a) [Easy] Show that there is a well-defined surjective map H → G mapping a to S and b to ST.

Solution: It is easy to see that S2 = (ST)3 = 1 in G, so the map is well-defined. Moreover,
since S and T generate G, so do S and ST; thus the map is surjective.

(b) [Hard] Show that this map is an isomorphism. (Hint: Consider the elements x = T and y =

TST =

(
1 0
1 1

)
in Γ. Show by induction that any nonempty product of the form xm1 yn1 . . . xmr ynr

with mi, ni ≥ 0 must have at least one off-diagonal entry positive.)

Solution: The lemma suggested in the hint follows by induction on the length of the prod-
uct, since any such product has entries which are non-negative integers (so no “cancella-
tion” occurs in the matrix multiplication). Hence no such product reduces to the identity,
except the empty product.
Let z be an element of H mapping to the identity. We may consider z as a word in a and b,
of the form

z = brabe1 abe2 . . . aben as

where r = 0, 1 or 2, s = 0 or 1, and each ei is 0 or 1.
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By conjugating by a if necessary, we can assume s = 0. Conjugating by b, we can also
assume r = 0. Now the product can be grouped into terms which are either ab or ab2,
mapping to S(ST) = x or S(ST)2 = TST = y. From the lemma, this cannot be zero unless
the original product was empty. Hence the map is injective.
(I took this cute proof from Newman, “Integer Matrices”, Academic Press 1972, §VIII.3. A more
powerful approach comes from the general theory of Fuchsian groups, which allows one to deduce
a presentation for G directly from the shape of the fundamental domain D; for this argument see
Lehner, “Discontinuous groups and automorphic functions”, AMS 1963, §VII.2.)
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