
MA4H9 Modular Forms: Problem Sheet 2 – Solutions

David Loeffler

December 3, 2010

This is the second of 3 problem sheets, each of which amounts to 5% of your final mark for the course. This
problem sheet will be marked out of a total of 40; the number of marks available for each question is indicated. See
the end of the sheet for some formulae that you may quote without proof.

You should hand in your work to the Undergraduate Office by 3pm on Friday 3rd December.

1. [4 points] Let p be prime and τ ∈ H. Prove that the subgroups of Z + Zτ of index p are pZ + (τ +
j)Z, for j = 0, . . . , p− 1, and Z + pτZ. Show that there are p2 + p + 1 subgroups of index p2, and
give a list of these.

Solution: Let Λ = Z + Zτ and let Λ′ be a subgroup of index p. Then pΛ ⊂ Λ′, and Λ′ is
determined by its image in Λ/pΛ ∼= (Z/pZ)2, which is a subgroup of (Z/pZ)2 of order p.
There are two possibilities: either it is the subgroup generated by (1, 0), or it contains a vector
(a, b) with b 6= 0, in which case it also contains a vector of the form (j, 1), and the value of j
determines the subgroup uniquely. This gives the list of j + 1 possibilities above.

For subgroups of index p2, the image of Λ′ in Λ′/p2Λ ∼= (Z/p2Z)2 is a subgroup of order
p2. This is either cyclic of order p2, or isomorphic to (Z/pZ)2; the latter can only occur if
Λ′ = pΛ, since (Z/p2Z)2 has only p2 elements that are killed by p. So we must find p2 + p
cyclic subgroups of order p2 in (Z/p2Z)2. The subgroup generated by (j, 1) is cyclic of order
p2 for any j, and these are all distinct; this gives p2 examples.

We also have subgroups of the form (j, p) with j invertible modulo p2, but these are not all
distinct, since (1 + p) · (j, p) = ((1 + p)j, p); using this relation, one may take the generator
to be (j, p) with 1 ≤ j ≤ p− 1, and this gives another p− 1 possibilities. Finally, there is the
subgroup generated by (1, 0).

These correspond to the lattices

pZ + pτZ,

p2Z + (τ + j)Z (for 0 ≤ j ≤ p2 − 1),

p2Z + (pτ + j)Z (for 1 ≤ j ≤ p− 1),

Z + p2τZ.

(Note that there are other equally good choices of bases for these lattices.)

2. [4 points] Let p be prime and j ≥ 1, and suppose f ∈ Mk(SL2(Z)) has q-expansion ∑n≥0 anqn. Give
a proof of the formula in Lemma 1.6.10,

Tpj( f ) =

(
∑
n≥0

anpj qn

)
+ pk−1

(
∑
n≥0

anpj−1 qnp

)
+ · · ·+ pj(k−1)

(
∑
n≥0

anqpjn

)
.

(Hint: Consider the operators U, V on the ring C[[q]] of formal power series defined by U (∑ anqn) =
∑ anpqn, V (∑ anqn) = pk−1 ∑ anqnp.)
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Solution: The claim to be proven is that

Tpj( f ) = (U j + VU j−1 + · · ·+ V j−1U + V j)( f ).

This is clear for j = 0 and j = 1. For j ≥ 2 we have the following identity of operators:

Tpj = TpTpj−1 − pk−1Tpj−2 = (U + V)Tpj−1 −UVTpj−2 .

If we assume the claim for j− 1 and j− 2, this is

(U + V)(U j−1 + VU j−2 + · · ·+ V j−2U + V j−1)−UV(U j−2 + VU j−3 + · · ·+ V j−3U + V j−2)

which expands to

(U j + UVU j−2 + UV2U j−3 + · · ·+ UV j−1) + (VU j−1 + V2U j−2 + · · ·+ V j)

− (UVU j−2 + UV2U j−3 + · · ·+ UV j−1).

The terms in the first bracket all cancel with the terms in the last bracket except U j, so the
formula holds for j. Thus it is true for all j by induction.

3. [5 points] Let f be a normalised eigenform in Mk(SL2(Z)) and p a prime. Let α and β be the roots
of the polynomial X2 − ap( f )X + pk−1.

(a) Show that apr ( f ) = αr + αr−1β + · · ·+ αβr−1 + βr for all r ≥ 0.

Solution: Let us write an for an( f ). The formula given is clearly valid for r = 1 and r = 2.
Let us suppose that it holds for r − 1 and r − 2. Note that α + β = ap( f ) and αβ = pk−1.
Hence

apr ( f ) = apapr − pk−1apr−1

= (α + β)(αr−1 + · · ·+ βr−1)− αβ(αr−2 + · · ·+ βr−2)

This expression is clearly a sum of terms αpβq for pairs (s, t) with s + t = r. The pairs (r, 0)
and (0, r) appear once in the first bracket and not at all in the second bracket; all other pairs
(p, q) appear twice in the first bracket and once in the second. Hence each term appears
exactly once in the sum, so the formula is valid for r. Hence it is valid for all r ≥ 1 by
induction (and for r = 0 also, if we are careful in how we interpret the expression.)

(b) Show that if |ap( f )| ≤ 2p(k−1)/2, then |α| = |β| = p(k−1)/2.

Solution: If this is the case, then α, β =
ap±i

√
∆

2 where ∆ = 4pk−1 − a2
p ≥ 0. Hence α, β are

complex conjugates of each other, and in particular have the same absolute value. As their
product is pk−1, this common absolute value is p(k−1)/2.

(c) Show that if the hypothesis of part (b) holds, then apr ( f ) ≤ (r + 1)pr(k−1)/2 for all r ≥ 0.

Solution: If |α| = |β| = p(k−1)/2, then for any s, t with s + t = r, we have |αsβt| =
pr(k−1)/2. Hence a sum of (r + 1) terms of this form has absolute value at most (r +
1)pr(k−1)/2, by repeated application of the triangle inequality.

(d) Deduce that if the hypothesis of part (b) holds for all primes p, then an( f ) ≤ d(n)n(k−1)/2 for
all n ∈N, where d(n) = σ0(n) is the number of divisors of n.
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Solution: Since both an and d(n)n(k−1)/2 are functions of n that are multiplicative for co-
prime arguments, this follows from the case of n a prime power, which is part (c).

4. [4 points] Calculate the matrix of the Hecke operator T2 acting on S32(SL2(Z)) (in a basis of your
choice). Show that its characteristic polynomial is x2 − 39960x− 2235350016. (Hint: Use a computer
to do the algebra!)

Solution: A natural choice of basis is f1 = ∆E5
4 and f2 = ∆2E2

4. Computing the q-expansions
up to degree q4, we have

f1 = q + 1176q2 + 558252q3 + 134859328q4 + . . .

f2 = q2 + 432q3 + 39960q4 + . . .

Hence

T2( f1) = (1176q + 134859328q2 + . . . ) + 231(q2 + . . . ) = 1176q + 2282342976q2 + . . .

T2( f2) = (q + 39960q2 + . . . ) + 231(q4 + . . . ) = q + 39960q2 + . . . .

We deduce that T2( f1) = 1176 f1 + 2280960000 f2 and T2( f2) = f1 + 38784 f2, so the matrix of T2
is (

1176 1
2280960000 38784

)
.

which does indeed have the stated characteristic polynomial. (Other choices of basis would, of
course, give different matrices, but the same characteristic polynomial.)

5. [5 points] Let N ≥ 2 and let c, d ∈ Z/NZ. We say that c and d are coprime modulo N if there is no
f 6= 0 in Z/NZ such that f c = f d = 0.

(a) Show that if
(

a b
c d

)
∈ SL2(Z/NZ), then c and d are coprime modulo N.

Solution: Suppose f c = f d = 0 for some f ∈ Z/NZ. Then f = f (ad− bc) = a( f d)−
b( f c) = 0, so f must be zero. Thus c and d are coprime mod N.

(b) Show that for any pair (c, d) that are coprime modulo N, there exist c′, d′ ∈ Z such that c′ = c
and d′ = d (mod N) and HCF(c′, d′) = 1.

Solution: Choose an arbitrary lift of c and d to Z, and assume WLOG that d 6= 0. Let p be
a prime dividing d. Then p cannot divide both N and c, since otherwise N/p would kill
both c and d modulo N. For each such p, there exist λp such that c+ λpN is not divisible by
p: if p - c, we take λp = 0, and if p | c, then we can take λp = 1. By the Chinese remainder
theorem we can find a λ ∈ Z such that λ = λp mod p for each of the finitely many primes
p dividing d. Then no prime can divide both c + λN and d, so (c′, d′) = (c + λN, d) is a
coprime pair congruent to (c, d) modulo N.

(c) Hence (or otherwise) show that the natural reduction map SL2(Z)→ SL2(Z/NZ) is surjective
for any n ≥ 2.

Solution: Let
(

a b
c d

)
∈ SL2(Z/NZ). By the previous part, we can find a lifting of c and

d to a coprime pair of integers. Let us choose arbitrary lifts of a, b, and consider the matrix(
a + λN b + µN

c d

)
.

Page 3



This has determinant (ad − bc) + N(λd − µc). Since ad − bc = 1 (mod N), and c, d are
coprime, we can find λ, µ such that (ad− bc) + N(λd− µc) = 1. This gives a lifting of the
original matrix to SL2(Z).

(d) Give an example of an integer N and an element of GL2(Z/NZ) which is not in the image of
GL2(Z).

Solution: Any element of GL2(Z) has determinant ±1, so its image modulo N has deter-

minant ±1 (mod N). So the matrix
(

2 0
0 1

)
∈ GL2(Z/5Z) is not in the image of reduc-

tion.

6. [4 points] The Sanov subgroup of SL2(Z) is the set S of all matrices
(

a b
c d

)
with a = d = 1 (mod 4)

and b = c = 0 (mod 2).

(a) Show that S is indeed a subgroup of SL2(Z).

Solution: Easy check. If γ =

(
a b
c d

)
∈ S, then γ−1 =

(
d −b
−c a

)
is clearly in S. If γ′ is

another element of S, γγ′ =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
, and ab′ + bd′ is even (because b and

b′ are) and aa′ + bc′ is 1 (mod 4) (because a = a′ = 1 (mod 4), and bc′ is a product of two
even numbers and hence 0 (mod 4)) and similarly for the other entries.
(Note that S is conjugate in SL2(R), but not in SL2(Z), to Γ1(4).)

(b) Show that S is a congruence subgroup, and determine its level.

Solution: S visibly contains Γ(4), and it doesn’t contain Γ(2), so its level is 4.

(c) Show that S has index 12 in SL2(Z).

Solution: This can be done by brute force, but it is easier to note that S is contained in
Γ(2), which has index | SL2(F2)| = 6 by the previous question; and S clearly has index 2
in Γ(2), since if γ ∈ Γ(2) then exactly one of γ and −γ is in S.

7. [1 point] Show that Γ1(N) is normal in Γ0(N) for any N ≥ 1.

Solution: It’s easy to see that the map Γ0(N)→ (Z/NZ)× mapping
(

a b
c d

)
to d (mod N) is

a group homomorphism, and its kernel is Γ1(N).

8. [3 points] Let Γ be an odd subgroup of SL2(Z) (that is, −1 6= Γ).

(a) Show that the index [SL2(Z) : Γ] is even.

Solution: Clearly we have [PSL2(Z) : Γ] ∈ Z, and since Γ is odd, [SL2(Z) : Γ] =
2[PSL2(Z) : Γ].

(b) Show that there is no odd subgroup of index 2.
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Solution: By elementary group theory, any subgroup of index 2 is normal. Hence it is the

kernel of a homomorphism to {±1}. Since −1 =

(
0 −1
1 0

)2
, the image of −1 in {±1}

must be 1, so it is in Γ.

9. [3 points] Let f be a modular function of level SL2(Z) (and some weight k) and let p be prime.
Show that f (pz) is a modular function of level Γ0(p), and calculate vΓ0(p),c( f (pz)) for the two cusps
c ∈ C(Γ0(p)). Hence show that f (pz) is a modular form or cusp form if and only if f is.

Solution: Let fp be the function z 7→ f (pz), for clarity of notation. We showed in class that fp
is weakly modular of level Γ0(p), so we need only check that it is meromorphic at the cusps.
Recall that the cusps of Γ0(p) are ∞ and 0, with widths respectively 1 and p.

For ∞, we note that if f (z) = ∑ anqn, then fp(z) = f (pz) = ∑ anqnp. Thus vΓ0(p),∞( fp) =

p · vSL2(Z),∞( f ).

To get the remaining term, we use the matrix g =

(
0 −1
1 0

)
. We have ( fp |k g)(z) = z−k f (−p/z) =

z−k(z/p)k f (z/p) = p−k ∑n an(qp)n, where qp = q1/p = e2πiz/p. So we have vΓ0(p),0( fp) =

vSL2(Z),∞( f ).

These are both obviously ≥ 0 or > 0 if and only if vSL2(Z),∞( f ) is so, hence fp is a cusp form or
modular form if and only if f is so.

10. [2 points] Let p ≥ 3 be prime. Show that for each cusp c ∈ C(Γ0(p)), there are p−1
2 distinct cusps

in C(Γ1(p)) which are equivalent to c in C(Γ0(p)).

Solution: Recall that Γ0(p) has just 2 cusps, ∞ and 0, and

∑
d∈C(Γ1(p))

d=c∈C(Γ0(p))

hΓ1(p)(d) =

(
dΓ1(p)

dΓ0(p)

)
hΓ0(p)(c).

Moreover, since Γ1(p) is normal in Γ0(p), for each c ∈ C(Γ0(p)) all cusps of Γ1(p) equivalent to
c have the same width. For the cusp ∞, we compute that hΓ1(p)(∞) = hΓ0(p)(∞) = 1; so every
term on the left-hand side is 1, and their sum is

dΓ1(p)

dΓ0(p)
= [Γ0(p) : Γ1(p)] = 1

2 [Γ0(p) : Γ1(p)] =
p− 1

2

(the 1
2 because Γ0(p) is even and Γ1(p) is odd). So there are p−1

2 terms in the sum. Similarly,
the cusp 0 has width p for both Γ0(p) and Γ1(p), so there are p−1

2 cusps of Γ1(p) that are Γ0(p)-
equivalent to 0 as well.

11. [2 points] Show that 1
2 is an irregular cusp of Γ1(4), and calculate its width.

Solution: Let Γ = Γ1(4) and let g be the matrix
(

1 1
2 3

)
, so g∞ = c = 1

2 . We have ±
(

1 h
0 1

)
∈

Γc = P∞ ∩ g−1Γg if and only if ±g
(

1 h
0 1

)
g−1 ∈ Γ. We calculate that(

1 1
2 3

)(
1 h
0 1

)(
1 1
2 3

)−1
=

(
1− 2h h
−4h 1 + 2h

)
.
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If h = 1 this is
(
−1 1
−4 3

)
, which does not lie in Γ1(4), but its negative does. So 1

2 is an irregular

cusp, of width 1.

(It can be shown that all cusps of Γ1(N) are regular for any N 6= 4.)

12. [3 points] Let Γ ⊆ SL2(Z), and let g ∈ SL2(Z). Show that gi has nontrivial stabiliser in Γ if and

only if ±g
(

0 −1
1 0

)
g−1 ∈ Γ. Hence show that there exist points z ∈ H with nΓ0(N)(z) = 2 if and

only if −1 is a square modulo N.

Solution: Since StabPSL2(Z) is the group of order 2 generated by±
(

0 −1
1 0

)
, StabPSL2(Z)(gi) is

the group of order 2 generated by g
(

0 −1
1 0

)
g−1. So gi stabiliser of order 2 in Γ if and only if

g
(

0 −1
1 0

)
g−1 ∈ Γ; and any point of H that is not in the orbit of i has stabiliser in PSL2(Z) of

order 1 or 3, so it certainly cannot have stabiliser of order 2 in Γ.

We calculate that for g =

(
a b
c d

)
, we have

g
(

0 −1
1 0

)
g−1 =

(
a b
c d

)(
0 −1
1 0

)(
d −b
−c a

)
=

(
ad + bc −(a2 + b2)
c2 + d2 −(ad + bc)

)
.

This lies in Γ0(N) if and only if c2 + d2 = 0 mod N. I claim that if such a g exists, then both
c and d are units mod N; this follows from the fact that no prime can divide both of c and d,
and if p | c and p | N, then p | N − c2 = d2, so p | d. Hence c−1 is defined mod N, and
(c−1d)2 = −1 mod N. Conversely, if there is x ∈ Z such that x2 = −1 mod N, then we can find

g =

(
a b
c d

)
∈ SL2(Z) with c = x and d = 1 mod N, and gi then has nontrivial stabiliser.

13. (Non-assessed and for amusement only – I don’t know the answer to this one) Does there exist a finite
index subgroup of SL2(Z) for which every cusp is irregular?

Solution: I still don’t know the answer to this one.
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