MA4H9 Modular Forms: Problem Sheet 3 - Solutions

David Loeffler

January 12, 2011

This is the third of three problem sheets, each of which amounts to 5\% of your final mark for the course. This problem sheet will be marked out of a total of 40; the number of marks available for each question is indicated. You should hand in your work to the Undergraduate Office by 3pm on Monday 10th January 2011.

Throughout this sheet, Γ is a finite-index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and $k \in \mathbb{Z}$ (some questions will make additional assumptions on k).

1. [6 points] Let f be a nonzero modular function of level Γ and weight k. Recall that the total valence $V_{\Gamma}(f)$ was defined by

$$
V_{\Gamma}(f)=\sum_{c \in C(\Gamma)} v_{\Gamma, c}(f)+\sum_{z \in \Gamma \backslash \mathcal{H}} \frac{v_{z}(f)}{n_{\Gamma}(z)} .
$$

Give a careful proof of Lemma 2.4.5, which states that for $g \in \mathrm{SL}_{2}(\mathbb{Z})$ the total valence of f and $\left.f\right|_{k} g$ are related by

$$
V_{g^{-1} \Gamma g}\left(\left.f\right|_{k} g\right)=V_{\Gamma}(f) .
$$

Solution: In lectures, we saw that in order to prove 2.4.5 it suffces to show that
(a) $n_{\Gamma}(z)=n_{g^{-1} \Gamma g}\left(g^{-1} z\right)$
(b) $v_{z}\left(\left.f\right|_{k} g\right)=v_{g z}(f)$ for all $z \in \mathcal{H}$
(c) $v_{g^{-1} \Gamma g, c}\left(\left.f\right|_{k} g\right)=v_{\Gamma, g c}(f)$ for all $c \in C\left(g^{-1} \Gamma g\right)$.

For part (a), the map sending $\bar{x} \in \bar{\Gamma}$ to $\overline{g^{-1} x g}$ gives a bijection between the sets $\operatorname{Stab}_{\bar{\Gamma}}(z)$ and Stab $\overline{g^{-1} \Gamma g}\left(g^{-1} z\right)$, so the two sets have the same size.
Recall that $\left(\left.f\right|_{k} g\right)(z):=j(g, z)^{-k} f(g z)$. Since $j(g, z)$ is holomorphic and non-vanishing on \mathcal{H}, it's enough to check that the order of vanishing of $w \mapsto f(g w)$ at $w=z$ is the same as the order of vanishing of $w \mapsto f(w)$ at $w=g z$. This is not quite automatic; it's true because for w sufficiently close to z, we have $g(w)=g(z)+(w-z) g^{\prime}(z)+O\left((w-z)^{2}\right)$, and (crucially) $g^{\prime}(z)$ is never zero on \mathcal{H}. The result now follows by substituting this into the Taylor series of f around $g z$.
Finally, part (c) is essentially automatic from the definition of $v_{g c}(f)$: if h is some element mapping ∞ to c, then $g h$ maps ∞ to $g c$, and both $v_{g^{-1} \Gamma g, c}\left(\left.f\right|_{k} g\right)$ and $v_{\Gamma, g c}(f)$ are (by definition) equal to to $v_{h^{-1} g^{-1} \Gamma g h, \infty}\left(\left.f\right|_{k} g h\right)$.
[Several of you slipped up at part (b); there were several solutions which relied on the "identity" $g z-$ $g z_{0}=g\left(z-z_{0}\right)$ for $z, z_{0} \in \mathcal{H}$. This is false, and might not even be meaningful since $z-z_{0}$ isn't necessarily in \mathcal{H}; the map $\mathcal{H} \rightarrow \mathcal{H}$ given by the action of g isn't linear, but because g has nonzero derivative everywhere, we can approximate it by a linear map in the neighbourhood of each point.]
2. [3 points] In my first research paper, I found myself needing the following identity of weight 0 modular functions of level $\Gamma_{0}(2)$:

$$
\frac{E_{6}^{2}}{\Delta}=\frac{\left(1+2^{6} f_{2}\right)\left(1-2^{9} f_{2}\right)^{2}}{f_{2}}
$$

where $f_{2}(z)=\frac{\Delta(2 z)}{\Delta(z)}$. I verified by a computer calculation that the q-expansions of both sides agreed up to q^{N}, for some sufficiently large N. How large an N did I need to use? (Hint: Clear denominators and apply Corollary 2.4.7).

Solution: Let A and B stand for the left and right sides of the formula above. If we abbreviate $\Delta(2 z)$ by Δ_{2}, and multiply both sides by $\Delta^{2} \Delta_{2}$, we note that

$$
\begin{gathered}
\Delta^{2} \Delta_{2} A=\Delta \Delta_{2} E_{6}^{2} \\
\Delta^{2} \Delta_{2} B=\left(\Delta+2^{6} \Delta_{2}\right)\left(\Delta-2^{9} \Delta_{2}\right)^{2}
\end{gathered}
$$

both of which are clearly in $M_{36}\left(\Gamma_{0}(2)\right)$. Hence if they agree up to degree

$$
\frac{36 \times d_{\Gamma_{0}(2)}}{12}=9,
$$

they are equal, by corollary 2.4 .7 (the unreasonable effectiveness of modular forms). This is certainly the case if A and B agree up to degree q^{5}, since the leading term of the q-expansion of $\Delta^{2} \Delta_{2}$ is q^{4}.
[Slightly better bounds are possible by keeping track of the orders of vanishing of both sides at 0 and ∞ simultaneously; but any valid argument giving a finite bound got full marks.
I was a bit concerned that at least three of you thought that $\Delta^{2} \Delta_{2}$, as the product of three weight 12 forms, had weight 12^{3}, which led to some spuriously large bounds ($N=288$ came up more than once).
Also, several people rewrote the claim as $E_{6}^{2} f_{2}=\left(1+2^{6} f_{2}\right)\left(1-2^{9} f_{2}\right)^{2} \Delta$ and applied 2.4.7 in weight 12, disregarding the fact that f_{2} is not a modular form - it has a pole at the cusp 0.]
3. [2 points] Show that commensurability is an equivalence relation on the set of subgroups of a fixed group G.

Solution: We must check that the relation \sim of commensurability is reflexive ($A \sim A$ for all A), symmetric ($A \sim B \Leftrightarrow B \sim A$), and transitive (if $A \sim B$ and $B \sim C$, then $A \sim C$). The first two are self-evident, so let us suppose that A, B, C are subgroups satisfying $A \sim B$ and $B \sim C$. Then $A \cap B$ has finite index in A, and $B \cap C$ has finite index in B.
We need the following easy lemma: if D is any group, and E and F are any subgroups of D with E finite-index, then $E \cap F$ has finite index in F and $[F: E \cap F] \leq[D: E]$. (We have used this several times in the course already.) This follows from the fact that there is a natural bijection $F / E \cap F \leftrightarrow E F / E$, and $E F / E \subseteq D / E$.
We apply this result with $D=B, E=B \cap C$, and $F=A$. This tells us that $A \cap B \cap C$ has finite index in $A \cap B$. Since $A \cap B$ in turn has finite index in A, it follows that $A \cap B \cap C$ has finite index in A; hence $A \cap C$ has finite index in A. Arguing similarly, $A \cap C$ has finite index in C as well; this proves that $A \sim C$.
[Everybody got full marks for this question - good work.]
4. [3 points] Let $k \geq 1$ and let $N_{k}(\Gamma)$ be the Eisenstein subspace of $M_{k}(\Gamma)$ (defined as the orthogonal complement of $S_{k}(\Gamma)$ with respect to the Petersson product). Show that $N_{k}(\Gamma)$ is preserved by the action of $[\Gamma g \Gamma]$ for any $g \in \mathrm{GL}_{2}^{+}(\mathbf{Q})$.

Solution: Recall that on a positive-definite inner product space V, an operator A preserves a subspace $W \subseteq V$ if and only if the adjoint A^{*} preserves the complementary subspace V^{\perp}. Since the adjoint of $[\Gamma g \Gamma]$ is given by $\left[\Gamma g^{\prime} \Gamma\right]$, where $g^{\prime}=(\operatorname{det} g) g^{-1}$ is also in $\mathrm{GL}_{2}^{+}(\mathbb{Q})$, it suffices to note that $S_{k}(\Gamma)$ is preserved by $[\Gamma g \Gamma]$ for all $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.
[This question was also done well by most of you.]
5. [3 points] Let f be the unique normalised eigenform in $S_{2}\left(\Gamma_{0}(11)\right)$, and let $g=f^{2}$. Calculate the first two terms of the q-expansions of g and of $T_{2}(g)$, and hence show that $\operatorname{dim} S_{4}\left(\Gamma_{0}(11)\right) \geq 2$.

Solution: We saw in lectures that the q-expansion of f is given by $q \prod_{n \geq 1}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}=$ $q-2 q^{2}-q^{3}+O\left(q^{4}\right)$. Squaring this term-by-term, we deduce that $g=q^{2}-4 q^{3}+2 q^{4}+O\left(q^{5}\right)$. (Note that we will need terms of g up to q^{4} in order to calculate $T_{2}(g)$ up to q^{2}).
Applying T_{2} using the usual q-expansion formulae, we get $T_{2}(g)=q+2 q^{2}+O\left(q^{3}\right)$; this is clearly not a multiple of g, so the space has dimension ≥ 2.
[Almost all of you did this fine, some by hand and others using Sage. It is perhaps cheating slightly if you let Sage calculate the q-expansion of f for you, rather than using the η-product formula from the notes, but never mind.]
6. [6 points] Let $N \geq 2$ and let χ be a Dirichlet character $\bmod N$. Let $a \in \mathbb{Z} / N \mathbb{Z}$ and define the Gauss sum

$$
\tau(a, \chi)=\sum_{b \in(\mathbb{Z} / N \mathbb{Z})^{x}} e^{2 \pi i a b / N} \chi(b) .
$$

(a) Show that $\tau(a, \chi)=\overline{\chi(a)} \tau(1, \chi)$ if $a \in(\mathbb{Z} / N \mathbb{Z})^{\times}$.

Solution: Since $a \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, multiplication by a gives a bijection from $(\mathbb{Z} / N \mathbb{Z})^{\times}$to itself. Thus we may substitute a new variable $c=a b$ in the sum defining $\tau(a, \chi)$ to obtain

$$
\begin{aligned}
\tau(a, \chi) & =\sum_{c \in(\mathbb{Z} / N \mathbb{Z})^{\times}} e^{2 \pi i c / N} \chi\left(a^{-1} c\right) \\
& =\chi\left(a^{-1}\right) \sum_{c \in(\mathbb{Z} / N \mathbb{Z})^{\times}} e^{2 \pi i c / N} \chi(c) \\
& =\overline{\chi(a)} \tau(1, \chi) .
\end{aligned}
$$

(We have $\chi\left(a^{-1}\right)=\chi(a)^{-1}$ since χ is a homomorphism, and $\chi(a)^{-1}=\overline{\chi(a)}$ since $\chi(a)$ is a root of unity.)
(b) Let $M \mid N$. Show that if χ does not factor through $(\mathbb{Z} / M \mathbb{Z})^{\times}$, then we have

$$
\sum_{\substack{b \in(\mathbb{Z} / N Z)^{\times} \\ b=1 \bmod M}} \chi(b)=0 .
$$

Solution: If χ does not factor through $(\mathbb{Z} / M \mathbb{Z})^{\times}$, then there is some $a \in(\mathbb{Z} / N \mathbb{Z})^{\times}$ with $a=1 \bmod M$ such that $\chi(a) \neq 1$. Multiplication by a is a bijection on the set $\left\{b \in(\mathbb{Z} / N \mathbb{Z})^{\times}: b=1 \bmod M\right\}$, so we have

$$
\sum_{\substack{b \in(\mathbb{Z} / N \mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(b)=\sum_{\substack{b \in(\mathbb{Z} / N \mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(a b)=\chi(a) \sum_{\substack{b \in(\mathbb{Z} / N \mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(b)
$$

Since $\chi(a) \neq 1$, this forces the sum to be 0 .
Hence show that if χ is primitive, $\tau(a, \chi)=0$ for $a \neq(\mathbb{Z} / N \mathbb{Z})^{\times}$.

Solution: Suppose $a \neq(\mathbb{Z} / N \mathbb{Z})^{\times}$. Then there is some $M \mid N, M<N$, such that a is a multiple of N / M. Thus, for $b, c \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, we have $e^{2 \pi i a b / N}=e^{2 \pi i a c / N}$ if $b=c$ $(\bmod M)$. Thus

$$
\tau(a, \chi)=\sum_{b \in(\mathbb{Z} / N \mathbb{Z})^{\times}} e^{2 \pi i a b / N} \chi(b)=\sum_{c \in(\mathbb{Z} / M \mathbb{Z})^{\times}} e^{2 \pi i a c / N}\left(\sum_{\substack{b \in(\mathbb{Z} / M \mathbb{Z})^{\times} \\ b=c \bmod M}} \chi(b)\right)
$$

The bracketed term is a multiple of $\sum_{\substack{b \in(\mathbb{Z} / M \mathbb{Z})^{\times} \\ b=1 \bmod M}} \chi(b)$, which is zero.
(c) Calculate $\tau(1, \chi)$ when $N=p^{j}(p$ prime, $j \geq 1)$ and χ is the trivial character $\bmod p^{j}$.

Solution: By definition, we have

$$
\tau(1, \chi)=\sum_{\substack{b=0 \ldots p-1 \\ p \nmid b}} e^{2 \pi i b / p^{j}}
$$

This is the sum of the primitive p^{j} th roots of 1 ; that is, it is the sum of the roots of $X^{p^{j}}-1$ which are not also roots of $X^{p^{j-1}}-1$, or the roots of the cyclotomic polynomial

$$
\Phi_{p^{j}}(X)=\frac{X^{p^{j}}-1}{X^{j^{j-1}-1}}=1+X^{p^{j-1}}+\cdots+X^{(p-1) p^{j-1}}
$$

Since the sum of the roots of a monic polynomial of degree d is -1 times its coefficient of X^{d-1}, this implies that the sum is -1 if $j=1$ and 0 otherwise.
7. [4 points] Let $N \geq 2$ and let H be a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{\times}$. Define \hat{H} to be the subgroup of Dirichlet characters $\chi \bmod N$ such that $\chi(d)=1$ for all $d \in H$.
(a) Show that $\Gamma_{H}(N)=\left\{\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N): a, d \in H\right\}$ is a finite-index subgroup of $\operatorname{SL}_{2}(\mathbb{Z})$.

Solution: It's clear that $a \in H$ if and only if $d \in H$, since $a d=a d-b c N=1 \bmod N$; and the map $\Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$sending $\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right)$ to d is a surjective homomorphism with kernel $\Gamma_{1}(N)$, by a question from sheet 2 . Hence $\Gamma_{H}(N)$ is the preimage of a subgroup under a homomorphism; so it is a subgroup of $\Gamma_{0}(N)$. It clearly contains $\Gamma_{1}(N)$, so it has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$.
[This was a very easy sub-question; everyone who attempted it got the available 2 marks. I'm puzzled that four of you didn't even try it.]
(b) Show that for any $k \geq 1$ we have

$$
S_{k}\left(\Gamma_{H}(N)\right)=\bigoplus_{\chi \in \widehat{H}} S_{k}\left(\Gamma_{1}(N), \chi\right)
$$

Solution: If $f \in S_{k}\left(\Gamma_{1}(N), \chi\right)$, and $\gamma=\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{H}(N)$, then $\left.f\right|_{k} \gamma=\langle d\rangle f=\chi(d) f$. So $\left.f\right|_{k} \gamma=f$ for all $\gamma \in \Gamma_{H}(N)$ if and only if $\chi(d)=1$ for all $d \in H$.

It follows that $S_{k}\left(\Gamma_{1}(N), \chi\right) \subseteq S_{k}\left(\Gamma_{H}(N)\right)$ if $\chi \in \widehat{H}$ and $S_{k}\left(\Gamma_{1}(N), \chi\right) \cap S_{k}\left(\Gamma_{H}(N)\right)=0$ otherwise. Since $S_{k}\left(\Gamma_{1}(N)\right)=\bigoplus_{\chi \in(\widehat{\mathbb{Z} / N \mathbb{Z}})^{\times}} S_{k}\left(\Gamma_{1}(N), \chi\right)$, the result follows.
[I think I managed to confuse several of you by a notational inconsistency. In the lectures, I defined \widehat{G} for an arbitrary abelian group G to be the group of characters $G \rightarrow \mathbb{C}^{\times}$. Here \widehat{H} isn't the characters of H, but the characters of G trivial on H, or (equivalently) the characters of the quotient G/H. I should perhaps have called this something different, perhaps H^{\perp} or H^{\vee}. The misleading notation fooled you into thinking that this was an instance of proposition 2.9.3, which it isn't quite.]
8. [4 points] Suppose p is a prime, $\Gamma=\Gamma_{1}(p)$ and $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. Find p matrices $\left(g_{j}\right)_{j=0, \ldots, p-1}$ in $\mathrm{GL}_{2}^{+}(\mathrm{Q})$ such that

$$
\Gamma g \Gamma=\bigsqcup_{0 \leq j<p} \Gamma g_{j}=\bigsqcup_{0 \leq j<p} g_{j} \Gamma
$$

Solution: We first find a_{j} such that $\Gamma g \Gamma=\bigsqcup \Gamma a_{j}$. It suffices to take $a_{j}=g a_{j}^{\prime}$, where a_{j} are a set of coset representatives for the left coset space $\left(\Gamma \cap g^{-1} \Gamma g\right) \backslash \Gamma$. We find that $\Gamma \cap g^{-1} \Gamma g$ is the group $\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma: b=0 \bmod p\right\}$, and a set of coset representatives is given by $a_{j}^{\prime}=\left(\begin{array}{ll}1 & j \\ 0 & 1\end{array}\right)$ for $j=0, \ldots, p-1$. We have $a_{j}=g a_{j}^{\prime}=\left(\begin{array}{cc}1 & j \\ 0 & p\end{array}\right)$, so we recover the result stated in lectures that

$$
\Gamma g \Gamma=\bigsqcup_{j=0}^{p-1} \Gamma\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)
$$

We now do the "opposite" decomposition; that is, we find b_{j} such that $\Gamma g \Gamma=\bigsqcup \Gamma b_{j}$. Now we take $b_{j}=b_{j}^{\prime} g$ where b_{j}^{\prime} are coset representatives for the right coset space $\Gamma /\left(\Gamma \cap g \Gamma g^{-1}\right)$. We find that $\Gamma \cap g \Gamma g^{-1}$ is the group $\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma: c=0 \bmod p^{2}\right\}$, and a set of coset reps is given by $b_{j}^{\prime}=\left(\begin{array}{cc}1 & 0 \\ p j & 1\end{array}\right)$. We have $b_{j}=b_{j}^{\prime} p=\left(\begin{array}{cc}1 & 0 \\ p j & p\end{array}\right)$, so we have

$$
\Gamma g \Gamma=\bigsqcup_{j=0}^{p-1}\left(\begin{array}{cc}
1 & 0 \\
p j & p
\end{array}\right) \Gamma
$$

Let's find the intersection of the cosets $\Gamma\left(\begin{array}{ll}1 & j \\ 0 & p\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ p j & p\end{array}\right) \Gamma$. Let $\gamma=\left(\begin{array}{cc}a & b \\ p c & d\end{array}\right) \in \Gamma$. We find that

$$
\begin{gathered}
\gamma\left(\begin{array}{cc}
1 & j \\
0 & p
\end{array}\right) \in\left(\begin{array}{cc}
1 & 0 \\
p j & p
\end{array}\right) \Gamma \\
\Longleftrightarrow\left(\begin{array}{cc}
1 & 0 \\
-j & \frac{1}{p}
\end{array}\right) \gamma\left(\begin{array}{cc}
1 & j \\
0 & p
\end{array}\right) \in \Gamma \\
\Longleftrightarrow\left(\begin{array}{cc}
a & a j+b p \\
-a j+c & -a j^{2}+c j-b j p+d
\end{array}\right) \in \Gamma .
\end{gathered}
$$

Looking at the left column suggests trying $a=1$ and $j=c$, in which case the requirement that $\operatorname{det} \gamma=1$ forces $d=1+b j p$. We may as well try $b=0$, and then the above messy matrix works out as $\left(\begin{array}{ll}1 & j \\ 0 & 1\end{array}\right)$, which is certainly in Γ. Hence we conclude that

$$
\left(\begin{array}{cc}
1 & 0 \\
p j & 1
\end{array}\right)\left(\begin{array}{cc}
1 & j \\
0 & p
\end{array}\right)=\left(\begin{array}{cc}
1 & j \\
p j & p+p j^{2}
\end{array}\right) \in \Gamma\left(\begin{array}{cc}
1 & j \\
0 & p
\end{array}\right) \cap\left(\begin{array}{cc}
1 & 0 \\
p j & p
\end{array}\right) \Gamma
$$

Thus taking $g_{j}=\left(\begin{array}{cc}1 & j \\ p j & p+p j^{2}\end{array}\right)$ works.
[Sadly, absolutely everyone who tried this question tried to show that one could take $g_{j}=\left(\begin{array}{ll}1 & j \\ 0 & p\end{array}\right)$. This does not work, meaning that nobody got more than 1 mark. We do have

$$
\Gamma g \Gamma=\bigsqcup_{j} \Gamma\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)
$$

but all of the matrices $\left(\begin{array}{ll}1 & j \\ 0 & p\end{array}\right)$ lie in the single right coset $g \Gamma-$ not surprisingly, since $g_{j}=g \cdot\left(\begin{array}{ll}1 & j \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & j \\ 0 & 1\end{array}\right) \in \Gamma$ - so they certainly don't work the other way round. It's important to distinguish between the roles of the two subgroups $\Gamma \cap g^{-1} \Gamma g$ and $\Gamma \cap g \Gamma g^{-1}$.]
9. [5 points] Let V be a finite-dimensional complex vector space endowed with a positive definite inner product (a finite-dimensional Hilbert space). Let $A: V \rightarrow V$ be a linear operator.
(a) Show that if A is selfadjoint, $\langle A x, x\rangle$ is real for all $x \in V$.

Solution: We have $\langle x, y\rangle=\overline{\langle y, x\rangle}$ for all $x, y \in V$, by the definition of an inner product. On the other hand, since A is selfadjoint we have $\langle A x, x\rangle=\langle x, A x\rangle$. Thus $\langle A x, x\rangle=\overline{\langle A x, x\rangle}$, so $\langle A x, x\rangle$ is real.
[All of you got this.]
(b) We say A is positive semidefinite if it is selfadjoint and $\langle A x, x\rangle \geq 0$ for all $x \in V$. Show that if A is positive semidefinite, there is a unique positive semidefinite B such that $B^{2}=A$. (We write $B=\sqrt{A}$.)

Solution: Since A is selfadjoint, it is certainly normal, and thus diagonalisable. Hence we may choose a basis such that A is diagonal. Moreover, the eigenvalues of A must be nonnegative real numbers, since if v is an eigenvector with eigenvalue λ we have $\langle A v, v\rangle=$ $\lambda\langle v, v\rangle$. Since a nonnegative real number has a nonnegative real square root, we can set B to be the diagonal matrix whose entries are the nonnegative real square roots of those of A; then B is clearly positive semidefinite with $B^{2}=A$.
It remains to show uniqueness. Since A is diagonalisable and B must commute with A and hence preserves its eigenspaces, it suffices to check that a matrix of the form λI, where $\lambda \geq 0$ and I is the identity matrix, has a unique positive definite square root. But any candidate square root must be diagonalisable with all diagonal entries equal to $\sqrt{\lambda}$; so it is conjugate to a scalar multiple of the identity, and thus it is the identity.
[Catastrophically, almost everyone got this wrong; since there is only one mark available, I couldn't give that mark to anyone who didn't have a complete proof of both the existence and uniqueness. Most of you proved existence, but only a few even remembered to check uniqueness, and all but one of those who did so gave arguments that are only valid if the eigenspaces of A are all onedimensional.]
(c) Show that for any linear operator A, the operator $A^{*} A$ is positive semidefinite, and if $P=$ $\sqrt{A^{*} A}$, then we may write $A=U P$ with U unitary. Show conversely that if $A=U P$ with U unitary and P positive semidefinite, we must have $P=\sqrt{A^{*} A}$. Is U uniquely determined?

Solution: We have $\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}=A^{*} A$, so $A^{*} A$ is selfadjoint; and $\left\langle A^{*} A x, x\right\rangle=$ $\langle A x, A x\rangle \geq 0$ since the inner product is positive definite.

Let us write $P=\sqrt{A^{*} A}$. If A is non-singular, then P is so also (since $\operatorname{det} P=|\operatorname{det} A|$). Hence we may define $U=A P^{-1}$. We find that

$$
P^{2}=A^{*} A=P U^{*} U P
$$

Since we are assuming that A is nonsingular, we can cancel P from both sides and deduce that $U^{*} U=1$, i.e. U is unitary; and it is clear that U is the only matrix (unitary or otherwise) such that $A=U P$.
If A is singular, the argument is a little more delicate. Let $V_{1}=\operatorname{ker}(P)$ and $V_{2}=\operatorname{im}(P)$.
Because P is selfadjoint, we find that $V_{1}=V_{2}^{\perp}$ and vice versa. One checks that A is zero on V_{1}, and $A V_{2} \subseteq V_{2}$. Thus we can define U by taking the direct sum of an arbitrary unitary operator $V_{1} \rightarrow V_{1}$, and the uniquely defined unitary part of A restricted to V_{2}.
Conversely, if $A=U P$ with U unitary and P positive semidefinite, we must have $A^{*} A=$ $P U^{-1} U P=P^{2}$, so necessarily $P=\sqrt{A^{*} A}$; but from the above argument it is clear that U is uniquely determined if and only if A is invertible.
[A few of you gave correct arguments under the assumption that A was nonsingular, which I gave the mark to. Only two gave complete arguments for the general case.]
(d) Show that A is normal if and only if we can find a unitary U and positive semidefinite P such that $A=U P$ and U and P commute.

Solution: In fact more is true: if A is normal, then for any such factorisation $A=U P$, we must have $U P=P U$. Indeed, we have $A^{*} A=A A^{*}$ (since A is normal) and $A A^{*}=$ $(U P)(U P)^{*}=U P^{2} U^{-1}=\left(U P U^{-1}\right)^{2}$. One checks easily that $U P U^{-1}$ is positive semidefinite. So P and $U P U^{-1}$ are both positive semidefinite self-adjoint operators squaring to $A^{*} A$; by the uniqueness from part (b), this implies that $P=U P U^{-1}$, so U and P commute. (Alternatively, one can construct a commuting U and P directly, by using the fact that A is diagonalisable; but this does not give the slightly stronger statement above.)
Conversely, if there exists some decomposition $A=U P$ with U and P commuting, then $A^{*} A=P^{2}$ and $A A^{*}=U P^{2} U^{-1}=P^{2}$; so $A A^{*}=A^{*} A$, i.e. A is normal.
[A common mistake here was to observe that $A A^{*}=A^{*} A$ is equivalent to $U P^{2}=P^{2} U$ and to claim that this implies immediately that $U P=P U$. It's not true for general linear operators that if A and B^{2} commute, A and B necessarily commute - for a counterexample, try $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and A any non-diagonal matrix.]
(e) Find an example of a nondegenerate (but not positive definite!) inner product space V and a linear operator $A: V \rightarrow V$ which is normal but not diagonalisable.

Solution: The simplest example I can think of is to take $V=\mathbb{C}^{2}$, with the inner product defined by $\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=0$ and $\left\langle e_{1}, e_{2}\right\rangle=1$. Then the adjoint of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\left(\begin{array}{ll}\bar{d} & \bar{b} \\ \bar{c} & \bar{a}\end{array}\right)$. In particular the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is selfadjoint, and hence normal, but it is not diagonalisable. [Three of you found this example, and one of you found a 3-dimensional example, which actually turns out to have this one secretely living inside it.]
10. [4 points] Let f be weakly modular of level Γ and weight k. Let $f^{*}: \mathcal{H} \rightarrow \mathbb{C}$ be the function defined by $f^{*}(z)=\overline{f(-\bar{z})}$. Show that f^{*} is weakly modular of weight k and level $\Gamma^{*}=\sigma^{-1} \Gamma \sigma$, where $\sigma=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.

Solution: [You all seem to have found this rather hard. I had one complete solution that deduced the result from some rather advanced considerations involving Galois theory, but there is a simple direct proof that nobody gave:]
By assumption, we have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Hence

$$
f\left(\frac{a(-\bar{z})+b}{c(-\bar{z})+d}\right)=(c(-\bar{z})+d)^{k} f(-\bar{z})
$$

or (rearranging the fraction on the left-hand side)

$$
f\left(-\overline{\left(\frac{a z-b}{-c z+d}\right)}\right)=(c(-\bar{z})+d)^{k} f(-\bar{z})
$$

Conjugating everything in sight, we've shown

$$
f^{*}\left(\frac{a z-b}{-c z+d}\right)=(-c z+d)^{k} f^{*}(z)
$$

That is, f^{*} is modular of weight k for the group $\left\{\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma\right\}$, which is precisely Γ^{*}.
A slightly slicker interpretation of this is: let X be the space of meromorphic functions on $\mathbb{C} \backslash \mathbb{R}$ which satisfy $f(z)=\overline{f(\bar{z})}$. There's a unique way to extend any given meromorphic function on \mathcal{H} to an element of X. Then it's easy to see that the weight k action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ extends to an action of the whole of $G L_{2}(\mathbb{R})$ on X, and f^{*} is just $\left.f\right|_{k} \sigma$.

Show that f^{*} is a modular function, modular form, or cusp form if and only if f is, and that the q-expansions of f^{*} and f at ∞ are related by $a_{n}\left(f^{*}\right)=\overline{a_{n}(f)}$.

Solution: Let us first consider behaviour at ∞. It's clear that $\left(\Gamma^{*}\right)_{\infty}=\Gamma_{\infty}$, so $h_{\Gamma}(\infty)=h_{\Gamma^{*}}(\infty)$. Moreover, for any integer (or real) h we have

$$
\begin{aligned}
\overline{q_{h}(-\bar{z})} & =\overline{\exp (2 \pi i(-\bar{z}) / h)} \\
& =\exp (\overline{2 \pi i(-\bar{z}) / h}) \\
& =\exp (2 \pi \overline{(i)} \overline{(-\bar{z})} / h) \\
& =\exp (2 \pi(-i)(-z) / h)=q_{h}(z)
\end{aligned}
$$

It follows that if $f(z)$ is given by a series $\sum_{n=-N}^{\infty} a_{n} q_{h}(n z)$ for some $N<\infty$, converging for all $\operatorname{Im}(z)$ sufficiently large, then (in the same range of $\operatorname{Im}(z)$) we have $f^{*}(z)=\sum \overline{a_{n}} q_{h}(n z)$, and conversely. So $\underline{\left.f^{*} \text { is meromorphic at } \infty \text { if and only if } f \text { is, and if so we have } v_{\Gamma^{*}, \infty}\left(f^{*}\right)=v_{\Gamma, \infty}(f), ~\right) . ~(f)}$ and $a_{n}\left(f^{*}\right)=\overline{a_{n}(f)}$. (We have assumed here that Γ is regular at infinity or that k is even; the argument goes through almost identically in the odd weight irregular case.)
For a general cusp $c \in \mathbb{P}^{1}(\mathbb{Q})$, let $g \in \mathrm{SL}_{2}(\mathbb{Z})$ be such that $g \infty=c$. Then $\left(\sigma^{-1} g \sigma\right)(\infty)=-c$. Hence, by definition, we have

$$
\begin{aligned}
v_{\Gamma, c}(f) & =v_{g^{-1} \Gamma g, \infty}\left(\left.f\right|_{k g}\right) \\
v_{\sigma^{-1} \Gamma \sigma,-c}\left(f^{*}\right) & =v_{\left(\sigma^{-1} g^{-1} \sigma\right)\left(\sigma^{-1} \Gamma \sigma\right)\left(\sigma^{-1} g \sigma\right), \infty}\left(\left.f^{*}\right|_{k} \sigma^{-1} g \sigma\right)
\end{aligned}
$$

The rather messy expression $\left(\sigma^{-1} g^{-1} \sigma\right)\left(\sigma^{-1} \Gamma \sigma\right)\left(\sigma^{-1} g \sigma\right)$ simplifies down to just $\sigma^{-1} g^{-1} \Gamma g \sigma=$ $\left(g^{-1} \Gamma g\right)^{*}$. Moreover, it's easy to check that $\left.\left(f^{*}\right)\right|_{k}\left(\sigma^{-1} g \sigma\right)=\left(\left.f\right|_{k} g\right)^{*}$ (this is the same argument as we used above to prove the first sentence of the question). Hence applying the preceding argument with f and Γ replaced by $\left.f\right|_{k} g$ and $g^{-1} \Gamma g$, we deduce that f^{*} is meromorphic at $-c$ if and only if f is merormorphic at c, and if so then we have $v_{\Gamma, c}(f)=v_{\Gamma^{*},-c}\left(f^{*}\right)$.
In particular, we see that f^{*} is meromorphic / holomorphic / vanishing at all cusps if and only if f is; and since f^{*} is obviously meromorphic or holomorphic on \mathcal{H} if and only if f is, we deduce that f^{*} is a modular function (respectively modular form or cusp form) if and only if this is true of f.
11. [Non-assessed and for amusement only] Let $M(\Gamma)=\bigoplus_{k \geq 0} M_{k}(\Gamma)$, which is clearly a ring. Show that for any $\Gamma, M(\Gamma)$ is finitely generated as an algebra over \mathbb{C}, and we may take the generators to have weight at most 12 .

Solution: Nobody did this question, sadly. Nils Skoruppa told me this at a conference once; I don't know why it's true.

