
MA4H9 Modular Forms: Problem Sheet 3 – Solutions

David Loeffler

January 12, 2011

This is the third of three problem sheets, each of which amounts to 5% of your final mark for the course. This
problem sheet will be marked out of a total of 40; the number of marks available for each question is indicated. You
should hand in your work to the Undergraduate Office by 3pm on Monday 10th January 2011.

Throughout this sheet, Γ is a finite-index subgroup of SL2(Z) and k ∈ Z (some questions will make
additional assumptions on k).

1. [6 points] Let f be a nonzero modular function of level Γ and weight k. Recall that the total valence
VΓ( f ) was defined by

VΓ( f ) = ∑
c∈C(Γ)

vΓ,c( f ) + ∑
z∈Γ\H

vz( f )
nΓ(z)

.

Give a careful proof of Lemma 2.4.5, which states that for g ∈ SL2(Z) the total valence of f and
f |k g are related by

Vg−1Γg( f |k g) = VΓ( f ).

Solution: In lectures, we saw that in order to prove 2.4.5 it suffces to show that

(a) nΓ(z) = ng−1Γg(g−1z)

(b) vz( f |kg) = vgz( f ) for all z ∈ H

(c) vg−1Γg,c( f |kg) = vΓ,gc( f ) for all c ∈ C(g−1Γg).

For part (a), the map sending x ∈ Γ to g−1xg gives a bijection between the sets StabΓ(z) and
Stabg−1Γg(g−1z), so the two sets have the same size.

Recall that ( f |kg)(z) := j(g, z)−k f (gz). Since j(g, z) is holomorphic and non-vanishing on H,
it’s enough to check that the order of vanishing of w 7→ f (gw) at w = z is the same as the
order of vanishing of w 7→ f (w) at w = gz. This is not quite automatic; it’s true because for
w sufficiently close to z, we have g(w) = g(z) + (w − z)g′(z) + O((w − z)2), and (crucially)
g′(z) is never zero on H. The result now follows by substituting this into the Taylor series of f
around gz.

Finally, part (c) is essentially automatic from the definition of vgc( f ): if h is some element map-
ping ∞ to c, then gh maps ∞ to gc, and both vg−1Γg,c( f |kg) and vΓ,gc( f ) are (by definition) equal
to to vh−1g−1Γgh,∞( f |kgh).

[Several of you slipped up at part (b); there were several solutions which relied on the “identity” gz−
gz0 = g(z − z0) for z, z0 ∈ H. This is false, and might not even be meaningful since z − z0 isn’t
necessarily in H; the map H → H given by the action of g isn’t linear, but because g has nonzero
derivative everywhere, we can approximate it by a linear map in the neighbourhood of each point.]

2. [3 points] In my first research paper, I found myself needing the following identity of weight 0
modular functions of level Γ0(2):

E2
6

∆
=

(1 + 26 f2)(1− 29 f2)
2

f2

1



where f2(z) =
∆(2z)
∆(z) . I verified by a computer calculation that the q-expansions of both sides agreed

up to qN , for some sufficiently large N. How large an N did I need to use? (Hint: Clear denominators
and apply Corollary 2.4.7).

Solution: Let A and B stand for the left and right sides of the formula above. If we abbreviate
∆(2z) by ∆2, and multiply both sides by ∆2∆2, we note that

∆2∆2 A = ∆∆2E2
6,

∆2∆2B = (∆ + 26∆2)(∆− 29∆2)
2,

both of which are clearly in M36(Γ0(2)). Hence if they agree up to degree

36× dΓ0(2)

12
= 9,

they are equal, by corollary 2.4.7 (the unreasonable effectiveness of modular forms). This is
certainly the case if A and B agree up to degree q5, since the leading term of the q-expansion of
∆2∆2 is q4.

[Slightly better bounds are possible by keeping track of the orders of vanishing of both sides at 0 and ∞
simultaneously; but any valid argument giving a finite bound got full marks.

I was a bit concerned that at least three of you thought that ∆2∆2, as the product of three weight 12
forms, had weight 123, which led to some spuriously large bounds (N = 288 came up more than once).

Also, several people rewrote the claim as E2
6 f2 = (1 + 26 f2)(1− 29 f2)

2∆ and applied 2.4.7 in weight
12, disregarding the fact that f2 is not a modular form – it has a pole at the cusp 0.]

3. [2 points] Show that commensurability is an equivalence relation on the set of subgroups of a fixed
group G.

Solution: We must check that the relation ∼ of commensurability is reflexive (A ∼ A for all
A), symmetric (A ∼ B ⇔ B ∼ A), and transitive (if A ∼ B and B ∼ C, then A ∼ C). The first
two are self-evident, so let us suppose that A, B, C are subgroups satisfying A ∼ B and B ∼ C.
Then A ∩ B has finite index in A, and B ∩ C has finite index in B.

We need the following easy lemma: if D is any group, and E and F are any subgroups of D with
E finite-index, then E ∩ F has finite index in F and [F : E ∩ F] ≤ [D : E]. (We have used this
several times in the course already.) This follows from the fact that there is a natural bijection
F/E ∩ F ↔ EF/E, and EF/E ⊆ D/E.

We apply this result with D = B, E = B ∩ C, and F = A. This tells us that A ∩ B ∩ C has finite
index in A ∩ B. Since A ∩ B in turn has finite index in A, it follows that A ∩ B ∩ C has finite
index in A; hence A ∩ C has finite index in A. Arguing similarly, A ∩ C has finite index in C as
well; this proves that A ∼ C.

[Everybody got full marks for this question – good work.]

4. [3 points] Let k ≥ 1 and let Nk(Γ) be the Eisenstein subspace of Mk(Γ) (defined as the orthogonal
complement of Sk(Γ) with respect to the Petersson product). Show that Nk(Γ) is preserved by the
action of [ΓgΓ] for any g ∈ GL+

2 (Q).

Solution: Recall that on a positive-definite inner product space V, an operator A preserves a
subspace W ⊆ V if and only if the adjoint A∗ preserves the complementary subspace V⊥. Since
the adjoint of [ΓgΓ] is given by [Γg′Γ], where g′ = (det g)g−1 is also in GL+

2 (Q), it suffices to
note that Sk(Γ) is preserved by [ΓgΓ] for all g ∈ GL+

2 (Q).

Page 2



[This question was also done well by most of you.]

5. [3 points] Let f be the unique normalised eigenform in S2(Γ0(11)), and let g = f 2. Calculate the
first two terms of the q-expansions of g and of T2(g), and hence show that dim S4(Γ0(11)) ≥ 2.

Solution: We saw in lectures that the q-expansion of f is given by q ∏n≥1(1− qn)2(1− q11n)2 =

q− 2q2 − q3 + O(q4). Squaring this term-by-term, we deduce that g = q2 − 4q3 + 2q4 + O(q5).
(Note that we will need terms of g up to q4 in order to calculate T2(g) up to q2).

Applying T2 using the usual q-expansion formulae, we get T2(g) = q + 2q2 + O(q3); this is
clearly not a multiple of g, so the space has dimension ≥ 2.

[Almost all of you did this fine, some by hand and others using Sage. It is perhaps cheating slightly if
you let Sage calculate the q-expansion of f for you, rather than using the η-product formula from the
notes, but never mind.]

6. [6 points] Let N ≥ 2 and let χ be a Dirichlet character mod N. Let a ∈ Z/NZ and define the Gauss
sum

τ(a, χ) = ∑
b∈(Z/NZ)×

e2πiab/Nχ(b).

(a) Show that τ(a, χ) = χ(a)τ(1, χ) if a ∈ (Z/NZ)×.

Solution: Since a ∈ (Z/NZ)×, multiplication by a gives a bijection from (Z/NZ)× to
itself. Thus we may substitute a new variable c = ab in the sum defining τ(a, χ) to obtain

τ(a, χ) = ∑
c∈(Z/NZ)×

e2πic/Nχ(a−1c)

= χ(a−1) ∑
c∈(Z/NZ)×

e2πic/Nχ(c)

= χ(a)τ(1, χ).

(We have χ(a−1) = χ(a)−1 since χ is a homomorphism, and χ(a)−1 = χ(a) since χ(a) is a
root of unity.)

(b) Let M | N. Show that if χ does not factor through (Z/MZ)×, then we have

∑
b∈(Z/NZ)×

b=1 mod M

χ(b) = 0.

Solution: If χ does not factor through (Z/MZ)×, then there is some a ∈ (Z/NZ)×

with a = 1 mod M such that χ(a) 6= 1. Multiplication by a is a bijection on the set
{b ∈ (Z/NZ)× : b = 1 mod M}, so we have

∑
b∈(Z/NZ)×

b=1 mod M

χ(b) = ∑
b∈(Z/NZ)×

b=1 mod M

χ(ab) = χ(a) ∑
b∈(Z/NZ)×

b=1 mod M

χ(b).

Since χ(a) 6= 1, this forces the sum to be 0.

Hence show that if χ is primitive, τ(a, χ) = 0 for a 6= (Z/NZ)×.

Page 3



Solution: Suppose a 6= (Z/NZ)×. Then there is some M | N, M < N, such that a is
a multiple of N/M. Thus, for b, c ∈ (Z/NZ)×, we have e2πiab/N = e2πiac/N if b = c
(mod M). Thus

τ(a, χ) = ∑
b∈(Z/NZ)×

e2πiab/Nχ(b) = ∑
c∈(Z/MZ)×

e2πiac/N

 ∑
b∈(Z/MZ)×

b=c mod M

χ(b)

 .

The bracketed term is a multiple of ∑
b∈(Z/MZ)×

b=1 mod M

χ(b), which is zero.

(c) Calculate τ(1, χ) when N = pj (p prime, j ≥ 1) and χ is the trivial character mod pj.

Solution: By definition, we have

τ(1, χ) = ∑
b=0...p−1

p-b

e2πib/pj
.

This is the sum of the primitive pjth roots of 1; that is, it is the sum of the roots of Xpj − 1
which are not also roots of Xpj−1 − 1, or the roots of the cyclotomic polynomial

Φpj(X) =
Xpj − 1

Xpj−1−1
= 1 + Xpj−1

+ · · ·+ X(p−1)pj−1
.

Since the sum of the roots of a monic polynomial of degree d is −1 times its coefficient of
Xd−1, this implies that the sum is −1 if j = 1 and 0 otherwise.

7. [4 points] Let N ≥ 2 and let H be a subgroup of (Z/NZ)×. Define Ĥ to be the subgroup of
Dirichlet characters χ mod N such that χ(d) = 1 for all d ∈ H.

(a) Show that ΓH(N) =

{(
a b

cN d

)
∈ Γ0(N) : a, d ∈ H

}
is a finite-index subgroup of SL2(Z).

Solution: It’s clear that a ∈ H if and only if d ∈ H, since ad = ad− bcN = 1 mod N; and

the map Γ0(N) → (Z/NZ)× sending
(

a b
cN d

)
to d is a surjective homomorphism with

kernel Γ1(N), by a question from sheet 2. Hence ΓH(N) is the preimage of a subgroup
under a homomorphism; so it is a subgroup of Γ0(N). It clearly contains Γ1(N), so it has
finite index in SL2(Z).
[This was a very easy sub-question; everyone who attempted it got the available 2 marks. I’m
puzzled that four of you didn’t even try it.]

(b) Show that for any k ≥ 1 we have

Sk(ΓH(N)) =
⊕
χ∈Ĥ

Sk(Γ1(N), χ).

Solution: If f ∈ Sk(Γ1(N), χ), and γ =

(
a b

cN d

)
∈ ΓH(N), then f |kγ = 〈d〉 f = χ(d) f .

So f |kγ = f for all γ ∈ ΓH(N) if and only if χ(d) = 1 for all d ∈ H.
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It follows that Sk(Γ1(N), χ) ⊆ Sk(ΓH(N)) if χ ∈ Ĥ and Sk(Γ1(N), χ) ∩ Sk(ΓH(N)) = 0
otherwise. Since Sk(Γ1(N)) =

⊕
χ∈ ̂(Z/NZ)×

Sk(Γ1(N), χ), the result follows.

[I think I managed to confuse several of you by a notational inconsistency. In the lectures, I defined
Ĝ for an arbitrary abelian group G to be the group of characters G → C×. Here Ĥ isn’t the
characters of H, but the characters of G trivial on H, or (equivalently) the characters of the quotient
G/H. I should perhaps have called this something different, perhaps H⊥ or H∨. The misleading
notation fooled you into thinking that this was an instance of proposition 2.9.3, which it isn’t quite.]

8. [4 points] Suppose p is a prime, Γ = Γ1(p) and g =

(
1 0
0 p

)
. Find p matrices (gj)j=0,...,p−1 in

GL+
2 (Q) such that

ΓgΓ =
⊔

0≤j<p
Γgj =

⊔
0≤j<p

gjΓ.

Solution: We first find aj such that ΓgΓ =
⊔

Γaj. It suffices to take aj = ga′j, where aj are a set of

coset representatives for the left coset space (Γ∩ g−1Γg)\Γ. We find that Γ∩ g−1Γg is the group

{
(

a b
c d

)
∈ Γ : b = 0 mod p}, and a set of coset representatives is given by a′j =

(
1 j
0 1

)
for

j = 0, . . . , p− 1. We have aj = ga′j =
(

1 j
0 p

)
, so we recover the result stated in lectures that

ΓgΓ =
p−1⊔
j=0

Γ
(

1 j
0 p

)
.

We now do the “opposite” decomposition; that is, we find bj such that ΓgΓ =
⊔

Γbj. Now we
take bj = b′jg where b′j are coset representatives for the right coset space Γ/(Γ∩ gΓg−1). We find

that Γ ∩ gΓg−1 is the group {
(

a b
c d

)
∈ Γ : c = 0 mod p2}, and a set of coset reps is given by

b′j =
(

1 0
pj 1

)
. We have bj = b′j p =

(
1 0
pj p

)
, so we have

ΓgΓ =
p−1⊔
j=0

(
1 0
pj p

)
Γ.

Let’s find the intersection of the cosets Γ
(

1 j
0 p

)
and

(
1 0
pj p

)
Γ. Let γ =

(
a b
pc d

)
∈ Γ. We

find that

γ

(
1 j
0 p

)
∈
(

1 0
pj p

)
Γ

⇐⇒
(

1 0
−j 1

p

)
γ

(
1 j
0 p

)
∈ Γ

⇐⇒
(

a aj + bp
−aj + c −aj2 + cj− bjp + d

)
∈ Γ.

Looking at the left column suggests trying a = 1 and j = c, in which case the requirement that
det γ = 1 forces d = 1+ bjp. We may as well try b = 0, and then the above messy matrix works

out as
(

1 j
0 1

)
, which is certainly in Γ. Hence we conclude that(

1 0
pj 1

)(
1 j
0 p

)
=

(
1 j
pj p + pj2

)
∈ Γ

(
1 j
0 p

)
∩
(

1 0
pj p

)
Γ.
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Thus taking gj =

(
1 j
pj p + pj2

)
works.

[Sadly, absolutely everyone who tried this question tried to show that one could take gj =

(
1 j
0 p

)
. This

does not work, meaning that nobody got more than 1 mark. We do have

ΓgΓ =
⊔

j
Γ
(

1 j
0 p

)
,

but all of the matrices
(

1 j
0 p

)
lie in the single right coset gΓ – not surprisingly, since gj = g ·

(
1 j
0 1

)
and

(
1 j
0 1

)
∈ Γ – so they certainly don’t work the other way round. It’s important to distinguish

between the roles of the two subgroups Γ ∩ g−1Γg and Γ ∩ gΓg−1. ]

9. [5 points] Let V be a finite-dimensional complex vector space endowed with a positive definite
inner product (a finite-dimensional Hilbert space). Let A : V → V be a linear operator.

(a) Show that if A is selfadjoint, 〈Ax, x〉 is real for all x ∈ V.

Solution: We have 〈x, y〉 = 〈y, x〉 for all x, y ∈ V, by the definition of an inner product. On
the other hand, since A is selfadjoint we have 〈Ax, x〉 = 〈x, Ax〉. Thus 〈Ax, x〉 = 〈Ax, x〉,
so 〈Ax, x〉 is real.
[All of you got this.]

(b) We say A is positive semidefinite if it is selfadjoint and 〈Ax, x〉 ≥ 0 for all x ∈ V. Show that if A
is positive semidefinite, there is a unique positive semidefinite B such that B2 = A. (We write
B =
√

A.)

Solution: Since A is selfadjoint, it is certainly normal, and thus diagonalisable. Hence
we may choose a basis such that A is diagonal. Moreover, the eigenvalues of A must be
nonnegative real numbers, since if v is an eigenvector with eigenvalue λ we have 〈Av, v〉 =
λ〈v, v〉. Since a nonnegative real number has a nonnegative real square root, we can set B
to be the diagonal matrix whose entries are the nonnegative real square roots of those of
A; then B is clearly positive semidefinite with B2 = A.
It remains to show uniqueness. Since A is diagonalisable and B must commute with A
and hence preserves its eigenspaces, it suffices to check that a matrix of the form λI, where
λ ≥ 0 and I is the identity matrix, has a unique positive definite square root. But any
candidate square root must be diagonalisable with all diagonal entries equal to

√
λ; so it is

conjugate to a scalar multiple of the identity, and thus it is the identity.
[Catastrophically, almost everyone got this wrong; since there is only one mark available, I couldn’t
give that mark to anyone who didn’t have a complete proof of both the existence and uniqueness.
Most of you proved existence, but only a few even remembered to check uniqueness, and all but
one of those who did so gave arguments that are only valid if the eigenspaces of A are all one-
dimensional.]

(c) Show that for any linear operator A, the operator A∗A is positive semidefinite, and if P =√
A∗A, then we may write A = UP with U unitary. Show conversely that if A = UP with U

unitary and P positive semidefinite, we must have P =
√

A∗A. Is U uniquely determined?

Solution: We have (A∗A)∗ = A∗(A∗)∗ = A∗A, so A∗A is selfadjoint; and 〈A∗Ax, x〉 =
〈Ax, Ax〉 ≥ 0 since the inner product is positive definite.
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Let us write P =
√

A∗A. If A is non-singular, then P is so also (since det P = |det A|).
Hence we may define U = AP−1. We find that

P2 = A∗A = PU∗UP.

Since we are assuming that A is nonsingular, we can cancel P from both sides and de-
duce that U∗U = 1, i.e. U is unitary; and it is clear that U is the only matrix (unitary or
otherwise) such that A = UP.
If A is singular, the argument is a little more delicate. Let V1 = ker(P) and V2 = im(P).
Because P is selfadjoint, we find that V1 = V⊥2 and vice versa. One checks that A is zero on
V1, and AV2 ⊆ V2. Thus we can define U by taking the direct sum of an arbitrary unitary
operator V1 → V1, and the uniquely defined unitary part of A restricted to V2.
Conversely, if A = UP with U unitary and P positive semidefinite, we must have A∗A =

PU−1UP = P2, so necessarily P =
√

A∗A; but from the above argument it is clear that U
is uniquely determined if and only if A is invertible.
[A few of you gave correct arguments under the assumption that A was nonsingular, which I gave
the mark to. Only two gave complete arguments for the general case.]

(d) Show that A is normal if and only if we can find a unitary U and positive semidefinite P such
that A = UP and U and P commute.

Solution: In fact more is true: if A is normal, then for any such factorisation A = UP,
we must have UP = PU. Indeed, we have A∗A = AA∗ (since A is normal) and AA∗ =
(UP)(UP)∗ = UP2U−1 = (UPU−1)2. One checks easily that UPU−1 is positive semidef-
inite. So P and UPU−1 are both positive semidefinite self-adjoint operators squaring to
A∗A; by the uniqueness from part (b), this implies that P = UPU−1, so U and P commute.
(Alternatively, one can construct a commuting U and P directly, by using the fact that A is
diagonalisable; but this does not give the slightly stronger statement above.)
Conversely, if there exists some decomposition A = UP with U and P commuting, then
A∗A = P2 and AA∗ = UP2U−1 = P2; so AA∗ = A∗A, i.e. A is normal.
[A common mistake here was to observe that AA∗ = A∗A is equivalent to UP2 = P2U and to
claim that this implies immediately that UP = PU. It’s not true for general linear operators that

if A and B2 commute, A and B necessarily commute – for a counterexample, try B =

(
−1 0
0 1

)
and A any non-diagonal matrix.]

(e) Find an example of a nondegenerate (but not positive definite!) inner product space V and a
linear operator A : V → V which is normal but not diagonalisable.

Solution: The simplest example I can think of is to take V = C2, with the inner product

defined by 〈e1, e1〉 = 〈e2, e2〉 = 0 and 〈e1, e2〉 = 1. Then the adjoint of
(

a b
c d

)
is
(

d b
c a

)
. In

particular the matrix
(

1 1
0 1

)
is selfadjoint, and hence normal, but it is not diagonalisable.

[Three of you found this example, and one of you found a 3-dimensional example, which actually
turns out to have this one secretely living inside it.]

10. [4 points] Let f be weakly modular of level Γ and weight k. Let f ∗ : H → C be the function defined
by f ∗(z) = f (−z). Show that f ∗ is weakly modular of weight k and level Γ∗ = σ−1Γσ, where

σ =

(
−1 0
0 1

)
.
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Solution: [You all seem to have found this rather hard. I had one complete solution that deduced the
result from some rather advanced considerations involving Galois theory, but there is a simple direct
proof that nobody gave:]

By assumption, we have

f
(

az + b
cz + d

)
= (cz + d)k f (z)

for all
(

a b
c d

)
∈ Γ. Hence

f
(

a(−z) + b
c(−z) + d

)
= (c(−z) + d)k f (−z)

or (rearranging the fraction on the left-hand side)

f

(
−
(

az− b
−cz + d

))
= (c(−z) + d)k f (−z).

Conjugating everything in sight, we’ve shown

f ∗
(

az− b
−cz + d

)
= (−cz + d)k f ∗(z).

That is, f ∗ is modular of weight k for the group
{(

a −b
−c d

)
:
(

a b
c d

)
∈ Γ
}

, which is precisely

Γ∗.

A slightly slicker interpretation of this is: let X be the space of meromorphic functions on C\R
which satisfy f (z) = f (z). There’s a unique way to extend any given meromorphic function on
H to an element of X. Then it’s easy to see that the weight k action of GL+

2 (R) extends to an
action of the whole of GL2(R) on X, and f ∗ is just f |kσ.

Show that f ∗ is a modular function, modular form, or cusp form if and only if f is, and that the
q-expansions of f ∗ and f at ∞ are related by an( f ∗) = an( f ).

Solution: Let us first consider behaviour at ∞. It’s clear that (Γ∗)∞ = Γ∞, so hΓ(∞) = hΓ∗(∞).
Moreover, for any integer (or real) h we have

qh(−z) = exp(2πi(−z)/h)

= exp(2πi(−z)/h)

= exp(2π(i) (−z)/h)
= exp(2π(−i)(−z)/h) = qh(z).

It follows that if f (z) is given by a series ∑∞
n=−N anqh(nz) for some N < ∞, converging for all

Im(z) sufficiently large, then (in the same range of Im(z)) we have f ∗(z) = ∑ anqh(nz), and
conversely. So f ∗ is meromorphic at ∞ if and only if f is, and if so we have vΓ∗ ,∞( f ∗) = vΓ,∞( f )
and an( f ∗) = an( f ). (We have assumed here that Γ is regular at infinity or that k is even; the
argument goes through almost identically in the odd weight irregular case.)

For a general cusp c ∈ P1(Q), let g ∈ SL2(Z) be such that g∞ = c. Then (σ−1gσ)(∞) = −c.
Hence, by definition, we have

vΓ,c( f ) = vg−1Γg,∞( f |kg)

vσ−1Γσ,−c( f ∗) = v(σ−1g−1σ)(σ−1Γσ)(σ−1gσ),∞( f ∗|kσ−1gσ).
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The rather messy expression (σ−1g−1σ)(σ−1Γσ)(σ−1gσ) simplifies down to just σ−1g−1Γgσ =
(g−1Γg)∗. Moreover, it’s easy to check that ( f ∗)|k(σ−1gσ) = ( f |kg)∗ (this is the same argument
as we used above to prove the first sentence of the question). Hence applying the preceding
argument with f and Γ replaced by f |kg and g−1Γg, we deduce that f ∗ is meromorphic at −c if
and only if f is merormorphic at c, and if so then we have vΓ,c( f ) = vΓ∗ ,−c( f ∗).

In particular, we see that f ∗ is meromorphic / holomorphic / vanishing at all cusps if and only
if f is; and since f ∗ is obviously meromorphic or holomorphic on H if and only if f is, we
deduce that f ∗ is a modular function (respectively modular form or cusp form) if and only if
this is true of f .

11. [Non-assessed and for amusement only] Let M(Γ) =
⊕

k≥0 Mk(Γ), which is clearly a ring. Show that
for any Γ, M(Γ) is finitely generated as an algebra over C, and we may take the generators to have
weight at most 12.

Solution: Nobody did this question, sadly. Nils Skoruppa told me this at a conference once; I
don’t know why it’s true.
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