TCC Modular Forms and Representations of GL₂: Assignment #1

David Loeffler, d.a.loeffler@warwick.ac.uk

18th October 2018

This is the first of 3 problem sheets for this course. Questions *not* marked * are assessed, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by **noon on Monday 5th November**. Solutions will be distributed that afternoon, so late submissions will not be accepted. The total mark available for the assessed questions is 20.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

Throughout the sheet, *F* denotes a nonarchimedean local field with ring of integers O and residue field of cardinality q; ω denotes an arbitrary uniformiser of O; and |x|, for $x \in F$, denotes the absolute value normalised by $|\omega| = 1/q$.

- 1. [1 point] Show that in a topological group, every open subgroup is also closed.
- 2. [1 point] Show that if *G* is locally profinite and compact, then every open neighbourhood of 1_{*G*} contains a normal open compact subgroup.
- 3. [3 points] Let $G = \mathbf{Z}_p^{\times}$, for *p* prime, and let $V = \{$ locally constant functions $G \to \mathbf{C} \}$.
 - (a) Show that *V* is smooth and admissible.
 - (b) Show that V has infinitely many (distinct) irreducible subrepresentations.
 - (c) Show that the abstract dual V^* is not smooth.
 - (d) [*] Show that the smooth dual V^{\vee} is (non-canonically) isomorphic to *V*.
- 4. [2 points] Let *G* be a locally profinite group. Show that the natural inclusion of $\underline{\text{Smo}}_{G}$ in $\underline{\text{Rep}}_{G}$ has a right adjoint (and describe the adjoint functor).
- (a) [1 point] Show that every compact open subgroup of GL₂(*F*) is conjugate to a subgroup of GL₂(*O*).
 - (b) [**] Show that this is not true for SL_2 in place of GL_2 .
- 6. [2 points] Show that $GL_n(F)$ is unimodular for all $n \ge 1$.
- 7. Let *G* be locally profinite, and let μ be a left Haar measure on *G*. For $f \in C_c^{\infty}(G)$ and $g \in G$, write $g \cdot f$ for the function $x \mapsto f(xg)$.
 - (a) [1 point] Show that the linear functional $\lambda : C_c^{\infty}(G) \to \mathbf{C}$ defined by

$$\lambda(f) = \int_{x \in G} \delta_G(x)^{-1} f(x) \, \mathrm{d}\mu(x)$$

satisfies $\lambda(g \cdot f) = \lambda(f)$ for all $f \in C_c^{\infty}(G)$ and $g \in G$.

(b) [2 points] Show that if λ' is a linear map $C_c^{\infty}(G) \to \mathbf{C}$ such that $\lambda'(g \cdot f) = \lambda'(f)$ for all $f \in C_c^{\infty}(G)$ and $g \in G$, then there is a constant $\alpha \in \mathbf{C}$ such that $\lambda' = \alpha \lambda$.

- 8. (a) [*] Show that any open normal subgroup of $GL_2(F)$ must contain $SL_2(F)$.
 - (b) [*] Hence show that a finite-dimensional irreducible smooth representation of $GL_2(F)$ must be of the form $\chi \circ \det$, for some smooth $\chi : F^{\times} \to \mathbb{C}^{\times}$.
- 9. A smooth representation of a locally profinite group *G* is said to be *unitarizable* if there is a pairing $\langle -, \rangle : V \to \mathbf{C}$ such that the following conditions hold:
 - *V* is linear in the second variable and conjugate-linear in the first;
 - we have $\langle gx, gy \rangle = \langle x, y \rangle$ for all $x, y \in V$ and $g \in G$;
 - $\langle y, x \rangle = \overline{\langle x, y \rangle};$
 - $\langle x, x \rangle > 0$ if $x \neq 0$.
 - (a) [*] Show that if *V* is smooth, admissible, and unitarizable, any *G*-invariant subspace $W \subseteq V$ has a *G*-invariant complement.
 - (b) [1 point] Show that if $H \leq G$ is closed and $W \in \underline{\text{Smo}}_G$ is unitarizable, then the normalised induction $V = \text{c-Ind}_H^G \left(W \otimes (\delta_H^{-1} \delta_G)^{1/2} \right)$ is unitarizable.
 - (c) [2 points] Show that if the representation $I(\chi, \psi)$ of $GL_2(F)$ is unitarizable, then the character χ/ψ must be either unitary, or real-valued. (Hint: Consider the representation $I(\overline{\chi}, \overline{\psi})$.)
 - (d) [**] Show that the Steinberg representation of $GL_2(F)$ is unitarizable.
- 10. Prove the two parts of the first lemma from §2.3, concerning representations of the additive group $N \cong (F, +)$:
 - (a) [2 points] If $V \in \underline{Smo}_N$, then the kernel of $V \mapsto V_N$ coincides with the space

$$\left\{ v \in V : \int_{N_0} n \cdot v \, \mathrm{d}\mu_N(n) = 0 \quad \text{for some open compact } N_0 \subset N \text{ (depending on } v) \right\}$$

- (b) [2 points] The functor $V \mapsto V_N$ is exact on <u>Smo_N</u>.
- 11. [*] Let χ, ψ be smooth characters of F^{\times} with $\chi \neq \psi$. We saw in lectures that $\text{Hom}_G(I(\chi, \psi), I(\psi, \chi))$ is 1-dimensional. In this exercise we'll construct an explicit homomorphism between the two (in a special case).
 - (a) Show that if the inequality $|\chi(\omega)/\psi(\omega)| < 1$ holds for one uniformiser ω , this holds for every uniformiser ω .
 - (b) Suppose the inequality of (a) holds, and let $f \in I(\chi, \psi)$. Show that the integral

$$\tilde{f}(g) = \int_{N} f\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ng\right) \, \mathrm{d}\mu_{N}(n)$$

converges absolutely. You may find it helpful to note the matrix identity

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -x^{-1} & 1 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix}$$

- (c) Show that in the situation of (a), the map $f \mapsto \tilde{f}$ is a non-zero element of $\text{Hom}_G(I(\chi, \psi), I(\psi, \chi))$.
- (d) [**] What is happening if $\chi/\psi = |\cdot|$?
- 12. [**] Let *G* be locally profinite, *V* an irreducible smooth representation of *G*, and $H \leq G$ an open normal subgroup such that $G/H \cong (\mathbb{Z}/2)^n$ for some *n*.
 - (a) Show that $V|_H$ is a direct sum of finitely many irreducible *H*-subrepresentations, and the number of these factors divides 2^n . (Hint: Use induction to reduce to the case n = 1, and consider the subspace $g \cdot W$ where *W* is an irreducible *H*-subrepresentation and $g \in G H$.)
 - (b) Show that $V|_H$ is irreducible if and only if there is no nontrivial character $\chi : G/H \to \mathbb{C}^{\times}$ such that $V \cong V \otimes \chi$. (Hint: Show that $\operatorname{Ind}_H^G(V|_H) \cong \bigoplus_{\chi} V \otimes \chi$.)
 - (c) Describe the decomposition into irreducible $SL_2(F)$ -representations of every irreducible, nonsupercuspidal representation of $GL_2(F)$. (Hint: $GL_2(F)/(F^{\times} \cdot SL_2(F))$ is finite.)
 - (d) [***] Can you find an irreducible representation of $GL_2(F)$ which decomposes into more than two $SL_2(F)$ subrepresentations?