TCC Modular Forms and Representations of GL_{2} : Assignment \#2

David Loeffler, d.a.loeffler@warwick.ac.uk

15th November 2018
(corrected, 28th November)
This is the second of 3 problem sheets for this course, covering material from lectures 3,4 and 5 .
Questions not marked $*$ are assessed, out of a total of 20, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by noon on Friday 7th December. Late submissions will not be accepted.

In questions $1-6, F$ is a nonarchimedean local field, and \mathcal{O}, ω, q etc have their usual meanings. From 7 onwards, F is a number field.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

1. [2 points] Let G be locally profinite and $V \in \underline{\operatorname{Smo}}_{G}$. Show that if $F_{1}, F_{2} \in \mathcal{H}(G)$ then $\left(F_{1} \star F_{2}\right) \star v=$ $F_{1} \star\left(F_{2} \star v\right)$. Hence show that $\mathcal{H}(G)$ is a ring.
2. Let G locally profinite, $K \leqslant G$ open compact. We say that $V \in \underline{S m o}_{G}$ is K-spherical if V^{K} generates V as a G-representation.
(a) [1 point] Show that if V is irreducible and K-spherical, then V^{K} is a simple $\mathcal{H}(G, K)$-module.
(b) [*] Is $V \mapsto V^{K}$ an equivalence of categories between K-spherical representations of G and $\mathcal{H}(G, K)$-modules? Give a proof or counterexample as appropriate.
3. [2 points] In the notation of $\S 3.2$ of the lectures, prove the identity

$$
T \star T=\left[K\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & 1
\end{array}\right) K\right]+(q+1) S .
$$

4. Let χ, ψ be unramified characters of F^{\times}, for F a nonarchimedean local field, and I the Iwahori subgroup of $\mathrm{GL}_{2}(F)$ (cf. §3.4).
(a) [2 points] Compute the matrix of $U=\left[I\left(\begin{array}{cc}\infty & 0 \\ 0 & 1\end{array}\right) I\right]$ on $I(\chi, \psi)^{I}$ in the basis $\left(f_{1}, f_{2}\right)$, where $f_{1}(1)=$ $1, f_{1}(w)=0$ and $f_{2}(w)=1, f_{2}(1)=0$.
(b) [1 point] Hence show that U is not diagonalisable if $\chi=\psi$.
(c) [1 point] Show that the I-invariants of the Steinberg representation are 1-dimensional. How does U act on $(\mathrm{St})^{I}$?
5. Let V be an irreducible infinite-dimensional representation of $\mathrm{GL}_{2}(F)$, and θ a smooth character of $(F,+)$ which is trivial on \mathcal{O} but not on $\omega^{-1} \mathcal{O}$.
(a) [2 points] Justify the claim made in lectures that $v \in V$ is invariant under $\left(\begin{array}{cc}\mathcal{O}^{\times} & \mathcal{O} \\ 0 & 1\end{array}\right)$ if and only if its Kirillov function ϕ_{v} is supported on \mathcal{O} and constant on cosets of \mathcal{O}^{\times}.
(b) [1 point] Show that $n \geqslant 1, v \in V^{U_{n}}$, and $v^{\prime}=\left[U_{n}\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right) U_{n}\right] \cdot v$, then for all $x \in \mathcal{O}$ we have

$$
\phi_{v^{\prime}}(a)=q \phi_{v}(\omega a) .
$$

(c) [*] Show that for $v \in V$, the integral $I_{s}(v)=\int_{x \in F^{\times}} \phi_{v}(x)|x|^{s} \mathrm{~d} x$ converges for $\Re(s) \gg 0$, and has meromorphic continuation to all $s \in \mathbf{C}$ as a rational function of q^{-s}.
6. Let V be an irreducible infinite-dimensional representation of $\mathrm{GL}_{2}(F)$, and $\chi: F^{\times} \rightarrow \mathbf{C}^{\times}$a smooth character.
(a) [*] Show that $c(V \otimes \chi) \leqslant c(V)+2 c(\chi)$. (Hint: if v is the new vector of V, consider a sum of translates of v by elements of N.)
(b) ${ }^{* *}$] Show that if $c(\chi)>c(V)$ then $c(V \otimes \chi)=2 c(\chi)$.
7. Let $N \geqslant 1$ and let χ be a homomorphism $(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}$(a Dirichlet character modulo N).
(a) [1 point] Show that there exists a unique smooth character $\underline{\chi}: \mathbf{Q}_{>0}^{\times} \backslash \mathbf{A}_{f}^{\times} \rightarrow \mathbf{C}^{\times}$such that for almost all primes ℓ, the restriction of $\underline{\chi}$ to $\mathbf{Q}_{\ell}^{\times}$is unramified and maps a uniformiser to $\chi(\ell)$.
(b) [1 point] Show that the restriction of $\underline{\chi}$ to $\hat{\mathbf{Z}}^{\times}$is given by the composition

$$
\hat{\mathbf{Z}}^{\times} \longrightarrow(\mathbf{Z} / N \mathbf{Z})^{\times} \xrightarrow{\chi^{-1}} \mathbf{C}^{\times} .
$$

(c) [*] If $p \mid N$ is prime, what is $\underline{\chi}(P)$, where P denotes the idèle which is p at the place p and 1 at all other places?
8. [2 points] Let F be a number field. If v is a (finite) prime of F, we denote by F_{v} the completion of F at v, and \mathcal{O}_{v} the ring of integers of F_{v}. Show that for any given prime v of F, we may find an element γ of $\mathrm{SL}_{2}(F)$ such that

- the image of γ in $\mathrm{SL}_{2}\left(F_{v}\right)$ lies in the double $\operatorname{coset} \operatorname{SL}_{2}\left(\mathcal{O}_{v}\right)\binom{\omega_{v}}{\omega_{v}^{-1}} \operatorname{SL}_{2}\left(\mathcal{O}_{v}\right)$;
- the image of γ in $\operatorname{SL}_{2}\left(F_{w}\right)$ lies in $\operatorname{SL}_{2}\left(\mathcal{O}_{w}\right)$ for all primes $w \neq v$.

Hence show that $\mathrm{SL}_{2}(F)$ is dense in $\mathrm{SL}_{2}\left(\mathbf{A}_{F, f}\right)$.
[Hint: the above double coset in $\mathrm{SL}_{2}\left(F_{v}\right)$ also contains $\left(\begin{array}{cc}1 & \omega_{v}^{-1} \\ 0 & 1\end{array}\right)$.]
9. Let $N \geqslant 1$, and let $U=\left\{g \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): g=\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right) \bmod N\right\}$ and $U^{\prime}=\left\{g \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): g=\right.$ $\left.\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right) \bmod N\right\}$.
(a) [1 point] Show that both $Y(U)$ and $Y\left(U^{\prime}\right)$ are canonically isomorphic to the classical modular curve $Y_{1}(N)=\Gamma_{1}(N) \backslash \mathcal{H}$.
(b) [1 point] Show that, for ℓ a prime, right-translation by $\left(\begin{array}{cc}\omega_{\ell} & 0 \\ 0 & \omega_{\ell}\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$ acts as the diamond operator $\langle\ell\rangle$ on $Y(U)$, and as $\langle\ell\rangle^{-1}$ on $Y\left(U^{\prime}\right)$.
10. [2 points] Let $M_{k, t}$ be the $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$-representation of modular forms, as in Chapter 6 of the lectures. For $f \in M_{k, t}$, and $s \in \mathbf{R}$, consider the function $f_{s}: \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right) \times \mathcal{H} \rightarrow \mathbf{C}$ defined by

$$
f_{s}(g, \tau)=f(g, \tau)\|\operatorname{det} g\|^{s}
$$

Here $\|x\|=\Pi_{\ell}\left|x_{\ell}\right|$ is the normalised absolute value on \mathbf{A}_{f}^{\times}. Show that $f_{s} \in M_{k, t+s}$.
11. [*] Let $\mathcal{H}_{ \pm}=\mathbf{C}-\mathbf{R}$ be the union of the upper and lower half-planes. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{R})$ and $f: \mathcal{H}_{ \pm} \rightarrow \mathbf{C}$, write

$$
\left(\left.f\right|_{k, t} \gamma\right)(\tau)=|a d-b c|^{t}(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)
$$

(a) Show that every $f \in M_{k, t}$ has a unique extension to a function on $\tilde{f}: \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right) \times \mathcal{H}_{ \pm}$satisfying $\tilde{f}(\gamma g,-)=\left.f(g,-)\right|_{k, t} \gamma^{-1}$ for all $\gamma \in \mathrm{GL}_{2}(\mathbf{Q})$.
(b) Show that if \tilde{f} is as in (a), then the function $F: \mathrm{GL}_{2}(\mathbf{A}) \rightarrow \mathbf{C}$ defined by $F(g)=\left(\left.\tilde{f}\left(g_{\mathrm{fin}},-\right)\right|_{k, t}\right.$ $\left.g_{\infty}\right)(i)$ is invariant under left-translation by $\mathrm{GL}_{2}(\mathbf{Q})$, and satisfies

$$
F(g u)=e^{i k \theta} F(g) \text { for all } \quad u=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \in \mathrm{SO}_{2}(\mathbf{R})
$$

