TCC Modular Forms and Representations of GL₂: Assignment #2

David Loeffler, d.a.loeffler@warwick.ac.uk

15th November 2018

(corrected, 28th November)

This is the second of 3 problem sheets for this course, covering material from lectures 3, 4 and 5. Questions *not* marked * are assessed, out of a total of 20, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by **noon on Friday 7th December**. Late submissions will not be accepted.

In questions 1–6, *F* is a nonarchimedean local field, and O, ω , *q* etc have their usual meanings. From 7 onwards, *F* is a number field.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

- 1. [2 points] Let *G* be locally profinite and $V \in \underline{Smo}_G$. Show that if $F_1, F_2 \in \mathcal{H}(G)$ then $(F_1 \star F_2) \star v = F_1 \star (F_2 \star v)$. Hence show that $\mathcal{H}(G)$ is a ring.
- 2. Let *G* locally profinite, $K \leq G$ open compact. We say that $V \in \underline{Smo}_G$ is *K*-spherical if V^K generates *V* as a *G*-representation.
 - (a) [1 point] Show that if V is irreducible and K-spherical, then V^K is a simple $\mathcal{H}(G, K)$ -module.
 - (b) [*] Is $V \mapsto V^K$ an equivalence of categories between *K*-spherical representations of *G* and $\mathcal{H}(G, K)$ -modules? Give a proof or counterexample as appropriate.
- 3. [2 points] In the notation of §3.2 of the lectures, prove the identity

$$T \star T = \left[K \left(\begin{smallmatrix} \omega^2 & 0 \\ 0 & 1 \end{smallmatrix} \right) K \right] + (q+1)S.$$

- 4. Let χ, ψ be unramified characters of F^{\times} , for F a nonarchimedean local field, and I the Iwahori subgroup of $GL_2(F)$ (cf. §3.4).
 - (a) [2 points] Compute the matrix of $U = [I(\begin{smallmatrix} \omega & 0 \\ 0 & 1 \end{smallmatrix}) I]$ on $I(\chi, \psi)^I$ in the basis (f_1, f_2) , where $f_1(1) = 1$, $f_1(w) = 0$ and $f_2(w) = 1$, $f_2(1) = 0$.
 - (b) [1 point] Hence show that *U* is not diagonalisable if $\chi = \psi$.
 - (c) [1 point] Show that the *I*-invariants of the Steinberg representation are 1-dimensional. How does *U* act on (St)^{*I*}?
- 5. Let *V* be an irreducible infinite-dimensional representation of $GL_2(F)$, and θ a smooth character of (F, +) which is trivial on \mathcal{O} but not on $\omega^{-1}\mathcal{O}$.
 - (a) [2 points] Justify the claim made in lectures that $v \in V$ is invariant under $\begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ 0 & 1 \end{pmatrix}$ if and only if its Kirillov function ϕ_v is supported on \mathcal{O} and constant on cosets of \mathcal{O}^{\times} .
 - (b) [1 point] Show that $n \ge 1$, $v \in V^{U_n}$, and $v' = [U_n \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} U_n] \cdot v$, then for all $x \in \mathcal{O}$ we have

$$\phi_{v'}(a) = q\phi_v(\varpi a).$$

- (c) [*] Show that for $v \in V$, the integral $I_s(v) = \int_{x \in F^{\times}} \phi_v(x) |x|^s dx$ converges for $\Re(s) \gg 0$, and has meromorphic continuation to all $s \in \mathbf{C}$ as a rational function of q^{-s} .
- 6. Let *V* be an irreducible infinite-dimensional representation of $GL_2(F)$, and $\chi : F^{\times} \to \mathbb{C}^{\times}$ a smooth character.
 - (a) [*] Show that $c(V \otimes \chi) \leq c(V) + 2c(\chi)$. (Hint: if *v* is the new vector of *V*, consider a sum of translates of *v* by elements of *N*.)
 - (b) [**] Show that if $c(\chi) > c(V)$ then $c(V \otimes \chi) = 2c(\chi)$.
- 7. Let $N \ge 1$ and let χ be a homomorphism $(\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ (a *Dirichlet character modulo N*).
 - (a) [1 point] Show that there exists a unique smooth character $\underline{\chi} : \mathbf{Q}_{>0}^{\times} \setminus \mathbf{A}_{f}^{\times} \to \mathbf{C}^{\times}$ such that for almost all primes ℓ , the restriction of χ to $\mathbf{Q}_{\ell}^{\times}$ is unramified and maps a uniformiser to $\chi(\ell)$.
 - (b) [1 point] Show that the restriction of χ to $\hat{\mathbf{Z}}^{\times}$ is given by the composition

$$\hat{\mathbf{Z}}^{\times} \longrightarrow (\mathbf{Z}/N\mathbf{Z})^{\times} \xrightarrow{\chi} \mathbf{C}^{\times}.$$

- (c) [*] If $p \mid N$ is prime, what is $\underline{\chi}(P)$, where *P* denotes the idèle which is *p* at the place *p* and 1 at all other places?
- 8. [2 points] Let *F* be a number field. If *v* is a (finite) prime of *F*, we denote by F_v the completion of *F* at *v*, and \mathcal{O}_v the ring of integers of F_v . Show that for any given prime *v* of *F*, we may find an element γ of SL₂(*F*) such that
 - the image of γ in $SL_2(F_v)$ lies in the double coset $SL_2(\mathcal{O}_v) \begin{pmatrix} \omega_v \\ \omega_v \end{pmatrix} SL_2(\mathcal{O}_v)$;
 - the image of γ in $SL_2(F_w)$ lies in $SL_2(\mathcal{O}_w)$ for all primes $w \neq v$.

Hence show that $SL_2(F)$ is dense in $SL_2(\mathbf{A}_{F,f})$.

[*Hint: the above double coset in* $SL_2(F_v)$ *also contains* $\begin{pmatrix} 1 & \varpi_v^{-1} \\ 0 & 1 \end{pmatrix}$.]

- 9. Let $N \ge 1$, and let $U = \{g \in GL_2(\hat{\mathbf{Z}}) : g = \binom{* *}{0 1} \mod N\}$ and $U' = \{g \in GL_2(\hat{\mathbf{Z}}) : g = \binom{1 *}{0 *} \mod N\}$.
 - (a) [1 point] Show that both Y(U) and Y(U') are canonically isomorphic to the classical modular curve $Y_1(N) = \Gamma_1(N) \setminus \mathcal{H}$.
 - (b) [1 point] Show that, for ℓ a prime, right-translation by $\begin{pmatrix} \omega_{\ell} & 0 \\ 0 & \omega_{\ell} \end{pmatrix} \in GL_2(\mathbf{A}_f)$ acts as the diamond operator $\langle \ell \rangle$ on $\Upsilon(U)$, and as $\langle \ell \rangle^{-1}$ on $\Upsilon(U')$.
- 10. [2 points] Let $M_{k,t}$ be the $GL_2(\mathbf{A}_f)$ -representation of modular forms, as in Chapter 6 of the lectures. For $f \in M_{k,t}$, and $s \in \mathbf{R}$, consider the function $f_s : GL_2(\mathbf{A}_f) \times \mathcal{H} \to \mathbf{C}$ defined by

$$f_s(g,\tau) = f(g,\tau) \| \det g \|^s$$

Here $||x|| = \prod_{\ell} |x_{\ell}|$ is the normalised absolute value on \mathbf{A}_{f}^{\times} . Show that $f_{s} \in M_{k,t+s}$.

11. [*] Let $\mathcal{H}_{\pm} = \mathbf{C} - \mathbf{R}$ be the union of the upper and lower half-planes. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{R})$ and $f : \mathcal{H}_{\pm} \to \mathbf{C}$, write

$$(f \mid_{k,t} \gamma)(\tau) = |ad - bc|^t (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right)$$

- (a) Show that every $f \in M_{k,t}$ has a unique extension to a function on $\tilde{f} : \operatorname{GL}_2(\mathbf{A}_f) \times \mathcal{H}_{\pm}$ satisfying $\tilde{f}(\gamma g, -) = f(g, -) \mid_{k,t} \gamma^{-1}$ for all $\gamma \in \operatorname{GL}_2(\mathbf{Q})$.
- (b) Show that if \tilde{f} is as in (a), then the function $F : \operatorname{GL}_2(\mathbf{A}) \to \mathbf{C}$ defined by $F(g) = (\tilde{f}(g_{\text{fin}}, -) \mid_{k,t} g_{\infty})(i)$ is invariant under left-translation by $\operatorname{GL}_2(\mathbf{Q})$, and satisfies

$$F(gu) = e^{ik\theta}F(g)$$
 for all $u = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \in \mathrm{SO}_2(\mathbf{R}).$