TCC Modular Forms and Representations of GL₂: Assignment #3

David Loeffler, d.a.loeffler@warwick.ac.uk

6th December 2018

This is the last of 3 problem sheets for this course, covering material from lectures 6, 7 and 8.

Questions *not* marked * are assessed, out of a total of 20, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by **noon on Tuesday 8th January 2019**. Late submissions will not be accepted.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

If $\Gamma \leq SL_2(\mathbf{Z})$ and *L* is a subfield of **C**, we define $M_k(\Gamma, L)$ to be the *L*-subspace of $M_k(\Gamma)$ consisting of forms with *q*-expansion coefficients in *L*, and similarly $S_k(\Gamma, L)$. For $f \in M_k(\Gamma)$ and $\sigma \in Aut(\mathbf{C})$, we let f^{σ} be the formal *q*-expansion $\sum \sigma(a_n)q^n$, where $f = \sum a_nq^n$.

- 1. [1 point] Prove the formula relating the global Kirillov function to *q*-expansions, $a_n(f(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}, -)) = n^t \phi_f(nx)$.
- 2. [1 point] Let Π be a cuspidal automorphic representation of weight (k, t), and $f \in S_k(\Gamma_1(N))$ its normalised new vector. Show that if f transforms under the diamond operators $\langle d \rangle$ via the character $\varepsilon : (\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$, then the central character of the automorphic representation Π is the character $\| \cdot \|^{2t-k}\chi$, where χ is the adelic character attached to χ (as in Q7 of Sheet 1).
- 3. [*] Let χ be a quadratic Dirichlet character, and Π a cuspidal automorphic representation such that $\Pi = \Pi \otimes \chi$ [*NB: such examples do exist*]. Let $\chi' \neq \chi$ be another quadratic Dirichlet character. Show that the representation $\Pi' = \Pi \otimes \chi'$ satisfies $\Pi_{\ell} \cong \Pi'_{\ell}$ for a set of primes ℓ of density $\geq \frac{3}{4}$.
- 4. [2 points] Show (without using Shimura's rationality theorems) that if $f \in M_{k,t}$ then the function $f^*(g,\tau) = \overline{f(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}g, -\overline{\tau})}$ is also in $M_{k,t}$, and that $(g \cdot f)^* = g \cdot f^*$.
- 5. [2 points] Let $f \in S_{k,t}(\mathbf{Q})$, for some $k, t \in \mathbf{Z}$, so that the Kirillov function ϕ_f of f takes values in \mathbf{Q}_{∞} and satisfies $\sigma(\phi_f(x)) = \phi_f(\chi(\sigma)x)$ for all $\sigma \in \operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q})$. Show that the same is true of the Kirillov function of $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} f$, for any $a \in \mathbf{A}_f^{\times}$, $b \in \mathbf{A}_f$. [You may not use Shimura's theorem that $S_{k,t}(\mathbf{Q})$ is $\operatorname{GL}_2(\mathbf{A}_f)$ -stable.]
- 6. [3 points] Let $N \ge 1$. Define

$$S'_{k}(\Gamma_{1}(N),\mathbf{Q}) = \left\{ f \in S_{k}(\Gamma_{1}(N),\mathbf{Q}(\zeta_{N})) : f^{\sigma} = \langle \chi(\sigma) \rangle f \; \forall \sigma \in \operatorname{Gal}(\mathbf{Q}(\zeta_{N})/\mathbf{Q}) \right\}$$

- (a) Show that $S'_k(\Gamma_1(N), \mathbf{Q})$ spans $S_k(\Gamma_1(N))$ over **C**.
- (b) Show that for any integer *t* the Atkin–Lehner operator W_N , defined by $W_N(f) = f|_{k,t} \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$, is a bijection

 $S_k(\Gamma_1(N), \mathbf{Q}) \cong S'_k(\Gamma_1(N), \mathbf{Q}).$

[*Hint: Consider the group* $\{\gamma \in GL_2(\hat{\mathbf{Z}}) : \gamma = \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \mod N \}$.]

- 7. [4 points] Show that $X_0(16)$ has 6 cusps, of which 4 are defined over **Q**. What is the field of definition of the remaining two?
- [*] Let *F* be a nonarchimedean local field, and π₁, π₂ irreducible infinite-dimensional representations of GL₂(*F*). Let χ, ψ be any two characters of *F*[×] such that χψ is the product of the central characters of the π_i. Show that there is a non-zero homomorphism of GL₂(*F*)-representations π₁ ⊗ π₂ → *I*(χ, ψ). [*Hint: Consider first the case where at least one of the* π_i *is supercuspidal.*]
- 9. Recall the functions $f_{\Phi}(g,s)$ and $\tilde{f}_{\Phi}(g,s)$ defined in Jacquet's local Rankin–Selberg theory. [*The parameter s was omitted from the notation in the lecture, but we include it here.*]
 - (a) [1 point] Show that if $\operatorname{Re}(s)$ is sufficiently large that $|q^{-2s}\omega(\varpi)| < 1$, then the integral defining $f_{\Phi}(g,s)$ converges for all g and Φ .
 - (b) [1 point] Show that whenever $f_{\Phi}(g,s)$ is defined, we have $f_{\Phi}(-,s) \in I\left(|\cdot|^{s-\frac{1}{2}}, |\cdot|^{\frac{1}{2}-s}\omega^{-1}\right)$.
 - (c) [*] Let $s_0 \in \mathbf{C}$. Show that the following are equivalent:
 - there exists some $\Phi \in C_c^{\infty}(F^2)$ and $g \in GL_2(F)$ such that $f_{\Phi}(g, s)$ has a pole at $s = s_0$;
 - the representation $I\left(|\cdot|^{s_0-\frac{1}{2}},|\cdot|^{\frac{1}{2}-s_0}\omega^{-1}\right)$ is reducible with a 1-dimensional subrepresentation.

Show that if these conditions are satisfied, then the limit

$$\lim_{s \to s_0} (s - s_0) \cdot f_{\Phi}(g, s)$$

exists for all *g* and Φ , and as a function of *g* it lies in the 1-dimensional subrepresentation of I(...).

- (d) [*] Use (c) to show that if at least one of π_1 and π_2 is supercuspidal, then $L(\pi_1 \times \pi_2, s)$ is identically 1 unless π_1 is isomorphic to a twist of π_2 .
- 10. [2 points] Let *F* be a nonarchimedean local field. Let θ be a character $F \to \mathbb{C}^{\times}$ trivial on \mathcal{O} but not on $\varpi^{-1}\mathcal{O}$, and let μ denote the Haar measure on *F* such that $\mu(\mathcal{O}) = 1$.

(a) For $\phi \in C_c^{\infty}(F)$, define $\hat{\phi}$ by

$$\hat{\phi}(x) = \int_F \phi(u)\theta(xu) \,\mathrm{d}\mu(u).$$

Show that $\hat{\phi} \in C_c^{\infty}(F)$, and $\hat{\phi}(x) = \phi(-x)$.

(b) For $\Phi \in C_c^{\infty}(F^2)$, define $\hat{\Phi}$ by

$$\hat{\Phi}(x,y) = \iint_{F \times F} \Phi(u,v)\theta(xv - yu) \, \mathrm{d}\mu(u) \mathrm{d}\mu(v).$$

Show that $\hat{\Phi} = \Phi$. [*Hint*: $C_c^{\infty}(F^2)$ is spanned by functions of the form $\Phi(x, y) = \phi_1(x)\phi_2(y)$.]

11. [3 points] Let $k \ge 0$ be an integer, $s \in \mathbf{C}$ with $\operatorname{Re}(s) > 1$, and $\Phi \in C_c^{\infty}(\mathbf{A}_f^2)$. Show that the Eisenstein series $E_{\Phi}^k(g, \tau, s)$ and $\tilde{E}_{\Phi}^k(g, \tau, s)$ transform like elements of $M_{k,k/2}$ under left translation by $\operatorname{GL}_2^+(\mathbf{Q})$. (You may assume that the sums concerned are absolutely convergent.)