TCC Modular Forms and Representations of GL_{2} : Assignment \#3

David Loeffler, d.a.loeffler@warwick.ac.uk

6th December 2018

This is the last of 3 problem sheets for this course, covering material from lectures 6,7 and 8 .
Questions not marked $*$ are assessed, out of a total of 20, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by noon on Tuesday 8th January 2019. Late submissions will not be accepted.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

If $\Gamma \leqslant \mathrm{SL}_{2}(\mathbf{Z})$ and L is a subfield of \mathbf{C}, we define $M_{k}(\Gamma, L)$ to be the L-subspace of $M_{k}(\Gamma)$ consisting of forms with q-expansion coefficients in L, and similarly $S_{k}(\Gamma, L)$. For $f \in M_{k}(\Gamma)$ and $\sigma \in \operatorname{Aut}(\mathbf{C})$, we let f^{σ} be the formal q-expansion $\sum \sigma\left(a_{n}\right) q^{n}$, where $f=\sum a_{n} q^{n}$.

1. [1 point] Prove the formula relating the global Kirillov function to q-expansions, $a_{n}\left(f\left(\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right),-\right)\right)=$ $n^{t} \phi_{f}(n x)$.
2. [1 point] Let Π be a cuspidal automorphic representation of weight (k, t), and $f \in S_{k}\left(\Gamma_{1}(N)\right)$ its normalised new vector. Show that if f transforms under the diamond operators $\langle d\rangle$ via the character $\varepsilon:(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}$, then the central character of the automorphic representation Π is the character $\|\cdot\|^{2 t-k} \chi$, where χ is the adelic character attached to χ (as in Q7 of Sheet 1).
3. [*] Let χ be a quadratic Dirichlet character, and Π a cuspidal automorphic representation such that $\Pi=\Pi \otimes \chi[N B$: such examples do exist $]$. Let $\chi^{\prime} \neq \chi$ be another quadratic Dirichlet character. Show that the representation $\Pi^{\prime}=\Pi \otimes \chi^{\prime}$ satisfies $\Pi_{\ell} \cong \Pi_{\ell}^{\prime}$ for a set of primes ℓ of density $\geqslant \frac{3}{4}$.
4. [2 points] Show (without using Shimura's rationality theorems) that if $f \in M_{k, t}$ then the function $f^{*}(g, \tau)=\overline{f\left(\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) g,-\bar{\tau}\right)}$ is also in $M_{k, t}$, and that $(g \cdot f)^{*}=g \cdot f^{*}$.
5. [2 points] Let $f \in S_{k, t}(\mathbf{Q})$, for some $k, t \in \mathbf{Z}$, so that the Kirillov function ϕ_{f} of f takes values in \mathbf{Q}_{∞} and satisfies $\sigma\left(\phi_{f}(x)\right)=\phi_{f}(\chi(\sigma) x)$ for all $\sigma \in \operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$. Show that the same is true of the Kirillov function of $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) f$, for any $a \in \mathbf{A}_{f}^{\times}, b \in \mathbf{A}_{f}$. [You may not use Shimura's theorem that $S_{k, t}(\mathbf{Q})$ is $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$-stable.]
6. [3 points] Let $N \geqslant 1$. Define

$$
S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)=\left\{f \in S_{k}\left(\Gamma_{1}(N), \mathbf{Q}\left(\zeta_{N}\right)\right): f^{\sigma}=\langle\chi(\sigma)\rangle f \forall \sigma \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{N}\right) / \mathbf{Q}\right)\right\} .
$$

(a) Show that $S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)$ spans $S_{k}\left(\Gamma_{1}(N)\right)$ over \mathbf{C}.
(b) Show that for any integer t the Atkin-Lehner operator W_{N}, defined by $W_{N}(f)=\left.f\right|_{k, t}\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, is a bijection

$$
S_{k}\left(\Gamma_{1}(N), \mathbf{Q}\right) \cong S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)
$$

[Hint: Consider the group $\left\{\gamma \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): \gamma=\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \bmod N\right\}$.]
7. [4 points] Show that $X_{0}(16)$ has 6 cusps, of which 4 are defined over \mathbf{Q}. What is the field of definition of the remaining two?
8. [*] Let F be a nonarchimedean local field, and π_{1}, π_{2} irreducible infinite-dimensional representations of $\mathrm{GL}_{2}(F)$. Let χ, ψ be any two characters of F^{\times}such that $\chi \psi$ is the product of the central characters of the π_{i}. Show that there is a non-zero homomorphism of $\mathrm{GL}_{2}(F)$-representations $\pi_{1} \otimes \pi_{2} \rightarrow I(\chi, \psi)$. [Hint: Consider first the case where at least one of the π_{i} is supercuspidal.]
9. Recall the functions $f_{\Phi}(g, s)$ and $\tilde{f}_{\Phi}(g, s)$ defined in Jacquet's local Rankin-Selberg theory. [The parameter s was omitted from the notation in the lecture, but we include it here.]
(a) [1 point] Show that if $\operatorname{Re}(s)$ is sufficiently large that $\left|q^{-2 s} \omega(\varpi)\right|<1$, then the integral defining $f_{\Phi}(g, s)$ converges for all g and Φ.

(c) [*] Let $s_{0} \in \mathbf{C}$. Show that the following are equivalent:

- there exists some $\Phi \in C_{c}^{\infty}\left(F^{2}\right)$ and $g \in \mathrm{GL}_{2}(F)$ such that $f_{\Phi}(g, s)$ has a pole at $s=s_{0}$;
- the representation $I\left(|\cdot|^{s_{0}-\frac{1}{2}},|\cdot|^{\frac{1}{2}-s_{0}} \omega^{-1}\right)$ is reducible with a 1-dimensional subrepresentation.

Show that if these conditions are satisfied, then the limit

$$
\lim _{s \rightarrow s_{0}}\left(s-s_{0}\right) \cdot f_{\Phi}(g, s)
$$

exists for all g and Φ, and as a function of g it lies in the 1-dimensional subrepresentation of $I(\ldots)$.
(d) [*] Use (c) to show that if at least one of π_{1} and π_{2} is supercuspidal, then $L\left(\pi_{1} \times \pi_{2}, s\right)$ is identically 1 unless π_{1} is isomorphic to a twist of π_{2}.
10. [2 points] Let F be a nonarchimedean local field. Let θ be a character $F \rightarrow \mathbf{C}^{\times}$trivial on \mathcal{O} but not on $\varpi^{-1} \mathcal{O}$, and let μ denote the Haar measure on F such that $\mu(\mathcal{O})=1$.
(a) For $\phi \in C_{c}^{\infty}(F)$, define $\hat{\phi}$ by

$$
\hat{\phi}(x)=\int_{F} \phi(u) \theta(x u) \mathrm{d} \mu(u) .
$$

Show that $\hat{\phi} \in C_{c}^{\infty}(F)$, and $\hat{\phi}(x)=\phi(-x)$.
(b) For $\Phi \in C_{c}^{\infty}\left(F^{2}\right)$, define $\hat{\Phi}$ by

$$
\hat{\Phi}(x, y)=\iint_{F \times F} \Phi(u, v) \theta(x v-y u) \mathrm{d} \mu(u) \mathrm{d} \mu(v) .
$$

Show that $\hat{\Phi}=\Phi$. [Hint: $C_{c}^{\infty}\left(F^{2}\right)$ is spanned by functions of the form $\Phi(x, y)=\phi_{1}(x) \phi_{2}(y)$.]
11. [3 points] Let $k \geqslant 0$ be an integer, $s \in \mathbf{C}$ with $\operatorname{Re}(s)>1$, and $\Phi \in C_{c}^{\infty}\left(\mathbf{A}_{f}^{2}\right)$. Show that the Eisenstein series $E_{\Phi}^{k}(g, \tau, s)$ and $\tilde{E}_{\Phi}^{k}(g, \tau, s)$ transform like elements of $M_{k, k / 2}$ under left translation by $\mathrm{GL}_{2}^{+}(\mathbf{Q})$. (You may assume that the sums concerned are absolutely convergent.)

