TCC Modular Forms and Representations of GL₂: Assignment #1 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

16th November 2018

This is the first of 3 problem sheets for this course. Questions *not* marked * are assessed, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by **noon on Monday 5th November**. Solutions will be distributed that afternoon, so late submissions will not be accepted. The total mark available for the assessed questions is 20.

Questions marked with one or more *'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

Throughout the sheet, *F* denotes a nonarchimedean local field with ring of integers O and residue field of cardinality q; ω denotes an arbitrary uniformiser of O; and |x|, for $x \in F$, denotes the absolute value normalised by $|\omega| = 1/q$.

1. [1 point] Show that in a topological group, every open subgroup is also closed.

Solution: Let *G* be a topological group and $H \leq G$ an open subgroup. Then any coset *gH* is also open, since it is the image of *H* under the homeomorphism $G \rightarrow G$ given by translation by *g*. Since an arbitrary union of open sets is open, $G - H = \bigcup_{\substack{g \in G/H \\ g \neq 1}} gH$ is open, so *H* is closed.

2. [1 point] Show that if *G* is locally profinite and compact, then every open neighbourhood of 1_{*G*} contains a normal open compact subgroup.

Solution: Let *U* be an open neighbourhood of 1_G . Since *G* is locally profinite, there exists an open compact subgroup *H* such that $H \subseteq U$. For any $g \in G$, the conjugate gHg^{-1} is open (being the image of *H* under a homemorphism), and it depends only on the image of *g* in *G*/*H*. Since [G : H] is finite, and finite intersections of open sets are open, the intersection $K = \bigcup_{g \in G/H} gHg^{-1}$ is open; it is clearly normal in *G*, and $K \subseteq H \subseteq U$.

- 3. [3 points] Let $G = \mathbf{Z}_p^{\times}$, for *p* prime, and let $V = \{$ locally constant functions $G \to \mathbf{C} \}$.
 - (a) Show that *V* is smooth and admissible.

Solution: Smoothness: let $f \in V$. For all $x \in G$ there is an open set $U(x) \ni x$ such that $f|_{U(x)}$ is constant. The opens U(x) cover G, and since G is compact, we can find a finite subcovering $G = U_1 \cup \cdots \cup U_n$ such that $f|_{U_i}$ is constant for all i. We may assume each U_i is of the form $a_i + p^{k_i} \mathbb{Z}_p$ for some $k_i \ge 1$ and $a_i \in G$, since these form a basis for the

topology. Let $N \ge \max(\{k_i\})$, so that $(1 + p^N \mathbb{Z}_p)U_i = U_i$ for all *i*. Then $1 + p^N \mathbb{Z}_p$ is an open subgroup contained in Stab *f*.

Admissibility: let *K* be any open compact. Then any $f \in V^K$ is uniquely determined by its values on any set of representatives for the finite quotient *G*/*K*, so *V*^{*K*} is finite-dimensional.

(b) Show that *V* has infinitely many (distinct) irreducible subrepresentations.

Solution: Let χ be a Dirichlet character of conductor p^n for some n. Then χ generates a G-invariant subspace of V, which is 1-dimensional and hence irreducible.

(c) Show that the abstract dual V^* is not smooth.

Solution: Consider the linear functional $\lambda(f) = f(1)$. If there were open compact *K* such that $\lambda \in (V^*)^K$, then we would have f(k) = f(1) for all $f \in V$ and $k \in K$, which is clearly absurd.

(d) [*] Show that the smooth dual V^{\vee} is (non-canonically) isomorphic to *V*.

Solution: (*based on solution by Lambert A'Campo, Imperial*) Let μ be a left Haar measure for *G* and consider the map $\phi : V \to V^{\vee}$ sending *f* to the linear functional

$$f' \mapsto \int_G f(x) f'(x) \,\mathrm{d}\mu(x)$$

The image of ϕ is in V^{\vee} because $\operatorname{Stab}(f) \leq \operatorname{Stab} \phi(f)$. Now we show that ϕ is injective. Let $f \in V$ and suppose $\phi(f) = 0$. Then in particular $\phi(f)(\overline{f}) = \int_G |f|^2 d\mu = 0$. Since $|f|^2 \ge 0$, this implies f = 0 by the properties of the integral. It remains to prove that ϕ is a surjection. Let $T \in V^{\vee}$ and $H = \operatorname{Stab} T$, and define $f(x) = \sum_{g \in H/G} \frac{T(1_{Hg})}{\mu(H)} \mathbb{1}_{Hg}$. Then one checks that $\phi(f) = T$.

4. [2 points] Let *G* be a locally profinite group. Show that the natural inclusion of $\underline{\text{Smo}}_{G}$ in $\underline{\text{Rep}}_{G}$ has a right adjoint (and describe the adjoint functor).

Solution: For $V \in \underline{\operatorname{Rep}}_{G'}$ let $V^{\operatorname{sm}} = \bigcup_{K \operatorname{open cpct}} V^K$. Clearly $V^{\operatorname{sm}} \in \underline{\operatorname{Smo}}_{G'}$ $(-)^{\operatorname{sm}}$ is a functor, and the obvious inclusion $V^{\operatorname{sm}} \hookrightarrow V$ gives a natural transformation from $(-)^{\operatorname{sm}}$ to the identity functor.

We want to show that for any $W \in \underline{Smo}_G$ and $V \in \operatorname{Rep}_C$, we have

$$\operatorname{Hom}_{G}(W, V^{\operatorname{sm}}) = \operatorname{Hom}_{G}(W, V).$$

Composing with the inclusion $V^{\text{sm}} \to V$ gives injective maps $\text{Hom}_G(W, V^{\text{sm}}) \to \text{Hom}_G(W, V)$, which (by construction) are natural in both W and V; so it suffices to show that these maps are surjective. However, if $\phi \in \text{Hom}_G(W, V)$ and $w \in W$, then $w \in W^K$ for some K, so $\phi(w) \in V^K$; hence ϕ factors through V^{sm} as required.

5. (a) [1 point] Show that every compact open subgroup of $GL_2(F)$ is conjugate to a subgroup of $GL_2(\mathcal{O})$.

Solution: Consider the action of $GL_2(F)$ on the set of \mathcal{O} -lattices in F^2 . It is clear that the action is transitive, so it suffices to show that every open compact stabilises some lattice.

Let Λ be the standard lattice \mathcal{O}^2 , whose stabiliser is $\operatorname{GL}_2(\mathcal{O})$. If *K* is any open compact, then $K \cap \operatorname{GL}_2(\mathcal{O})$ has finite index in *K*, so the *K*-orbit of Λ is finite. The sum of any finite collection of lattices is a lattice, so summing over the *K*-orbit of Λ gives a lattice Λ_K which is *K*-invariant.

- (b) [**] Show that this is not true for SL₂ in place of GL₂.
- 6. [2 points] Show that $GL_n(F)$ is unimodular for all $n \ge 1$.

Solution: Using the Cartan decomposition, it suffices to show that $\delta_G(\gamma) = 1$ when $\gamma = \text{diag}(1, \ldots, 1, \omega, \ldots, \omega)$, where the number of ω terms is *m* for some $1 \leq m \leq n-1$. Consider the subgroup *U* of $\text{GL}_n(\mathcal{O})$ consisting of terms in which the bottom left $m \times n$ block is in $\omega \mathcal{O}$. Then γ conjugates *U* onto its opposite \bar{U} ; but *U* is the image of \bar{U} under the inverse-transpose automorphism of $\text{GL}_n(\mathcal{O})$, hence *U* and \bar{U} have the same index in $\text{GL}_n(\mathcal{O})$, and we are done.

- 7. Let *G* be locally profinite, and let μ be a left Haar measure on *G*. For $f \in C_c^{\infty}(G)$ and $g \in G$, write $g \cdot f$ for the function $x \mapsto f(xg)$.
 - (a) [1 point] Show that the linear functional $\lambda : C_c^{\infty}(G) \to \mathbf{C}$ defined by

$$\lambda(f) = \int_{x \in G} \delta_G(x)^{-1} f(x) \, \mathrm{d}\mu(x)$$

satisfies $\lambda(g \cdot f) = \lambda(f)$ for all $f \in C_c^{\infty}(G)$ and $g \in G$.

Solution: It suffices to check this for $f = \mathbf{1}_{Ua}$ the indicator function of a set of the form Ua, where U is an open compact subgroup and $a \in G$, since these span $C_c^{\infty}(G)$. We have

$$\lambda(f) = \delta(a)^{-1}\mu(Ua) = \delta_G(a)^{-1}\delta_g(a)\mu(U) = \mu(U)$$

which is independent of *a*. Since $g \cdot f = \mathbf{1}_{Uag^{-1}}$ [*sic; not Uag*], we are done.

(b) [2 points] Show that if λ' is a linear map $C_c^{\infty}(G) \to \mathbf{C}$ such that $\lambda'(g \cdot f) = \lambda'(f)$ for all $f \in C_c^{\infty}(G)$ and $g \in G$, then there is a constant $\alpha \in \mathbf{C}$ such that $\lambda' = \alpha \lambda$.

Solution: Fix one open compact K_0 and let $\alpha = \mu(K_0)^{-1}\lambda'(\mathbf{1}_{K_0})$. Then $\lambda'(f) = \lambda(f)$ for $f = \mathbf{1}_{K_0}$.

If $K \leq K_0$ is any smaller open compact subgroup, then

$$\lambda'(\mathbf{1}_{K_0}) = \sum_{\gamma \in K_0/K} \lambda'(\gamma \cdot \mathbf{1}_K) = [K:K_0]\lambda'(\mathbf{1}_K),$$

and similarly for λ . Thus $\lambda'(1_K) = \alpha \lambda(1_K)$ for all open compacts $K \leq K_0$. Since the functions $g \cdot 1_K$, for $K \leq K_0$ open compact and $g \in G$, span $C_c^{\infty}(G)$ we have $\lambda'(f) = \alpha \lambda(f)$ for all f.

- 8. (a) [*] Show that any open normal subgroup of $GL_2(F)$ must contain $SL_2(F)$.
 - (b) [*] Hence show that a finite-dimensional irreducible smooth representation of $GL_2(F)$ must be of the form $\chi \circ \det$, for some smooth $\chi : F^{\times} \to \mathbb{C}^{\times}$.
- 9. A smooth representation of a locally profinite group *G* is said to be *unitarizable* if there is a pairing $\langle -, \rangle : V \to \mathbf{C}$ such that the following conditions hold:
 - *V* is linear in the second variable and conjugate-linear in the first;

- we have $\langle gx, gy \rangle = \langle x, y \rangle$ for all $x, y \in V$ and $g \in G$;
- $\langle y, x \rangle = \overline{\langle x, y \rangle};$
- $\langle x, x \rangle > 0$ if $x \neq 0$.
- (a) [*] Show that if *V* is smooth, admissible, and unitarizable, any *G*-invariant subspace $W \subseteq V$ has a *G*-invariant complement.
- (b) [1 point] Show that if $H \leq G$ is closed and $W \in \underline{Smo}_G$ is unitarizable, then the normalised induction $V = \text{c-Ind}_H^G \left(W \otimes (\delta_H^{-1} \delta_G)^{1/2} \right)$ is unitarizable.

Solution: By hypothesis there is some pairing $\langle -, - \rangle_W$ on W satisfying the hypotheses. Let $f_1, f_2 \in \text{c-Ind}_H^G \left(W \otimes (\delta_H^{-1} \delta_G)^{1/2} \right)$. Then the function $g \mapsto \langle f_1(g), f_2(g) \rangle_W$ is transforms by $(\delta_H^{-1} \delta_G)$ under left translation by H, and is compactly supported modulo H; so the integral

$$\langle f_1, f_2 \rangle = \int_{H \setminus G} \langle f_1(g), f_2(g) \rangle_W \, \mathrm{d}\mu(g)$$

is defined, up to a positive real scaling factor depending on our choice of measures. It manifestly satisfies the first three conditions, and if $\langle f, f \rangle = 0$, then $\langle f(g), f(g) \rangle$ is a smooth function taking non-negative real values whose total integral is 0, so it must be identically 0 and we conclude f = 0.

(c) [2 points] Show that if the representation $I(\chi, \psi)$ of $GL_2(F)$ is unitarizable, then the character χ/ψ must be either unitary, or real-valued. (Hint: Consider the representation $I(\overline{\chi}, \overline{\psi})$.)

Solution: If *V* is a smooth unitarizable representation then $v \mapsto \langle -, v \rangle$ is a non-zero *G*-equivariant map from *V* into the dual space $(\overline{V})^{\vee}$, where \overline{V} is the representation which is *V* as an abelian group but with the **C**-linear structure flipped by complex conjugation. Clearly $\overline{I(\chi, \psi)} = I(\overline{\chi}, \overline{\psi})$, so if $I(\chi, \psi)$ is unitarizable then

$$\operatorname{Hom}_{G}\left(I(\chi,\psi),I(\overline{\chi}^{-1},\overline{\psi}^{-1})\right)\neq 0.$$

By a result from lectures this implies that we must have either $\{\chi = \overline{\chi}^{-1}, \psi = \overline{\psi}^{-1}\}$ or $\{\chi = \overline{\psi}^{-1}, \psi = \overline{\chi}^{-1}\}$. In the first case, both χ and ψ are unitary, hence so is χ/ψ . In the second case, we find $\chi/\psi = \overline{\psi}^{-1}/\overline{\chi}^{-1} = \overline{\chi/\psi}$, so χ/ψ is real-valued.

- (d) [**] Show that the Steinberg representation of $GL_2(F)$ is unitarizable.
- 10. Prove the two parts of the first lemma from §2.3, concerning representations of the additive group $N \cong (F, +)$:
 - (a) [2 points] If $V \in \underline{Smo}_N$, then the kernel of $V \mapsto V_N$ coincides with the space

$$\left\{ v \in V : \int_{N_0} n \cdot v \, \mathrm{d}\mu_N(n) = 0 \quad \text{for some open compact } N_0 \subset N \text{ (depending on } v) \right\}$$

Solution: The kernel of $V \to V_N$ is the subspace V(N) spanned as a **C**-vector space by all vectors of the form nv - v, for $n \in N$. Let V'(N) be the other space in question. To show $V(N) \subseteq V'(N)$ it suffices to show that $nv - v \in V'(N)$, for all $n \in N$ and $v \in V$. Choose $N_0 \leq N$ open compact containing *n*; then

$$\int_{N_0} n' \cdot (nv - v) \, \mathrm{d}n' = \int_{N_0} n' nv \, \mathrm{d}n' - \int_{N_0} n' v \, \mathrm{d}n' = 0$$

by the translation-invariance of the measure. (*Note that N is commutative, so there is no need to distinguish between left and right translation invariance.*)

Conversely, if $v \in V'(N)$, then choose some N_0 such that $\int_{N_0} nv \, dn = 0$. Then we have

$$v = v - \frac{1}{\mu(N_0)} \int_{N_0} nv \, \mathrm{d}n = -\int_{N_0} (nv - v) \, \mathrm{d}n$$

which is a finite linear combination of the generators of V(N). Thus $v \in V(N)$.

(b) [2 points] The functor $V \mapsto V_N$ is exact on <u>Smo_N</u>.

Solution: It is standard that coinvariants are right exact; so we need only show that if $f : A \hookrightarrow B$ is an injective map of *N*-representations, then $A_N \to B_N$ is also injective. However, if $a \in A$ maps to 0 in B_N , by part (a) there is N_0 such that $\int_{N_0} nf(a) = 0$ as an element of *B*. Thus $f(\int_{N_0} na) = 0$, but *f* is injective, so $\int_{N_0} na = 0$ in *A* and thus a = 0 in A_N .

- 11. [*] Let χ , ψ be smooth characters of F^{\times} with $\chi \neq \psi$. We saw in lectures that Hom_{*G*}($I(\chi, \psi), I(\psi, \chi)$) is 1-dimensional. In this exercise we'll construct an explicit homomorphism between the two (in a special case).
 - (a) Show that if the inequality $|\chi(\omega)/\psi(\omega)| < 1$ holds for one uniformiser ω , this holds for every uniformiser ω .
 - (b) Suppose the inequality of (a) holds, and let $f \in I(\chi, \psi)$. Show that the integral

$$\tilde{f}(g) = \int_{N} f\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ng\right) \, \mathrm{d}\mu_{N}(n)$$

converges absolutely. You may find it helpful to note the matrix identity

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -x^{-1} & 1 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix}$$

- (c) Show that in the situation of (a), the map $f \mapsto \tilde{f}$ is a non-zero element of $\text{Hom}_G(I(\chi, \psi), I(\psi, \chi))$.
- (d) [**] What is happening if $\chi/\psi = |\cdot|$?
- 12. [**] Let *G* be locally profinite, *V* an irreducible smooth representation of *G*, and $H \leq G$ an open normal subgroup such that $G/H \cong (\mathbb{Z}/2)^n$ for some *n*.
 - (a) Show that $V|_H$ is a direct sum of finitely many irreducible *H*-subrepresentations, and the number of these factors divides 2^n . (Hint: Use induction to reduce to the case n = 1, and consider the subspace $g \cdot W$ where *W* is an irreducible *H*-subrepresentation and $g \in G H$.)
 - (b) Show that $V|_H$ is irreducible if and only if there is no nontrivial character $\chi : G/H \to \mathbb{C}^{\times}$ such that $V \cong V \otimes \chi$. (Hint: Show that $\operatorname{Ind}_H^G(V|_H) \cong \bigoplus_{\chi} V \otimes \chi$.)
 - (c) Describe the decomposition into irreducible $SL_2(F)$ -representations of every irreducible, nonsupercuspidal representation of $GL_2(F)$. (Hint: $GL_2(F)/(F^{\times} \cdot SL_2(F))$ is finite.)
 - (d) [***] Can you find an irreducible representation of $GL_2(F)$ which decomposes into more than two $SL_2(F)$ subrepresentations?