TCC Modular Forms and Representations of GL_{2} : Assignment \#1 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

16th November 2018

This is the first of 3 problem sheets for this course. Questions not marked $*$ are assessed, and students taking this course for credit should submit their solutions to me (by email, or via my pigeonhole for Warwick students) by noon on Monday 5th November. Solutions will be distributed that afternoon, so late submissions will not be accepted. The total mark available for the assessed questions is 20.

Questions marked with one or more $*$'s are included for your own interest, and will not be given a numerical mark, but if you would like some (brief) feedback on your answers you are welcome to submit them to me anyway. The number of stars is intended as a rough indication of difficulty.

Throughout the sheet, F denotes a nonarchimedean local field with ring of integers \mathcal{O} and residue field of cardinality $q ; \omega$ denotes an arbitrary uniformiser of \mathcal{O}; and $|x|$, for $x \in F$, denotes the absolute value normalised by $|\omega|=1 / q$.

1. [1 point] Show that in a topological group, every open subgroup is also closed.

Solution: Let G be a topological group and $H \leqslant G$ an open subgroup. Then any coset $g H$ is also open, since it is the image of H under the homeomorphism $G \rightarrow G$ given by translation by g. Since an arbitrary union of open sets is open, $G-H=\bigcup_{\substack{g \in G / H \\ g \neq 1}} g H$ is open, so H is closed.
2. [1 point] Show that if G is locally profinite and compact, then every open neighbourhood of 1_{G} contains a normal open compact subgroup.

Solution: Let U be an open neighbourhood of 1_{G}. Since G is locally profinite, there exists an open compact subgroup H such that $H \subseteq U$. For any $g \in G$, the conjugate $g \mathrm{Hg}^{-1}$ is open (being the image of H under a homemorphism), and it depends only on the image of g in G / H. Since $[G: H]$ is finite, and finite intersections of open sets are open, the intersection $K=\bigcup_{g \in G / H} g H^{-1}$ is open; it is clearly normal in G, and $K \subseteq H \subseteq U$.
3. [3 points] Let $G=\mathbf{Z}_{p}^{\times}$, for p prime, and let $V=\{$ locally constant functions $G \rightarrow \mathbf{C}\}$.
(a) Show that V is smooth and admissible.

Solution: Smoothness: let $f \in V$. For all $x \in G$ there is an open set $U(x) \ni x$ such that $\left.f\right|_{U(x)}$ is constant. The opens $U(x)$ cover G, and since G is compact, we can find a finite subcovering $G=U_{1} \cup \cdots \cup U_{n}$ such that $\left.f\right|_{U_{i}}$ is constant for all i. We may assume each U_{i} is of the form $a_{i}+p^{k_{i}} \mathbf{Z}_{p}$ for some $k_{i} \geqslant 1$ and $a_{i} \in G$, since these form a basis for the
topology. Let $N \geqslant \max \left(\left\{k_{i}\right\}\right)$, so that $\left(1+p^{N} \mathbf{Z}_{p}\right) U_{i}=U_{i}$ for all i. Then $1+p^{N} \mathbf{Z}_{p}$ is an open subgroup contained in Stab f.
Admissibility: let K be any open compact. Then any $f \in V^{K}$ is uniquely determined by its values on any set of representatives for the finite quotient G / K, so V^{K} is finite-dimensional.
(b) Show that V has infinitely many (distinct) irreducible subrepresentations.

Solution: Let χ be a Dirichlet character of conductor p^{n} for some n. Then χ generates a G-invariant subspace of V, which is 1 -dimensional and hence irreducible.
(c) Show that the abstract dual V^{*} is not smooth.

Solution: Consider the linear functional $\lambda(f)=f(1)$. If there were open compact K such that $\lambda \in\left(V^{*}\right)^{K}$, then we would have $f(k)=f(1)$ for all $f \in V$ and $k \in K$, which is clearly absurd.
(d) $\left[^{*}\right]$ Show that the smooth dual V^{\vee} is (non-canonically) isomorphic to V.

Solution: (based on solution by Lambert A^{\prime} Campo, Imperial) Let μ be a left Haar measure for G and consider the map $\phi: V \rightarrow V^{\vee}$ sending f to the linear functional

$$
f^{\prime} \mapsto \int_{G} f(x) f^{\prime}(x) \mathrm{d} \mu(x)
$$

The image of ϕ is in V^{\vee} because $\operatorname{Stab}(f) \leqslant \operatorname{Stab} \phi(f)$. Now we show that ϕ is injective. Let $f \in V$ and suppose $\phi(f)=0$. Then in particular $\phi(f)(\bar{f})=\int_{G}|f|^{2} \mathrm{~d} \mu=0$. Since $|f|^{2} \geqslant 0$, this implies $f=0$ by the properties of the integral. It remains to prove that ϕ is a surjection. Let $T \in V^{\vee}$ and $H=\operatorname{Stab} T$, and define $f(x)=\sum_{g \in H / G} \frac{T\left(1_{\mathrm{Hg}}\right)}{\mu(H)} 1_{H g}$. Then one checks that $\phi(f)=T$.
4. [2 points] Let G be a locally profinite group. Show that the natural inclusion of $\underline{S m o}_{G}$ in $\underline{\operatorname{Rep}}_{G}$ has a right adjoint (and describe the adjoint functor).

Solution: For $V \in \underline{\operatorname{Rep}}_{G}$, let $V^{\mathrm{sm}}=\bigcup_{K \text { open cpct }} V^{K}$. Clearly $V^{\mathrm{sm}} \in \underline{\operatorname{Smo}}_{G},(-)^{\mathrm{sm}}$ is a functor, and the obvious inclusion $V^{\mathrm{sm}} \hookrightarrow V$ gives a natural transformation from $(-)^{\mathrm{sm}}$ to the identity functor.
We want to show that for any $W \in \underline{\mathrm{Smo}}_{G}$ and $V \in \underline{\operatorname{Rep}}_{G}$, we have

$$
\operatorname{Hom}_{G}\left(W, V^{\mathrm{sm}}\right)=\operatorname{Hom}_{G}(W, V)
$$

Composing with the inclusion $V^{\mathrm{sm}} \rightarrow V$ gives injective maps $\operatorname{Hom}_{G}\left(W, V^{\text {sm }}\right) \rightarrow \operatorname{Hom}_{G}(W, V)$, which (by construction) are natural in both W and V; so it suffices to show that these maps are surjective. However, if $\phi \in \operatorname{Hom}_{G}(W, V)$ and $w \in W$, then $w \in W^{K}$ for some K, so $\phi(w) \in V^{K}$; hence ϕ factors through V^{sm} as required.
5. (a) [1 point] Show that every compact open subgroup of $\mathrm{GL}_{2}(F)$ is conjugate to a subgroup of $\mathrm{GL}_{2}(\mathcal{O})$.

Solution: Consider the action of $\mathrm{GL}_{2}(F)$ on the set of \mathcal{O}-lattices in F^{2}. It is clear that the action is transitive, so it suffices to show that every open compact stabilises some lattice.

Let Λ be the standard lattice \mathcal{O}^{2}, whose stabiliser is $\mathrm{GL}_{2}(\mathcal{O})$. If K is any open compact, then $K \cap \mathrm{GL}_{2}(\mathcal{O})$ has finite index in K, so the K-orbit of Λ is finite. The sum of any finite collection of lattices is a lattice, so summing over the K-orbit of Λ gives a lattice Λ_{K} which is K-invariant.
(b) $\left[{ }^{* *}\right]$ Show that this is not true for SL_{2} in place of GL_{2}.
6. [2 points] Show that $\mathrm{GL}_{n}(F)$ is unimodular for all $n \geqslant 1$.

Solution: Using the Cartan decomposition, it suffices to show that $\delta_{G}(\gamma)=1$ when $\gamma=$ $\operatorname{diag}(1, \ldots, 1, \omega, \ldots, \boldsymbol{\omega})$, where the number of ω terms is m for some $1 \leqslant m \leqslant n-1$. Consider the subgroup U of $\mathrm{GL}_{n}(\mathcal{O})$ consisting of terms in which the bottom left $m \times n$ block is in $\omega \mathcal{O}$. Then γ conjugates U onto its opposite \bar{U}; but U is the image of \bar{U} under the inverse-transpose automorphism of $\mathrm{GL}_{n}(\mathcal{O})$, hence U and \bar{U} have the same index in $\mathrm{GL}_{n}(\mathcal{O})$, and we are done.
7. Let G be locally profinite, and let μ be a left Haar measure on G. For $f \in C_{c}^{\infty}(G)$ and $g \in G$, write $g \cdot f$ for the function $x \mapsto f(x g)$.
(a) [1 point] Show that the linear functional $\lambda: C_{c}^{\infty}(G) \rightarrow \mathbf{C}$ defined by

$$
\lambda(f)=\int_{x \in G} \delta_{G}(x)^{-1} f(x) \mathrm{d} \mu(x)
$$

satisfies $\lambda(g \cdot f)=\lambda(f)$ for all $f \in C_{c}^{\infty}(G)$ and $g \in G$.
Solution: It suffices to check this for $f=\mathbf{1}_{U a}$ the indicator function of a set of the form $U a$, where U is an open compact subgroup and $a \in G$, since these span $C_{c}^{\infty}(G)$. We have

$$
\lambda(f)=\delta(a)^{-1} \mu(U a)=\delta_{G}(a)^{-1} \delta_{g}(a) \mu(U)=\mu(U)
$$

which is independent of a. Since $g \cdot f=\mathbf{1}_{\text {Uag }^{-1}}$ [sic; not Uag], we are done.
(b) [2 points] Show that if λ^{\prime} is a linear map $C_{c}^{\infty}(G) \rightarrow \mathbf{C}$ such that $\lambda^{\prime}(g \cdot f)=\lambda^{\prime}(f)$ for all $f \in C_{c}^{\infty}(G)$ and $g \in G$, then there is a constant $\alpha \in \mathbf{C}$ such that $\lambda^{\prime}=\alpha \lambda$.

Solution: Fix one open compact K_{0} and let $\alpha=\mu\left(K_{0}\right)^{-1} \lambda^{\prime}\left(\mathbf{1}_{K_{0}}\right)$. Then $\lambda^{\prime}(f)=\lambda(f)$ for $f=\mathbf{1}_{K_{0}}$.
If $K \leqslant K_{0}$ is any smaller open compact subgroup, then

$$
\lambda^{\prime}\left(1_{K_{0}}\right)=\sum_{\gamma \in K_{0} / K} \lambda^{\prime}\left(\gamma \cdot 1_{K}\right)=\left[K: K_{0}\right] \lambda^{\prime}\left(1_{K}\right),
$$

and similarly for λ. Thus $\lambda^{\prime}\left(1_{K}\right)=\alpha \lambda\left(1_{K}\right)$ for all open compacts $K \leqslant K_{0}$. Since the functions $g \cdot 1_{K}$, for $K \leqslant K_{0}$ open compact and $g \in G$, span $C_{c}^{\infty}(G)$ we have $\lambda^{\prime}(f)=\alpha \lambda(f)$ for all f.
8. (a) [*] Show that any open normal subgroup of $\mathrm{GL}_{2}(F)$ must contain $\mathrm{SL}_{2}(F)$.
(b) [*] Hence show that a finite-dimensional irreducible smooth representation of $\mathrm{GL}_{2}(F)$ must be of the form $\chi \circ$ det, for some smooth $\chi: F^{\times} \rightarrow \mathbf{C}^{\times}$.
9. A smooth representation of a locally profinite group G is said to be unitarizable if there is a pairing $\langle-,-\rangle: V \rightarrow \mathbf{C}$ such that the following conditions hold:

- V is linear in the second variable and conjugate-linear in the first;
- we have $\langle g x, g y\rangle=\langle x, y\rangle$ for all $x, y \in V$ and $g \in G$;
- $\langle y, x\rangle=\overline{\langle x, y\rangle}$;
- $\langle x, x\rangle>0$ if $x \neq 0$.
(a) [*] Show that if V is smooth, admissible, and unitarizable, any G-invariant subspace $W \subseteq V$ has a G-invariant complement.
(b) [1 point] Show that if $H \leqslant G$ is closed and $W \in \underline{\operatorname{Smo}}_{G}$ is unitarizable, then the normalised induction $V=\mathrm{c}-\operatorname{Ind}_{H}^{G}\left(W \otimes\left(\delta_{H}^{-1} \delta_{G}\right)^{1 / 2}\right)$ is unitarizable.

Solution: By hypothesis there is some pairing $\langle-,-\rangle_{W}$ on W satisfying the hypotheses. Let $f_{1}, f_{2} \in \mathrm{c}-\operatorname{Ind}_{H}^{G}\left(W \otimes\left(\delta_{H}^{-1} \delta_{G}\right)^{1 / 2}\right)$. Then the function $g \mapsto\left\langle f_{1}(g), f_{2}(g)\right\rangle_{W}$ is transforms by $\left(\delta_{H}^{-1} \delta_{G}\right)$ under left translation by H, and is compactly supported modulo H; so the integral

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{H \backslash G}\left\langle f_{1}(g), f_{2}(g)\right\rangle_{W} \mathrm{~d} \mu(g)
$$

is defined, up to a positive real scaling factor depending on our choice of measures. It manifestly satisfies the first three conditions, and if $\langle f, f\rangle=0$, then $\langle f(g), f(g)\rangle$ is a smooth function taking non-negative real values whose total integral is 0 , so it must be identically 0 and we conclude $f=0$.
(c) [2 points] Show that if the representation $I(\chi, \psi)$ of $\mathrm{GL}_{2}(F)$ is unitarizable, then the character χ / ψ must be either unitary, or real-valued. (Hint: Consider the representation $I(\bar{\chi}, \bar{\psi})$.)

Solution: If V is a smooth unitarizable representation then $v \mapsto\langle-, v\rangle$ is a non-zero G equivariant map from V into the dual space $(\bar{V})^{\vee}$, where \bar{V} is the representation which is V as an abelian group but with the C-linear structure flipped by complex conjugation. Clearly $\overline{I(\chi, \psi)}=I(\bar{\chi}, \bar{\psi})$, so if $I(\chi, \psi)$ is unitarizable then

$$
\operatorname{Hom}_{G}\left(I(\chi, \psi), I\left(\bar{\chi}^{-1}, \bar{\psi}^{-1}\right)\right) \neq 0
$$

By a result from lectures this implies that we must have either $\left\{\chi=\bar{\chi}^{-1}, \psi=\bar{\psi}^{-1}\right\}$ or $\left\{\chi=\bar{\psi}^{-1}, \psi=\bar{\chi}^{-1}\right\}$. In the first case, both χ and ψ are unitary, hence so is χ / ψ. In the second case, we find $\chi / \psi=\bar{\psi}^{-1} / \bar{\chi}^{-1}=\overline{\chi / \psi}$, so χ / ψ is real-valued.
(d) $\left.{ }^{* * *}\right]$ Show that the Steinberg representation of $\mathrm{GL}_{2}(F)$ is unitarizable.
10. Prove the two parts of the first lemma from $\S 2.3$, concerning representations of the additive group $N \cong(F,+)$:
(a) [2 points] If $V \in \underline{\mathrm{Smo}}_{\mathrm{N}}$, then the kernel of $V \mapsto V_{N}$ coincides with the space

$$
\left\{v \in V: \int_{N_{0}} n \cdot v \mathrm{~d} \mu_{N}(n)=0 \quad \text { for some open compact } N_{0} \subset N(\text { depending on } v)\right\}
$$

Solution: The kernel of $V \rightarrow V_{N}$ is the subspace $V(N)$ spanned as a C-vector space by all vectors of the form $n v-v$, for $n \in N$. Let $V^{\prime}(N)$ be the other space in question.
To show $V(N) \subseteq V^{\prime}(N)$ it suffices to show that $n v-v \in V^{\prime}(N)$, for all $n \in N$ and $v \in V$. Choose $N_{0} \leqslant N$ open compact containing n; then

$$
\int_{N_{0}} n^{\prime} \cdot(n v-v) \mathrm{d} n^{\prime}=\int_{N_{0}} n^{\prime} n v \mathrm{~d} n^{\prime}-\int_{N_{0}} n^{\prime} v \mathrm{~d} n^{\prime}=0
$$

by the translation-invariance of the measure. (Note that N is commutative, so there is no need to distinguish between left and right translation invariance.)
Conversely, if $v \in V^{\prime}(N)$, then choose some N_{0} such that $\int_{N_{0}} n v \mathrm{~d} n=0$. Then we have

$$
v=v-\frac{1}{\mu\left(N_{0}\right)} \int_{N_{0}} n v \mathrm{~d} n=-\int_{N_{0}}(n v-v) \mathrm{d} n
$$

which is a finite linear combination of the generators of $V(N)$. Thus $v \in V(N)$.
(b) [2 points] The functor $V \mapsto V_{N}$ is exact on ${\underline{\mathrm{Smo}_{N}}}_{N}$.

Solution: It is standard that coinvariants are right exact; so we need only show that if $f: A \hookrightarrow B$ is an injective map of N-representations, then $A_{N} \rightarrow B_{N}$ is also injective. However, if $a \in A$ maps to 0 in B_{N}, by part (a) there is N_{0} such that $\int_{N_{0}} n f(a)=0$ as an element of B. Thus $f\left(\int_{N_{0}} n a\right)=0$, but f is injective, so $\int_{N_{0}} n a=0$ in A and thus $a=0$ in A_{N}.
11. [*] Let χ, ψ be smooth characters of F^{\times}with $\chi \neq \psi$. We saw in lectures that $\operatorname{Hom}_{G}(I(\chi, \psi), I(\psi, \chi))$ is 1-dimensional. In this exercise we'll construct an explicit homomorphism between the two (in a special case).
(a) Show that if the inequality $|\chi(\omega) / \psi(\omega)|<1$ holds for one uniformiser ω, this holds for every uniformiser ω.
(b) Suppose the inequality of (a) holds, and let $f \in I(\chi, \psi)$. Show that the integral

$$
\tilde{f}(g)=\int_{N} f\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) n g\right) \mathrm{d} \mu_{N}(n)
$$

converges absolutely. You may find it helpful to note the matrix identity

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-x^{-1} & 1 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
x^{-1} & 1
\end{array}\right) .
$$

(c) Show that in the situation of (a), the map $f \mapsto \tilde{f}$ is a non-zero element of $\operatorname{Hom}_{G}(I(\chi, \psi), I(\psi, \chi))$.
(d) [${ }^{* *}$] What is happening if $\chi / \psi=|\cdot|$?
12. [**] Let G be locally profinite, V an irreducible smooth representation of G, and $H \leqslant G$ an open normal subgroup such that $G / H \cong(\mathbf{Z} / 2)^{n}$ for some n.
(a) Show that $\left.V\right|_{H}$ is a direct sum of finitely many irreducible H-subrepresentations, and the number of these factors divides 2^{n}. (Hint: Use induction to reduce to the case $n=1$, and consider the subspace $g \cdot W$ where W is an irreducible H-subrepresentation and $g \in G-H$.)
(b) Show that $\left.V\right|_{H}$ is irreducible if and only if there is no nontrivial character $\chi: G / H \rightarrow \mathbf{C}^{\times}$such that $V \cong V \otimes \chi$. (Hint: Show that $\operatorname{Ind}_{H}^{G}\left(\left.V\right|_{H}\right) \cong \oplus_{\chi} V \otimes \chi$.)
(c) Describe the decomposition into irreducible $\mathrm{SL}_{2}(F)$-representations of every irreducible, nonsupercuspidal representation of $\mathrm{GL}_{2}(F)$. (Hint: $\mathrm{GL}_{2}(F) /\left(F^{\times} \cdot \mathrm{SL}_{2}(F)\right)$ is finite.)
(d) $\left[{ }^{* * *}\right]$ Can you find an irreducible representation of $\mathrm{GL}_{2}(F)$ which decomposes into more than two $\mathrm{SL}_{2}(F)$ subrepresentations?

