TCC Modular Forms and Representations of GL_{2} : Assignment \#2 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

10th December 2018

1. [2 points] Let G be locally profinite and $V \in \underline{S m o}_{G}$. Show that if $F_{1}, F_{2} \in \mathcal{H}(G)$ then $\left(F_{1} \star F_{2}\right) \star v=$ $F_{1} \star\left(F_{2} \star v\right)$. Hence show that $\mathcal{H}(G)$ is a ring.

Solution: We compute

$$
\begin{array}{rlr}
\left(F_{1} \star F_{2}\right) \star v & =\int_{g \in G}\left(F_{1} \star F_{2}\right)(g)(g \cdot v) \mathrm{d} \mu(g) & \text { (def of star product) } \\
& =\int_{g \in G}\left(\int_{h \in G} F_{1}(h) F_{2}\left(h^{-1} g\right) \mathrm{d} \mu(h)\right)(g \cdot v) \mathrm{d} \mu(g) & \text { (def of } \left.F_{1} \star F_{2}\right) \\
& =\int_{h \in G} F_{1}(h)\left(\int_{g \in G} F_{2}\left(h^{-1} g\right)(g \cdot v) \mathrm{d} \mu(g)\right) \mathrm{d} \mu(h) \\
& =\int_{h \in G} F_{1}(h)\left(\int_{g^{\prime} \in G} F_{2}\left(g^{\prime}\right)\left(h g^{\prime} \cdot v\right) \mathrm{d} \mu\left(g^{\prime}\right)\right) \mathrm{d} \mu(h) & \text { (transini) } \\
& =\int_{h \in G} F_{1}(h) h \cdot\left(\int_{g^{\prime} \in G} F_{2}\left(g^{\prime}\right)\left(g^{\prime} \cdot v\right) \mathrm{d} \mu\left(g^{\prime}\right)\right) \mathrm{d} \mu(h) \\
& =\int_{h \in G} F_{1}(h)\left(h \cdot\left(F_{2} \star v\right)\right) \mathrm{d} \mu(h)=F_{1} \star\left(F_{2} \star v\right) .
\end{array}
$$

change of order of integration is obvious.)
Taking V to be $\mathcal{H}(G)$ itself with its left-regular action of G, we deduce that the star product is associative. Since all the other ring axioms are obvious, this shows that \mathcal{H} is a ring.
2. Let G locally profinite, $K \leqslant G$ open compact. We say that $V \in \underline{S m o}_{G}$ is K-spherical if V^{K} generates V as a G-representation.
(a) [1 point] Show that if V is irreducible and K-spherical, then V^{K} is a simple $\mathcal{H}(G, K)$-module.

Solution: It suffices to show that for any $w, v \in V^{K}$ with $w \neq 0$, the vector v lies in the $\mathcal{H}(G, K)$-span of w. Since V is irreducible, the G-translates of w span V, hence we can write v as a finite sum $v=\sum_{i=1}^{r} a_{i} g_{i} w$.
For each $i \in\{1, \ldots, r\}$, write the double coset $K g K$ as a finite disjoint union $\bigsqcup_{j=1}^{n_{i}} K g_{i} h_{i j}$ for
$h_{i j} \in K$. Then we have

$$
\begin{aligned}
\sum_{i} \frac{a_{i}}{n_{i}}\left[K g_{i} K\right] w & =\sum_{i} \frac{a_{i}}{n_{i}} \sum_{j} g_{i} h_{i j} w \\
& =\sum_{i} \frac{a_{i}}{n_{i}} \sum_{j} g_{i} w \quad \quad\left(\text { as } w \in V^{K}\right) \\
& =\sum_{i} a_{i} g_{i} w=v .
\end{aligned}
$$

Thus $v \in \mathcal{H}(G, K) \cdot w$ as required.
3. [2 points] In the notation of $\S 3.2$ of the lectures, prove the identity

$$
T \star T=\left[K\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & 1
\end{array}\right) K\right]+(q+1) S .
$$

Solution: We know that $G=\bigsqcup_{\substack{a, b \in \mathbf{Z} \\ a \geqslant b}} K\left(\begin{array}{cc}\omega^{a} & 0 \\ 0 & \omega^{b}\end{array}\right) K$; and the support of $T \star T$ is clearly contained in the set of matrices lying in $M_{2 \times 2}(\mathcal{O})$ and having determinant in $\omega \mathcal{O}^{\times}$, so we must have

$$
T \star T=c_{1}\left[K\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & 1
\end{array}\right) K\right]+c_{2}\left[K\left(\begin{array}{cc}
\infty & 0 \\
0 & \omega
\end{array}\right) K\right]
$$

for some constants c_{1} and c_{2}.
Evaluating c_{2} is easier: as shown in lectures we have

$$
c_{i}=\frac{1}{\mu(K)} \mu\left(K\left(\begin{array}{cc}
\omega & 0 \\
0 & 1
\end{array}\right) K \cap \gamma_{i} K\left(\begin{array}{cc}
\omega^{-1} & 0 \\
0 & 1
\end{array}\right) K\right)
$$

where $\gamma_{1}=\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & 1\end{array}\right), \gamma_{2}=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right)$. Since γ_{2} is central (and K contains the permutation matrix $\left.\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ we have $\gamma_{2} K\left(\begin{array}{cc}\omega^{-1} & 0 \\ 0 & 1\end{array}\right) K=K \gamma_{2}\left(\begin{array}{cc}\omega_{0}^{-1} & 0 \\ 0 & 1\end{array}\right) K=K\left(\begin{array}{cc}\infty & 0 \\ 0 & 1\end{array}\right) K$, so $\gamma_{2}=\mu\left(K\left(\begin{array}{ll}\infty & 0 \\ 0 & 1\end{array}\right) K\right) / \mu(K)=$ $q+1$ (using the set of coset representatives given in lectures).
Some of you gave similar arguments for c_{1}, but it is easier to look at how everything acts on the trivial representation: $T \star T$ acts as multiplication by $(q+1)^{2}$, and $\left[K\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & 1\end{array}\right) K\right]$ as multiplication by $q(q+1)$, so we deduce

$$
q^{2}+2 q+1=\left(q^{2}+q\right) c_{1}+(q+1) \Longrightarrow c_{1}=1
$$

An alternative, rather slick solution by Lambert A'Campo (Imperial) was to compare how both sides acted on $I(\chi, \psi)^{K}$, where χ, ψ are arbitrary unramified characters. If $\chi(\omega)=\alpha, \psi(\omega)=\beta$, then one finds that $K\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & 1\end{array}\right) K$ acts as $q \alpha^{2}+q \beta^{2}+(q-1) \alpha \beta$, so we must have

$$
q(\alpha+\beta)^{2}=c_{1}\left(q \alpha^{2}+q \beta^{2}+(q-1) \alpha \beta\right)+c_{2} \alpha \beta
$$

for all $\alpha, \beta \in \mathbf{C}^{\times}$, from which the result follows immediately.
4. Let χ, ψ be unramified characters of F^{\times}, for F a nonarchimedean local field, and I the Iwahori subgroup of $\mathrm{GL}_{2}(F)$ (cf. §3.4).
(a) [2 points] Compute the matrix of $U=\left[I\left(\begin{array}{cc}\infty & 0 \\ 0 & 1\end{array}\right) I\right]$ on $I(\chi, \psi)^{I}$ in the basis $\left(f_{1}, f_{2}\right)$, where $f_{1}(1)=$ $1, f_{1}(w)=0$ and $f_{2}(w)=1, f_{2}(1)=0$.
(b) [1 point] Hence show that U is not diagonalisable if $\chi=\psi$.

Solution: Let $f \in I(\chi, \psi)^{I}$, and let $g=\left(\begin{array}{ll}\infty & 0 \\ 0 & 1\end{array}\right)$. We have $\operatorname{Ig} I=\bigsqcup_{a \in \mathcal{O} / \infty \mathcal{O}}\left(\begin{array}{ll}\infty & a \\ 0 & 1\end{array}\right) I$, so

$$
(U \cdot f)(x)=\sum_{a}\left(\left(\begin{array}{cc}
\infty & a \\
0 & 1
\end{array}\right) \cdot f\right)(x)=\sum_{a} f\left(x\left(\begin{array}{cc}
\infty & a \\
0 & 1
\end{array}\right)\right) .
$$

Thus

$$
(U \cdot f)(1)=q \cdot\left(|\omega|^{1 / 2} \chi(\omega)\right) \cdot f(1)=q^{1 / 2} \alpha f(1)
$$

On the other hand

$$
(U \cdot f)(w)=\sum_{a} f\left(\left(\begin{array}{ll}
0 & 1 \\
\omega & a
\end{array}\right)\right) .
$$

The term for $a=0$ this is just $q^{1 / 2} \beta f(w)$, whereas for $a \neq 0$ it is

$$
f\left(\left(\begin{array}{cc}
\infty & 1 / a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 / a & 0 \\
\omega & a
\end{array}\right)\right)=q^{-1 / 2} \alpha f(1),
$$

so $(U \cdot f)(w)=\left(q^{1 / 2}-q^{-1 / 2}\right) \alpha f(1)+q^{1 / 2} \beta f(w)$. So in the basis $\left(f_{1}, f_{2}\right)$ we have the matrix gives the matrix

$$
\left(\begin{array}{cc}
q^{1 / 2} \alpha & 0 \\
\left(q^{1 / 2}-q^{-1 / 2}\right) \alpha & q^{1 / 2} \beta
\end{array}\right) .
$$

In particular, if $\alpha=\beta$ then this matrix has minimal polynomial $(X-\alpha)^{2}$ and is therefore not diagonalisable.
(c) [1 point] Show that the I-invariants of the Steinberg representation are 1-dimensional. How does U act on $(\mathrm{St})^{I}$?

Solution: Recall that the Steinberg representation is defined as the kernel of the map

$$
I\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right) \rightarrow \mathbf{1}_{G}
$$

(the trivial representation of G), given by integration over the quotient $B \backslash G$. Since I is compact, passing to I-invariants is an exact functor, so we have an exact sequence

$$
0 \rightarrow \mathrm{St}^{I} \rightarrow I\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right)^{I} \rightarrow\left(\mathbf{1}_{\mathrm{G}}\right)^{I} \rightarrow 0
$$

In the notation of part (a) we have $\alpha=|\omega|^{1 / 2}=q^{-1 / 2}, \beta=q^{1 / 2}$ [this way round!]; so we see that $I\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right)^{I}$ is 2-dimensional, with U acting with eigenvalues 1 and q. On the other hand, $\left(\mathbf{1}_{G}\right)^{I}$ is clearly 1-dimensional and the action of U is given by summing q coset representatives each of which acts trivially; so U acts on $\left(\mathbf{1}_{G}\right)^{I}$ as multiplication by q. So we can conclude that St^{I} is 1-dimensional and U acts on it as the identity.
[Nobody got this question fully correct, so you should all go over your work carefully and make sure you understand where you went wrong. A common mistake was to guess that the map $I\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right)^{I} \rightarrow \mathbf{1}_{G}$ was given by $f \mapsto f(1)+f(w)$ - it is in fact $f \mapsto f(1)+q f(w)$, but you don't need to know that.
One can also argue using the alternative description of St as the quotient of $I\left(|\cdot|^{-1 / 2},|\cdot|^{1 / 2}\right)=$ $C^{\infty}(B \backslash G)$ by the subrepresentation of constant functions. For this approach, one needs to take $\alpha=q^{1 / 2}, \beta=q^{-1 / 2}$, and recognise that the subrepresentation we are quotienting out by is the span of $f_{1}+f_{2}$, which is the $U=q$ eigenspace; so the other eigenspace - the span of f_{2}, on which U acts as $q^{1 / 2} \beta=1$ - surjects onto St^{I}.]
5. Let V be an irreducible infinite-dimensional representation of $\mathrm{GL}_{2}(F)$, and θ a smooth character of $(F,+)$ which is trivial on \mathcal{O} but not on $\omega^{-1} \mathcal{O}$.
(a) [2 points] Justify the claim made in lectures that $v \in V$ is invariant under $\left(\begin{array}{cc}\mathcal{O}^{\times} & \mathcal{O} \\ 0 & 1\end{array}\right)$ if and only if its Kirillov function ϕ_{v} is supported on \mathcal{O} and constant on cosets of \mathcal{O}^{\times}.

Solution: We saw in lectures that $\phi_{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) v}(x)=\theta(b x) \phi_{v}(a x)$. Since $v \mapsto \phi_{v}$ is injective, it follows that v is invariant under $\left(\begin{array}{cc}\mathcal{O}^{\times} & \mathcal{O} \\ 0 & 1\end{array}\right)$ if and only if $\phi_{v}(x)=\phi_{v}(a x)$ for all $a \in \mathcal{O}^{\times}, x \in$ F^{\times}and $\theta(b x) \phi_{v}(x)=\phi_{v}(x)$ for all $b \in \mathcal{O}, x \in F^{\times}$. The first condition is exactly that ϕ_{v} be constant on cosets of \mathcal{O}^{\times}, so we must show that the second is equivalent to having support in \mathcal{O}.
On one hand, suppose ϕ is supported in \mathcal{O}. If $x \notin \mathcal{O}$, then the relation $\phi(x)=\theta(b x) \phi(x)$ is obvious since both sides are 0 . If $x \in \mathcal{O}$, then $b x \in \mathcal{O}$ for any $b \in \mathcal{O}$ and hence $\theta(b x)=1$; so if ϕ has support in \mathcal{O}, then we have $\phi(x)=\theta(b x) \phi(x)$ for all $b \in \mathcal{O}$ and $x \in F^{\times}$.
Conversely, suppose $\phi(x)=\theta(b x) \phi(x)$ holds for all $x \in F^{\times}$and $b \in \mathcal{O}$. We are given that there exists some $y \in \mathcal{O}^{-1} \mathcal{O}$ with $\theta(y) \neq 1$. For any $x \notin \mathcal{O}$, we have $b=x^{-1} y \in \mathcal{O}$; and hence $\phi(x)=\theta(b x) \phi(x)=\theta(y) \phi(x)$ which forces $\phi(x)=0$. Hence ϕ is supported in \mathcal{O}.
[Note that it is not true that $\theta(y) \neq 1$ for every $y \notin \mathcal{O}$, as some of you believed; this implication holds if $F=\mathbf{Q}_{\ell}$, but not for more general local fields.]
(b) [1 point] Show that $n \geqslant 1, v \in V^{U_{n}}$, and $v^{\prime}=\left[U_{n}\left(\begin{array}{cc}\infty & 0 \\ 0 & 1\end{array}\right) U_{n}\right] \cdot v$, then for all $x \in \mathcal{O}$ we have

$$
\phi_{v^{\prime}}(a)=q \phi_{v}(\infty a) .
$$

Solution: We compute that if $g=\left(\begin{array}{ll}\infty & 0 \\ 0 & 1\end{array}\right)$ then $U_{n} g U_{n}=\bigsqcup_{a \in \mathcal{O} / \omega}\left(\begin{array}{cc}\infty & a \\ 0 & 1\end{array}\right) U_{n}$, and hence

$$
\phi_{\left[u_{n} g u_{n}\right] \cdot v}(x)=\sum_{a} \theta(a x) \phi_{v}(\omega x)
$$

If $x \in \mathcal{O}$ then the θ terms are all 1 and hence we obtain $q \phi_{v}(\omega x)$.
7. Let $N \geqslant 1$ and let χ be a homomorphism $(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}$(a Dirichlet character modulo N).
(a) [1 point] Show that there exists a unique smooth character $\underline{\chi}: \mathbf{Q}_{>0}^{\times} \backslash \mathbf{A}_{f}^{\times} \rightarrow \mathbf{C}^{\times}$such that for almost all primes ℓ, the restriction of $\underline{\chi}$ to $\mathbf{Q}_{\ell}^{\times}$is unramified and maps a uniformiser to $\chi(\ell)$.
(b) [1 point] Show that the restriction of $\underline{\chi}$ to $\hat{\mathbf{Z}}^{\times}$is given by the composition

$$
\hat{\mathbf{Z}}^{\times} \longrightarrow(\mathbf{Z} / N \mathbf{Z})^{\times} \xrightarrow{\chi^{-1}} \mathbf{C}^{\times} .
$$

Solution: First we show existence. We have $\mathbf{A}_{f}^{\times}=\hat{\mathbf{Z}}^{\times} \times \mathbf{Q}_{>0}^{\times}$, and this is even an isomorphism of topological groups if $\mathbf{Q}_{>0}^{\times}$is given the discrete topology (and $\hat{\mathbf{Z}}^{\times}$its usual profinite topology). Hence restriction to $\hat{\mathbf{Z}}^{\times}$gives a bijection between smooth characters of \mathbf{A}_{f}^{\times}trivial on $\mathbf{Q}_{>0}^{\times}$, and smooth characters of $\hat{\mathbf{Z}}^{\times}$.
We define $\underline{\chi}$ to be the unique character whose restriction to $\hat{\mathbf{Z}}^{\times}$is the inflation of χ. For any prime $\ell \nmid \bar{N}$, and any uniformizer ω_{ℓ} at ℓ, we have

$$
\underline{\chi}\left(\omega_{\ell}\right)=\underline{\chi}\left(\ell^{-1} \omega_{\ell}\right)=\chi\left(\ell^{-1} \bmod N\right)^{-1}=\chi(\ell),
$$

since $\ell^{-1} \omega_{\ell}$ is in $\hat{\mathbf{Z}}^{\times}$and maps to $\ell^{-1} \bmod N$ in the quotient $(\mathbf{Z} / N \mathbf{Z})^{\times}$. In particular $\underline{\chi}\left(\omega_{\ell}\right)$ is independent of the choice of ω_{ℓ}, so $\left.\underline{\chi}\right|_{\mathbf{Q}_{\ell}}$ is unramified, and it has the specified value on the uniformizer. This shows the existence part of (a) and the character constructed clearly also satisfies (b).

It remains to show uniqueness. If η is any smooth character of \mathbf{A}_{f}^{\times}trivial on $\mathbf{Q}_{>0}^{\times}$and satisfying the stated conditions, then (by smoothness) there must be some M such that $\left.\eta\right|_{\hat{\mathbf{Z}}^{\times}}$factors through $(\mathbf{Z} / M \mathbf{Z})^{\times}$. Without loss of generality we may assume $N \mid M$. By Dirichlet's theorem, every class in $(\mathbf{Z} / M \mathbf{Z})^{\times}$contains infinitely many primes; hence the character of $(\mathbf{Z} / M \mathbf{Z})^{\times}$obtained from η must in fact agree with the map $(\mathbf{Z} / M \mathbf{Z})^{\times} \rightarrow$ $(\mathbf{Z} / N \mathbf{N})^{\times} \xrightarrow{\chi^{-1}} \mathbf{C}^{\times}$.
8. [2 points] Let F be a number field. If v is a (finite) prime of F, we denote by F_{v} the completion of F at v, and \mathcal{O}_{v} the ring of integers of F_{v}. Show that for any given prime v of F, we may find an element γ of $\mathrm{SL}_{2}(F)$ such that

- the image of γ in $\mathrm{SL}_{2}\left(F_{v}\right)$ lies in the double $\operatorname{coset} \mathrm{SL}_{2}\left(\mathcal{O}_{v}\right)\binom{\omega_{v}}{\omega_{v}^{-1}} \mathrm{SL}_{2}\left(\mathcal{O}_{v}\right)$;
- the image of γ in $\operatorname{SL}_{2}\left(F_{w}\right)$ lies in $\operatorname{SL}_{2}\left(\mathcal{O}_{w}\right)$ for all primes $w \neq v$.

Hence show that $\mathrm{SL}_{2}(F)$ is dense in $\mathrm{SL}_{2}\left(\mathbf{A}_{F, f}\right)$.
[Hint: the above double coset in $\mathrm{SL}_{2}\left(F_{v}\right)$ also contains $\left(\begin{array}{cc}1 & \omega_{v}^{-1} \\ 0 & 1\end{array}\right)$.]

Solution: Let ℓ be the rational prime below v. From the density of F in $\mathbf{A}_{F, f}$, we can find an element $x \in F$ which has valuation -1 at v and $\geqslant 0$ at all other primes. Then $\gamma=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ works; it is clearly integral away from v by construction, and it must be in the above double coset, because γ does not have matrix entries in \mathcal{O}_{v} but $\omega_{v} \gamma$ does.
Let C be the closure of $\mathrm{SL}_{2}(F)$ in $\mathrm{SL}_{2}\left(\mathbf{A}_{F, f}\right)$. It is clear that C contains $\mathrm{SL}_{2}\left(\widehat{\mathcal{O}}_{F}\right)$ by a result from lectures, so in particular C is a union of double $\mathrm{SL}_{2}\left(\widehat{\mathcal{O}}_{F}\right)$-cosets. We have shown that $\left(\begin{array}{cc}\omega_{v} & \\ & \omega_{v}^{-1}\end{array}\right) \in C$ for every prime v, and since C is a group, it contains all the powers of this element. From the Cartan decomposition, C contains $\mathrm{SL}_{2}(F)$ for every F; so it is the whole of $\mathrm{SL}_{2}\left(\mathbf{A}_{F, f}\right)$.
9. Let $N \geqslant 1$, and let $U=\left\{g \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): g=\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right) \bmod N\right\}$ and $U^{\prime}=\left\{g \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): g=\right.$ $\left.\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \bmod N\right\}$.
(a) [1 point] Show that both $Y(U)$ and $Y\left(U^{\prime}\right)$ are canonically isomorphic to the classical modular curve $Y_{1}(N)=\Gamma_{1}(N) \backslash \mathcal{H}$.

Solution: We showed in lectures that if U is any open compact in $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$ and $g_{1}, \ldots, g_{r} \in$ $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$ are such that the elts $\left\{\operatorname{det} g_{i}\right\}_{i=1, \ldots, r}$ are coset representatives for $\mathbf{A}_{f}^{\times} / \mathbf{Q}_{>0}^{\times}$, then every $x \in Y(U)$ has a representative of the form $\left(g_{i}, \tau\right)$, for a unique i and some $\tau \in \mathcal{H}$ unique modulo $\mathrm{GL}_{2}^{+}(\mathbf{Q}) \cap g_{i} U g_{i}^{-1}$.
In this case, we have $\operatorname{det}(U)=\hat{\mathbf{Z}}^{\times}$, and since $\mathbf{A}_{f}^{\times} / \mathbf{Q}_{>0}^{\times} \hat{\mathbf{Z}}^{\times}=\{1\}$, we can take $r=1$ and $g=$ id to see that $Y(U)=\Gamma \backslash \mathcal{H}$ where $\Gamma=U \cap \mathrm{GL}_{2}^{+}(\mathbf{Q})$, which is clearly $\Gamma_{1}(N)$. The argument for U^{\prime} is identical.
(b) [1 point] Show that, for ℓ a prime not dividing N, right-translation by $\left(\begin{array}{cc}\omega_{\ell} & 0 \\ 0 & \omega_{\ell}\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$ acts as the diamond operator $\langle\ell\rangle$ on $Y(U)$, and as $\langle\ell\rangle^{-1}$ on $Y\left(U^{\prime}\right)$.

Solution: If we choose any $a, b \in \mathbf{Z}$ such that $a \ell-b N=1$, then

$$
\left(\begin{array}{cc}
a & b \\
N & \ell
\end{array}\right)\left(\begin{array}{cc}
\ell^{-1} & 0 \\
0 & \ell^{-1}
\end{array}\right)\left(\begin{array}{cc}
\omega_{\ell} & 0 \\
0 & \omega_{\ell}
\end{array}\right) \in U
$$

As points of $Y(U)$ we have

$$
\begin{aligned}
(1, \tau) \cdot\left(\begin{array}{cc}
\omega_{\ell} & 0 \\
0 & \omega_{\ell}
\end{array}\right) & =\left(\left(\begin{array}{cc}
\omega_{\ell} & 0 \\
0 & \omega_{\ell}
\end{array}\right), \tau\right) \\
& \left.=\left(\left(\begin{array}{cc}
\omega_{\ell} & 0 \\
0 & \omega_{\ell}
\end{array}\right) \cdot\left[\begin{array}{cc}
a & b \\
N & \ell
\end{array}\right)\left(\begin{array}{cc}
\ell^{-1} & 0 \\
0 & \ell^{-1}
\end{array}\right)\left(\begin{array}{cc}
\omega_{\ell} & 0 \\
0 & \omega_{\ell}
\end{array}\right)\right]^{-1}, \tau\right) \\
& =\left(\left[\left(\begin{array}{cc}
a & b \\
N & \ell
\end{array}\right)\left(\begin{array}{cc}
\ell^{-1} & 0 \\
0 & \ell^{-1}
\end{array}\right)\right]^{-1}, \tau\right) \\
& =\left(1,\left[\left(\begin{array}{cc}
a & b \\
N & \ell
\end{array}\right)\left(\begin{array}{cc}
\ell^{-1} & 0 \\
0 & \ell^{-1}
\end{array}\right)\right] \cdot \tau\right) \\
& =(1,\langle\ell\rangle \cdot \tau) .
\end{aligned}
$$

If we use U^{\prime} in place of U, then we need to replace $\left(\begin{array}{ll}a & b \\ N & \ell\end{array}\right)$ with $\left(\begin{array}{ll}\ell & b \\ N & a\end{array}\right)$. The condition $a \ell-b N=1$ implies that $a=\ell^{-1} \bmod N$, so this matrix represents $\left\langle\ell^{-1}\right\rangle$.
[The condition $\ell \nmid N$ was accidentally omitted from the question, but if $\ell \mid N$ the operator $\langle\ell\rangle$ is not defined.]
10. [2 points] Let $M_{k, t}$ be the $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$-representation of modular forms, as in Chapter 6 of the lectures. For $f \in M_{k, t}$, and $s \in \mathbf{R}$, consider the function $f_{s}: \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right) \times \mathcal{H} \rightarrow \mathbf{C}$ defined by

$$
f_{s}(g, \tau)=f(g, \tau)\|\operatorname{det} g\|^{s}
$$

Here $\|x\|=\Pi_{\ell}\left|x_{\ell}\right|$ is the normalised absolute value on \mathbf{A}_{f}^{\times}. Show that $f_{s} \in M_{k, t+s}$.

Solution: We need to check the following:
(i) $f_{s}(g,-)$ is holomorphic and bounded at the cusps for any $g \in \mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$;
(ii) f_{s} is stable under right-translation by some open subgroup of $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$;
(iii) $f_{s}(\gamma g,-)=\left.f_{s}(g,-)\right|_{k, t+s} \gamma^{-1}$ for $\gamma \in \mathrm{GL}_{2}^{+}(\mathbf{Q})$.

Part (i) is obvious since $f_{s}(g,-)$ is a scalar multiple of $f(g,-)$.
For part (ii), let U be any open compact fixing f. Then the image of U under $x \mapsto\|\operatorname{det} x\|$ is an open compact subgroup of $\mathbf{R}_{>0}$, hence it's trivial; so $\|\operatorname{det} u\|=1$ for all $u \in U$. Thus U fixes f_{s}. For part (iii), we have $\|x\|=1 / x$ for $x \in \mathbf{Q}_{>0}$, so

$$
\begin{aligned}
f_{s}(\gamma g,-) & =\|\operatorname{det} \gamma g\|^{s} f(\gamma g,-) \\
& =\left.\|\operatorname{det} \gamma g\|^{s} f(g,-)\right|_{k, t} \gamma^{-1} \\
& =\left.\left(\operatorname{det} \gamma^{-1}\right)^{s} f_{s}(g,-)\right|_{k, t} \gamma^{-1} \\
& =\left.f_{s}(g,-)\right|_{k, t+s} \gamma^{-1} .
\end{aligned}
$$

[For (ii), it suffices to argue - as several of you did - that $U^{\prime}=\{u \in U:\|\operatorname{det} u\|=1\}$ is open, e.g. because it contains $U \cap \mathrm{GL}_{2}(\hat{\mathbf{Z}})$. However, the above argument shows that we always have $U^{\prime}=U$.]

