TCC Modular Forms and Representations of GL₂: Assignment #2 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

10th December 2018

1. [2 points] Let *G* be locally profinite and $V \in \underline{Smo}_G$. Show that if $F_1, F_2 \in \mathcal{H}(G)$ then $(F_1 \star F_2) \star v = F_1 \star (F_2 \star v)$. Hence show that $\mathcal{H}(G)$ is a ring.

Solution: We compute $(F_1 \star F_2) \star v = \int_{g \in G} (F_1 \star F_2)(g)(g \cdot v) d\mu(g) \qquad (\text{def of star product})$ $= \int_{g \in G} \left(\int_{h \in G} F_1(h)F_2(h^{-1}g) d\mu(h) \right)(g \cdot v) d\mu(g) \qquad (\text{def of } F_1 \star F_2)$ $= \int_{h \in G} F_1(h) \left(\int_{g \in G} F_2(h^{-1}g) (g \cdot v) d\mu(g) \right) d\mu(h) \qquad (\text{Fubini})$ $= \int_{h \in G} F_1(h) \left(\int_{g' \in G} F_2(g') (hg' \cdot v) d\mu(g') \right) d\mu(h) \qquad (\text{translation-invariance})$ $= \int_{h \in G} F_1(h)h \cdot \left(\int_{g' \in G} F_2(g') (g' \cdot v) d\mu(g') \right) d\mu(h) \qquad (\text{linearity})$ $= \int_{h \in G} F_1(h) (h \cdot (F_2 \star v)) d\mu(h) = F_1 \star (F_2 \star v). \quad \Box$

(Here the appeal to Fubini's theorem is overkill – the integral is just a finite sum, so the interchange of order of integration is obvious.)

Taking *V* to be $\mathcal{H}(G)$ itself with its left-regular action of *G*, we deduce that the star product is associative. Since all the other ring axioms are obvious, this shows that \mathcal{H} is a ring.

- 2. Let *G* locally profinite, $K \leq G$ open compact. We say that $V \in \underline{Smo}_G$ is *K*-spherical if V^K generates *V* as a *G*-representation.
 - (a) [1 point] Show that if *V* is irreducible and *K*-spherical, then V^K is a simple $\mathcal{H}(G, K)$ -module.

Solution: It suffices to show that for any $w, v \in V^K$ with $w \neq 0$, the vector v lies in the $\mathcal{H}(G, K)$ -span of w. Since V is irreducible, the G-translates of w span V, hence we can write v as a finite sum $v = \sum_{i=1}^{r} a_i g_i w$.

For each $i \in \{1, ..., r\}$, write the double coset KgK as a finite disjoint union $\bigsqcup_{j=1}^{n_i} Kg_ih_{ij}$ for

 $h_{ij} \in K$. Then we have

$$\sum_{i} \frac{a_{i}}{n_{i}} [Kg_{i}K]w = \sum_{i} \frac{a_{i}}{n_{i}} \sum_{j} g_{i}h_{ij}w$$

$$= \sum_{i} \frac{a_{i}}{n_{i}} \sum_{j} g_{i}w \qquad (\text{as } w \in V^{K})$$

$$= \sum_{i} a_{i}g_{i}w = v.$$

Thus $v \in \mathcal{H}(G, K) \cdot w$ as required.

3. [2 points] In the notation of §3.2 of the lectures, prove the identity

4

$$T \star T = \left[K \left(\begin{smallmatrix} \omega^2 & 0 \\ 0 & 1 \end{smallmatrix} \right) K \right] + (q+1)S.$$

Solution: We know that $G = \bigsqcup_{\substack{a,b \in \mathbb{Z} \\ a \ge b}} K \begin{pmatrix} \omega^a & 0 \\ 0 & \omega^b \end{pmatrix} K$; and the support of $T \star T$ is clearly contained in the set of matrices lying in $M_{2 \times 2}(\mathcal{O})$ and having determinant in \mathcal{OO}^{\times} , so we must have

$$T \star T = c_1 \left[K \left(\begin{smallmatrix} \omega^2 & 0 \\ 0 & 1 \end{smallmatrix} \right) K \right] + c_2 \left[K \left(\begin{smallmatrix} \omega & 0 \\ 0 & \omega \end{smallmatrix} \right) K \right]$$

for some constants c_1 and c_2 .

Evaluating c_2 is easier: as shown in lectures we have

$$c_{i} = \frac{1}{\mu(K)} \mu \left(K \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix} K \cap \gamma_{i} K \begin{pmatrix} \omega^{-1} & 0 \\ 0 & 1 \end{pmatrix} K \right)$$

where $\gamma_1 = \begin{pmatrix} \omega^2 & 0 \\ 0 & 1 \end{pmatrix}$, $\gamma_2 = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix}$. Since γ_2 is central (and *K* contains the permutation matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$) we have $\gamma_2 K \begin{pmatrix} \omega^{-1} & 0 \\ 0 & 1 \end{pmatrix} K = K \gamma_2 \begin{pmatrix} \omega^{-1} & 0 \\ 0 & 1 \end{pmatrix} K = K \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix} K$, so $\gamma_2 = \mu(K \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix} K) / \mu(K) = q + 1$ (using the set of coset representatives given in lectures).

Some of you gave similar arguments for c_1 , but it is easier to look at how everything acts on the trivial representation: $T \star T$ acts as multiplication by $(q+1)^2$, and $\begin{bmatrix} K \begin{pmatrix} a^2 & 0 \\ 0 & 1 \end{bmatrix} K \end{bmatrix}$ as multiplication by q(q+1), so we deduce

$$q^{2} + 2q + 1 = (q^{2} + q)c_{1} + (q + 1) \Longrightarrow c_{1} = 1$$

An alternative, rather slick solution by Lambert A'Campo (Imperial) was to compare how both sides acted on $I(\chi, \psi)^K$, where χ, ψ are arbitrary unramified characters. If $\chi(\varpi) = \alpha, \psi(\varpi) = \beta$, then one finds that $K\begin{pmatrix} \varpi^2 & 0 \\ 0 & 1 \end{pmatrix} K$ acts as $q\alpha^2 + q\beta^2 + (q-1)\alpha\beta$, so we must have

$$q(\alpha + \beta)^2 = c_1 \left(q\alpha^2 + q\beta^2 + (q-1)\alpha\beta \right) + c_2\alpha\beta$$

for all $\alpha, \beta \in \mathbf{C}^{\times}$, from which the result follows immediately.

- 4. Let χ, ψ be unramified characters of F^{\times} , for F a nonarchimedean local field, and I the Iwahori subgroup of $GL_2(F)$ (cf. §3.4).
 - (a) [2 points] Compute the matrix of $U = [I(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}) I]$ on $I(\chi, \psi)^I$ in the basis (f_1, f_2) , where $f_1(1) = 1$, $f_1(w) = 0$ and $f_2(w) = 1$, $f_2(1) = 0$.

(b) [1 point] Hence show that *U* is not diagonalisable if $\chi = \psi$.

Solution: Let $f \in I(\chi, \psi)^I$, and let $g = \begin{pmatrix} \emptyset & 0 \\ 0 & 1 \end{pmatrix}$. We have $IgI = \bigsqcup_{a \in \mathcal{O}/\wp \mathcal{O}} \begin{pmatrix} \emptyset & a \\ 0 & 1 \end{pmatrix} I$, so $(U \cdot f)(x) = \sum_{a} (\begin{pmatrix} \emptyset & a \\ 0 & 1 \end{pmatrix} \cdot f)(x) = \sum_{a} f(x \begin{pmatrix} \emptyset & a \\ 0 & 1 \end{pmatrix}).$

Thus

$$(U \cdot f)(1) = q \cdot \left(|\varpi|^{1/2} \chi(\varpi) \right) \cdot f(1) = q^{1/2} \alpha f(1).$$

On the other hand

$$(U \cdot f)(w) = \sum_{a} f\left(\begin{pmatrix} 0 & 1 \\ \varpi & a \end{pmatrix} \right).$$

The term for a = 0 this is just $q^{1/2}\beta f(w)$, whereas for $a \neq 0$ it is

$$f\left(\left(\begin{smallmatrix} \varpi & 1/a \\ 0 & 1 \end{smallmatrix}\right)\left(\begin{smallmatrix} -1/a & 0 \\ -\varpi & a \end{smallmatrix}\right)\right) = q^{-1/2}\alpha f(1),$$

so $(U \cdot f)(w) = (q^{1/2} - q^{-1/2})\alpha f(1) + q^{1/2}\beta f(w)$. So in the basis (f_1, f_2) we have the matrix gives the matrix

$$\begin{pmatrix} q^{1/2}\alpha & 0\\ (q^{1/2} - q^{-1/2})\alpha & q^{1/2}\beta \end{pmatrix}$$

In particular, if $\alpha = \beta$ then this matrix has minimal polynomial $(X - \alpha)^2$ and is therefore not diagonalisable.

(c) [1 point] Show that the *I*-invariants of the Steinberg representation are 1-dimensional. How does *U* act on (St)^{*I*}?

Solution: Recall that the Steinberg representation is defined as the kernel of the map

$$I(|\cdot|^{1/2}, |\cdot|^{-1/2}) \to \mathbf{1}_G$$

(the trivial representation of *G*), given by integration over the quotient $B \setminus G$. Since *I* is compact, passing to *I*-invariants is an exact functor, so we have an exact sequence

$$0 \to \operatorname{St}^{I} \to I(|\cdot|^{1/2}, |\cdot|^{-1/2})^{I} \to (\mathbf{1}_{G})^{I} \to 0.$$

In the notation of part (a) we have $\alpha = |\omega|^{1/2} = q^{-1/2}$, $\beta = q^{1/2}$ [*this way round*!]; so we see that $I(|\cdot|^{1/2}, |\cdot|^{-1/2})^I$ is 2-dimensional, with *U* acting with eigenvalues 1 and *q*. On the other hand, $(\mathbf{1}_G)^I$ is clearly 1-dimensional and the action of *U* is given by summing *q* coset representatives each of which acts trivially; so *U* acts on $(\mathbf{1}_G)^I$ as multiplication by *q*. So we can conclude that St^{*I*} is 1-dimensional and *U* acts on it as the identity.

[Nobody got this question fully correct, so you should all go over your work carefully and make sure you understand where you went wrong. A common mistake was to guess that the map $I(|\cdot|^{1/2}, |\cdot|^{-1/2})^I \rightarrow \mathbf{1}_G$ was given by $f \mapsto f(1) + f(w) - it$ is in fact $f \mapsto f(1) + qf(w)$, but you don't need to know that.

One can also argue using the alternative description of St as the quotient of $I(|\cdot|^{-1/2}, |\cdot|^{1/2}) = C^{\infty}(B \setminus G)$ by the subrepresentation of constant functions. For this approach, one needs to take $\alpha = q^{1/2}, \beta = q^{-1/2}$, and recognise that the subrepresentation we are **quotienting out by** is the span of $f_1 + f_2$, which is the U = q eigenspace; so the other eigenspace — the span of f_2 , on which U acts as $q^{1/2}\beta = 1$ — surjects onto St^I.]

5. Let *V* be an irreducible infinite-dimensional representation of $GL_2(F)$, and θ a smooth character of (F, +) which is trivial on \mathcal{O} but not on $\omega^{-1}\mathcal{O}$.

(a) [2 points] Justify the claim made in lectures that $v \in V$ is invariant under $\begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ 0 & 1 \end{pmatrix}$ if and only if its Kirillov function ϕ_v is supported on \mathcal{O} and constant on cosets of \mathcal{O}^{\times} .

Solution: We saw in lectures that $\phi_{\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}v}(x) = \theta(bx)\phi_v(ax)$. Since $v \mapsto \phi_v$ is injective, it follows that v is invariant under $\begin{pmatrix} \mathcal{O} & \mathcal{O} \\ 0 & 1 \end{pmatrix}$ if and only if $\phi_v(x) = \phi_v(ax)$ for all $a \in \mathcal{O}^{\times}, x \in F^{\times}$ and $\theta(bx)\phi_v(x) = \phi_v(x)$ for all $b \in \mathcal{O}, x \in F^{\times}$. The first condition is exactly that ϕ_v be constant on cosets of \mathcal{O}^{\times} , so we must show that the second is equivalent to having support in \mathcal{O} . On one hand, suppose ϕ is supported in \mathcal{O} . If $x \notin \mathcal{O}$, then the relation $\phi(x) = \theta(bx)\phi(x)$ is obvious since both sides are 0. If $x \in \mathcal{O}$, then $bx \in \mathcal{O}$ for any $b \in \mathcal{O}$ and hence $\theta(bx) = 1$; so if ϕ has support in \mathcal{O} , then we have $\phi(x) = \theta(bx)\phi(x)$ for all $b \in \mathcal{O}$. We are given that there exists some $y \in \omega^{-1}\mathcal{O}$ with $\theta(y) \neq 1$. For any $x \notin \mathcal{O}$, we have $b = x^{-1}y \in \mathcal{O}$; and hence $\phi(x) = \theta(bx)\phi(x) = \theta(y)\phi(x)$ which forces $\phi(x) = 0$. Hence ϕ is supported in \mathcal{O} . [Note that it is **not** true that $\theta(y) \neq 1$ for every $y \notin \mathcal{O}$, as some of you believed; this implication

holds if $F = \mathbf{Q}_{\ell}$, but not for more general local fields.]

(b) [1 point] Show that $n \ge 1$, $v \in V^{U_n}$, and $v' = [U_n \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} U_n] \cdot v$, then for all $x \in \mathcal{O}$ we have

$$\phi_{v'}(a) = q\phi_v(\varpi a).$$

Solution: We compute that if $g = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ then $U_n g U_n = \bigsqcup_{a \in \mathcal{O}/\varpi} \begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix} U_n$, and hence

$$\phi_{[U_n g U_n] \cdot v}(x) = \sum_a \theta(ax) \phi_v(\varpi x).$$

If $x \in \mathcal{O}$ then the θ terms are all 1 and hence we obtain $q\phi_v(\varpi x)$.

7. Let $N \ge 1$ and let χ be a homomorphism $(\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ (a *Dirichlet character modulo N*).

- (a) [1 point] Show that there exists a unique smooth character $\underline{\chi} : \mathbf{Q}_{>0}^{\times} \setminus \mathbf{A}_{f}^{\times} \to \mathbf{C}^{\times}$ such that for almost all primes ℓ , the restriction of χ to $\mathbf{Q}_{\ell}^{\times}$ is unramified and maps a uniformiser to $\chi(\ell)$.
- (b) [1 point] Show that the restriction of χ to $\hat{\mathbf{Z}}^{\times}$ is given by the composition

$$\hat{\mathbf{Z}}^{\times} \longrightarrow (\mathbf{Z}/N\mathbf{Z})^{\times} \xrightarrow{\chi^{-1}} \mathbf{C}^{\times}.$$

Solution: First we show existence. We have $\mathbf{A}_{f}^{\times} = \hat{\mathbf{Z}}^{\times} \times \mathbf{Q}_{>0'}^{\times}$ and this is even an isomorphism of topological groups if $\mathbf{Q}_{>0}^{\times}$ is given the discrete topology (and $\hat{\mathbf{Z}}^{\times}$ its usual profinite topology). Hence restriction to $\hat{\mathbf{Z}}^{\times}$ gives a bijection between smooth characters of \mathbf{A}_{f}^{\times} trivial on $\mathbf{Q}_{>0'}^{\times}$ and smooth characters of $\hat{\mathbf{Z}}^{\times}$.

We define χ to be the unique character whose restriction to $\hat{\mathbf{Z}}^{\times}$ is the inflation of χ . For any prime $\ell \nmid \overline{N}$, and any uniformizer ϖ_{ℓ} at ℓ , we have

$$\underline{\chi}(\varpi_{\ell}) = \underline{\chi}(\ell^{-1}\varpi_{\ell}) = \chi(\ell^{-1} \bmod N)^{-1} = \chi(\ell),$$

since $\ell^{-1} \omega_{\ell}$ is in $\hat{\mathbf{Z}}^{\times}$ and maps to ℓ^{-1} mod N in the quotient $(\mathbf{Z}/N\mathbf{Z})^{\times}$. In particular $\underline{\chi}(\omega_{\ell})$ is independent of the choice of ω_{ℓ} , so $\underline{\chi}|_{\mathbf{Q}_{\ell}^{\times}}$ is unramified, and it has the specified value on the uniformizer. This shows the existence part of (a) and the character constructed clearly also satisfies (b).

It remains to show uniqueness. If η is any smooth character of \mathbf{A}_{f}^{\times} trivial on $\mathbf{Q}_{>0}^{\times}$ and satisfying the stated conditions, then (by smoothness) there must be some M such that $\eta|_{\hat{\mathbf{Z}}^{\times}}$ factors through $(\mathbf{Z}/M\mathbf{Z})^{\times}$. Without loss of generality we may assume $N \mid M$. By Dirichlet's theorem, every class in $(\mathbf{Z}/M\mathbf{Z})^{\times}$ contains infinitely many primes; hence the character of $(\mathbf{Z}/M\mathbf{Z})^{\times}$ obtained from η must in fact agree with the map $(\mathbf{Z}/M\mathbf{Z})^{\times} \rightarrow (\mathbf{Z}/N\mathbf{Z})^{\times} \xrightarrow{\chi^{-1}} \mathbf{C}^{\times}$.

- 8. [2 points] Let *F* be a number field. If *v* is a (finite) prime of *F*, we denote by F_v the completion of *F* at *v*, and \mathcal{O}_v the ring of integers of F_v . Show that for any given prime *v* of *F*, we may find an element γ of SL₂(*F*) such that
 - the image of γ in $SL_2(F_v)$ lies in the double coset $SL_2(\mathcal{O}_v) \begin{pmatrix} \omega_v \\ \omega_v \end{pmatrix} SL_2(\mathcal{O}_v)$;
 - the image of γ in $SL_2(F_w)$ lies in $SL_2(\mathcal{O}_w)$ for all primes $w \neq v$.

Hence show that $SL_2(F)$ is dense in $SL_2(\mathbf{A}_{F,f})$.

[*Hint: the above double coset in* $SL_2(F_v)$ *also contains* $\begin{pmatrix} 1 & \omega_v^{-1} \\ 0 & 1 \end{pmatrix}$.]

Solution: Let ℓ be the rational prime below v. From the density of F in $\mathbf{A}_{F,f}$, we can find an element $x \in F$ which has valuation -1 at v and ≥ 0 at all other primes. Then $\gamma = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ works; it is clearly integral away from v by construction, and it must be in the above double coset, because γ does not have matrix entries in \mathcal{O}_v but $\mathcal{O}_v \gamma$ does.

Let *C* be the closure of $SL_2(F)$ in $SL_2(\mathbf{A}_{F,f})$. It is clear that *C* contains $SL_2(\widehat{\mathcal{O}}_F)$ by a result from lectures, so in particular *C* is a union of double $SL_2(\widehat{\mathcal{O}}_F)$ -cosets. We have shown that $\begin{pmatrix} \omega_v & \\ & \omega_v^{-1} \end{pmatrix} \in C$ for every prime *v*, and since *C* is a group, it contains all the powers of this element. From the Cartan decomposition, *C* contains $SL_2(F)$ for every *F*; so it is the whole of $SL_2(\mathbf{A}_{F,f})$.

- 9. Let $N \ge 1$, and let $U = \{g \in GL_2(\hat{\mathbf{Z}}) : g = \binom{* *}{0 1} \mod N\}$ and $U' = \{g \in GL_2(\hat{\mathbf{Z}}) : g = \binom{1 *}{0 *} \mod N\}$.
 - (a) [1 point] Show that both Y(U) and Y(U') are canonically isomorphic to the classical modular curve $Y_1(N) = \Gamma_1(N) \setminus \mathcal{H}$.

Solution: We showed in lectures that if *U* is any open compact in $\operatorname{GL}_2(\mathbf{A}_f)$ and $g_1, \ldots, g_r \in \operatorname{GL}_2(\mathbf{A}_f)$ are such that the elts $\{\det g_i\}_{i=1,\ldots,r}$ are coset representatives for $\mathbf{A}_f^{\times}/\mathbf{Q}_{>0}^{\times}$, then every $x \in Y(U)$ has a representative of the form (g_i, τ) , for a unique *i* and some $\tau \in \mathcal{H}$ unique modulo $\operatorname{GL}_2^+(\mathbf{Q}) \cap g_i U g_i^{-1}$. In this case, we have $\det(U) = \hat{\mathbf{Z}}^{\times}$, and since $\mathbf{A}_f^{\times}/\mathbf{Q}_{>0}^{\times} \hat{\mathbf{Z}}^{\times} = \{1\}$, we can take r = 1 and $g = \operatorname{id}$ to see that $Y(U) = \Gamma \setminus \mathcal{H}$ where $\Gamma = U \cap \operatorname{GL}_2^+(\mathbf{Q})$, which is clearly $\Gamma_1(N)$. The argument for U' is identical.

(b) [1 point] Show that, for ℓ a prime not dividing N, right-translation by $\begin{pmatrix} \omega_{\ell} & 0 \\ 0 & \omega_{\ell} \end{pmatrix} \in GL_2(\mathbf{A}_f)$ acts as the diamond operator $\langle \ell \rangle$ on Y(U), and as $\langle \ell \rangle^{-1}$ on Y(U').

Solution: If we choose any $a, b \in \mathbb{Z}$ such that $a\ell - bN = 1$, then $\begin{pmatrix} a & b \\ N & \ell \end{pmatrix} \begin{pmatrix} \ell^{-1} & 0 \\ 0 & \ell^{-1} \end{pmatrix} \begin{pmatrix} \omega_{\ell} & 0 \\ 0 & \omega_{\ell} \end{pmatrix} \in U.$ As points of Y(U) we have

$$(1,\tau) \cdot \begin{pmatrix} \omega_{\ell} & 0\\ 0 & \omega_{\ell} \end{pmatrix} = \left(\begin{pmatrix} \omega_{\ell} & 0\\ 0 & \omega_{\ell} \end{pmatrix}, \tau \right)$$
$$= \left(\begin{pmatrix} \omega_{\ell} & 0\\ 0 & \omega_{\ell} \end{pmatrix} \cdot \left[\begin{pmatrix} a & b\\ N & \ell \end{pmatrix} \begin{pmatrix} \ell^{-1} & 0\\ 0 & \ell^{-1} \end{pmatrix} \begin{pmatrix} \omega_{\ell} & 0\\ 0 & \omega_{\ell} \end{pmatrix} \right]^{-1}, \tau \right)$$
$$= \left(\left[\begin{pmatrix} a & b\\ N & \ell \end{pmatrix} \begin{pmatrix} \ell^{-1} & 0\\ 0 & \ell^{-1} \end{pmatrix} \right]^{-1}, \tau \right)$$
$$= \left(1, \left[\begin{pmatrix} a & b\\ N & \ell \end{pmatrix} \begin{pmatrix} \ell^{-1} & 0\\ 0 & \ell^{-1} \end{pmatrix} \right] \cdot \tau \right)$$
$$= (1, \langle \ell \rangle \cdot \tau).$$

If we use U' in place of U, then we need to replace $\begin{pmatrix} a & b \\ N & \ell \end{pmatrix}$ with $\begin{pmatrix} \ell & b \\ N & a \end{pmatrix}$. The condition $a\ell - bN = 1$ implies that $a = \ell^{-1} \mod N$, so this matrix represents $\langle \ell^{-1} \rangle$. [*The condition* $\ell \nmid N$ *was accidentally omitted from the question, but if* $\ell \mid N$ *the operator* $\langle \ell \rangle$ *is not defined.*]

10. [2 points] Let $M_{k,t}$ be the $GL_2(\mathbf{A}_f)$ -representation of modular forms, as in Chapter 6 of the lectures. For $f \in M_{k,t}$, and $s \in \mathbf{R}$, consider the function $f_s : GL_2(\mathbf{A}_f) \times \mathcal{H} \to \mathbf{C}$ defined by

$$f_s(g,\tau) = f(g,\tau) \| \det g \|^s$$

Here $||x|| = \prod_{\ell} |x_{\ell}|$ is the normalised absolute value on \mathbf{A}_{f}^{\times} . Show that $f_{s} \in M_{k,t+s}$.

Solution: We need to check the following:

(i) $f_s(g, -)$ is holomorphic and bounded at the cusps for any $g \in GL_2(\mathbf{A}_f)$;

(ii) f_s is stable under right-translation by some open subgroup of $GL_2(\mathbf{A}_f)$;

(iii)
$$f_s(\gamma g, -) = f_s(g, -)|_{k,t+s}\gamma^{-1}$$
 for $\gamma \in \operatorname{GL}_2^+(\mathbf{Q})$.

Part (i) is obvious since $f_s(g, -)$ is a scalar multiple of f(g, -).

For part (ii), let *U* be any open compact fixing *f*. Then the image of *U* under $x \mapsto || \det x ||$ is an open compact subgroup of $\mathbf{R}_{>0}$, hence it's trivial; so $|| \det u || = 1$ for all $u \in U$. Thus *U* fixes f_s . For part (iii), we have ||x|| = 1/x for $x \in \mathbf{Q}_{>0}$, so

$$f_{s}(\gamma g, -) = \| \det \gamma g \|^{s} f(\gamma g, -) \\ = \| \det \gamma g \|^{s} f(g, -)|_{k,t} \gamma^{-1} \\ = (\det \gamma^{-1})^{s} f_{s}(g, -)|_{k,t} \gamma^{-1} \\ = f_{s}(g, -)|_{k,t+s} \gamma^{-1}.$$

[For (ii), it suffices to argue – as several of you did – that $U' = \{u \in U : || \det u || = 1\}$ is open, e.g. because it contains $U \cap GL_2(\hat{\mathbf{Z}})$. However, the above argument shows that we always have U' = U.]