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1. [2 points] Let G be locally profinite and V ∈ SmoG. Show that if F1, F2 ∈ H(G) then (F1 ? F2) ? v =
F1 ? (F2 ? v). Hence show thatH(G) is a ring.

Solution: We compute

(F1 ? F2) ? v =
∫

g∈G
(F1 ? F2)(g)(g · v)dµ(g) (def of star product)

=
∫

g∈G

(∫
h∈G

F1(h)F2(h−1g)dµ(h)
)
(g · v)dµ(g) (def of F1 ? F2)

=
∫

h∈G
F1(h)

(∫
g∈G

F2(h−1g) (g · v)dµ(g)
)

dµ(h) (Fubini)

=
∫

h∈G
F1(h)

(∫
g′∈G

F2(g′) (hg′ · v)dµ(g′)
)

dµ(h) (translation-invariance)

=
∫

h∈G
F1(h)h ·

(∫
g′∈G

F2(g′) (g′ · v)dµ(g′)
)

dµ(h) (linearity)

=
∫

h∈G
F1(h) (h · (F2 ? v)) dµ(h) = F1 ? (F2 ? v).

(Here the appeal to Fubini’s theorem is overkill – the integral is just a finite sum, so the inter-
change of order of integration is obvious.)

Taking V to be H(G) itself with its left-regular action of G, we deduce that the star product is
associative. Since all the other ring axioms are obvious, this shows thatH is a ring.

2. Let G locally profinite, K 6 G open compact. We say that V ∈ SmoG is K-spherical if VK generates
V as a G-representation.

(a) [1 point] Show that if V is irreducible and K-spherical, then VK is a simpleH(G, K)-module.

Solution: It suffices to show that for any w, v ∈ VK with w 6= 0, the vector v lies in the
H(G, K)-span of w. Since V is irreducible, the G-translates of w span V, hence we can write
v as a finite sum v = ∑r

i=1 aigiw.
For each i ∈ {1, . . . , r}, write the double coset KgK as a finite disjoint union

⊔ni
j=1 Kgihij for
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hij ∈ K. Then we have

∑
i

ai
ni
[KgiK]w = ∑

i

ai
ni

∑
j

gihijw

= ∑
i

ai
ni

∑
j

giw (as w ∈ VK)

= ∑
i

aigiw = v.

Thus v ∈ H(G, K) · w as required.

3. [2 points] In the notation of §3.2 of the lectures, prove the identity

T ? T =
[
K
(

v2 0
0 1

)
K
]
+ (q + 1)S.

Solution: We know that G =
⊔

a,b∈Z
a>b

K
(

va 0
0 vb

)
K; and the support of T ? T is clearly contained

in the set of matrices lying in M2×2(O) and having determinant in vO×, so we must have

T ? T = c1

[
K
(

v2 0
0 1

)
K
]
+ c2

[
K
(

v 0
0 v

)
K
]

for some constants c1 and c2.

Evaluating c2 is easier: as shown in lectures we have

ci =
1

µ(K)µ
(

K
(

v 0
0 1
)

K ∩ γiK
(

v−1 0
0 1

)
K
)

where γ1 =
(

v2 0
0 1

)
, γ2 =

(
v 0
0 v

)
. Since γ2 is central (and K contains the permutation matrix(

0 1
1 0

)
) we have γ2K

(
v−1 0

0 1

)
K = Kγ2

(
v−1 0

0 1

)
K = K

(
v 0
0 1
)

K, so γ2 = µ(K
(

v 0
0 1
)

K)/µ(K) =

q + 1 (using the set of coset representatives given in lectures).

Some of you gave similar arguments for c1, but it is easier to look at how everything acts on the
trivial representation: T ? T acts as multiplication by (q+ 1)2, and

[
K
(

v2 0
0 1

)
K
]

as multiplication
by q(q + 1), so we deduce

q2 + 2q + 1 = (q2 + q)c1 + (q + 1) =⇒ c1 = 1.

An alternative, rather slick solution by Lambert A’Campo (Imperial) was to compare how both sides acted
on I(χ, ψ)K, where χ, ψ are arbitrary unramified characters. If χ(v) = α, ψ(v) = β, then one finds
that K

(
v2 0
0 1

)
K acts as qα2 + qβ2 + (q− 1)αβ, so we must have

q(α + β)2 = c1

(
qα2 + qβ2 + (q− 1)αβ

)
+ c2αβ

for all α, β ∈ C×, from which the result follows immediately.

4. Let χ, ψ be unramified characters of F×, for F a nonarchimedean local field, and I the Iwahori
subgroup of GL2(F) (cf. §3.4).

(a) [2 points] Compute the matrix of U = [I
(

v 0
0 1
)

I] on I(χ, ψ)I in the basis ( f1, f2), where f1(1) =
1, f1(w) = 0 and f2(w) = 1, f2(1) = 0.
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(b) [1 point] Hence show that U is not diagonalisable if χ = ψ.

Solution: Let f ∈ I(χ, ψ)I , and let g =
(

v 0
0 1
)
. We have IgI =

⊔
a∈O/vO ( v a

0 1 ) I, so

(U · f ) (x) = ∑
a
(( v a

0 1 ) · f )(x) = ∑
a

f (x ( v a
0 1 )) .

Thus
(U · f ) (1) = q ·

(
|v|1/2χ(v)

)
· f (1) = q1/2α f (1).

On the other hand
(U · f ) (w) = ∑

a
f (( 0 1

v a )) .

The term for a = 0 this is just q1/2β f (w), whereas for a 6= 0 it is

f
((

v 1/a
0 1

) ( −1/a 0
v a

))
= q−1/2α f (1),

so (U · f ) (w) = (q1/2 − q−1/2)α f (1) + q1/2β f (w). So in the basis ( f1, f2) we have the
matrix gives the matrix (

q1/2α 0
(q1/2 − q−1/2)α q1/2β

)
.

In particular, if α = β then this matrix has minimal polynomial (X − α)2 and is therefore
not diagonalisable.

(c) [1 point] Show that the I-invariants of the Steinberg representation are 1-dimensional. How
does U act on (St)I?

Solution: Recall that the Steinberg representation is defined as the kernel of the map

I(| · |1/2, | · |−1/2)→ 1G

(the trivial representation of G), given by integration over the quotient B\G. Since I is
compact, passing to I-invariants is an exact functor, so we have an exact sequence

0→ StI → I(| · |1/2, | · |−1/2)I → (1G)
I → 0.

In the notation of part (a) we have α = |v|1/2 = q−1/2, β = q1/2 [this way round!]; so we see
that I(| · |1/2, | · |−1/2)I is 2-dimensional, with U acting with eigenvalues 1 and q. On the
other hand, (1G)

I is clearly 1-dimensional and the action of U is given by summing q coset
representatives each of which acts trivially; so U acts on (1G)

I as multiplication by q. So we
can conclude that StI is 1-dimensional and U acts on it as the identity.
[Nobody got this question fully correct, so you should all go over your work carefully and make
sure you understand where you went wrong. A common mistake was to guess that the map
I(| · |1/2, | · |−1/2)I → 1G was given by f 7→ f (1) + f (w) – it is in fact f 7→ f (1) + q f (w), but
you don’t need to know that.
One can also argue using the alternative description of St as the quotient of I(| · |−1/2, | · |1/2) =
C∞(B\G) by the subrepresentation of constant functions. For this approach, one needs to take
α = q1/2, β = q−1/2, and recognise that the subrepresentation we are quotienting out by is the
span of f1 + f2, which is the U = q eigenspace; so the other eigenspace — the span of f2, on which
U acts as q1/2β = 1 — surjects onto StI .]

5. Let V be an irreducible infinite-dimensional representation of GL2(F), and θ a smooth character of
(F,+) which is trivial on O but not on v−1O.
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(a) [2 points] Justify the claim made in lectures that v ∈ V is invariant under
(
O× O

0 1

)
if and

only if its Kirillov function φv is supported on O and constant on cosets of O×.

Solution: We saw in lectures that φ( a b
0 1

)
v
(x) = θ(bx)φv(ax). Since v 7→ φv is injective, it

follows that v is invariant under
(
O× O

0 1

)
if and only if φv(x) = φv(ax) for all a ∈ O×, x ∈

F× and θ(bx)φv(x) = φv(x) for all b ∈ O, x ∈ F×. The first condition is exactly that φv be
constant on cosets of O×, so we must show that the second is equivalent to having support
in O.
On one hand, suppose φ is supported in O. If x /∈ O, then the relation φ(x) = θ(bx)φ(x) is
obvious since both sides are 0. If x ∈ O, then bx ∈ O for any b ∈ O and hence θ(bx) = 1;
so if φ has support in O, then we have φ(x) = θ(bx)φ(x) for all b ∈ O and x ∈ F×.
Conversely, suppose φ(x) = θ(bx)φ(x) holds for all x ∈ F× and b ∈ O. We are given that
there exists some y ∈ v−1O with θ(y) 6= 1. For any x /∈ O, we have b = x−1y ∈ O; and
hence φ(x) = θ(bx)φ(x) = θ(y)φ(x) which forces φ(x) = 0. Hence φ is supported in O.
[Note that it is not true that θ(y) 6= 1 for every y /∈ O, as some of you believed; this implication
holds if F = Q`, but not for more general local fields.]

(b) [1 point] Show that n > 1, v ∈ VUn , and v′ = [Un
(

v 0
0 1
)

Un] · v, then for all x ∈ O we have

φv′(a) = qφv(va).

Solution: We compute that if g =
(

v 0
0 1
)

then UngUn =
⊔

a∈O/v ( v a
0 1 )Un, and hence

φ[UngUn ]·v(x) = ∑
a

θ(ax)φv(vx).

If x ∈ O then the θ terms are all 1 and hence we obtain qφv(vx).

7. Let N > 1 and let χ be a homomorphism (Z/NZ)× → C× (a Dirichlet character modulo N).

(a) [1 point] Show that there exists a unique smooth character χ : Q×>0 \A×f → C× such that for

almost all primes `, the restriction of χ to Q×` is unramified and maps a uniformiser to χ(`).

(b) [1 point] Show that the restriction of χ to Ẑ× is given by the composition

Ẑ× -- (Z/NZ)×
χ−1
- C×.

Solution: First we show existence. We have A×f = Ẑ× ×Q×>0, and this is even an isomor-

phism of topological groups if Q×>0 is given the discrete topology (and Ẑ× its usual profinite
topology). Hence restriction to Ẑ× gives a bijection between smooth characters of A×f trivial

on Q×>0, and smooth characters of Ẑ×.

We define χ to be the unique character whose restriction to Ẑ× is the inflation of χ. For any
prime ` - N, and any uniformizer v` at `, we have

χ(v`) = χ(`−1v`) = χ(`−1 mod N)−1 = χ(`),

since `−1v` is in Ẑ× and maps to `−1 mod N in the quotient (Z/NZ)×. In particular χ(v`)

is independent of the choice of v`, so χ|Q×` is unramified, and it has the specified value on
the uniformizer. This shows the existence part of (a) and the character constructed clearly
also satisfies (b).
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It remains to show uniqueness. If η is any smooth character of A×f trivial on Q×>0 and
satisfying the stated conditions, then (by smoothness) there must be some M such that
η|Ẑ× factors through (Z/MZ)×. Without loss of generality we may assume N | M. By
Dirichlet’s theorem, every class in (Z/MZ)× contains infinitely many primes; hence the
character of (Z/MZ)× obtained from η must in fact agree with the map (Z/MZ)× �

(Z/NZ)×
χ−1
- C×.

8. [2 points] Let F be a number field. If v is a (finite) prime of F, we denote by Fv the completion of F
at v, and Ov the ring of integers of Fv. Show that for any given prime v of F, we may find an element
γ of SL2(F) such that

• the image of γ in SL2(Fv) lies in the double coset SL2(Ov)
(

vv
v−1

v

)
SL2(Ov);

• the image of γ in SL2(Fw) lies in SL2(Ow) for all primes w 6= v.

Hence show that SL2(F) is dense in SL2(AF, f ).

[Hint: the above double coset in SL2(Fv) also contains
(

1 v−1
v

0 1

)
.]

Solution: Let ` be the rational prime below v. From the density of F in AF, f , we can find an
element x ∈ F which has valuation −1 at v and > 0 at all other primes. Then γ =

(
1 x
0 1
)

works; it
is clearly integral away from v by construction, and it must be in the above double coset, because
γ does not have matrix entries in Ov but vvγ does.

Let C be the closure of SL2(F) in SL2(AF, f ). It is clear that C contains SL2(ÔF) by a result
from lectures, so in particular C is a union of double SL2(ÔF)-cosets. We have shown that(

vv
v−1

v

)
∈ C for every prime v, and since C is a group, it contains all the powers of this element.

From the Cartan decomposition, C contains SL2(F) for every F; so it is the whole of SL2(AF, f ).

9. Let N > 1, and let U = {g ∈ GL2(Ẑ) : g = ( ∗ ∗0 1 ) mod N} and U′ = {g ∈ GL2(Ẑ) : g =(
1 ∗
0 ∗
)

mod N}.
(a) [1 point] Show that both Y(U) and Y(U′) are canonically isomorphic to the classical modular

curve Y1(N) = Γ1(N)\H.

Solution: We showed in lectures that if U is any open compact in GL2(A f ) and g1, . . . , gr ∈
GL2(A f ) are such that the elts {det gi}i=1,...,r are coset representatives for A×f /Q×>0, then
every x ∈ Y(U) has a representative of the form (gi, τ), for a unique i and some τ ∈ H
unique modulo GL+

2 (Q) ∩ giUg−1
i .

In this case, we have det(U) = Ẑ×, and since A×f /Q×>0Ẑ× = {1}, we can take r = 1 and

g = id to see that Y(U) = Γ\H where Γ = U ∩ GL+
2 (Q), which is clearly Γ1(N). The

argument for U′ is identical.

(b) [1 point] Show that, for ` a prime not dividing N, right-translation by
(

v` 0
0 v`

)
∈ GL2(A f ) acts

as the diamond operator 〈`〉 on Y(U), and as 〈`〉−1 on Y(U′).

Solution: If we choose any a, b ∈ Z such that a`− bN = 1, then(
a b
N `

) (
`−1 0

0 `−1

) (
v` 0
0 v`

)
∈ U.
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As points of Y(U) we have

(1, τ) ·
(

v` 0
0 v`

)
= (
(

v` 0
0 v`

)
, τ)

=

((
v` 0
0 v`

)
·
[(

a b
N `

) (
`−1 0

0 `−1

) (
v` 0
0 v`

)]−1
, τ

)
=

([(
a b
N `

) (
`−1 0

0 `−1

)]−1
, τ

)
=
(

1,
[(

a b
N `

) (
`−1 0

0 `−1

)]
· τ
)

= (1, 〈`〉 · τ).

If we use U′ in place of U, then we need to replace
(

a b
N `

)
with

(
` b
N a
)
. The condition

a`− bN = 1 implies that a = `−1 mod N, so this matrix represents 〈`−1〉.
[The condition ` - N was accidentally omitted from the question, but if ` | N the operator 〈`〉 is not
defined.]

10. [2 points] Let Mk,t be the GL2(A f )-representation of modular forms, as in Chapter 6 of the lectures.
For f ∈ Mk,t, and s ∈ R, consider the function fs : GL2(A f )×H → C defined by

fs(g, τ) = f (g, τ)‖det g‖s.

Here ‖x‖ = ∏` |x`| is the normalised absolute value on A×f . Show that fs ∈ Mk,t+s.

Solution: We need to check the following:

(i) fs(g,−) is holomorphic and bounded at the cusps for any g ∈ GL2(A f );

(ii) fs is stable under right-translation by some open subgroup of GL2(A f );

(iii) fs(γg,−) = fs(g,−)|k,t+sγ−1 for γ ∈ GL+
2 (Q).

Part (i) is obvious since fs(g,−) is a scalar multiple of f (g,−).
For part (ii), let U be any open compact fixing f . Then the image of U under x 7→ ‖det x‖ is an
open compact subgroup of R>0, hence it’s trivial; so ‖det u‖ = 1 for all u ∈ U. Thus U fixes fs.

For part (iii), we have ‖x‖ = 1/x for x ∈ Q>0, so

fs(γg,−) = ‖det γg‖s f (γg,−)
= ‖det γg‖s f (g,−)|k,tγ

−1

= (det γ−1)s fs(g,−)|k,tγ
−1

= fs(g,−)|k,t+sγ−1.

[ For (ii), it suffices to argue – as several of you did – that U′ = {u ∈ U : ‖det u‖ = 1} is open,
e.g. because it contains U ∩GL2(Ẑ). However, the above argument shows that we always have U′ = U.]
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