TCC Modular Forms and Representations of GL_{2} : Assignment \#3 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

14th January 2019

If $\Gamma \leqslant \mathrm{SL}_{2}(\mathbf{Z})$ and L is a subfield of \mathbf{C}, we define $M_{k}(\Gamma, L)$ to be the L-subspace of $M_{k}(\Gamma)$ consisting of forms with q-expansion coefficients in L, and similarly $S_{k}(\Gamma, L)$. For $f \in M_{k}(\Gamma)$ and $\sigma \in$ Aut (\mathbf{C}), we let f^{σ} be the formal q-expansion $\sum \sigma\left(a_{n}\right) q^{n}$, where $f=\sum a_{n} q^{n}$.

1. [1 point] Prove the formula relating the global Kirillov function to q-expansions, $a_{n}\left(f\left(\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right),-\right)\right)=$ $n^{t} \phi_{f}(n x)$.

Solution: We compute that for $f \in M_{k, t}$ we have

$$
\begin{aligned}
\phi_{f}(n x) & =a_{1}\left(f\left(\left(\begin{array}{lll}
n x & 0 \\
0 & 1
\end{array}\right),-\right)\right) \\
& =a_{1}\left(f\left(\left(\begin{array}{ll}
n & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right),-\right)\right) \\
& =a_{1}\left(f\left(\left(\begin{array}{ll}
n & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right),-\right)\right) \\
& =a_{1}\left(\left.f\left(\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right),-\right)\right|_{k, t}\left(\begin{array}{ll}
n & 0 \\
0 & 1
\end{array}\right)^{-1}\right)
\end{aligned}
$$

From the definition of the weight k, t action, we have

$$
\left(\left.f\left(\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right),-\right)\right|_{k, t}\left(\begin{array}{ll}
n & 0 \\
0 & 1
\end{array}\right)^{-1}\right)(\tau)=n^{-t} f\left(\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right), \frac{\tau}{n}\right),
$$

so $a_{1}\left(\left.f\left(\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right),-\right)\right|_{k, t}\left(\begin{array}{ll}n & 0 \\ 0 & 1\end{array}\right)^{-1}\right)=n^{-t} a_{n}\left(f\left(\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right),-\right)\right)$.
2. [1 point] Let Π be a cuspidal automorphic representation of weight (k, t), and $f \in S_{k}\left(\Gamma_{1}(N)\right)$ its normalised new vector. Show that if f transforms under the diamond operators $\langle d\rangle$ via the character $\varepsilon:(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow \mathbf{C}^{\times}$, then the central character of the automorphic representation Π is the character $\|\cdot\|^{2 t-k_{\mathcal{E}}}$, where $\underline{\varepsilon}$ is the adelic character attached to ε (as in Q7 of Sheet 1).

Solution: We saw in lectures that the action of $\left(\begin{array}{cc}\varpi_{\ell} & 0 \\ 0 & \varpi_{\ell}\end{array}\right)$ corresponds to $\ell^{k-2 t}\langle\ell\rangle$ under the identification $\left(S_{k, t}\right)^{U_{1}(N)} \cong S_{k}\left(\Gamma_{1}(N)\right)$. Thus the central character of Π has to map ϖ_{ℓ} to $\ell^{k-2 t} \varepsilon(\ell)$ for all but finitely many primes ℓ, which is also true of the character $|\cdot|{ }^{2 t-k} \underline{\underline{\varepsilon}}$. By the uniqueness assertion of Sheet 2 Q7a these two characters of $\mathbf{A}_{f}^{\times} / \mathbf{Q}_{>0}^{\times}$must be the equal.
3. [*] Let χ be a quadratic Dirichlet character, and Π a cuspidal automorphic representation such that $\Pi=\Pi \otimes \chi[N B$: such examples do exist $]$. Let $\chi^{\prime} \neq \chi$ be another quadratic Dirichlet character. Show that the representation $\Pi^{\prime}=\Pi \otimes \chi^{\prime}$ satisfies $\Pi_{\ell} \cong \Pi_{\ell}^{\prime}$ for a set of primes ℓ of density $\geqslant \frac{3}{4}$.
4. [2 points] Show (without using Shimura's rationality theorems) that if $f \in M_{k, t}$ then the function $f^{*}(g, \tau)=\overline{f\left(\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) g,-\bar{\tau}\right)}$ is also in $M_{k, t}$, and that $(g \cdot f)^{*}=g \cdot f^{*}$.

Solution: Clearly $f^{*}(g,-)$ has moderate growth, and since $\overline{\exp (2 \pi i(-\bar{\tau}))}=\exp (2 \pi i \tau)$, the locally-uniform convergence of the q-expansion of f shows that f^{*} is holomorphic in τ. [Alternatively, one can check directly from the Cauchy-Riemann equations that if h is holomorphic on $D \subset \mathbf{C}$ then $\tau \mapsto \overline{h(\bar{\tau})}$ is holomorphic on \bar{D}.]
For $\gamma \in \mathrm{GL}_{2}^{+}(\mathbf{Q})$ set $\gamma^{*}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \gamma\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
\begin{aligned}
f^{*}(\gamma g, \tau) & =\overline{f\left(\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \gamma g^{\prime}-\bar{\tau}\right)} \\
& =\overline{f\left(\gamma^{*}\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) g,-\bar{\tau}\right)} \\
& =\overline{\left(\left.f\left(\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) g^{\prime}-\right)\right|_{k, t}\left(\gamma^{*}\right)^{-1}\right)(-\bar{\tau})}
\end{aligned}
$$

If $\gamma^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\left(\gamma^{*}\right)^{-1}=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right)$, so this is

$$
\begin{aligned}
\overline{(a d-b c)^{t}(c \bar{\tau}+d)^{-k} f\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) g,-\bar{\tau}\right)} & =(a d-b c)^{t}(c \tau+d)^{-k} \overline{f\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) g,-\bar{\tau}\right)} \\
& =\left(\left.f^{*}(g,-)\right|_{k, t} \gamma^{-1}\right)(\tau) .
\end{aligned}
$$

Thus f transforms like a modular form under the left action of $\mathrm{GL}_{2}^{+}(\mathbf{Q})$. Finally $(g \cdot f)^{*}\left(g^{\prime}, \tau\right)=$ $\overline{(g \cdot f)\left(\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) g^{\prime},-\bar{\tau}\right)}=f^{*}\left(g^{\prime} g, \tau\right)$, which implies in particular that f^{*} is fixed by right-translation under any subgroup fixing f, so $f^{*} \in M_{k, t}$ and the map $f \rightarrow f^{*}$ is $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$-equivariant.
5. [2 points] Let $f \in S_{k, t}(\mathbf{Q})$, for some $k, t \in \mathbf{Z}$, so that the Kirillov function ϕ_{f} of f takes values in \mathbf{Q}_{∞} and satisfies $\sigma\left(\phi_{f}(x)\right)=\phi_{f}(\chi(\sigma) x)$ for all $\sigma \in \operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$. Show that the same is true of the Kirillov function of $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) f$, for any $a \in \mathbf{A}_{f}^{\times}, b \in \mathbf{A}_{f}$. [You may not use Shimura's theorem that $S_{k, t}(\mathbf{Q})$ is $\mathrm{GL}_{2}\left(\mathbf{A}_{f}\right)$-stable.]

Solution: We have $\phi_{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) f}(\chi(\sigma) x)=\theta(\chi(\sigma) b x) \phi_{f}(\chi(\sigma) a x)$, and $\phi_{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) f}(x)^{\sigma}=\theta(b x)^{\sigma} \phi_{f}(a x)^{\sigma}$. By hypothesis $\phi_{f}(\chi(\sigma) a x)=\phi_{f}(a x)^{\sigma}$ so it suffices to prove that $\theta(b x)^{\sigma}=\theta(\chi(\sigma) b x)$ for all b, x, σ. We may take $b=1$ without loss of generality.
For any given $x \in \mathbf{A}_{f}, \theta(x)$ is a root of unity of order R, where R is the order of x in the torsion group $\mathbf{A}_{f} / \hat{\mathbf{Z}} \cong \mathbf{Q} / \mathbf{Z}$.
By the definition of the cyclotomic character χ, we have $\theta(x)^{\sigma}=\theta(x)^{m}$ where m is any integer congruent to $\chi(\sigma) \bmod R$. However, we also have $\theta(x \chi(\sigma))=\theta(m x)$ (since $(m-\chi(\sigma)) x \in \hat{\mathbf{Z}}$); so $\theta(x)^{m}=\theta(\chi(\sigma) x)$.
6. [3 points] Let $N \geqslant 1$. Define

$$
S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)=\left\{f \in S_{k}\left(\Gamma_{1}(N), \mathbf{Q}\left(\zeta_{N}\right)\right): f^{\sigma}=\langle\chi(\sigma)\rangle f \forall \sigma \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{N}\right) / \mathbf{Q}\right)\right\}
$$

(a) Show that $S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)$ spans $S_{k}\left(\Gamma_{1}(N)\right)$ over \mathbf{C}.
(b) Show that for any integer t the Atkin-Lehner operator W_{N}, defined by $W_{N}(f)=\left.f\right|_{k, t}\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, is a bijection

$$
S_{k}\left(\Gamma_{1}(N), \mathbf{Q}\right) \cong S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)
$$

[Hint: Consider the group $\left\{\gamma \in \mathrm{GL}_{2}(\hat{\mathbf{Z}}): \gamma=\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \bmod N\right\}$.]

Solution: Let U^{\prime} the group in the Hint. By a theorem of Shimura stated in the lectures, we have

$$
S_{k, t}^{U^{\prime}}=S_{k, t}(\mathbf{Q})^{U^{\prime}} \otimes_{\mathbf{Q}} \mathbf{C} .
$$

Since we have $\operatorname{det}\left(U^{\prime}\right)=\widehat{\mathbf{Z}}^{\times}$and $U^{\prime} \cap \mathrm{GL}_{2}^{+}(\mathbf{Q})=\Gamma_{1}(N)$, a theorem from earlier in the course tells us that the map $f \mapsto f(1,-)$ is a bijection $S_{k, t}^{U^{\prime}} \cong S_{k}\left(\Gamma_{1}(N)\right)$. Hence if I is the space of functions $\left\{f(1,-): f \in S_{k, t}(\mathbf{Q})^{U^{\prime}}\right\}$, we have $S_{k}\left(\Gamma_{1}(N)\right)=I \otimes_{\mathbf{Q}} \mathbf{C}$.
I claim that I is precisely the space $S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)$. This clearly proves (a). To prove the claim, we check that the action of $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, for $a \in \hat{\mathbf{Z}}^{\times}$, on $S_{k, t}(\mathbf{Q})^{U^{\prime}}$ coincides with the classical diamond operator $\langle a\rangle$ on $S_{k}\left(\Gamma_{1}(N)\right)$.
Finally we note that $\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbf{Q})$ conjugates U into U^{\prime}, so the action of this matrix gives a bijection between $S_{k, t}(\mathbf{Q})^{U}$ and $S_{k, t}(\mathbf{Q})^{U^{\prime}}$ and thus between $S_{k}\left(\Gamma_{1}(N), \mathbf{Q}\right)$ and $S_{k}^{\prime}\left(\Gamma_{1}(N), \mathbf{Q}\right)$. This is (b).
7. [4 points] Show that $X_{0}(16)$ has 6 cusps, of which 4 are defined over \mathbf{Q}. What is the field of definition of the remaining two?

Solution: By standard complex-analytic theory (see e.g. $\S 3$ of Diamond + Shurman), we find that a set of representatives for the cusps is given by $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{-1}{4}, \frac{1}{8}, \infty\right\}$. In particular, every cusp has the form $\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right) \cdot \infty$ for some $a \in \mathbf{Z}$. Conversely, if $a \in \mathbf{Z}$ then the equivalence class of $\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right) \cdot \infty$ depends only on $a \bmod 16$, and is given by

cusp	values of $a \bmod 16$
1	(units)
$\frac{1}{2}$	$\{2,6,10,14\}$
$\frac{1}{4}$	$\{4\}$
$-\frac{1}{4}$	$\{12\}$
$\frac{1}{8}$	$\{8\}$
∞	$\{0\}$

A theorem from the lectures tells us that the image of $\gamma \cdot \infty$ under the action of $\sigma \in \operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$ is given by $\gamma^{\prime} \cdot \infty$ where γ^{\prime} is any element of $\operatorname{SL}_{2}(\mathbf{Z})$ whose image in $\operatorname{SL}_{2}(\mathbf{Z} / 16)$ coincides with that of $\left(\begin{array}{ll}\chi(\sigma) & \\ & 1\end{array}\right) \gamma\left(\begin{array}{ll}\chi(\sigma)^{-1} & \\ & 1\end{array}\right)$.
[Note that $\left(\begin{array}{ll}\chi(\sigma) & \\ & 1\end{array}\right) \gamma\left(\begin{array}{ll}\chi(\sigma)^{-1} & \\ & 1\end{array}\right)$ is in $\mathrm{SL}_{2}(\hat{\mathbf{Z}})$ but is not in $\mathrm{SL}_{2}(\mathbf{Z})$ in general, so it doesn't make sense to let it act on $\mathbf{P}^{1}(\mathbf{Q})$; we have to choose some γ^{\prime} close enough and act by that.]
Hence if γ has the form $\left(\begin{array}{cc}1 & 0 \\ a & 1\end{array}\right)$, we can take $\gamma^{\prime}=\left(\begin{array}{cc}1 & 0 \\ a^{\prime} & 1\end{array}\right)$ where a^{\prime} is anything congruent to $\chi(\sigma)^{-1} a \bmod 16$.
Inspecting the tables of values of $a \bmod 16$, we see that the cusps $\left\{1, \frac{1}{2}, \frac{1}{8}, \infty\right\}$ correspond to subsets of $\mathbf{Z} / 16 \mathbf{Z}$ which are preserved by multiplication by units, so these cusps are defined over \mathbf{Q}. The remaining two cusps $\pm \frac{1}{4}$ are fixed by multiplication by units that are $1 \bmod 4$, and they are interchanged by the action of units that are $3 \bmod 4$, so they correspond to a conjugate pair of points defined over the quadratic field $\mathbf{Q}\left(\zeta_{4}\right)=\mathbf{Q}(i)$.
8. [*] Let F be a nonarchimedean local field, and π_{1}, π_{2} irreducible infinite-dimensional representations of $\mathrm{GL}_{2}(F)$. Let χ, ψ be any two characters of F^{\times}such that $\chi \psi$ is the product of the central characters of the π_{i}. Show that there is a non-zero homomorphism of $\mathrm{GL}_{2}(F)$-representations $\pi_{1} \otimes \pi_{2} \rightarrow I(\chi, \psi)$. [Hint: Consider first the case where at least one of the π_{i} is supercuspidal.]
9. Recall the functions $f_{\Phi}(g, s)$ and $\tilde{f}_{\Phi}(g, s)$ defined in Jacquet's local Rankin-Selberg theory. [The parameter s was omitted from the notation in the lecture, but we include it here.]
(a) [1 point] Show that if $\operatorname{Re}(s)$ is sufficiently large that $\left|q^{-2 s} \omega(\varpi)\right|<1$, then the integral defining $f_{\Phi}(g, s)$ converges for all g and Φ.

Solution: We defined

$$
f_{\Phi}(g, s)=|\operatorname{det} g|^{s} \cdot \int_{t \in F^{\times}} \Phi((0, t) g) \omega(t)|t|^{2 s} \mathrm{~d}^{\times} t
$$

We claim that the integral is absolutely convergent under the given hypotheses. It suffices to assume $g=1$. Since $|\omega(t)|=1$ for $t \in \mathcal{O}^{\times}$the absolute-value integral is

$$
(*) \cdot \sum_{m \in \mathbf{Z}} \int_{t \in \mathcal{O}^{\times}}\left(\left|\Phi\left(0, \varpi^{m} t\right)\right|\right) \cdot\left(\left|q^{-2 s} \omega(\varpi)\right|\right)^{m}
$$

For $m \ll 0$ the integrand is zero, and for $m \gg 0$ the term $\Phi\left(0, \varpi^{m} t\right)$ is just $\Phi(0,0)$; hence the integral is bounded by

$$
(\text { finite sum })+(\text { const }) \cdot \sum_{m \geqslant 0}\left(q^{-2 s}|\omega(\varpi)|\right)^{m}
$$

which is finite under the stated hypothesis on s.
(b) [1 point] Show that whenever $f_{\Phi}(g, s)$ is defined, we have $f_{\Phi}(-, s) \in I\left(|\cdot|^{s-\frac{1}{2}},|\cdot|^{\frac{1}{2}-s} \omega^{-1}\right)$.

Solution: We need to check the following:
(i) there is some open U such that $f_{\Phi}(g u, s)=f_{\Phi}(g, s)$, for all $g \in G$ and $u \in U$;
(ii) $f_{\Phi}\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) g, s\right)=|a / d|^{s} \omega^{-1}(d)$ for all $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in B$.

For (i), we note that if $\operatorname{det}(u) \in \mathcal{O}^{\times}$we have $f_{\Phi}(g u, s)=f_{u \cdot \Phi}(g, s)$, so it suffices to show that $C_{c}^{\infty}\left(F^{2}\right)$ is a smooth representation of $\mathrm{GL}_{2}(F)$. The space $C_{c}^{\infty}\left(F^{2}\right)$ is spanned by indicator functions of sets of the form $\left(a+\mathfrak{P}^{n}, b+\mathfrak{P}^{n}\right)$. If a, b are in \mathfrak{P}^{-m} then this set is preserved by the open subgroup $\left\{u: u=1 \bmod p^{m+n}\right\}$.
For (ii), we have

$$
\begin{aligned}
f_{\Phi}\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) g, s\right) & =|a d|^{s}|\operatorname{det} g|^{s} \int_{F^{\times}} \Phi\left((0, t)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) g\right) \omega(t)|t|^{2 s} \mathrm{~d}^{\times} t \\
& =\frac{|a d|^{s}|\operatorname{det} g|^{s}}{\omega(d)|d|^{2 s}} \int_{F^{\times}} \Phi((0, d t) g) \omega(d t)|d t|^{2 s} \mathrm{~d}^{\times} t \\
& =\frac{|a d|^{s}}{\omega(d)|d|^{2 s}} f_{\Phi}(g, s)
\end{aligned}
$$

as required.
(c) [*] Let $s_{0} \in \mathbf{C}$. Show that the following are equivalent:

- there exists some $\Phi \in C_{c}^{\infty}\left(F^{2}\right)$ and $g \in \mathrm{GL}_{2}(F)$ such that $f_{\Phi}(g, s)$ has a pole at $s=s_{0}$;
- the representation $I\left(|\cdot|^{s_{0}-\frac{1}{2}},|\cdot|^{\frac{1}{2}-s_{0}} \omega^{-1}\right)$ is reducible with a 1-dimensional subrepresentation.
Show that if these conditions are satisfied, then the limit

$$
\lim _{s \rightarrow s_{0}}\left(s-s_{0}\right) \cdot f_{\Phi}(g, s)
$$

exists for all g and Φ, and as a function of g it lies in the 1-dimensional subrepresentation of $I(\ldots)$.
(d) [*] Use (c) to show that if at least one of π_{1} and π_{2} is supercuspidal, then $L\left(\pi_{1} \times \pi_{2}, s\right)$ is identically 1 unless π_{1} is isomorphic to a twist of π_{2}.
10. [2 points] Let F be a nonarchimedean local field. Let θ be a character $F \rightarrow \mathbf{C}^{\times}$trivial on \mathcal{O} but not on $\varpi^{-1} \mathcal{O}$, and let μ denote the Haar measure on F such that $\mu(\mathcal{O})=1$.
(a) For $\phi \in C_{c}^{\infty}(F)$, define $\hat{\phi}$ by

$$
\hat{\phi}(x)=\int_{F} \phi(u) \theta(x u) \mathrm{d} \mu(u)
$$

Show that $\hat{\phi} \in C_{c}^{\infty}(F)$, and $\hat{\phi}(x)=\phi(-x)$.
Solution: We first make a preliminary reduction. Let $\phi \in C_{c}^{\infty}(F)$ and define Φ by $\Phi(x)=$ $\phi(a x+b) \theta(c x)$ for some $a, b, c \in F$ (with $a \neq 0$). A change of variable shows that

$$
\hat{\Phi}(x)=\left(|a|^{-1} \theta\left(-\frac{b c}{a}\right)\right) \theta\left(-\frac{b}{a} x\right) \hat{\phi}\left(\frac{1}{a} x+\frac{c}{a}\right) .
$$

Applying this again with ϕ replaced by $\hat{\phi}$ and a, b, c by $a^{\prime}=1 / a, b^{\prime}=c / a$ and $c^{\prime}=-b / a$, we end up with

$$
\hat{\hat{\Phi}}(x)=\left(\left|a^{\prime}\right|^{-1} \theta\left(-b^{\prime} c^{\prime} / a^{\prime}\right)\right)\left(|a|^{-1} \theta(-b c / a)\right) \theta\left(-\frac{b^{\prime}}{a^{\prime}} x\right) \hat{\hat{\phi}}\left(\frac{1}{a^{\prime}} x+\frac{c^{\prime}}{a^{\prime}}\right)=\hat{\hat{\phi}}(a x-b) \theta(-c x)
$$

The first formula shows that if $\hat{\phi} \in C_{c}^{\infty}(F)$ then we also have $\hat{\Phi} \in C_{c}^{\infty}(F)$. The second shows that if $\hat{\phi}(x)=\phi(-x)$, then we also have $\hat{\Phi}(x)=\Phi(-x)$.
Since $C_{c}^{\infty}(F)$ is spanned by functions of the form $\mathbf{1}_{\mathcal{O}}(a+b x)$, it follows that these two relations hold for all $\phi \in C_{C}^{\infty}$ if and only if they hold for the single function $\phi=\mathbf{1}_{\mathcal{O}}$.
For this ϕ, we have $\hat{\phi}(x)=\int_{\mathcal{O}} \theta(x u) \mathrm{d} \mu(u)$. If $x \in \mathcal{O}$, then the integrand is identically 1 , so the integral is just $\mu(\mathcal{O})=1$. On the other hand, if $x \notin \mathcal{O}$ then $u \mapsto \theta(x u)$ is a non-trivial smooth character of \mathcal{O}, so $\int_{\mathcal{O}} \theta(x u) \mathrm{d} \mu(u)$ is zero. Thus $\hat{\phi}=\phi$ in this case; in particular, we have $\hat{\phi} \in C_{c}^{\infty}(F)$, and $\hat{\phi}(x)=\phi(x)=\phi(-x)$. So we are done.
(b) For $\Phi \in C_{c}^{\infty}\left(F^{2}\right)$, define $\hat{\Phi}$ by

$$
\hat{\Phi}(x, y)=\iint_{F \times F} \Phi(u, v) \theta(x v-y u) \mathrm{d} \mu(u) \mathrm{d} \mu(v) .
$$

Show that $\hat{\boldsymbol{\Phi}}=\Phi$. [Hint: $C_{c}^{\infty}\left(F^{2}\right)$ is spanned by functions of the form $\Phi(x, y)=\phi_{1}(x) \phi_{2}(y)$.]
Solution: Letting Φ have the form given in the Hint, we compute that

$$
\hat{\Phi}(x, y)=\hat{\phi}_{1}(-y) \hat{\phi}_{2}(x)=\rho_{1}(x) \rho_{2}(y)
$$

where $\rho_{1}(x):=\hat{\phi}_{2}(x)$ and $\rho_{2}(y):=\hat{\phi}_{1}(-y)$. Iterating the argument, we have $\hat{\hat{\Phi}}(x, y)=$ $\hat{\rho}_{1}(-y) \hat{\rho}_{2}(x)$; but $\hat{\rho}_{1}(-y)=\hat{\phi}_{2}(-y)=\phi_{2}(y)$, and $\hat{\rho}_{2}(x)=\hat{\hat{\phi}}_{1}(-x)=\phi_{1}(x)$.
11. [3 points] Let $k \geqslant 0$ be an integer, $s \in \mathbf{C}$ with $\operatorname{Re}(s)>1$, and $\Phi \in C_{c}^{\infty}\left(\mathbf{A}_{f}^{2}\right)$. Show that the Eisenstein series $E_{\Phi}^{k}(g, \tau, s)$ and $\tilde{E}_{\Phi}^{k}(g, \tau, s)$ transform like elements of $M_{k, k / 2}$ under left translation by $\mathrm{GL}_{2}^{+}(\mathbf{Q})$. (You may assume that the sums concerned are absolutely convergent.)

Solution: [Everybody who attempted this question got it right, and typesetting it is a pain, so I'm not going to provide a model solution.]

