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Abstract

From the developing embryo to the evacuation of football stadiums, the migration and

movement of populations of individuals is a vital part of human life. Such movement often

occurs in crowded conditions, where the space occupied by each individual impacts on

the freedom of others. This thesis aims to analyse and understand the effects of occupied

volume (volume exclusion) on the movement of the individual and the population.

We consider, as a motivating system, the rearrangement of individuals required to turn

a clump of cells into a functioning embryo. Specifically, we consider the migration of

cranial neural crest cells in the developing chick embryo. Working closely with experi-

mental collaborators we construct a hybrid model of the system, consisting of a contin-

uum chemoattractant and individual-based cell description and find that multiple cell

phenotypes are required for successful migration. In the crowded environment of the

migratory system, volume exclusion is highly important and significantly enhances the

speed of cell migration in our model, whilst reducing the numbers of individuals that

can enter the domain. The developed model is used to make experimental predictions,

that are tested in vivo, using cycles of modelling and experimental work to give greater

insight into the biological system.

Our formulated model is computational, and is thus difficult to analyse whilst considering

different parameter regimes. The second part of the thesis is driven by the wish to sys-

tematically analyse our model. As such, it concentrates on developing new techniques to

derive continuum equations from diffusive and chemotactic individual-based and hybrid

models in one and two spatial dimensions with the incorporation of volume exclusion.

We demonstrate the accuracy of our techniques under different parameter regimes and

using different mechanisms of movement. In particular, we show that our derived contin-

uum equations almost always compare better to data averaged over multiple simulations

than the equivalent equations without volume exclusion. Thus we establish that volume

exclusion has a substantial effect on the evolution of a migrating population.



Contents

1 Introduction 1

1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Experimental background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Anatomy of a migratory stream . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Cell interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Modelling of the neural crest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Continuum modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1.1 Landman et al. (2003) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1.2 Simpson et al. (2006a) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1.3 Trewenack and Landman (2009) . . . . . . . . . . . . . . . . . . . . 10

1.4 Individual-based modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Individual-based modelling of neural crest migration . . . . . . . . . . . . . . 11

1.4.1.1 Wynn et al. (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1.2 Simpson et al. (2007a) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Deriving continuum equations from IBMs . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Simpson et al. (2009c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Baker and Simpson (2010; 2011) . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.3 Off-lattice models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.4 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Aims and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Setting up a hybrid modelling framework 22

2.1 Simple diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Domain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Volume exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



2.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Dynamic chemoattractant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Domain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Diffusion of VEGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Subpopulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.0.1 Trailing cell mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Experimental response to model predictions . . . . . . . . . . . . . . . . . . . 40

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Testing our modelling framework experimentally 42

3.1 Presentation of experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Ablation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Experimental description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Model prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Transplant experiment: front-to-back . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Experimental description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Model prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Transplant experiment: back-to-front . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Experimental description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.3 Model prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Population conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Time-based cell conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Gradient-based conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Ablation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.4 Generating a spatially structured migratory stream from an initially homoge-

neous population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.4.1 Time-based cell conversion . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.4.2 Gradient-based conversion . . . . . . . . . . . . . . . . . . . . . . . 59

ii



3.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Analysis of a simple 1D individual-based model 64

4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Limiting equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Flux boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Prescribing the total cell population over time . . . . . . . . . . . . . . . . . 74

4.5.2 Extending our original method . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Exploring parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 Likelihood of successful movement . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Population crowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.3 The final pair of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Distributed distance moved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.1 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Domain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.2 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Biased movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9.1 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Reaching for the second dimension 102

5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Finding Pi(x, θ, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3.1 Flux boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.5 Exploring parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Distribution of jump distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iii



5.4 Domain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Heterogeneous populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Biased movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.1 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Chemotaxis 130

6.1 Model 1: on-lattice cells and chemoattractant . . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.2 Types of sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1.2.1 Local sensing (T±
i = αsi) . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1.2.2 Non-local sensing (T±
i = αsi±1) . . . . . . . . . . . . . . . . . . . . 137

6.1.3 Excluded volume effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.3.1 Local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.3.2 Non-local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Model 2: on-lattice cells with continuum chemoattractant . . . . . . . . . . . . . . . 142

6.2.1 Hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Hybrid simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.3 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Model 3: off-lattice cells with continuum chemoattractant . . . . . . . . . . . . . . . 149

6.3.1 Derivation of continuum equations . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.2 Excluded volume effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Model 4: two spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.1 Local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.2 Non-local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.3 Volume exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.3.1 Local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.3.2 Non-local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Discussion and conclusions 177

7.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2.1 Analysing the models from Chapters 2 and 3 . . . . . . . . . . . . . . . . . . 180

7.2.1.1 Domain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2.1.2 Flux boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 182

iv



7.2.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.2 Further investigation into the biological system . . . . . . . . . . . . . . . . . 188

7.2.3 Future applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A Numerical methods 190

A.1 The NAG library solver d03pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.1.1 Method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.1.2 Backwards differentiation formula method . . . . . . . . . . . . . . . . . . . . 192

A.2 The NAG library solver d03ra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

v



Chapter 1

Introduction

The migration of cell populations is crucial in the development and homeostasis of adult organisms,

allowing the formation of highly structured organs and protecting from infection and disease through

a targeted immune system and inflammatory response (Luster, 2001; Alt and Lauffenburger, 1987).

Consequently, failures of migration or inappropriate cell movement can result in severe developmen-

tal disorders, chronic inflammatory syndromes, such as asthma and rheumatoid arthritis, and the

metastasis of cancerous growths (Roussos et al., 2011; Trainor, 2005; Johnston and Bronsky, 1995;

Tallquist and Soriano, 2003; Rizzoti and Lovell-Badge, 2007; Theveneau and Mayor, 2011). One

system that is widely studied is the directed migration of the neural crest (Johnston and Bronsky,

1995; Kulesa et al., 2010). Since cellular migration is well conserved across and within organisms

(Kulesa et al., 2004), this provides a model system to investigate the migration of cell populations.

We will take the migration of the cranial neural crest as an example system to study cell migration

in detail by undertaking mathematical modelling in close collaboration with experimental biologists.

In this chapter we give a brief introduction to the biological system and review the current state of

the field in terms of experimental understanding, previous mathematical models and the techniques

currently used to approximate individual-based models (IBMs) using continuum equations.

1.1 Biological background

Just as any journey must begin with a single step, so the development of any organism must begin

with a single cell. The first step towards a fully mature, multicellular organism is the division of

1



Figure 1.1: A schematic representation of neurulation, starting from the top left, and proceeding
clockwise. Reproduced from Spicher and Michel (2007), with permission from Elsevier.

this initial zygote into a ball of cells (blastula). This division is so rapid that cell growth is almost

completely neglected during this phase. The blastula then undergoes a period of slower division,

during which the cells grow and become motile, enabling a highly coordinated rearrangement of cells

(gastrulation) to take place. This rearrangement of cells leads to the establishment of three germ

layers; the ectoderm (gives rise to the nervous system and epidermis), the endoderm (produces the

lining of the digestive tube and respiratory tube) and the mesoderm (forms bones, connective tissue,

circulatory system and reproductive system). A thickening of the ectoderm, called the neural plate,

then undergoes neurulation, folding inwards to make the neural tube (Figure 1.1). This will become

the central nervous system for the organism, including the brain, spinal cord and retina. Other

cells within the ectoderm become neural crest cells (NCCs), subsequently migrating to specific areas

within the embryo and differentiating into a prodigious number of different types of cells. NCCs

are divided by their spatial position in the neural crest into four main groups (which may overlap):

cranial; trunk; vagal and cardiac neural crests. NCCs from different groups will then migrate to

various regions in the embryo and differentiate into distinct cell types (Gilbert, 2006).

There has previously been a particular focus of research on enteric neural crest cells (ENCCs)

(Landman et al., 2003; Simpson et al., 2006a; Zhang et al., 2010), which derive from the trunk neural

crest, but cranial neural crest cells (CNCCs) are now becoming more well-studied (McLennan and

Kulesa, 2007; Carmona-Fontaine et al., 2008; Kulesa et al., 2010). The head is largely the product

of CNCCs, and many craniofacial abnormalities, such as DiGeorge syndrome (related to maternal

alcohol use; Trainor, 2005; Johnston and Bronsky, 1995; Tallquist and Soriano, 2003; Rizzoti and

Lovell-Badge, 2007; Theveneau and Mayor, 2011) and the development of a cleft palate (Tallquist

and Soriano, 2003; Eberhart et al., 2008; Trainor, 2005; Johnston and Bronsky, 1995; Latta and

Golding, 2012; Theveneau and Mayor, 2011, 2012; Olesnicky Killian et al., 2009), may be the result

2



Figure 1.2: A schematic showing the migration routes of CNCCs from different rhombomeres
(labelled r1-r7). Each circle represents a neural crest cell, and colours represent the rhombomere of
origin; r1 (turquoise), r2 (purple), r4 (blue), r6 (green) and r7 (yellow). NCCs originating from r3
or r5 are shown in red. Different types of behaviour are represented and numbered here; NCCs from
r1 and r2 migrate diagonally (1,2), often forming chain-like arrays which then disassemble leaving
the cells free to migrate as individuals. Cells from r3 will either join the r2 stream (3) or the r4
stream (5,6), or stop and retract filopodia (4). Similarly, cells from r6 and r7 migrate along specific
routes (9), with NCCs from r7 forming chains (10) and cells from r6 being joined by cells from r5
(7,8). Reproduced from Kulesa et al. (2004), with permission from Wiley Periodicals Inc.

of a failure of CNCC migration. The cranial neural crest is therefore highly important for normal

embryo development. This thesis will focus on the mechanisms underlying CNCC migration, a

subject that is further complicated by the continual growth of the embryo, expanding the domain

of migration.

The neural tube in the region of the developing head is divided into three regions; the forebrain,

the midbrain and the hindbrain. CNCCs originate in the hindbrain (rhombencephalon), which has

a characteristic patterning of periodic swellings called rhombomeres (r1-r7). The developmental

fate and migration route of the CNCCs is dictated by the rhombomere of origin. Streams of cells

are found laterally to the even-numbered rhombomeres, whereas CNCCs originating from odd-

numbered rhombomeres will typically join an adjacent stream, leaving an exclusion zone next to

the odd-numbered rhombomeres (Figure 1.2). CNCCs will typically migrate to and colonise one of

the pharyngeal arches (also known as branchial arches), giving rise to bones, cartilage and other

connective tissue.
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1.2 Experimental background

We wish to investigate the r4 migratory stream (see Figure 1.2) bound for the second branchial arch

(ba2) in the developing chick embryo. This system is studied experimentally by our collaborators

at the Stowers Institute for Medical Research (Kansas City), allowing experimental work to be

undertaken in order to test modelling predictions. However, it should also be noted that NCC

patterning is highly conserved among vertebrates (Pratt et al., 1975; Johnston and Bronsky, 1995;

Kulesa et al., 2004), so that the information gathered in other organisms may be relevant to chick

embryos and this, in turn, has implications for human development.

There are several experimental review papers in the field of NCC migration, including two that focus

on the cranial crest (Noden, 1993; Kulesa et al., 2010). The earlier of these hypothesised sequential,

hierarchical interactions between the different populations of cells (e.g. between the mesenchymal

cells, the CNCCs and the underlying mesodermal cells). However, the much more recent paper

by Kulesa et al. (2010), whilst accepting the importance of the general microenvironment, asserts

that cell-cell interactions within the CNCC population is also a contributing factor to the successful

migration and spatial segmentation of cells. Three main phases of migration are identified by Kulesa

et al. (2010): the initial emergence of cells from the neural tube and acquisition of directed migration

towards the branchial arches; the successful migration of the majority of cells to the destination;

and the entry into, and colonisation of, the branchial arch. This thesis will be primarily concerned

with the second of these phases.

1.2.1 Anatomy of a migratory stream

CNCCs in the r4 migratory stream acquire directionality soon after leaving the neural tube (delami-

nation), and migrate in a narrowing band towards ba2. When cells are close to their destination the

stream widens before the final invasion and population of the arch. In total, cells migrate a distance

of around 1100µm taking approximately 24 hours to reach their destination.

The cranial neural crest migratory stream is a heterogeneous population, with the front 30% of cells

displaying different characteristics to the remaining 70% of the stream. In particular, cells leading

the migratory stream have distributed filopodia (Kulesa et al., 2004) and wandering trajectories

(Kulesa et al., 2008). In contrast, later emerging cells are bipolar, with filopodia extending along

the direction of migration (Teddy and Kulesa, 2004). Trailing cells, particularly those from the r7
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migratory stream (see Figure 1.2), are observed to move in a ‘follow-the-leader’ manner, forming

long chains of cells with filopodia aligned between the cells. Moreover, cells that exit the neural tube

early on in migration remain at the wavefront and colonise the distal portion of ba2, so that the

order of exiting the neural tube is preserved throughout migration (Kulesa et al., 2008). Hence the

cells retain similar morphologies throughout migration. The differences between the front 30% and

the back 70% of cells led to the hypothesis that there are two sub-populations: leading and trailing

cells (Kulesa et al., 2008).

Kulesa et al. (2008) also found that leading cells in the migratory stream have a higher proliferation

rate than trailing cells. However, this result was obtained by assuming a cell doubling growth

curve (N(t) = N(0)2kt) and fitting to two data points. In contrast, when proliferation is examined

throughout migration, it is found that cells do not divide frequently en route, but instead multiply

quickly after migration is complete (Kulesa, pers. comm.).

The migratory system has been shown to be robust to environmental perturbations. In particular,

if a barrier is inserted in front of the migratory stream then the lead cells become trapped, but cells

behind the front may then migrate around the barrier to become the new leaders of the stream.

Indeed, cells may even move through the repulsive regions lateral to the migratory pathway in order

to move past the barrier (Kulesa et al., 2005).

1.2.2 Cell interactions

During migration, cell-cell interactions are facilitated via lamellipodia or short, thin filopodia for local

cell contacts, while long range filopodia enable contact with more distant cells. Cell contacts may

range from between neighbouring individuals to cells up to 70µm away (Teddy and Kulesa, 2004).

It has been suggested that sequential interactions between different types of cells (e.g. between

the mesenchymal cells, the CNCCs and the underlying mesodermal cells) may be used to achieve

the distinctive characteristics of the migratory stream (Noden, 1993). However, recent evidence

implies that cell-cell contact within the CNCC population may be more important than these inter-

population interactions (Kulesa et al., 2010). β-catenin is a possible mediator of cell-cell adhesion

and interactions, and overstimulation of this protein completely inhibits neural crest cell migration

(de Melker et al., 2004).

Cells may also interact indirectly by degrading the extracellular matrix (ECM), thus allowing sub-

sequent cells to pass more freely through the environment. In particular, inhibiting matrix metal-
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loproteinases production by CNCCs dramatically reduced cell delamination and migration, whilst

injecting excess metalloproteinases into embryos resulted in premature and accelerated migration

(Monsonego-Ornan et al., 2012). The importance of cell-cell interactions and ECM degradation has

also been indicated in other species (Nie et al., 2009; Carmona-Fontaine et al., 2008).

1.2.3 Chemotaxis

In addition to information exchange through cell-cell interactions, there is also increasing evidence

to support a chemotactic mechanism for invasion. Vascular endothelial growth factor (VEGF) is

known to be a chemoattractant both in vitro and in vivo, since cells will migrate towards VEGF-

soaked beads or VEGF-producing cells that are inserted laterally to the migratory route (McLennan

and Kulesa, 2007). It has been found that VEGF is produced by the ectoderm overlying the CNCC

migratory pathway (see Figure 1.3), and that this production is fairly constant throughout migration

(McLennan et al., 2010). In addition, if endogenous VEGF is removed from the system, CNCCs

fail to migrate to invade ba2 successfully (McLennan et al., 2010). Alternative chemoattractants

have been discovered in other species (Olesnicky Killian et al., 2009; Kubota and Ito, 2000; Eberhart

et al., 2008) and other migratory streams in chick embryos (Rupp and Kulesa, 2007). Interestingly,

whilst Ephs and ephrins maintain the excluded zones between migratory streams in most studied

vertebrates, the roles of ephrin-B1 and ephrin-B2 are reversed in chick embryos (Mellott and Burke,

2008), indicating that not all mechanisms are perfectly preserved between species.

In chicks, the pathway used for chemotactic sensing of VEGF begins with the membrane-bound

coreceptor for vascular endothelial growth factor (VEGF), neuropilin 1. When neuropilin 1 expres-

sion is reduced in cells or endogenous VEGF is removed, cells fail to fully invade ba2. Cells with

reduced neuropilin 1 also display a morphology that is consistent with a loss of polarity and mobility

(McLennan and Kulesa, 2010). However, when cells with reduced neuropilin 1 are transplanted into

a younger host embryo, the transplanted cells are able to recover their normal migratory ability,

indicating that the effect is reversible (McLennan and Kulesa, 2007, 2010).

1.3 Modelling of the neural crest

To date there have been only two mathematical models focussing specifically on the migration of

the cranial neural crest (Kulesa et al., 2008; Wynn et al., 2012; see Section 1.4.1). In addition to
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Figure 1.3: Expression of VEGF at different developmental stages of a chick embryo (shown in
green) is shown to be constant throughout the migratory pathway and is produced by the ectoderm
overlying the CNCC migratory pathway. Reproduced from McLennan et al. (2010), with permission
from Elsevier.

these models, there has been a large amount of theoretical modelling work undertaken examining

the migration of ENCCs (Landman et al., 2003, 2007; Simpson et al., 2006a,b, 2007b; Trewenack

and Landman, 2009; Zhang et al., 2010). Here cells colonise the developing intestine during embryo-

genesis, subsequently proliferating and differentiating to form the gut nervous system. The system

is similar to CNCC migration in that it involves the movement of cells through a growing domain.

However the migratory domain is different, since ENCCs migrate along the walls of the intestine,

a lengthening tube. In addition, cell proliferation is thought to be very important in the ENCC

colonisation of the intestine, in contrast to the cranial neural crest, where proliferation occurs after

migration. Bearing this in mind, it is still useful to consider models focusing on ENCC migration

since similar mathematical tools and techniques may apply in both situations.

1.3.1 Continuum modelling

Three main partial differential equation (PDE) models of ENCC migration have been developed

and expanded upon by Landman et al. (2003); Simpson et al. (2006a) and Trewenack and Landman

(2009).
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1.3.1.1 Landman et al. (2003)

In this one-dimensional model migrating cells (n) and chemoattractant (g) diffuse and grow logis-

tically on a uniformly growing domain with velocity, v. Cells are assumed to move in response to

a chemoattractant and are removed by apoptosis or conversion to a cell type that is not considered

in the model. The chemoattractant is internalised by the cells, thus creating a gradient that leads

to the movement of cells into regions not previously populated. This leads to the non-dimensional

system:

∂n

∂t
=

∂

∂x

(

Dn
∂n

∂x

)

− χ
∂

∂x

(

n
∂g

∂x

)

− ∂

∂x
(vn) + n(1 − n) − λ2n, (1.1)

∂g

∂t
=

∂

∂x

(

Dg
∂g

∂x

)

− ∂

∂x
(vg) + λ3g(1 − g) − λ4ng, (1.2)

where Dn and Dg are the diffusivities of n and g, respectively, χ is a parameter relating to chemo-

taxis and λ2, λ3 and λ4 are parameters relating to apoptosis, proliferation and internalisation of

chemoattractant, respectively. These equations are considered on the domain 0 < x < L(t), with

zero flux boundary conditions. Different types of uniform domain growth are considered, including

linear, exponential and logistic growth and solutions are found numerically (the numerical method

used in Landman et al., 2003 is discussed in Simpson et al., 2006b). The presence and type of

domain growth was found to have a large influence on the success and form of cell colonisation of

the domain, strongly suggesting that domain growth should be included when modelling migration

in a growing embryo. However, whilst chemotaxis is included in the model, cell proliferation is also

very important, since the cell profiles found are at carrying capacity behind the wavefront. Cell pro-

liferation plays an important role in the enteric neural crest but it is unclear how these mechanisms

would work in the less proliferative CNCCs.

1.3.1.2 Simpson et al. (2006a)

Before the widespread use of green fluorescent protein (GFP) to label cells during migration, chick-

quail transplants were used to create a population of distinct cells which could then be followed

as migration progressed. By transplanting the donor cells into different regions of the host domain

the behaviour of different parts of the stream may be examined (Simpson et al., 2007b). This

system has been modelled mathematically with models consisting of two populations of cells: donor

cells (D) and host cells (H), with the option of also including a glial derived neurotrophic factor
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(GDNF), which acts as a chemoattractant for both the host and donor cells (Simpson et al., 2006a,

2007b; Landman et al., 2007). The cells are assumed to move according to some flux term and

proliferate logistically with a combined carrying capacity. Different forms for the flux term are

investigated, including chemotaxis and chemokinesis towards the GDNF, and linear and nonlinear

diffusion. However, whilst the form of the wavefront of invasion changes depending on the flux used,

the qualitative results for the different forms are very similar. Thus the system is highly robust to

different forms of migration. The model is represented by

∂D

∂t
+

∂JD

∂x
= λDD

(

1 − D + H

K

)

, (1.3)

∂H

∂t
+

∂JH

∂x
= λHH

(

1 − D + H

K

)

, (1.4)

∂G

∂t
= F (D, H, G), (1.5)

where JD and JH are flux terms and λD and λH give the rate of proliferation of the donor and

host cells, respectively. F (D, H, G) gives the net rate of increase of GDNF as time progresses.

Simulating this model with different initial distributions of cells and zero flux boundary conditions

gives an insight into different areas of the migratory stream. The model is essentially a modified

Fisher equation and predicts that invasion occurs due to the proliferation of cells at the wavefront

and movement into the unoccupied area ahead of the wave (Simpson et al., 2006a). Since this

is precisely the mechanism by which Fisher’s equation generates an invasive wave, this is perhaps

unsurprising. Domain growth may also be considered within this modelling framework (Landman

et al., 2007).

Whilst this system is driven by proliferation, which is less important in the cranial neural crest,

the use of experimental and modelling techniques to explore the behaviour of subsections of the

migratory population may be useful in investigating our biological system. In particular, with

the use of green fluorescent protein (GFP) it is now possible to follow different subsections of the

migratory stream and determine their proliferative and migratory characteristics (Kulesa et al.,

2008). Explicitly considering separate subsections of the stream as different cell populations may

therefore be an important modelling technique.
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1.3.1.3 Trewenack and Landman (2009)

A third way to consider ENCC migration is as an initial wave of migrating and proliferating cells (pre-

cursor cells, c) which subsequently differentiate into relatively non-migratory and non-proliferating

cells (differentiated cells, n). This system is modelled as two distinct populations, where the pre-

cursor cells diffuse, proliferate and may also become differentiated cells, giving the non-dimensional

equations:

∂c

∂t
=

∂2c

∂x2
+ c(1 − c − γn) − λc(1 − Kn), (1.6)

∂n

∂t
= λc(1 − Kn). (1.7)

Here, K is the ratio of the carrying capacities, λ is the ratio of the differentiation and proliferation

rates and γ represents the reduced contribution that the differentiated cells make to the carrying

capacity of the domain (Trewenack and Landman, 2009). Much analysis may be performed on this

system, including predicting the wavespeed through stability analysis, examining the dependence of

the wavespeed on initial conditions and performing perturbation analysis for the situation in which

λ is small. Since perturbing system parameters in this model is found to disrupt travelling wave

solutions or reduce their wavespeed, it is concluded that invasive waves in vivo may be interrupted

or stopped completely by a change in parameters.

This model again uses a Fisher-type migratory mechanism, which generates an invasive wavefront

by assuming that cells proliferate up to the tissue carrying capacity. Whilst this mechanism may be

justified in the enteric neural crest, it is known that CNCCs proliferate very little during migration

(Kulesa, pers. comm.).

1.4 Individual-based modelling

IBMs of cellular migration may be characterised as either on- or off-lattice. On-lattice models consist

of a grid of points (the lattice), and each individual may occupy one or more of the points. Most

models of this kind use a square-based lattice, with each lattice site containing many individuals. In

contrast, individuals in an off-lattice model are defined by a continuous coordinate, which may be

anywhere in the domain. An on-lattice model may be thought of as a coarse-grained equivalent of

an off-lattice model, where each individual occupies the lattice site closest to it. Thus finer spatial

10



details are neglected but, particularly for larger numbers of individuals, simulations are faster, since

multiple individuals at a given lattice site are equivalent and smaller movements that remain close

to a lattice site are not explicitly simulated.

1.4.1 Individual-based modelling of neural crest migration

There has been one off-lattice model of CNCC migration to date (Kulesa et al., 2008). This IBM

imposed a ‘gradient’ function for the amount of an unspecified chemoattractant at each point in the

considered domain. Cells survey the local environment in a stochastic manner and choose which

direction to go in based on the ‘gradient’ function. Two subpopulations were considered: leading

and trailing cells. It was found that if the leading cells were more efficient (i.e. if they sampled

the environment more frequently) then the two distinct subpopulations were maintained. However,

if noise was added to the ‘gradient’ function then the cells migrate less far into the domain and

comprise less distinct subpopulations (Kulesa et al., 2008). However, this model gives no insight

into how such a gradient may arise in vivo or how the dramatic growth of the migratory domain

may affect the behaviour of the migratory stream.

1.4.1.1 Wynn et al. (2012)

A subset of IBMs explicitly take into account the volume occupied by an individual (volume ex-

clusion), so that if a lattice site or area of the domain is occupied by an individual then no other

agents may also occupy that site. Volume exclusion enables direct investigation into the effects of

population crowding and cell-cell interactions. Wynn et al. (2012) investigated CNCC migration

using on-lattice modelling with volume exclusion to study the leader-follower chains seen in some

migratory streams. At each time step each individual was given the chance to move in a direction

picked at random from a set of possibilities. Two subpopulations of cells, leaders and followers, were

used in the model, differing only in the number of directions from which they choose each move-

ment. In addition, degradation of the ECM was modelled by defining lattice sites as either ‘open’

or ‘closed’, with cell movement biased towards ‘open’ sites. To investigate the circumstances under

which chains of migrating cells are seen experimentally, the authors found the mean persistence time

of chains of cells. It was found that chains persisted better when leading and trailing cells had a

high degree of directionality, and that a prelaid path of degraded ECM was not enough to drive

chain persistence but that it could enhance it if other mechanisms (such as chemotaxis or biased
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movement) were also present. An extension to the model included cell filopodia, with each cell in

contact with some other lattice sites through their filopodia and trailing cells assumed to have fewer

filopodia than leading cells. The presence of individuals at other lattice sites then modified the

probabilities of attempted movements in those directions. The inclusion of cell contact mechanisms

allowed much greater persistence of cell chains, even when the directional bias of trailing cells was

reduced. Thus Wynn et al. (2012) demonstrated that cell-cell contact can enhance the migration

of trailing cells in chains and showed that ECM degradation was not sufficient to maintain chain

migration without cell-cell contact or high directionality.

Thus Wynn et al. (2012) present evidence that the chains of cells observed in some migratory crest

cell populations require cell-cell communication, and not simply an indirect transfer of information

through the migratory environment (specifically, the ECM). However, the mechanisms by which cells

may establish directional bias are not discussed and the choice of an on-lattice modelling regime

may affect their results. In particular, constraining cells to move only horizontally or vertically

may increase the likelihood that individuals will migrate directly behind each other, and thus be

considered to be in a chain of cells.

1.4.1.2 Simpson et al. (2007a)

The migration of the enteric neural crest has been studied using an on-lattice exclusion process,

where cells move and proliferate on a two-dimensional grid. The effects of cell crowding are explicitly

included by ensuring that each occupied lattice site may only have a set number of neighbouring cells

(the carrying capacity). If movement or proliferation would leave the cell above carrying capacity

then the operation is aborted. Initially all the cells to the left of the origin are occupied, so that an

invasive wave is generated to the right. The wavespeed of this invasion is then investigated by defining

the position of the wavefront to be the first position, counting from in front of the wave, at which there

were three or more cells in a column. It is then possible to compare the predicted wavespeed from the

corresponding Fisher-Kolmogorov equation to the speed in the simulated lattice-based model, finding

that the speed obtained from simulations is more sensitive than the predicted wavespeed to changes

in the proliferation parameter. However, the wavespeed was found to be insensitive to the carrying

capacity used in the simulations, which is consistent with the known properties of the corresponding

continuum Fisher-Kolmogorov equation (Simpson et al., 2007a). The continuum equations used in

this study were not derived directly from the underlying individual-based mechanisms, but instead

simply assumed the Fisher-Kolmogorov equation. Thus the inconsistencies found indicate the need
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for further work in deriving suitable continuum equations to model biological systems. These are

discussed further in the following section.

A similar method may be used in wound healing, using an on-lattice exclusion process, where cells

may proliferate or move on a one- or two-dimensional grid. Initially all the cells to the left of

the origin are occupied, so that an invasive wave is generated to the right. The wavespeed of this

invasion is then predicted by defining the position of the wavefront to be approximately equal to

the total mass of created particles. It is then possible to compare the predicted wavespeed from the

Fisher-Kolmogorov equation to the simulated wavespeed (Callaghan et al., 2006).

1.5 Deriving continuum equations from IBMs

Continuum models, such as those in Section 1.3.1, have historically been widely used to model migra-

tion and diffusive processes. The equations used are rarely derived from considering the behaviour

of individuals in detail, however, so that it is therefore difficult to study cell-cell interactions such

as volume exclusion in this framework. It is also difficult to parameterise continuum models from

experimental data, since it is unclear how to connect experimental data gathered at the level of in-

dividual cells with model parameters, as several aspects of migration may be integrated into a single

parameter. To address these issues, recent mathematical analysis has begun to focus on methods

for systematically deriving continuum PDEs from IBMs. In particular, Simpson and coworkers have

focussed on analysing on-lattice models with volume exclusion (Simpson et al., 2009c; Baker and

Simpson, 2010).

1.5.1 Simpson et al. (2009c)

Simpson et al. (2009c) begin with a simple exclusion process, examining a biased random walk on a

square lattice. At each time step each agent at (x, y) moves to (x, y ± ∆) with probability P/4 and

to (x ±∆, y) with probability P (1± ρ)/4. Here, P is the probability of moving during a given time

step and ρ is a parameter giving the bias of the random walk. If Nm
n (i, j) is the occupancy of site

(i, j) after n steps of the mth simulation of the model then the mean occupancy,

〈Nn(i, j)〉 =
1

M

M∑

m=1

Nm
n (i, j), (1.8)
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satisfies the following approximate equation

〈Nn+1(i, j)〉 − 〈Nn(i, j)〉

= − P

4
〈Nn(i, j)〉[1 − 〈Nn(i, j + 1)〉] − P

4
〈Nn(i, j)〉[1 − 〈Nn(i, j − 1)〉]

− P

4
(1 + ρ)〈Nn(i, j)〉[1 − 〈Nn(i + 1, j)〉] − P

4
(1 − ρ)〈Nn(i, j)〉[1 − 〈Nn(i − 1, j)〉]

+
P

4
〈Nn(i, j + 1)〉[1 − 〈Nn(i, j)〉] +

P

4
〈Nn(i, j − 1)〉[1 − 〈Nn(i, j)〉]

+
P

4
(1 − ρ)〈Nn(i + 1, j)〉[1 − 〈Nn(i, j)〉] +

P

4
(1 + ρ)〈Nn(i − 1, j)〉[1 − 〈Nn(i, j)〉]. (1.9)

The positive terms in equation (1.9) are due to individuals moving into site (i, j), whilst the negative

terms are due to transitions out of site (i, j). For example, the first term, −P/4〈Nn(i, j)〉[1 −

〈Nn(i, j + 1)〉] represents the movement of individuals from site (i, j) to (i, j + 1), where P/4 is the

probability that an individual attempts to move, 〈Nn(i, j)〉 is the average number of such individuals

at site (i, j) and [1 − 〈Nn(i, j + 1)〉] is the probability that the site (i, j + 1) is free for individuals

to move to. The occupancy of adjacent sites is assumed to be independent and hence the terms are

multiplied together to give the first term, −P/4〈Nn(i, j)〉[1 − 〈Nn(i, j + 1)〉].

Equation (1.9) may be rearranged to give a PDE; by dividing through by the time step, τ , and

letting ∆ and τ tend to zero, whilst holding ∆2/τ constant we arrive at

∂N

∂t
= D∇2N − ν

∂

∂x
[N(1 − N)], (1.10)

where

D = lim
∆,τ→0

P∆2

4τ
, ν = lim

∆,τ→0

ρP∆

2τ
, (1.11)

and N is a continuous representation of 〈Nn(i, j)〉.

If there is no volume exclusion in the model, then equation (1.9) is simplified to give

〈Nn+1(i, j)〉 − 〈Nn(i, j)〉 = − P

4
〈Nn(i, j)〉 − P

4
〈Nn(i, j)〉 − P

4
(1 + ρ)〈Nn(i, j)〉

− P

4
(1 − ρ)〈Nn(i, j)〉 +

P

4
〈Nn(i, j + 1)〉 +

P

4
〈Nn(i, j − 1)〉

+
P

4
(1 − ρ)〈Nn(i + 1, j)〉 +

P

4
(1 + ρ)〈Nn(i − 1, j)〉, (1.12)

and as ∆ and τ tend to zero, whilst holding ∆2/τ and ρ∆/τ constant, as before, we obtain the
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linear drift equation

∂N

∂t
= D∇2N − ν

∂N

∂x
. (1.13)

Note that, returning to the case with volume exclusion, if ρ = 0, so that the random walk is unbiased,

we also recover the diffusion equation (since ν = 0), and volume exclusion is predicted to have no

effect on the population movement.

The same model is then studied with multiple subpopulations, with continuum limits being derived

as before. The solutions of the continuum equations agree well with the simulation data, and an

intriguing result is noted, namely that the density profile of each subpopulation does not always

obey a maximum principle (where the maximum value of the solution over the domain decreases

monotonically with time) even though the total population density profile does obey this principle.

In addition, when movement may be biased or unbiased, the population-level results cannot distin-

guish between the two types of movement. This has implications for the analysis of experimental

results, which often only produce population-level data (Simpson et al., 2009b). It is also possible to

introduce multiple species into the model to simulate transplant experiments undertaken and it is

interesting to note that the continuous approximations for the subpopulations are then found to be

different to that for the total population (Simpson et al., 2009c). This indicates that the behaviours

of subpopulations of the stream may not be easily deduced from the overall behaviour of the stream.

A similar technique may be used to study on-lattice models with different movement mechanisms

(Simpson et al., 2009a, 2010b; Fernando et al., 2010).

1.5.2 Baker and Simpson (2010; 2011)

The assumption used by Simpson et al. (2009c) that the occupancy of adjacent lattice sites is ap-

proximately independent over repeated simulation is often used in derivations of this type (Simpson

et al., 2010a; Deroulers et al., 2009). This assumption is explored by Baker and Simpson (2010;

2011) using k-point distribution functions, ρ(k), the multivariate probability distribution functions

for the occupancy probability of k-tuplets of lattice sites. To derive a continuum equation for the

distribution of cells we therefore wish to find the one-point distribution function, ρ(1). The authors
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study a birth-death process with migration, so that

∂ρ(1)(Al)

∂t
= Pm

∑

n

αn,I

z

[

ρ(2)(0l, An) − ρ(2)(Al, 0n)
]

+ Pp

∑

n

αn,I

z
ρ(2)(0l, An) − Pdρ

(1)(Al),

(1.14)

where Pm, Pp and Pd are the rates of movement, proliferation and death, respectively, and Ai and 0i

denote the occupation or not of site i by an agent. For example, ρ(2)(0l, An) is the probability that

site l is unoccupied and site n is occupied. Thus it is clear that to find the one-point distribution

function we must know the two-point distribution functions. Similarly, to find the two-point func-

tions, knowledge of the three-point distribution functions is required, and so on. This is a long chain

of equations, dependent on the lattice grid size, and cannot be closed to obtain a tractable system

of differential equations without making an approximation, such as the one described earlier, that

the occupancy of adjacent sites is independent. The authors explore the effects of taking different

closure assumptions by considering the correlation functions

Fλ,µ(|l − m|) =
ρ(2)(σl, σm)

ρ(1)(σl)ρ(1)(σm)
, (1.15)

where σi = {A, 0} describes the occupation of site i for i = l, m. Fλ,µ depends only on the distance,

|l − m|, between the two lattice sites for the homogeneous initial conditions considered in the 2010

paper. Hence Fλ,µ(∆) ≡ 1 represents the usual assumption of independence for lattice spacing of

size ∆. Using a random initial seeding of agents in the domain, it is possible to find the evolution of

the correlation functions under different closure assumptions. The authors investigate the additional

accuracy gained by taking the Kirkwood superposition approximation (KSA) at the three-point level

(Singer, 2004), rather than making the usual closure assumption of independence at the two-point

level.

Baker and Simpson (2010) studied an initially homogeneous agent distribution in two and three

spatial dimensions and determine that the higher order closure approximation given by the KSA gives

greater accuracy when compared to model simulations, particularly in cases with higher proliferation

rates. The KSA is found to be a better assumption in higher dimensions, although the usual assumed

independence of neighbouring lattice sites is also violated to a lesser extent so that both of the

considered approximations perform better in higher spatial dimensions.
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Simpson and Baker (2011) extended the previous study to include initially inhomogeneous distribu-

tions of individuals in one spatial dimension by considering the correlation functions to be

Fλ,µ(l, m) =
ρ(2)(σl, σm)

ρ(1)(σl)ρ(1)(σm)
, (1.16)

and once again obtain an improvement to the equations derived by using the KSA rather than the

usual independence assumption. The authors assume that Fλ,µ(l, l + M) → 0 as M → ∞, and thus

reduce the equations solved to a computationally tractable system by only calculating Fλ,µ(l, l+M)

for M = 1, . . . , 5.

Both in higher spatial dimensions, with homogeneous initial conditions and in initially inhomoge-

neous models in one dimension, greater proliferation rates decrease the accuracy of the independence

assumption compared to the higher order closure approximation. This is to be expected, since we

then expect the positions of agents to be more highly correlated, so that assuming independence of

adjacent lattice sites is less valid.

This extensive literature on deriving continuum equations from on-lattice volume exclusion processes

provides techniques for systematically analysing how different mechanisms of movement may impact

on the derived continuum equations. It is clear that volume exclusion may significantly change the

form of the equations, leading to nonlinear terms. However, some systems such as those involving

migrating chains of cells, cell-cell interactions or growth of the migratory domain may be more

natural to model in an off-lattice setting. Thus the on-lattice techniques, whilst useful in many

systems, may not always be applicable, and may result in artefacts that reflect the type of lattice

chosen (Flache and Hegselmann, 2001).

1.5.3 Off-lattice models

Attempts at deriving continuum equations from off-lattice IBMs have mostly been restricted to the

modelling of inanimate particles using statistical mechanics techniques resulting in the Boltzman

equation and modifications to it. These are not necessarily applicable to cellular populations, where

more complex movement may occur and the system may gain or lose energy through a variety of

non-physical routes. Another group of studied models consider individuals to move at a constant ve-

locity, with probabilities of changing speed and direction at each time point (Codling, 2003; Codling

et al., 2008). These ‘velocity-jump’ models are in contrast to the ‘position-jump’ models described

earlier in which individuals are assumed to move instantaneously to a new position when movement
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occurs. Velocity-jump models have not often been used to study volume exclusion processes, but are

particularly suited to the movement of bacteria, which are usually characterised to continually be

either moving in a particular direction (‘running’), or changing direction (‘tumbling’). One example

system is the case of rod-shaped bacteria, which can reverse their direction of motion. These are

modelled by Gejji et al. (2012) as a one-dimensional on-lattice velocity-jump process considered

with volume exclusion. The authors do not derive continuum equations directly from the underlying

microscopic model, but instead posit that cell density may be described by a non-linear diffusion

equation

∂p

∂t
=

∂

∂x

(

D(p)
∂p

∂x

)

, (1.17)

and use Boltzmann-Matano analysis to find D(p) numerically from simulated data.

Two papers have been published that consider deriving continuum equations from an off-lattice

exclusion process. The first considers a system of hard spheres with interparticle collisions and an

optional external force on all particles (Bruna and Chapman, 2012). The authors model collisions

between particles as reflective boundary conditions on collision surfaces and take matched asymptotic

expansions in the size of a particle to derive a PDE for the volume concentration of particles.

Interestingly, while on-lattice volume exclusion diffusive processes result in the unmodified diffusion

equation, Bruna and Chapman (2012) derive a non-linear diffusion coefficient that is modified by

the local concentration of particles. The hard-sphere model considered is appropriate for studying

inanimate particles, but does not easily extend to considering more complex interactions between

individuals, such as those seen in cell-based biological systems.

The second paper deriving a continuum equation from an off-lattice model with volume exclusion

divides the domain up into columns, assuming that the concentration of agents across the width

of a column will be approximately constant. In this way the authors reduce the problem to the

equivalent on-lattice model and hence require the addition of proliferation for volume exclusion to

have any effect on the derived equation (Plank and Simpson, 2012).

1.5.4 Chemotaxis

Finally we discuss the various attempts that have been made to systematically derive a continuum

approximation to describe an individual-based chemotactic model. On-lattice models have been

considered without volume exclusion by Painter and Sherratt (2003) and Baker et al. (2010). Whilst
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Baker et al. (2010) consider an on-lattice model with agent-based chemoattractant and cells, the

model is presented in the appendix of the paper, and is not analysed in detail. In contrast Painter

and Sherratt (2003) derives equations in which cells produce a chemoattractant, giving rise to

aggregation. The derived equations are studied using linear stability analysis and solutions are

plotted under varying parameter values, but are not compared to simulations of the original on-

lattice model. It is not clear, therefore, whether the chemoattractant is intended to be modelled as

an individual-based species or a continuum, and how it should be coupled to the individual-based

cells in either case.

Chemotactic motion in off-lattice velocity-jump models is studied by Erban and Othmer (2004), who

derive continuum equations in the case where the chemoattractant is a given function within the

domain and is not affected by the cell distribution. The authors use moment closure techniques to

derive continuum equations from the system and analyse the system under different applied signal

functions.

1.6 Aims and outline

This chapter began by introducing the biological system under consideration: the migration of

CNCCs from the neural tube to ba2. We have discussed previous mathematical models of this

system and the related migratory system describing migration of the enteric neural crest. However,

experimental understanding of the mechanisms of CNCC migration far outstrips the complexity of

the mathematical models used to date. In addition, the outcome of experimental perturbations is

observed either as the interaction of individual cells, at a fine time resolution but for a short period

of time (Teddy and Kulesa, 2004), or as the migration of the total cell population over long periods

of time (Kulesa et al., 2008). It is difficult, therefore, to use these data to infer the mechanisms by

which individual cells affect the population-level migration that is observed.

The aim of this thesis is to use a combination of individual-based and hybrid modelling techniques

in close collaboration with our experimental colleagues to interrogate the mechanisms of CNCC

migration. We wish to understand the method by which cells gain directional information from

their environment and use this to move as a directed, cohesive population to colonise the migratory

route. To investigate the system we develop a hybrid model that can incorporate different cell-cell

interactions which can be direct, through cell-cell contact, or indirect, by explicitly modelling the

space occupied by cells and prohibiting cells to overlap each other. Motivated by experimental

19



evidence and hypothesised migratory mechanisms, we also examine the way in which cells may use a

spatially homogeneous production of chemoattractant to create a chemotactic gradient. To further

investigate the effect that the space occupied by cells has on the migration of individual cells, and the

population as a whole, we must develop new systematic techniques for deriving continuum equations

from off-lattice IBMs with volume exclusion. Finally, we formulate new methods to understand how

different model formulations of chemotaxis are reflected in the corresponding continuum equations

and use these equations to analyse hybrid models of CNCC migration. The modelling methodologies

developed here have significant application in many different areas, from chemotaxis in cellular

migration during embryo growth and in the immune system, to the effects of volume exclusion on

the movement of crowds of people during emergency evacuations and the modelling of molecular

movement in crowded environments.

We will begin in Chapter 2 by developing an IBM for CNCC migration using the current hypothesised

mechanisms underlying the biological system, and experimental data from the wildtype system.

Using this model, we will then predict, in Chapter 3, the response of the system to perturbations

and compare our predictions to experimental results. We will use our predictions to infer information

about the biological system by comparing with the experiments and use experimental data to extend

and enhance our model.

In the remainder of the thesis we will build systematic techniques to analyse our hybrid IBM from

Chapters 2 and 3. We begin in Chapter 4 with a simple one-dimensional off-lattice exclusion process,

describing cell motility with volume exclusion. We will compare numerical solutions to our derived

equations with averaged simulations of the model and with numerical solutions of the equations

derived from a system without volume exclusion. In this way we may investigate the effect that

the, often taken, assumption of point-like cells has on the equations derived and the evolution of

cell densities. Hence we may discover whether, and under what circumstances, it is important to

include volume exclusion when modelling cellular migration. We extend this analysis in Chapter 5

to two spatial dimensions.

In the penultimate chapter (Chapter 6) we consider chemotactic systems and compare the de-

rived equations under different modelling regimes. We discuss ways of coupling on- and off-lattice

individual-based species with a continuum species and compare numerical solutions to the derived

equations with averaged model simulations.

Finally, in Chapter 7, we use the techniques developed in Chapters 4 to 6 to analyse models from
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Chapters 2 and 3 and explore their response to different parameter regimes using the derived equa-

tions. We also discuss further work to be undertaken, both in the study of CNCC migration, and

in the derivation of continuum equations from IBMs.
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Chapter 2

Setting up a hybrid modelling

framework

In this chapter we progressively build a mathematical model that can be used to study the biological

system described in Section 1.1. The aim is to construct a model that can robustly achieve the

migratory behaviour seen in vivo. The model will then be used in Chapter 3 to predict the response

of the biological system to experimental perturbations and interpret the results of those experiments.

2.1 Simple diffusion

In our system, CNCCs migrate long distances from the neural tube to the second branchial arch.

Since the domain is initially empty of CNCCs and after 24 hours there are still only on the order

of 100 cells in the migratory domain (Kulesa et al., 2008), it is important to investigate the effects

of stochasticity on the system. In addition if we wish to study cell-cell interactions, or to explicitly

include mechanisms on an individual cell level, then we need to use an IBM for cells.

We begin with the simplest possible model of cellular movement, diffusion, constrained to a rectan-

gular domain that represents the migratory pathway. The domain measures 300µm from the neural

tube at x = 0 to the second branchial arch at x = 300 and is 120µm high (see Table 2.1 for parameter

values used in the models). Two cells enter at the neural tube every 15 minutes (as used in Kulesa

et al., 2008) with uniformly distributed y-coordinates.
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Cells move with a rate α a fixed distance d in a random direction. This is implemented by in-

crementally increasing time by ∆t so that each cell has a probability α∆t of moving during each

time step. Using smaller values for ∆t and/or d allows for a more fine-grained description of the

system, where the position of a cell at any particular time is known more exactly, whilst increasing

the computational cost of simulations.

Using the average speed, v, of CNCCs (around 45µm/hr; Kulesa et al., 2008) we find α = v/d. Then

we require that the probability, α∆t, of any particular cell moving in time ∆t is small enough that

we may assume at most one cell moves during each time step.

2.1.1 Simulations

In our simulations, diffusing cells typically migrate at most 25µm into the domain in 24 hours

(Figure 2.1), compared to the 575µm seen experimentally. However, we cannot directly compare the

distances travelled since the migratory route more than triples in length during migration imparting

a significant additional advective flux to the cells which must be taken into account in modelling

work.

2.2 Domain growth

To allow direct comparison of simulations and experimental data and to take account of the addi-

tional advective flux imparted by tissue growth we next incorporate domain growth into the model.

McLennan et al. (2012) measured the length of the migratory route at different stages during embryo

development and found growth to be approximately logistic. We therefore fit a logistic curve to the

domain length data, of the form

L(t) =

(
L∞eL∞β(t−ts)

L∞ − 1 + eL∞β(t−ts)
+ 1 − L∞eL∞β(−ts)

L∞ − 1 + eL∞β(−ts)

)

L0, (2.1)

where L0 is the initial length of the domain, β and L∞ give an indication of the rate of growth and the

limiting length of the domain, respectively. Using least squares regression we obtain L∞ = 960µm,

β = 0.0580/µm/hr and ts = −16 hours (see Figure 2.2).

Since growth occurs due to the proliferation of the overlying ectodermal cells on which the CNCCs

migrate, we assume that growth is uniform and that the CNCCs have an additional advective flux
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Figure 2.1: Cells migrating by simple diffusion on a fixed domain (see Section 2.1) only invade
approximately 25µm into the domain in 24 hours. Note that although cells are represented as yellow
discs, there is no excluded volume effect so that individual discs may overlap.
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Figure 2.2: Growth profile for the domain of migration, showing experimental data and fitted
logistic curve (see Equation (2.1)).
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Figure 2.3: Cells migrating by simple diffusion on a growing domain (see Sections 2.1–2.2) only
invade approximately 50µm into the domain in 24 hours. The length of the domain is shown at each
time step by a vertical line. Note that although cells are represented as yellow discs, there is no
excluded volume effect so that individual discs may overlap.

due to domain growth. Computationally this is achieved by multiplying the x-coordinate of each

cell by L(t)/L(t − ∆t) at each time step of length ∆t.

2.2.1 Simulations

The additional advective flux imparted by domain growth does allow cells to travel further into the

domain than in the case of the fixed domain. However, simulated cells still only migrate around

50µm into the domain (Figure 2.3), much less far than seen experimentally. One possible mechanism

for increasing the speed of migration is that the large numbers of cells entering the migratory domain

bias the movement of cells towards the positive x-direction. To investigate the effects of this type

of population pressure, however, we must consider the space occupied by individuals in the domain.

2.3 Volume exclusion

Cells are often modelled as point particles that are able to move through and around each other. In

reality, however, migration can be greatly affected by the presence of other cells, since individuals

cannot overlap. Large groups of cells restrict the available space for migration and, as such, can bias
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movement away from highly occupied areas. Conversely, cell movement can also be greatly restricted

by other cells preventing migration through crowded spaces. In the cranial neural crest, the y-axis of

the migratory route is only eight cell diameters wide, leading us to conclude that volume exclusion

is an important mechanism to consider.

We implement volume exclusion in our model by preventing any cell movement that would result in

a distance of less than a cell diameter between two cell centres. Movements to within a cell radius

of the domain boundaries are also rejected. In addition, when new cells enter the domain they must

not overlap with any existing cell. If a cell attempts to enter at an occupied point, then other points

are tried at random to a maximum of m points. If all points fail then no cell enters the domain,

representing the case where cells are prevented from delaminating from the neural tube by the

pressure of other cells. For low values of m the population of migrating cells is greatly reduced, since

cells next to x = 0 have a high probability of preventing new individuals from entering the domain.

Once m is high enough, however, further increases do not significantly affect the population since a

cell failing to enter at many different places implies that very few (or no) feasible entry points exist.

As m gets very large, the computation simulation time increases whilst not significantly affecting

the model outcome.

2.3.1 Simulations

Simulations of diffusive cells with domain growth and volume exclusion migrate further into the

domain than in the point-particle model, although fewer cells can successfully enter the domain. In

particular, the initial cells to enter the domain are typically found at approx. x = 50µm after 24

hours (Figure 2.4) compared to x = 25µm in the previous model (Figure 2.1). We note that cells

are inserted further into the domain when volume exclusion is present, since they cannot be within

a cell radius of the boundary. The increase in migration distance, however, is much greater than a

cell radius and we conclude that the main increase in distance is from the bias in motion introduced

by volume exclusion since movements away from crowded areas are more likely to be successful.

The distance migrated is still far short of that seen experimentally, however, where leading cells can

reach up to 575µm. Thus we conclude that passive diffusion does not provide successful migration

on the timescales required; instead cells need an active migratory mechanism.
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Figure 2.4: Cells migrating by simple diffusion with domain growth and volume exclusion (see
Sections 2.1 to 2.3) only invade approximately 100µm into the domain in 24 hours. Note that cells
are inserted further into the domain than when volume exclusion is not incorporated, to prevent
overlapping with the domain boundary.

2.4 Chemotaxis

We will investigate chemotaxis as a form of active migration, motivated by experimental evidence

for the presence of a chemoattractant in vivo (McLennan et al., 2010). There are multiple different

ways that we could implement dependence on chemoattractant levels in silico, which can involve

cells moving at different rates depending on the level of chemoattractant at the cell position and/or

the level at another point away from the cell position. Different methods produce similar results,

however, in which cell movement is biased in directions with positive chemoattractant gradients.

As with diffusion, at each time point all cells sample in a random direction, but whether or not the

cell moves is now determined by the chemoattractant gradient. We assume that the chemoattractant

can be determined away from the cell position by extending a filopodium. The chemoattractant at

the end of the filopodium is then compared with the levels at the cell body and the cell moves

if the gradient is favourable. We note that cells in vivo may have many filopodia, with slowly

changing positions relative to the cell. Our single fast-moving filopodium, therefore, is a modelling

simplification to the biological system.

The question remains of how to determine the level of chemoattractant at a point. We would expect

that individuals measure the chemoattractant concentrations close to their cell body and filopodia
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Figure 2.5: The weighting function for chemoattractant sensing for δ = 30 (see Section 2.4).

but have less information about concentrations further away. The level of chemoattractant, c, sensed

at a point (either the cell body or the end of a filopodium), (xc, yc), is therefore found by multiplying

the chemoattractant by a function that gives greater importance to chemoattractant closer to the

considered point (Figure 2.5). We use

I =

∫ xL

0

∫ yL

0

c(x, y)

δ
√

π
exp

{

−
(
(x − xc)

2 + (y − yc)
2
)

δ2

}

dx dy, (2.2)

where δ is a measure of the distance from (xc, yc) at which chemoattractant may still be measured

and xL and yL are the length and height of the domain, respectively.

2.4.1 Simulations

We simulate with a fixed chemoattractant gradient on a growing domain with no chemoattractant

dilution, so that the maximum chemoattractant concentration in the domain remains fixed during

domain growth. With fixed chemoattractant cells typically migrate around 600 − 700µm in 24

hours (Figure 2.6) with our chosen set of parameters, which is much closer to the 575µm seen

experimentally. The distance migrated does vary with the parameter, δ, which determines how far

the cells can sense the chemoattractant concentration. As δ decreases, the sensing distance decreases,

and the cells spread out in a wider stream as they migrate, since there is less chance of the sensing

area overlapping with the domain boundary. Cells that are more spread out across the width of

the domain spend less time moving directly towards the end of the domain, and hence move less

far in a given time. The distance migrated ranges from around 350µm for δ = 1 to 700µm for

δ = 15, indicating that our choice of δ is important. We note that whilst δ is not given explicitly

by experimental data, a reasonable choice can be made by considering the size of a cell body and

assuming that cells do not sense chemoattractant further away than the length of a filopodium.

Chemotaxis offers a cell migration mechanism that is robust to stochastic variations between simu-

lations. However, the question remains as to how the chemoattractant gradient is established and
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Figure 2.6: Cells migrating by chemotaxis with domain growth and volume exclusion (see Sec-
tions 2.1 to 2.4) typically invade approximately 600 − 700µm into the domain in 24 hours. Note
that the chemoattractant profile is fixed, so that domain growth does not lead to dilution of the
chemoattractant.

maintained against destabilising factors such as dilution due to domain growth.

2.5 Dynamic chemoattractant

McLennan et al. (2010) found evidence that VEGF is a chemoattractant in vivo with spatially

homogeneous production. To investigate the creation of a chemoattractant gradient from spatially

homogeneous production, we will now explicitly model the chemoattractant dynamics. Since there

are a relatively large number of chemoattractant molecules compared to the number of cells, we

will use a continuum PDE for the chemoattractant concentration. We hypothesise that cells may

internalise VEGF as they sense their surroundings, thus depleting VEGF in the area around the

cell. The levels of VEGF are then lower in areas close to the neural tube, where cells are present for

longer periods, providing a positive chemoattractant gradient to the end of the migratory domain.

We assume standard logistic production of chemoattractant throughout the region with linear pro-

duction rate, χ, but note that VEGF profiles over time are qualitatively similar under different

production terms. The only exception to this is if the production rate is so high as to overwhelm

the internalisation of VEGF by cells. Chemoattractant consumption is often modelled on-lattice
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by depleting the chemoattractant at lattice points that contain cells. In an off-lattice model, we

cannot simply have a sink term that is only present at cell locations, since functions that are zero

everywhere except for a point cannot be implemented numerically. Instead we use the same ap-

proximation to a delta function for chemoattractant consumption terms as we used for the sensing

mechanism (equation (2.2)), since this approximates point consumption terms.

With the given assumptions the chemoattractant concentration, c(x, y), neglecting domain growth,

is governed by the following equation.

∂c

∂t
=

diffusion
︷ ︸︸ ︷

Dc

(
∂2c

∂x2
+

∂2c

∂y2

)

internalization
︷ ︸︸ ︷

−λ

N(t)
∑

i=1

c(x, y)

δ
√

π
exp

[

−
(
(x − xi)

2 + (y − yi)
2
)

δ2

]

+

production
︷ ︸︸ ︷

χc(1 − c) , (2.3)

where Dc is the diffusion coefficient for the chemoattractant, δ is a measure of the distance from the

ith cell centre at (xi, yi) at which chemoattractant is consumed. There are a total of N(t) cells in

the domain at time t, and cell consume chemoattractant at a rate λ.

2.5.1 Domain growth

Uniform domain growth affects the form of the chemoattractant equation, which can be derived in

the following way. If L = L(t) is the length of the domain, then conservation of the total mass of

chemoattractant in an arbitrary box [L1(t), L2(t)] × [y1, y2] gives

d

dt

∫ y2

y1

∫ L2(t)

L1(t)

c(x, y, t) dx dy =

∫ y2

y1

∫ L2(t)

L1(t)

(
∂2c

∂x2
+

∂2c

∂y2
+ f(c, x, y, t)

)

dx dy, (2.4)

where f(c, x, y, t) is the net production of chemoattractant at (x, y). Using Reynold’s Transport

Theorem (Reynolds and Brightmore, 1903) we can evaluate the left-hand side of this equation:

d

dt

∫ L2(t)

L1(t)

c(x, y, t) dx =

∫ L2(t)

L1(t)

(
∂c

∂t
+

∂

∂x
(uc)

)

dx, (2.5)

where u(x, t) is the flux due to the expansion of the domain. Since equation (2.5) holds for all boxes

[L1(t), L2(t)] × [y1, y2], we have

∂c

∂t
+

∂

∂x
(uc) = Dc

(
∂2c

∂x2
+

∂2c

∂y2

)

− λ

N(t)
∑

i=1

c(x, y)

δ
√

π
exp

[

−
(
(x − xi)

2 + (y − yi)
2
)

δ

]

+ χc(1 − c).

(2.6)
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To find u(x, t) in terms of L(t), let the movement of a material point X due to growth alone be

given by Γ(X, t), so u(x, t) = dΓ/dt. For isotropic growth Γ(X, t) = Xr(t) where r(0) = 1. Now

u(x, t) =
dΓ

dt
= Xṙ =

x

r
ṙ, (2.7)

so

∂c

∂t
+

∂

∂x
(uc) =

∂c

∂t
+

ṙ

r

(

x
∂c

∂x
+ c

)

. (2.8)

Rescaling to a stationary domain x̄ = x/L(t), t̄ = t to solve numerically, and immediately dropping

the bars gives

∂c

∂t
= Dc

(
1

L(t)2
∂2c

∂x2
+

∂2c

∂y2

)

+ f(c, Lx, t) − ṙ

r
c, (2.9)

= Dc

(
1

L2

∂2c

∂x2
+

∂2c

∂y2

)

− λ

N(t)
∑

i=1

c(x, y)

δ
√

π
exp

[

−
(
L2(x − xi)

2 + (y − yi)
2
)

δ

]

+ χc(1 − c) − L̇

L
c,

(2.10)

since r(t) does not depend on X , so L(t) = L(0)r(t). Hence

ṙ

r
=

L̇(t)/L(0)

L(t)/L(0)
=

L̇

L
. (2.11)

The VEGF concentration is held constant at zero at each of the four boundaries of the region to

artificially simulate the exclusion zones between the migrating streams without explicitly modelling

inhibitory factors. This prevents the VEGF concentration from becoming artificially high near the

boundaries due to the greater consumption by cells in the interior of the domain (see Figure 2.7).

Since our chemotactic mechanism only considers the sign of the chemoattractant gradient, not the

magnitude, and we have no data as to the concentrations of VEGF in vivo, we will normalise

the chemoattractant so that c(x, y, 0) = 1 initially. However, to allow numerical solutions of the

chemoattractant profile with the given boundary conditions, we interpolate between the initial con-

dition within the domain, and the fixed boundary condition so that our initial condition is smooth

(see Figure 2.8). The chemoattractant profile is solved at each time step using the NAG solver d03ra

(see Appendix A.2). Note that we are assuming the PDE system is parabolic despite the very low

diffusivity of VEGF. As Dc → 0 the system becomes hyperbolic and d03ra is not recommended for
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Figure 2.7: The chemoattractant in the interior of the domain is consumed more quickly since it is
more likely to be close to multiple cells.
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Figure 2.8: Chemoattractant initial condition.

solving such systems. However, numerical solutions are found to change gradually as the diffusivity

increases from zero, implying that the numerical solver is successful under these conditions. For zero

diffusivity, the system can be solved analytically for any given time step.

2.5.2 Diffusion of VEGF

The diffusivity of VEGF has not been determined in vivo, but has been estimated in vitro as

7×10−7cm2/s = 2.52×105µm2/hr (Chen et al., 2007). This cannot be simulated with the boundary

condition previously described since if the repulsive zones between migratory streams are represented

by holding the chemoattractant concentration at the boundaries at zero then there is a high flux

of chemoattractant out of the domain. Using a high value of diffusivity results in a huge loss of

chemoattractant out of the domain, so that it is necessary to use zero flux boundary conditions

instead. Using this estimated diffusivity results in a homogeneous chemoattractant profile as the y-

coordinate varies (Figure 2.9). However, it is expected that the diffusivity in vivo will be much lower

than this, since VEGF is known to bind to cell surfaces and extracellular matrix, thus significantly

reducing the diffusivity. As the diffusivity is reduced the profile across the y-axis becomes non-

constant, and the clustering of cells next to the entrance to the domain (at x = 0), which is already
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Cell invasion at time t = 12 hours
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Figure 2.9: Representative simulation of the model described in Section 2.5 with a high diffusion
coefficient, Dc = 2.52× 105µm2/hr. Chemoattractant concentration is denoted by the colour of the
background. Note that the global levels of chemoattractant are decreasing due to the expansion
of the domain. The colour bars adjacent to each diagram show the scale for the chemoattractant
concentration. White lines show the movement of evenly spaced x-coordinates due to domain growth.
Cells and filopodia are shown in yellow. Other parameters values are given in Table 2.1.

becoming a problem when Dc = 2.52 × 105µm2/hr (Figure 2.9) becomes more pronounced as Dc is

reduced (Figure 2.10). Since the rate of diffusion of VEGF is not known in vivo and we expect the

diffusion to be much reduced by binding to surfaces and matrix compared to the values found in

vitro, we will err on the side of caution and take a very low diffusivity (Dc = 0.1µm2/hr).

2.5.3 Simulations

When the chemoattractant gradient is dynamically established through cell consumption, leading

chemotactic cells invade to 500− 600µm, slightly less far than in Section 2.4 (Figures 2.6 and 2.10).

The distance migrated is similar for a range of diffusivities (Figures 2.9 and 2.10, other results not

shown). The reduction in distance travelled compared to a static gradient can be attributed to a

delay in migration due to the time required to establish the chemoattractant gradient. In the case

with negligible chemoattractant diffusion, the less homogeneous chemoattractant profile across the

domain width may also be a factor, leading to a favourable gradient towards the top and bottom

domain boundaries as well as in the positive x-direction (see Figure 2.11). Cells at the front of the

stream then have more wandering trajectories across the width of the domain, whilst still maintaining

a bias in the positive x-direction.

However, later emerging cells, particularly in the reduced-diffusion case, congregate next to the

neural tube (at x = 0), since the chemoattractant is depleted to such an extent that the gradient
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Cell invasion at time t = 0 hours
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Figure 2.10: Representative simulation of the model described in Section 2.5. Chemoattractant con-
centration is denoted by the colour of the background. Note that the global levels of chemoattractant
are decreasing due to the expansion of the domain. The colour bars adjacent to each diagram show
the scale for the chemoattractant concentration. White lines show the movement of evenly spaced
x-coordinates due to domain growth. Cells and filopodia are shown in yellow. Parameters can be
found in Table 2.1. The full video for this simulation may be found at http://tinyurl.com/cx966lh
with the file name without followers.avi.

Figure 2.11: A cell (represented by a yellow disc) at the front of the migratory stream with dy-
namically determined chemoattractant gradient may move backwards towards x = 0, whilst in the
fixed chemoattractant model, cells must always move towards the end of the domain. The outlined
circular portions show the region of the domain in which the chemoattractant gradient is positive
from the cell position.
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Figure 2.12: Increasing chemoattractant production (χ) or decreasing chemoattractant consumption
(λ) does not prevent cells clustering at the entrance to the domain (x = 0).

can no longer give directional cues. This cell clustering is exacerbated by the general dilution of

chemoattractant resulting from domain growth. In particular, we note that 24 hours into migra-

tion the maximum chemoattractant in the domain is approximately a third of the maximum when

migration begins. Hence the cells split into two subpopulations: those at the front, where a gradi-

ent of chemoattractant allows directed movement; and those behind the front, where the levels of

chemoattractant are uniformly low. Thus later emerging cells become trapped next to the neural

tube and do not migrate any further into the domain.

The observation that a chemotactic system in which cells create the gradient they follow does not give

a coherent migratory stream holds under a wide range of parameter regimes. In particular, reducing

the cell consumption of chemoattractant (λ) or increasing the rate of production of chemoattractant

(χ) does not stabilise the chemoattractant gradient for long enough to prevent cells clustering next

to the neural tube (Figure 2.12).
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2.6 Subpopulations

To enable later emerging cells to maintain directional information throughout the migration, we now

include two subpopulations of cells. We hypothesise that those emerging early from the neural tube

will continue to follow the chemoattractant gradient, as before. Later emerging cells, however, will

obtain directional guidance from other migrating cells.

The choice of using subpopulations of chemotactic and communicative cells is supported by experi-

mental evidence in vivo that the leading portion of the migratory stream is morphologically distinct

to that further behind (Kulesa et al., 2008; Teddy and Kulesa, 2004). Kulesa et al. (2008) observe

cells moving in chains, with filopodia connecting the migrating cells. The aim of the extended model,

therefore, is to set up chains of trailing cells that follow each other, with a leading cell at the head

of each chain providing directional guidance from the underlying chemoattractant gradient. Since it

is difficult to distinguish experimentally between other potential mechanisms for communication be-

tween the front and back of the migratory stream, our aim is not to determine the precise mechanism

but to demonstrate a more realistic alternative to a purely chemotactic stream.

2.6.0.1 Trailing cell mechanism

The trailing population is defined as those cells that enter the domain after a set period of simula-

tion time (tf ), representing the hypothesis that later emerging cells from the neural tube may be

phenotypically different to earlier cells. Trailing cells continue to internalise the chemoattractant

in the same way as is described in Section 2.5 and extend a filopodium in a random direction at

each time step, as before. Instead of measuring the VEGF concentration, however, trailing cells

respond to the presence of another cell body at any point along their filopodium. In particular, the

shortest distance (d) from the line representing a cell filopodium (x) to the centre of a leading cell

or a chained cell (y) is found by using x · y = |x| |y| cos θ and noting that if λ is the distance to the

point where the shortest line and x meet (see Figure 2.13), then

λ = |y| cos θ =
x · y
|x| . (2.12)

Hence

d =

∣
∣
∣
∣

λ

|x|x − y

∣
∣
∣
∣
, (2.13)
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Figure 2.13: Finding the shortest distance (d) from any part of a cell filopodium (x, shown as a
red line) to any other cell centre (y, shown as a yellow circle) by finding the distance (λ) from the
origin to the point where the shortest line and x meet.

and if d is less than a cell radius then the trailing cell attaches to the cell at y and continues to move

at each subsequent time step in the direction of that cell.

If a cell chain is found by the trailing cell filopodium, then the trailing cell attaches and continues

to move at each subsequent time step in the direction of the attached cell. A cell that is following

another is represented graphically by attaching its filopodium to the leading cell and is coloured

white. If the two cells become separated during migration by more than the length of a filopodium

then the following cell will detach and resume seeking other cells.

2.6.1 Simulations

When trailing cells move by seeking cell chains, early-emerging cells migrate a distance that is con-

sistent with experimental observations (Figure 2.14). In the majority of simulations, later emerging

cells successfully find a chain of cells and migrate into the domain. The chemoattractant profile

is robust to changes in parameter values since the VEGF gradient is created by the cells. Hence

if the cells migrate later in development, or not as quickly, or they consume the chemoattractant

less quickly, then the chemoattractant gradient is still established at the correct time for migration.

However, since non-chained trailing cells do not move (except for passive movement due to domain

growth), cells that do not join a chain at the beginning of migration can occasionally disrupt stream

migration. Sensitivity to stochastic fluctuations and the rate of cell sensing may therefore be recti-

fiable by allowing cells to move between the subpopulations of cells or by giving follower cells some

random diffusive motion in addition to directed chain migration. Since the vast majority of wild-

type simulations lead to successful migration, however, we will not pursue even greater robustness

to stochastic fluctuations unless it should become necessary.
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Description Reference Notes Value

R cell radius McLennan and
Kulesa (2010)

7.5µm

v cell speed Kulesa et al. (2008) lead cells 41.6±10
µm/h

trailing cells 49.9±17
µm/h

Dc VEGF diffusivity unpublished data by
Kulesa et al.

Low (taken to
be 0.1µm/hr)

Lx domain length unpublished data by
Kulesa et al.

beginning of migration
time

300µm

end of migration time 1100µm

Ly height of the migratory domain taken from maximum
height of migratory
stream

120µm

height of the migratory stream unpublished data by
Kulesa et al.

beginning of
migratory stream

100µm

middle of migratory
stream

40-50µm

end of migratory
stream

120µm

lf filopodium length Teddy and Kulesa
(2004)

longer filopodium at
the leading edge

20µm - 70µm
(taken as
50µm)

Pc rate of cell exiting the neural tube Kulesa et al. (2008) 2 cells every
15 mins

m maximum number of initialisation
attempts for each cell inserted into the
domain

assumed 50

δ related to the width of sensing and
eating chemoattractant

McLennan and
Kulesa (2010)

given as twice a cell
radius

15µm

λ rate of consumption of chemoattractant assumed 1.5/hr

χ rate of production of chemattractant assumed 0.0001/hr

tf time after which cells entering the
domain are ‘followers’ in the
two-population model

Kulesa et al. (2008);
Teddy and Kulesa
(2004)

70% of cells are
assumed to be
‘followers’

7.25 hours

dt time step length assumed 0.05 hours

Table 2.1: Summary of model parameters.
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Cell invasion at time t = 0 hours
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Figure 2.14: Representative simulation of the model described in Section 2.6. Chemoattractant con-
centration is denoted by the colour of the background. Note that the global levels of chemoattractant
are decreasing due to the expansion of the domain. The colour bars adjacent to each diagram show
the scale for the chemoattractant concentration. Leading cells (responding to the chemoattractant)
and their filopodia are shown in yellow whereas following cells (responding to other cells) and their
filopodia are shown in white. Parameters can be found in Table 2.1. The full video for this simulation
may be found at http://tinyurl.com/cx966lh with the file name with followers.avi.
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2.6.2 Experimental response to model predictions

In response to our prediction that subpopulations of cells are required for successful migration and

experimental observations of differing morphologies within the migratory stream, our collaborators

undertook genetic profiling of the leading and trailing populations. When comparing the expression

of 84 genes of interest, 19 were found to have significant differences using two different experimental

methods of isolating cells (McLennan et al., 2012). Leading cells have upregulated guidance and

navigation genes whilst trailing cells express greater levels of cadherin 7 (McLennan et al., 2012),

which is associated with cell adhesion. Thus genetic profiling gives additional evidence for the

existence of subpopulations within the migratory stream with differing migratory mechanisms.

2.7 Discussion

During this chapter we have developed a hybrid IBM for cellular migration in a growing domain.

We have demonstrated that a chemoattractant gradient created dynamically by the cells is not

stable enough to allow later emerging cells to successfully migrate into the domain, particularly for

slower-diffusing chemoattractants. When trailing cells instead use a different mechanism of invasion,

such as following other cells in static chains, we have shown they can form a successful migratory

stream. These conclusions are also applicable to other systems with migrating populations and a

spatially invariant production of chemoattractant, with or without domain growth (Puré and Cuff,

2001; Boldajipour et al., 2008; Roberts and Brenchley, 2000; Dormann and Weijer, 2006; Lee et al.,

2008).

We justify our initial assumptions of precisely two separate populations and a fairly rudimentary cell

following mechanism by noting that there is currently insufficient evidence to distinguish between

other possible mechanisms. Our aim was not to discover the precise anatomy of the migratory

stream, but instead to formulate a possible alternative to the currently hypothesised mechanisms

of migration. We have demonstrated that a solely chemotactic population with only one chemoat-

tractant cannot lead to a successful complete migratory stream. This motivated our experimental

collaborators to test our prediction of at least two subpopulations of cells, and their genetic profile

analysis revealed that the model prediction was correct.

In the next chapter we test our model by predicting the qualitative behaviour of cells under experi-

mental perturbations to the wildtype system. The exact form of successes or failures in our model
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predictions will enable us to elucidate the most important aspects of the model and ways in which

it should be improved. In so doing, we will also gain more insight into the biology of cranial neural

crest cell migration.
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Chapter 3

Testing our modelling framework

experimentally

In the previous chapter we developed a hybrid IBM that demonstrates successful cellular migration

in a growing domain, corresponding to CNCC migration under wildtype conditions. The model

consists of a continuum chemoattractant and two populations of discrete cells: leading cells, that

move by chemotaxis; and trailing cells, that gain directional information from the leading cells. We

will now use that model to predict the outcome of in vivo experiments and compare and discuss the

results. Where our predictions do not correspond to the experimental results we will discuss possible

drawbacks to our model and ways in which these can be overcome. The aim is to interrogate the

biological system in greater depth through a combination of experimental and theoretical modelling

work. We wish to gain greater insight into the mechanisms of migration and their relative impor-

tance. In particular, we will examine the interaction between cellular communication and guidance

information gained from the chemoattractant gradient.

We emphasize that the experiments and analysis of experimental results were carried out in isolation

from the modelling prediction work to eliminate any possible bias in result interpretation. The work

forming Chapters 2 and 3 is published in Development (McLennan et al., 2012) on which I am joint

first author.
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Figure 3.1: Cell orientations are determined by smallest angle between the long axis of the nucleus
of the cell and the tangent, T, to the migratory route at the cell’s position. Figure taken from
McLennan et al. (2012).

3.1 Presentation of experimental data

Chicken embryos are used for all the experiments described here. GFP is introduced into CNCCs

by electroporation (EP) to allow imaging of the cells at 8, 16 and 24 hours after EP. Average cell

orientation angles are given by the smallest angle between the long axis of thenucleus of the cell

and the tangent to the migratory route at the cell’s position (Figure 3.1) and give a measure of how

aligned the cells are to the migratory route. Smaller angles are indicative of cells that are more

aligned to the migratory route, whilst a uniformly distributed population would have an average

orientation angle of 45◦. Data and model predictions are given in Figures 3.2 to 3.7. In particular,

representative model simulations are shown in Figures 3.2, 3.4 and 3.6 at 12 and 24 hours into

migration. Experimental data are given as representative images (Figures 3.3a, 3.5a, 3.7a) and

average cell orientation angles profiled at varying distances along the migratory pathway (Figures

3.3b, 3.5b, 3.7b). The orientation angle profile of a wildtype stream after 24 hours of migration is

shown in blue in Figure 3.3. The stream displays a characteristic profile, with higher average angles

near the neural tube, becoming more aligned to the pathway towards the middle of the migratory

stream. Cells at the leading edge of the migratory population at 16 and 24 hours also have high

average angles, indicating reduced alignment to the migratory route.

We note that the embryos are electroporated five hours before the migration of CNCCs begins.

Hence all experimental timings must be adjusted accordingly when simulating in silico.

We will now investigate a series of experiments, using the model developed in Chapter 2 to predict

outcomes and interpret results.
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3.2 Ablation experiment

3.2.1 Experimental description

To test whether the migration of lead cells is reliant on communication with the trailing cell popu-

lation the neural tube is removed from the embryo at ten hours after EP, thus preventing the entry

of the trailing cell population into the migratory domain.

If the leading cells require communication with trailing cells then we would expect their migration

to be disrupted and unsuccessful. Conversely, if the cells respond to microenvironmental signals

and have no direct feedback from the rest of the cellular population then we would expect the cells

to migrate exactly as in the wildtype embryo so that a small subsection of the migratory stream is

represented. Our model presents a third option: that there is no direct communication of information

from the trailing cells to the leading cells, but that the presence of the trailing cells can indirectly

affect the leading cells through the chemoattractant profile.

3.2.2 Model prediction

The ablation experiment is simulated in silico using our model (see Chapter 2) by ceasing to insert

new cells into the domain five hours into the simulation. All the cells in the simulation are therefore of

the ‘leading’ cell profile and move by chemotaxis. Our model predicts that the lower numbers of cells

will lead to an uneven distribution of chemoattractant across the width of the domain (Figure 3.2).

The higher levels of chemoattractant at the sides of the domain lead to greater exploration of the

width of the domain so that each cell moves less quickly in the positive x-direction and the cells

spread out along the length of the domain. Thus the migratory stream qualitatively resembles the

wildtype case, in that the cells are spread throughout the domain rather than recapitulating the

small leading subsection of the stream.

3.2.3 Experimental result

Experimental data are shown in Figure 3.3 with wildtype data shown in blue for reference (Figure

3.3b). Cells in ablated embryos spread out along the migratory route, with trailing cells remaining

further back than the equivalent cells in a wildtype embryo. Despite only around a third of the

cells entering the domain, therefore, the stream is found to inhabit more than half of the usual
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Figure 3.2: The model predicts that ablation of the neural tube five hours after the start of
migration will lead to cells spreading out along the domain due to a slower depletion of chemoat-
tractant (see Sections 3.2.1, 3.2.2 and 3.2.3). The full video for this simulation may be found at
http://tinyurl.com/cx966lh with the file name ablation.avi.

route after 24 hours (Figure 3.3b). Thus our model prediction of a spread of cells due to slower

consumption of the chemoattractant is consistent with experimental data. Although we assume no

direct communication from the trailing cells to the leading cells, there is an indirect effect of removing

the trailing population, which is mediated through a lower consumption of chemoattractant. Since

there are also fewer cells, a smaller population pressure with less occupied space leading to less

biasing of movement towards the positive x-direction also contributes towards a slower migration

rate in silico.

We note that whilst under wildtype conditions there is little cell proliferation en route to the des-

tination, when the population is reduced by ablation the cells multiply much more rapidly even

whilst migrating. However, there is very little experimental data as to the mechanisms and pro-

file of cell proliferation such as how often cells proliferate, whether some types of cells divide more

quickly and the effect of cell division on the speed and direction of cell motion. Whilst we could

test particular hypotheses, it would be difficult to make meaningful predictions within our model

without further experimental data, since so much of the proliferation mechanism would need to be

postulated without supporting data. We therefore leave cell proliferation to future work.
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a

b

Figure 3.3: Experimental results for an ablated migratory stream (see Section 3.2.3): (a) Represen-
tative images 24 hours into migration; (b) Cell orientation angles profiled at varying distances along
the migratory pathway.
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3.3 Transplant experiment: front-to-back

3.3.1 Experimental description

We have seen that the leading cells do not require communication with the trailing portion of the

stream to migrate into the domain. Next we wish to test the response of leading cells to a new

environment and altered positions within the stream. Cells are given new positions within the

stream by transplanting the front region of the migratory route from a donor embryo into the neural

tube of a host embryo at the same level of development. The host embryo is electroporated with

GFP as before, whilst the donor embryo cells are marked with red fluorescent protein (RFP) so that

the cells may be tracked.

The neural tube forms the entrance to the migratory domain, in that there is a large population

of CNCCs within the neural tube that subsequently migrate out into the tissue. Implanting donor

tissue into the neural tube also prevents new host cells migrating into the domain, so that the

host population is reduced. Without considering the mathematical model, we would expect that

transplanted leading cells may maintain their initial ordering with the host population so that they

migrate behind the trailing population of host cells. Another possibility is that the transplanted

cells may somehow be able to signal to the host cells that they are leading cells and overtake the

host cells to lead the migratory stream.

3.3.2 Simulation method

To make a prediction for this experiment using our model, we must consider how to represent a tis-

sue transplantation within our model framework. Since transplantations involve removing a section

of tissue, complete with overlying ectoderm, which produces VEGF, we assume that the chemoat-

tractant is moved with the cells. To make a model prediction for the front-to-back experiment,

therefore, we simulate the donor embryo for ten hours and record the positions of cells and the levels

of chemoattractant in a region 100µm along the x-axis across the width of the domain. The location

of this region is user defined and may vary to ensure that the leading cells are taken. To capture

the chemoattractant profile at the interface of the transplant, we linearly interpolate to a finer mesh

near the region boundaries.

Another embryo is then simulated for ten hours and the donor region with cells is input into the

region x < 0 to mimic the experimental transplantation into the neural tube. The host system with
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transplanted tissue is simulated for a further 14 hours to give a total migration time of 24 hours. No

new cells are input into the domain after the transplantation has occurred, since host cells in the

neural tube can no longer reach the migratory domain. To enable numerical solution of the resulting

chemoattractant profile over the whole domain we smooth the boundary between donor and host

tissues. Smoothing is achieved by interpolating between the first grid point into the donor tissue

and the first point into the host tissue to create a finer mesh at the interface. We assume that the

transplanted tissue does not grow during the time simulated, but we note that if growth is simulated

in the transplanted tissue then this does not qualitatively change our results.

3.3.3 Model prediction

Simulations of the front-to-back transplant experiment predict that donor cells will usually not

migrate out of the transplant tissue (Figure 3.4). The higher levels of chemoattractant present

at the front of the donor migratory stream, that are subsequently transplanted with the cells,

ensure that the environment in the transplant is more favourable than that at the back of the host

stream. The only situation in which cells may migrate out of the transplant, therefore, is if the host

chemoattractant is unusually high at the back of the stream. Higher chemoattractant could occur

if the host is at an earlier stage of migration than the donor, leading to less total chemoattractant

consumption. Alternatively, if the host embryo has grown less than the donor then chemoattractant

dilution would be reduced and maximum chemoattractant concentrations may be higher. In either

case chemoattractant concentration in the transplant may be marginally lower than that in the host,

and thus allow a small amount of migration. In most cases, however, we predict that the relative

chemoattractant concentrations will not allow cellular migration out of the transplanted tissue.

3.3.4 Experimental result

Our model prediction, that no transplanted cells will migrate, is completely different to our initial

“näıve” predictions: that the transplanted cells will migrate at the back or at the front of the host

stream. We test our predictions, by considering the experimental data.

In ten out of 13 embryos the cells transplanted to the neural tube did not migrate out of the

implanted tissue, in agreement with our model predictions. The data presented in Figure 3.5 are

therefore taken only from the three embryos in which cellular migration occurred. When donor cells

did migrate away from the transplanted tissue they integrated into the trailing region of the host
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Figure 3.4: The model predicts that donor cells transplanted from the front of a migratory stream to
the neural tube of a host embryo will usually not migrate out of the transplanted tissue (see Sections
3.3.1, 3.3.3 and 3.3.4). The full video for this simulation may be found at http://tinyurl.com/cx966lh
with the file name front to back.avi.

migratory stream and did not regain their previous positions at the head of the stream. The front-

to-back experiments thus support our hypothesised migration mechanisms and show that when the

cells do successfully leave the transplant they can migrate alongside the host trailing cells.

Since only three of the 13 embryos considered had any cellular migration at all, our collaborators were

initially hesitant to publish the data as they regarded the experiments as failed. It was only after

in-depth discussions about the model that they were convinced that the results were not inconsistent

with our original assumption and in fact supported our hypotheses. Hence without modelling work

the data would not have been published and could not have been used to gain greater understanding

of the biological system.

3.4 Transplant experiment: back-to-front

3.4.1 Experimental description

In previous sections we have tested the migratory properties of leading cells, and the communication

between leading and trailing cells. We now extend this to consider the response of trailing cells to

environmental and positional changes, by transplanting the trailing portion of a donor migratory

stream ahead of the migrating cells in a host embryo. We aim to discover whether the transplanted

trailing cells will migrate in the lead of the host stream, or regain their previous positions behind

the host migratory cells.
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b

Figure 3.5: Experimental results for cells and tissue transplanted from the front of a donor migratory
population to the neural tube of the host embryo (see Section 3.3.4): (a) Representative images 24
hours into migration; (b) Cell orientation angles profiled at varying distances along the migratory
pathway.
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The back-to-front transplant experiment requires that the cells are taken from the trailing subpopu-

lation, and that there is enough space ahead of the migratory stream in the host embryo. In contrast

with the previous transplant experiment, therefore, the donor and host embryos must be at different

developmental stages. In particular, the donor embryo is allowed to develop to a later stage than

the host embryo, and this has implications for the extent of chemoattractant dilution.

3.4.2 Simulation method

The back-to-front transplant experiment is simulated in a similar way to previous transplantation

experiments (Section 3.3.2). In particular, we assume, as before, that the chemoattractant is trans-

planted along with the cells and tissue.

The donor embryo is simulated for 14 hours before the chemoattractant and cells in a region 70µm

along the x-axis and across the width of the domain are recorded. A host embryo is then simulated

for ten hours and the region is implanted into a user-defined place ahead of the migrating cells. It

is assumed that the region is implanted over the host tissue in that area, so that the host chemoat-

tractant is overwritten with the donor chemoattractant in that region. As in Section 3.3.2, the

chemoattractant concentration at the interface between host and donor tissue is smoothed so that

the chemoattractant profile may be solved numerically. The host system with transplanted tissue is

simulated for a further 14 hours to give a total migration time of 24 hours.

3.4.3 Model prediction

Simulations of back-to-front transplants predict that no cells will move forwards out of the trans-

planted region (Figure 3.6). The trailing cells taken from the donor embryo will only actively migrate

if they are in a chain of cells with a chemotactic leader at the front. Since there are no leading cells

ahead of the transplanted cells, the donor cells cannot form chains and will not migrate further along

the host migratory route. If the leading host cells reach the transplant site, then the transplanted

cells may even move backwards as they follow host leading cells behind them.

In addition, the chemoattractant levels in the transplant are much more dilute, since the donor

embryo was at a later stage of migration than the host. Indeed, since the transplant is taken from

the back of the migratory stream where there has been higher cell consumption, the chemoattractant

is much lower than the front of the host migratory stream. Hence the transplant forms a barrier
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Figure 3.6: The model predicts that cells transplanted from the back of a donor migratory stream
in front of host migrating cells will not migrate out of the transplanted tissue, and will prevent host
cells from migrating to the end of the domain (see Sections 3.4.1, 3.4.3 and 3.4.4). The full video for
this simulation may be found at http://tinyurl.com/cx966lh with the file name back to front.avi.

across the domain, trapping leading host cells and preventing further migration.

Our model prediction, therefore, is that the transplanted cells will not migrate out into ‘unexplored’

host tissue, although they may migrate backwards into the leading host population. The leading

host population itself will not be able to migrate through the transplanted tissue and will become

trapped behind the transplant.

3.4.4 Experimental result

In contrast to our model prediction, trailing CNCCs transplanted in front of the migratory stream

successfully migrate out of the transplanted tissue and into the branchial arch (Figure 3.7). Host

cells successfully migrate past the transplant site whilst many donor cells move out into the host

tissue. Moreover, the cell orientation profile of the donor cells mimics that of a wildtype migratory

stream, with the latter-most donor cells displaying reduced alignment to the migratory route. We

note that in the three-dimensional biological system it is possible for cells to migrate around the

transplant whilst remaining entirely within host tissue. Thus the transplant does not ‘block’ the

migratory route as it does in our two-dimensional model

In addition, gene expression data reveal that the donor cells after transplantation are similar to

wildtype leading cells leading us to conclude that trailing donor cells may alter their mechanisms of

movement to those of leading cells. Accordingly, in Section 3.5 we will include conversion between

cell types and explore the effects of this on our modelling predictions.
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a

b

Figure 3.7: Experimental results for cells and tissue transplanted from the back of a donor migratory
population to the front of the host migratory stream (see Section 3.4.4): (a) Representative images
24 hours into migration; (b) Cell orientation angles profiled at varying distances along the migratory
pathway.
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3.5 Population conversion

We previously found that cells may change their genetic profile in response to environmental changes.

In addition, there is evidence that cells may modify their behaviours in response to environmental

perturbations. For example, when a physical barrier is introduced across the migratory pathway

leading cells become trapped whilst those behind change their route to move around the barrier and

lead the new migratory stream (Kulesa et al., 2005).

In this section we will include potential cell conversion mechanisms into our model with the aim

of explaining the discrepancy between the modelling predictions and experimental results for the

back-to-front transplant experiment. The circumstances under which cells may convert between

the subpopulations are not well established and so we will present two possible ways of modelling

cell conversion: time-based conversion; and gradient-based conversion. For each mechanism we will

first check that wildtype migration, without experimental perturbations, still produces successful

migration, before running the back-to-front experiment simulations. We will also change the back-

to-front experiment simulations by reducing the size of the transplanted tissue, so that host cells

may migrate around the area. Another way to achieve this would be to extend the model into

three dimensions, but it is unlikely that this would lend greater insight into the system and would

significantly increase the time required to simulate the system.

3.5.1 Time-based cell conversion

The first conversion mechanism that we will consider is time-based cell conversion; where cells change

populations when their current mechanism is unsuccessful at producing active movement. If a trail-

ing cell does not find a chain to follow or a leading cell does not find a favourable chemoattractant

gradient after some time then that cell converts to the other subpopulation. Under wildtype condi-

tions this results in a small number of conversions between types and hence a similar output to the

original model with a slightly reduced migratory distance, so long as the time required to convert is

not too short (Figure 3.8). For shorter conversion times, most cells convert to the leading subtype

and migration breaks down (result not shown). In our simulations we take 10 time steps (0.5 hours)

as the time required to convert.

However, the population using time-based conversion is less spatially segregated into subpopulations,

particularly at earlier time points. When we simulate the back-to-front experiment, therefore, it is
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Figure 3.8: Representative simulation of the model described in Chapter 2 with cell conversion
between subpopulations dependent on time spent inactive (see Section 3.5.1). Chemoattractant con-
centration is denoted by the colour of the background. Note that the global levels of chemoattractant
are decreasing due to the expansion of the domain. The colour bars adjacent to each diagram show
the scale for the chemoattractant concentration. Leading cells (responding to the chemoattractant)
and their filopodia are shown in yellow whereas following cells (responding to other cells) and their
filopodia are shown in white. Parameters can be found in Table 2.1. The full video for this simulation
may be found at http://tinyurl.com/cx966lh with the file name with followers convert 1.avi.

difficult to transplant a population of cells that are solely of the trailing subtype. If a mixture of

leading and trailing cells are transplanted, then the leading-type cells migrate out of the transplant

in both the positive and negative x-directions (Figure 3.9). Trailing donor cells form chains behind

the migrating leading donor cells so that all donor cells leave the transplant. However, host cells do

not migrate past the transplant as is seen experimentally and the simulated migratory stream lacks

cohesion, instead forming clumps of migrating cells.

3.5.2 Gradient-based conversion

Another possible approach to cell conversion is to find an environmental characteristic that localises

to the different areas of the migratory stream. One example would be the local chemoattractant

profile, which is more homogeneous towards the back of the stream, with greater local variation at

the migratory front (see Figure 3.10). To find the local chemoattractant profile in our model, cells

sample the chemoattractant gradient in multiple directions away from the cell body. If the gradient

is favourable in a high proportion of directions, then the cell will convert towards a leader subtype.

Conversely if the gradient is only favourable in a few directions then the cell will convert to a trailing

subtype. To prevent cells continually changing back and forth between types, the proportion needed

to convert from leading to following must be lower than that needed to convert from following to
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Figure 3.9: When time-dependent cell conversion is included into the model donor cells in the
back-to-front transplantation experiment migrate out of the transplant in both directions along
the migratory route. Leading cells are yellow and chained trailing cells are white. Trailing cells
that are yet to find a chain are shown in red. The full video for this simulation may be found at
http://tinyurl.com/cx966lh with the file name back to front convert 1.avi.

Figure 3.10: A cell (represented by a yellow disc) at the front of the migratory stream is in a
local valley of chemoattractant, with a positive chemoattractant gradient in high proportion of
directions. Conversely a cell towards the rear of the stream is in a more homogeneous profile of
chemoattractant, with positive gradients in only a few directions. Cells may use this difference in
profile as an indication of position within the migratory stream (see Section 3.5.2).

leading. In our simulations, cells check 16 directions and will convert from a leader to a follower if

the gradient is favourable in less than 10% of directions. Conversely, if the gradient is favourable in

more than 50% of directions a follower will convert to a leader.

As with time-based conversion (Section 3.5.1), there is little cell conversion under wildtype conditions

and thus the simulations are similar to the original model (Figure 3.11). However, for successful

migration, careful tuning of the parameters is needed, indicating that gradient-based conversion is

less robust to stochastic variation in cellular behaviour than time-based conversion. Since biological

systems in general, and developmental systems in particular, usually need to display robustness to

stochastic variations, we take this as evidence against gradient-based cell conversion.

When a reduced transplant, taking only a small fraction of the domain width, is combined with

gradient-based cell conversion the transplanted donor cells convert to the leading cell type. The

newly formed leading donor cells then migrate out of the transplant, and spread out along the
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Figure 3.11: Representative simulation of the model described in Chapter 2 with chemoattractant
gradient-dependent cell conversion between subpopulations (see Section 3.5.2). Chemoattractant
concentration is denoted by the colour of the background. Note that the global levels of chemoat-
tractant are decreasing due to the expansion of the domain. The colour bars adjacent to each diagram
show the scale for the chemoattractant concentration. Leading cells (responding to the chemoattrac-
tant) and their filopodia are shown in yellow whereas following cells (responding to other cells) and
their filopodia are shown in white. Parameters can be found in Table 2.1. The full video for this sim-
ulation may be found at http://tinyurl.com/cx966lh with the file name with followers convert 2.avi.

latter part of the migratory domain. The host cells migrate alongside the transplanted tissue and

together with donor cells form a successful migratory stream, in accordance with experimental results

(Figure 3.12).

3.5.3 Ablation experiment

Examining the ablation experimental data in more detail (Section 3.2.3 and Figure 3.3) reveals

that the ablated migratory population displays a strikingly similar cell orientation profile to the full

wildtype stream, with the back portion of the stream showing reduced alignment to the migratory

route. Molecular profiling of the back portion of the stream demonstrates that the profile is closest to

that of wildtype trailing cells whereas the profile of the front portion of the ablated stream remains

similar to wildtype leading cells. We hypothesise, therefore, that cell conversion could enable the

ablated migratory stream to compensate for the removed trailing cells by converting later emerging

leading cells into a trailing phenotype. Indeed, genetic profiling data reveal that trailing cells in the

ablated migratory stream are more genetically similar to leading cells in wildtype embryos.

With time-dependent conversion, approximately half of the population convert to the trailing sub-

type after 24 hours of migration (Figure 3.13). The migratory stream is still spread out along the

domain, but there are fewer cells near the entrance to the domain, since cells that remain near the
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Figure 3.12: When gradient-dependent cell conversion is included in the model, cells in a reduced
transplant from the back of a donor migratory stream in front of host migrating cells migrate
out of the transplanted tissue. Host cells successfully migrate past the reduced transplant, as
is found experimentally (see Section 3.4.4). The full video for this simulation may be found at
http://tinyurl.com/cx966lh with the file name back to front convert 2 reduced transplant.avi.

neural tube are in a chemoattractant-depleted area and hence convert to follower cells. Follower

cells may then attach to a moving cell chain and migrate further into the domain. The lack of cells

near the domain entrance is in accordance with experimental data, which display a gap between the

neural tube and the latter-most cells in the ablated stream (Figure 3.3).

Conversely, if cell conversion is gradient-dependent then no cells convert during an ablated migration.

The reduced cell numbers result in the cells migrating in a narrow valley of consumed chemoattrac-

tant, so that the gradient is favourable in almost all directions. Hence the proportion of directions

that have a favourable gradient can no longer be used as a signal of position within the stream. Thus

the ablation experiments show evidence against the gradient-dependent conversion mechanism.

3.5.4 Generating a spatially structured migratory stream from an ini-

tially homogeneous population

Whether a cell’s genetic profile and morphology is pre-determined as it enters the migratory domain

or cells use environmental cues to determine their behaviour is an open question in the field. We

may investigate this in our model by considering whether a heterogeneous population with leading

phenotype cells at the front and trailing phenotypes at the back can be recovered if all cells enter

the domain as a single phenotype.
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Figure 3.13: The extended model with cell conversion after a sustained failure to move (Section
3.5.1) gives a more heterogeneous population of cells whilst maintaining a spread out migratory
stream (see Sections 3.2.1, 3.2.2 and 3.2.3). The full video for this simulation may be found at
http://tinyurl.com/cx966lh with the file name ablation convert 1.avi.

3.5.4.1 Time-based cell conversion

We first consider time-dependent cell conversion, where cells convert after a period of time of un-

successful attempted movements. If all cells enter the domain with a leading phenotype then cell

conversion does generate a heterogeneous migratory population (Figure 3.14). The migratory stream

travels less far into the domain, however, and is not spatially well segregated, with leading cells

present all the way through the stream.

Conversely if all cells are initially of the trailing subtype, then there is much less cell conversion

during migration (Figure 3.15). However, cells still migrate successfully into the domain, and move

further than in the initially-all-leading model. This model demonstrates that very few leading cells

are required for successful migration, if the leading cells are in good positions to give directional

information to the rest of the migratory stream. Using a conversion-based model is one way of

ensuring a greater robustness to stochastic fluctuations in where cells enter the domain and how

long it takes trailing cells to find other cells to provide directional guidance.

3.5.4.2 Gradient-based conversion

Now we consider an initially homogeneous population with gradient-based conversion, where cells

convert based upon the shape of the chemoattractant profile near the cell. We assume in this

model that the chemoattractant profile at the back of a migrating stream will be flat across the

width of the domain, so that there are few directions in which the chemoattractant is favourable.
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Figure 3.14: If all cells are initially of the leading subtype then time-based conversion can generate
a heterogeneous migratory population but the subpopulations are not spatially segregated and the
stream migrates less far than is seen experimentally. The full video for this simulation may be found
at http://tinyurl.com/cx966lh with the file name without followers convert 1.avi.
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Figure 3.15: If all cells are initially of the trailing subtype then time-based conversion can gen-
erate a heterogeneous migratory population with very few cells of the leading subtype. Trailing-
type cells successfully find chains and the stream migrates almost as far as is seen experimentally.
The full video for this simulation may be found at http://tinyurl.com/cx966lh with the file name
all followers convert 1.avi.
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Figure 3.16: If all cells are initially of the leading subtype then gradient-based conversion generates
a heterogeneous population, but with very few trailing cells. There is some clustering next to the
domain entrance. The full video for this simulation may be found at http://tinyurl.com/cx966lh
with the file name without followers convert 2.avi.

Whilst this is true in a mature migratory stream, initially all cells are in similar chemoattractant

profiles, and the value at which conversion should occur to create spatially segregated populations

changes throughout migration. As a result, attempting to initialise a migratory stream as either

all of leading subtype (Figure 3.16) or all of trailing subtype (Figure 3.17) does not reproduce a

spatially segregated stream. Whilst cells do migrate, there is some clustering next to the domain

entrance, and there are very few cells of the trailing subtype at the end of the simulation. We

conclude that gradient-based cell conversion of this type is not sufficient to use with a homogeneous

initial population without further refinements to the model.

3.6 Discussion and conclusions

This chapter tested our model hypotheses and assumptions via a series of experiments. With the

exception of model extensions in response to experimental results (Section 3.5), all modelling pre-

dictions were made prior to the experiments being carried out to prevent bias in our analysis. We

demonstrated that dynamic feedback between cells and chemoattractant results in a system that is

robust to a reduced population of cells, in that the remaining cells migrate successfully and colonise

the length of the domain. With the addition of conversion between cell types, the phenotypic profile

of the ablated stream is also reproduced.

The second experiment transplanted CNCCs and tissue from the leading portion of a migratory
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Figure 3.17: If all cells are initially of the trailing subtype then gradient-based conversion generates
a heterogeneous population, but with very few trailing cells. There is some clustering next to the
domain entrance. The full video for this simulation may be found at http://tinyurl.com/cx966lh
with the file name all followers convert 2.avi.

stream to the neural tube of a host embryo. We predicted that the cells would not leave the trans-

planted tissue, since chemoattractant levels are higher in the transplant than in the trailing regions

of the host domain. As was predicted, very few cells migrated from the transplants and in ten out

of 13 embryos the cells failed to migrate at all. Our model therefore provides a possible explanation

for the experimental results, which would otherwise have been regarded as failed experiments.

Lastly we considered the transplantation of cells from the trailing region of a donor embryo ahead

of the migratory stream in the host. The failure of the original model to predict the experimental

data led us to include conversion between the two cell subpopulations. In addition, to overcome the

limitations of modelling in two spatial dimensions, we reduced the size of the transplanted domain.

The extended model compared well with the experimental data and we conclude that cells are not

fixed as one type but are instead able to change their molecular profile to respond to a changing

microenvironment. Future modelling will aim to explore the circumstances under which cells change

profiles and the mechanisms by which trailing cells receive guidance information from chemotactic

cells.

To consider whether our model requires predetermined subpopulations of cells, we explored different

cell conversion mechanisms with initially homogeneous populations to see if spatially segregated

subpopulations could be regained. We demonstrated that a heterogeneous population of successfully

migrating cells can be generated from an initially homogeneous population using time-dependent

conversion. In addition, if all cells are assumed to enter the domain as the trailing subtype, time-
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dependent conversion gives a small population of leading cells with trailing cells in chains that

migrate almost as far into the domain as our non-converting model. In contrast, we showed that

conversion based on the local chemoattractant gradient profile from a homogeneous initial population

is not successful at generating long distance migration with spatially segregated subpopulations.

One advantage of using an IBM is the ability to include mechanisms explicitly at an individual

level. However, stochastic models that take a significant period of time to simulate can be difficult

to analyse, since any particular simulation may not be representative of the model in general. In

addition, continuum-level analyses which give rise to information on the wavespeed of the migrating

population and the specific dependence of the model on its parameter values are difficult to determine

without running large numbers of simulations. In Chapters 4 to 7 we derive PDE approximations

for increasingly complex IBMs with the final aim of being able to perform this analysis on our full

model.
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Chapter 4

Analysis of a simple 1D

individual-based model

Although we aim ultimately to build a framework that allows us to analyse the complex hybrid IBM

from Chapters 2 and 3, we will begin with much simpler models, building up systematically to more

complicated mechanisms and modelling frameworks. We will apply the techniques learned at each

level to extend the model further. Starting from models that we can simulate quickly also allows us

to test the accuracy of our approximations in a wide region of parameter space. It is important to

investigate the strengths and limitations of the approximations used so that it is clear under what

circumstances the derived equations are applicable.

This chapter investigates the effects that the volume of an individual (volume exclusion) has on the

evolution of a one-dimensional motile cell population. Whilst many migratory systems are highly

crowded and individuals may encounter each other repeatedly, the usual continuum equations for

modelling these systems represent individuals as point particles. One reason for the continued use

of such equations is the lack of a consensus in the community as to how best to account for volume

exclusion. In particular, most attempts to formulate a systematic derivation of a PDE description

of movement with volume exclusion use on-lattice models with at most one cell permitted at each

lattice point. One drawback of this formulation is that when deriving continuum equations from the

model it is necessary to take the limit as the lattice spacing tends to zero, but this also results in

the size of a cell (represented by the space taken by a lattice point) tending to zero. We present a

framework for systematically deriving continuum equations from off-lattice IBMs in which the radius
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Figure 4.1: Schematic view of the one-dimensional IBM with volume exclusion. Each individual,
shown in red, is represented by its centre point, x and occupies a region, [x−R, x+R), around this
point.

of an individual is small but finite, and thus is present explicitly in the derived equations. The work

beginning this chapter has been published in Physical Review E (Dyson et al., 2012).

4.1 Model description

The first model we analyse is a one-dimensional off-lattice IBM with volume exclusion. Each indi-

vidual is defined by a position x in the domain [BL, BR] and has radius, R, thus each cell occupies

an interval [x−R, x+R). Individuals move by hopping with rate α/2 a distance d > 0 to the left or

right. An attempted move is aborted if it would require moving through any point that is already

occupied by another individual. For example, a move to the right from position x is aborted if there

is another cell centre in the interval [x + 2R, x + d + 2R). In addition, movement is aborted if it

would result in any part of an individual being outside the domain, so that all cell centres must

remain in the region [BL + R, BR − R]. The model is shown schematically in Figure 4.1.

4.2 Simulation algorithm

To enable efficient simulation of the model described in Section 4.1, we will use a modified version

of the Gillespie Algorithm (Gillespie, 1977). This algorithm was originally used to simulate spatially

homogeneous chemical reaction systems by using the underlying reaction rates to find the distribution

of next-reaction times. To simulate the system we draw a random number from the distribution of

next-reaction times and determine which reaction will occur. This can be modified to simulate our

model by regarding attempted cellular movement as a ‘reaction’ (Baker et al., 2010; Simpson et al.,

2011). To derive the distribution of next-movement times, τ , we consider the probability, PM (t),

that there is an attempted movement in [t, t + dt). For our model, PM (t) = N(t)αdt, where N(t)

is the number of cells at time t, and each cell moves left (or right) with probability αdt/2. Let
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f(N(t), s) be the probability that, given the number of cells at time t, the next movement happens

in the time interval [t + s, t + s + ds). We also define G(N(t), s), the probability that no movement

is attempted in the time interval [t, t + s). Then

f(N(t), s) = Prob (no move in [t, t + s)) Prob (a move in [t + s, t + s + ds)) ,

= G(N(t), s)N(s)αds,

= G(N(t), s)N(t)αds, (4.1)

since there were no attempted movements during [t, t + s) and hence no new cells can have been

added during this time. Taking σ > 0 then we may characterise G(N(t), σ) further by noting that

G(N(t), σ + dσ) = Prob (no move in [t, t + σ)) Prob (no move in [t + σ, t + σ + dσ)) ,

= G(N(t), σ)(1 − N(t)αdσ).

Hence, rearranging and letting dσ → 0

G(N(t), σ + dσ) − G(N(t), σ)

dσ
= − N(t)αG(N(t), σ), (4.2)

1

G

∂G

∂σ
= − Nα, (4.3)

∂

∂σ
(lnG) = − Nα (4.4)

G(N(t), σ) = Ke−N(t)ασ, (4.5)

and since G(N, 0) = 1

G(N(t), σ) = e−N(t)ασ, (4.6)

and hence

f(N(t), s) = N(t)αe−N(t)αsds. (4.7)

To find τ so that t + τ is the time at which the next reaction occurs, we need to draw a random

number from the distribution given by f(N(t), s). We draw from the distribution, f(N(t), s), by
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noting that if τ is distributed according to equation (4.7) and

F (τ) = −
∫

τ

f(N(t), τ ′)dτ ′, (4.8)

= e−N(t)ατ , (4.9)

then F (τ) is uniformly distributed, since if a and b are chosen arbitrarily with 0 < a < b < 1 then

the probability that F (τ) ∈ (a, b) is given by

∫ b

a

F (τ) dF (τ) =

∫ F−1(a)

F−1(b)

τ dτ, (4.10)

=

∫ F−1(a)

F−1(b)

f(N(t), τ) dτ, (4.11)

= N(t)α

∫ F−1(a)

F−1(b)

e−N(t)ατ dτ, (4.12)

= −
∫ F−1(a)

F−1(b)

dF

dτ
dτ, (4.13)

= F (F−1(b)) − F (F−1(a)), (4.14)

= b − a. (4.15)

Hence if τ is distributed according to equation (4.7), then r = F (τ) is uniformly distributed over

the interval (0, 1). If we take a uniformly distributed random number, r, therefore, then

τ = F−1(r), (4.16)

=
1

N(t)α
ln

1

r
, (4.17)

is drawn from the distribution f(N(t), s) and can be used as the time to the next cell movement.

To find which cell moves and in which direction we pick a uniformly distributed integer, i, from 1 to

2N . If i ≤ N then cell i attempts to move left, whereas if i > N then cell i − N attempts to move

right. If another cell is in the way of the desired move then the attempted movement is aborted.

4.3 Derivation of continuum equations

We wish to derive the predicted distribution of cell positions at any particular time, t. The proba-

bility density function (pdf), Ci(x, t), for the position, x, of cell centre i at time t can be found from
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the pdfs of the position of all the cells at t − ∆t by taking ∆t small enough that at most one cell

movement occurs during each time step of length ∆t. Then, considering the three different places

that cell i could have been at the previous time step:

Prob(celli: {[x, x + ∆x), t + ∆t}) = Prob(celli: {[x, x + ∆x), t} → {[x, x + ∆x), t + ∆t})

+ Prob(celli: {[x + d, x + d + ∆x), t} → {[x, x + ∆x), t + ∆t})

+ Prob(celli: {[x − d, x − d + ∆x), t} → {[x, x + ∆x), t + ∆t}),

where Prob(celli: {[x, x + ∆x), t}) is the probability that the centre of cell i is in the region [x, x+∆x)

at time t and Prob(celli: {[x, x + ∆x), t} → {[x, x + ∆x), t + ∆t}) is the probability that the centre

of cell i was in the region [x, x + ∆x) at both times t and t + ∆t. Hence

Ci(x, t + ∆t) = Ci(x, t)
︸ ︷︷ ︸

cell i at (x, t)

[
no move attempted

︷ ︸︸ ︷

1 − α∆t +
α∆t

2

(
P i

L(x, t) + P i
R(x, t)

)

︸ ︷︷ ︸

attempted move fails

]

+

cell i at x + d tries to move
︷ ︸︸ ︷

Ci(x + d, t)
α∆t

2

[
1 − P i

L(x + d, t)
]

︸ ︷︷ ︸

attempted move succeeds

+

cell i at x − d tries to move
︷ ︸︸ ︷

Ci(x − d, t)
α∆t

2

[
1 − P i

R(x − d, t)
]

︸ ︷︷ ︸

attempted move succeeds

, (4.18)

where P i
L(x, t) and P i

R(x, t) are the probabilities of a cell, other than cell i, being present in the

regions (x − d, x] and [x, x + d), respectively, given that cell i is at x at time t. At this point we

could expand P i
L(x, t) and P i

R(x, t) over the different possible positions of pairs of cells, resulting

in an expression requiring knowledge of the position of triplets of cells. Triplets of cells can be

expanded in terms of quartets of cells and so on. In order to make progress with the resulting

infinite sequence of equations, it is necessary to make a closure assumption. We take the simplest

possible approximation: that the cell positions are approximately independent when averaging over

numerous simulations of the system (see Gillespie, 2009; Baker et al., 2010; Erban and Othmer,

2004). Then, if d < 4R, so that at most one cell centre may be in the region integrated over (see
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Figure 4.2):

P i
R(x, t) =

∑

j 6=i

∫ 2R+d

2R

Cj(x + x̄, t) dx̄, (4.19)

P i
L(x, t) =

∑

j 6=i

∫ −2R

−2R−d

Cj(x + x̄, t) dx̄, (4.20)

P i
R(x − d, t) =

∑

j 6=i

∫ 2R

2R−d

Cj(x + x̄, t) dx̄, (4.21)

P i
L(x + d, t) =

∑

j 6=i

∫ −2R+d

−2R

Cj(x + x̄, t) dx̄. (4.22)

If 2R + d is small compared to the length scale on which C changes then we can expand P i
L(x, t)

and P i
R(x, t) in a Taylor series to obtain

P i
R(x, t) =

∑

j 6=i

(

dCj +

∞∑

n=1

n+1∑

k=1

(2R)n+1−kdk

k!(n + 1 − k)!

∂nC

∂xn

)

, (4.23)

=
∑

j 6=i

(

dCj +
d

2
(4R + d)

∂Cj

∂x
+

d

6
(12R2 + 6Rd + d3)

∂2Cj

∂x2
+ O(Rndm)

)

, (4.24)

P i
L(x, t) =

∑

j 6=i

(

dCj +
∞∑

n=1

n+1∑

k=1

(−1)n(2R)n+1−kdk

k!(n + 1 − k)!

∂nC

∂xn

)

, (4.25)

=
∑

j 6=i

(

dCj −
d

2
(4R + d)

∂Cj

∂x
+

d

6
(12R2 + 6Rd + d3)

∂2Cj

∂x2
+ O(Rndm)

)

, (4.26)

where Cj is evaluated at x and n + m ≥ 4. Substituting equations (4.24) and (4.26) into equa-

tion (4.18), and taking the limit as ∆t → 0, we find that

∂Ci

∂t
=

αd2

2

∂2Ci

∂x2
+

αd2

2

∞∑

m=0

22m+2R2m+1

(2m + 1)!

∂

∂x



Ci

∑

j 6=i

∂2m+1Cj

∂x2m+1



+ O(d3), (4.27)

=
αd2

2

∂2Ci

∂x2
+

αd2

2
(4R − d)

∂

∂x



Ci

∑

j 6=i

∂Cj

∂x



+ O(d2+mRn), (4.28)

for n+m ≥ 2. We wish to now let the jump length, d, tend to zero. However, as the distance moved

in a jump changes, the rate of jumps occurring, α, must change correspondingly so that movement

still occurs. Thus as individuals move less far, they must move more often to maintain migration.

This is widely used in the literature, for example in Codling et al. (2008); Painter and Sherratt
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Figure 4.2: Different relative sizes of R and d result in different configurations when a cell attempts
to move. Here the solid red cell with centre at x is attempting to move to the right to the position
shown by the light red cell with centre at x + d. The solid blue cell with centre at x + 2R shows
the left-most position another cell could occupy to prevent movement, whilst the light blue cell at
x + d + 2R is the rightmost position another cell could occupy to prevent movement. Hence for the
red cell to move, we require the interval [x + R, x + R + d) to be clear of any part of a cell, thus
requiring no cell centre to be in [x + 2R, x + 2R + d).

(2003). As d → 0

∂Ci

∂t
= α̂

∂2Ci

∂x2
+ 4Rα̂

∂

∂x



Ci

∑

j 6=i

∂Cj

∂x



+ O(R2), (4.29)

with α̂ = limd→0,α→∞ αd2/2 held constant.

4.3.1 Initial conditions

Initial conditions for Ci are given directly by the distribution of initial conditions in the IBM. If all

the cells have initial positions drawn from the same distribution then Ci(x, t) = Cj(x, t) ∀i, j and
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Figure 4.3: Comparison between the IBM and the continuum models with d > 0 (equation (4.30))
and as d → 0 (equation (4.31)), plotted at t = 0, 200 and 600 for x ∈ [0, 65]. The solution to the
diffusion equation is also shown for comparison. Parameters are N = 60 and dx = 0.05, with other
parameter values given in Table 4.1. For more details about the simulations see Section 4.4.

∑

j 6=i ∂Cj/∂x = (N − 1)∂Ci/∂x, where N is the number of cells in the domain. Hence, summing

equation (4.28) over all i gives

∂C

∂t
=

αd2

2

∂

∂x

((

1 + (4R − d)
(N − 1)

N
C

)
∂C

∂x

)

+ O
(
d2+mRn

)
, (4.30)

for n + m ≥ 2, where C =
∑N

i=1 Ci is the total cell density, giving an indication of the distribution

of all cells over the domain. Taking the limit as d → 0,

∂C

∂t
= α̂

∂

∂x

((

1 + 4R
(N − 1)

N
C

)
∂C

∂x

)

+ O(R2), (4.31)

with α̂ = limd→0 αd2/2 held constant as before.

In fact, even if initial cell positions are drawn from a variety of distributions we may still average

these to use as the initial condition for C =
∑N

i=1 Ci so that C(0) =
∑N

i=1 Ci(0). C will then satisfy

equation (4.31), as before, since we only ever consider the sum of the individual cell positions. The

label of each cell in the summation is irrelevant, therefore, and so we may take the cells in different

orders for each run of the numerical simulation. The initial condition of cell i is then the same for

all i, so that we reduce to the case with identical initial conditions. This is analogous to Simpson

et al. (2010b, 2011), where a one-dimensional system is derived by averaging over vertical columns

of cells. The initial condition is thus averaged over all the cells without regard for whether particular

cells may draw their initial position from different distributions.
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4.3.2 Limiting equations

Equation (4.31) gives the limiting continuum model for finite-sized individuals moving with dif-

fusivity α̂. To examine the accuracy of our derived equations under different parameter regimes,

however, simulations of the IBM must be carried out with d > 0, and if d and R are of the same

order of magnitude, it may be more appropriate to use equation (4.30) (whilst neglecting the higher

order terms in the expansion). In this case, if [1 + (4R − d)(N − 1)/N C(x, t)] < 0 for any x,

then equation (4.30) is a diffusion equation with negative diffusivity and is thus ill-posed. Indeed

if [1 + (4R − d)(N − 1)/N C(x, t)] < 0 initially for any x then the negative diffusivity will lead to

aggregation, and thus [1+(4R−d)(N−1)/N C(x, t)] < 0 for later time. In contrast, equation (4.31)

is well-posed for all possible initial conditions since 1 + 4R(N − 1)/N C(x, t) is always positive for

positive cell densities. The potential ill-posedness of equation (4.30) reflects the assumption in equa-

tions (4.19) to (4.22) that there can be at most one cell in an interval of length d, which is not

satisfied if d ≥ 4R. However, when d ≥ 4R, equations (4.19) to (4.22) are still valid first order

approximations for Ci ≪ 1 since, using moment-closure assumptions:

P i
R(x, t) =

∫ 2R+d

2R

prob(at least one cell present)
︷ ︸︸ ︷






1 −

prob(no cells present)
︷ ︸︸ ︷
∏

j 6=i

(
1 − Cj(x + x̄, t)

)







dx̄, (4.32)

≈
∫ 2R+d

2R

(
∑

j 6=i

Cj(x + x̄, t) −
∑

k 6=j 6=i

Cj(x + x̄, t)Ck(x + x̄, t) + O
(
C3

j

)

)

dx̄. (4.33)

Note that taking R = 0 in equation (4.30) does not reduce to simple diffusion, unlike in equa-

tion (4.31), where d also tends to zero. Volume exclusion still has an effect when R = 0 since, whilst

cells ‘occupy’ no space, they still prevent other individuals from moving past for d > 0 since cells

still sense the presence of others before moving.

4.3.3 Boundary and initial conditions

Appropriate boundary conditions must be considered carefully, since the centre of a cell cannot be

within a distance R of the boundary. In essence we have no-flux conditions at BL + R and BR −R,

where BL and BR are the left and right boundaries, respectively. No-flux conditions neglect effects

close to the boundary, however, where P i
L and P i

R may be different compared to the interior of

the domain, and for now we simply choose a domain large enough to ensure cells do not reach the
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Parameter Typical value

d 0.15
R 0.15
BL 0
BR 80
total time 750
total cell number 30
dx 0.1
number of simulations 1000
Pc 0.05
α 2.22
σ 0.15
La 0.1
ǫ 0.1

Table 4.1: Typical simulation parameters.

boundaries.

4.4 Simulations

To compare the total cell density profile of C with model simulations, we average cell positions over

many repetitions of the simulation to obtain the mean cell profile. Realisations of the IBM were

performed using the Gillespie algorithm (see Section 4.2 and Gillespie, 1977) with initial conditions

as follows: the centre of the first individual is drawn from a normal distribution, N ((BR −BL)/2−

NR/0.8, 10), and subsequent cells are placed to the right with centres at intervals of 2R/0.8 apart

so that the cells are initially in the middle of the domain at a density of 0.8.

Note that, whilst all simulations shown here begin with evenly spaced cells, using an uneven distri-

bution of cells does not change our averaged simulation (result not shown). Taking instead a random

distribution of initial positions to a high density results in failed initialisations of individuals due to

volume exclusion restricting overlapping cells. However, for each failed initialisation another ran-

dom number must be drawn until the initial position is successful and this increases simulation times

without giving additional useful data. We will therefore take evenly spaced cells.

We solve the PDEs using the Numerical Algorithms Group (NAG) routine d03pc (see Appendix A.1)

with initial conditions determined by the average initial distribution from simulations, linearly in-

terpolated onto a mesh with spacing dx.

Simulations with R = 0.1 and d = 0.15 show better agreement with either of equation (4.30) or

equation (4.31) than with the diffusion equation (Figure 4.3). In this case the averaged simulations
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lie between the predictions with d → 0 and with d = 0.15, reflecting the complex nature of the error

in our approximations (see Section 4.6).

4.5 Flux boundary conditions

Since our motivating biological model requires cells to enter the domain from the neural tube (see

Chapters 2 and 3), we wish to be able to include an influx of cells into one end of the domain.

There are two potential methods for incorporating a flux boundary condition into our derivation:

either by finding the total number of cells predicted by our equation at any time t and ensuring this

increases at a set rate; or by using the same method that was used within the domain whilst taking

the differences due to the boundary into account.

4.5.1 Prescribing the total cell population over time

The change in the total number of cells is given by

∂

∂t

∫ BR−R

BL+R

C(x, t) dx =

∫ BR−R

BL+R

∂C

∂t
dx, (4.34)

=

∫ BR−R

BL+R

[

α̂
∂

∂x

((

1 + 4R
(N − 1)

N
C

)
∂C

∂x

)

+ O(R2)

]

dx, (4.35)

=

[

α̂

(

1 + 4R
(N − 1)

N
C

)
∂C

∂x

]BR−R

BL+R

+ (BR − BL − 2R)O(R2). (4.36)

Hence for an influx of cells at a rate Pc at x = BL + R, whilst keeping a no-flux boundary condition

at x = BR − R, we require

−α̂

(

1 + 4R
(N − 1)

N
C

)
∂C

∂x

∣
∣
∣
∣
∣
x=BL+R

+ (BR − BL − 2R)O(R2) = Pc

(

1 −
∫ BL+3R

BL+R

C(x, t) dx

)

,

(4.37)

where the rate Pc is modified by volume exclusion, since if there is another individual occupying

the section next to x = BL then a new cell cannot enter the domain. Using a Taylor expansion to
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Figure 4.4: The evolution of the expected population size can be used to derive a boundary condi-
tion (BC) with an influx of cells (equation (4.41)) that compares well with averaged simulations of
the IBM. Using the same methods as the interior of the domain does not result in the same bound-
ary condition (equation (4.45)), and does not compare well to averaged simulations of the IBM.
Parameter values are given in Table 4.1. For more details about the simulations see Section 4.4.

simplify the right-hand side, we obtain

−α̂

(

1 + 4R
(N − 1)

N
C

)
∂C

∂x

∣
∣
∣
∣
∣
x=BL+R

= Pc

(

1 −
∫ 2R

0

(

C(BL + R, t) + x
∂C

∂x
(BL + R, t) + O(x2)

)

dx

)

,

(4.38)

= Pc

(
1 − 2RC(BL + R, t) + O(R2)

)
. (4.39)

Note that for large population numbers (N), which result after long simulation time, (N −1)/N ≈ 1.

Since numerical solutions taking (N − 1)/N ≈ 1 are much faster when the number of cells changes

over time and are very similar to those which use a coupled ODE to approximate N (result not

shown), we will use

−α̂ (1 + 4RC)
∂C

∂x

∣
∣
∣
∣
∣
x=BL+R

= Pc

(

1 −
∫ 2R

0

C(BL + R, t) + x
∂C

∂x
(BL + R, t) + O(x2) dx

)

, (4.40)

= Pc

(
1 − 2RC(BL + R, t) + O(R2)

)
, (4.41)

in our simulations, and we will neglect terms of order O(R2) in our simulations.
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4.5.2 Extending our original method

The methods used for deriving PDEs within the domain (Section 4.3) are difficult to extend to give

a simple boundary condition, since the boundary influences the movement of cells that are within

three radii of the boundary. If the centre of cell i is to the left of BL + 3R, for example, there is

not enough space for another individual to the left and hence all attempted movements of cell i to

the left whilst remaining within the domain must succeed. These boundary layer effects have also

been observed in systems without volume exclusion (Singer and Schuss, 2008). If we wish to derive

a condition that is only taken at the boundary and assume that these effects close to the boundary

are negligible, then taking P i
L(BL + R) = 0 in equation (4.18) and noting there cannot be a cell at

(BL + R − d):

Ci(BL + R, t + ∆t) = Ci(BL + R, t)
[

1 − α∆t/2 +
α∆t

2
P i

R(BL + R, t)
]

+ Ci(BL + R + d, t)
α∆t

2

[
1 − P i

L(BL + R + d)
]

+ Pc

(

1 −
∫ BL+3R

BL+R

C(x, t) dx

)

. (4.42)

Taylor expanding in d and R, and using equations (4.24) and (4.26) as before yields

d
∂Ci

∂t

∣
∣
∣
∣
∣
x=BL+R

=

{
αd2

2

(

1 + 4R
N − 1

N
C

)
∂C

∂x
+ dPc (1 − 2RC) + O(d2+mRn)

}
∣
∣
∣
∣
∣
x=BL+R

, (4.43)

as ∆t → 0, where n + m ≥ 2. To maintain a flux boundary condition as d → 0, we require

Pc → ∞ so that P̂c = dPc is constant. In addition, we keep α̂ = αd2/2 constant, and assuming that

∂Ci/∂t = O(1):

−α̂

(

1 + 4R
(N − 1)

N
C

)
∂C

∂x

∣
∣
∣
∣
∣
x=BL+R

= P̂c

(
1 − 2RC + O(R2)

)

∣
∣
∣
∣
∣
x=BL+R

. (4.44)

As before we may now take (N − 1)/N = 1 so that

−α̂ (1 + 4RC)
∂C

∂x

∣
∣
∣
∣
∣
x=BL+R

= P̂c

(
1 − 2RC + O(R2)

)

∣
∣
∣
∣
∣
x=BL+R

. (4.45)

We have shown, therefore, that the two methods of derivation do not give the same boundary

condition, since in equation (4.41), Pc does not depend on the jump distance, d. We expect that the

first method (Section 4.5.1) will be more accurate, since it attempts to maintain the correct total
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number of cells in the domain, and does not explicitly rely on solutions close to the boundary where

we know that our approximations are less accurate. In numerical solutions to the two equations

we take d > 0 and compare averaged simulations to show that equation (4.41) is indeed much

more accurate than using equation (4.45) (Figure 4.4). When using a flux boundary condition,

the presence of volume exclusion makes a huge difference to the concentration profile and total

population size. It is therefore highly important to consider the reduction in influx into the domain

caused by crowding.

4.6 Exploring parameter space

In this section, we investigate the accuracy of our continuum predictions (equations (4.30) and (4.31))

by comparing them with data averaged over multiple simulations of the model. To determine whether

our derived equations are better predictors than näıvely using the diffusion equation, we will also

compare the diffusion equation with averaged simulations of the model. Finally we also examine the

varying importance of excluded volume in equation (4.31) by plotting the difference between our

equation and the diffusion equation.

The differences between our equation, the diffusion equation and averaged simulations of the model

will vary as the model parameters change. We therefore explore parameter space as the number of

cells, N , the radius of a cell, R, and the distance moved during a jump, d, change. We take these

parameters in pairs so that the result may be visualised as a three-dimensional surface plot.

To determine the aforementioned differences, we use the relative difference which, for two normalised

density functions, f1 and f2, over a region [BL, BR], is

D(f1, f2) =
1

BR − BL

∫ BR

BL

(f1(x) − f2(x))2

f1(x) + f2(x)
dx. (4.46)

It is important to note that our numerical solutions to PDEs will only be correct to some given

accuracy. Our numerical technique has an error given by |Ei| = acc(1 + C(xi)) at each lattice point

xi, and we use acc = 10−5. Hence if we find the difference between our prediction, C, and data S
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then the error, E(S, C) in D(S, C) can be estimated by Taylor expanding in acc

E =
1

BR − BL

∫ BR

BL

(S(x) − C(x) − acc(1 + C(x)))2

S(x) + C(x) + acc(1 + C(x))
dx − D(S, C), (4.47)

= − acc

BR − BL

∫ BR

BL

(S(x) − C(x))(3S(x) + C(x))(1 + C(x))

(S(x) + C(x))2
dx + O(acc2), (4.48)

so that if (S(x)−C(x))(3S(x)+C(x)) is of the same order of magnitude as (S(x)+C(x))2 then the

error in D(S, C) is of order acc = 10−5. Hence values of D that are orders of magnitude greater than

acc may be considered to be due to approximations in our equations or fluctuations in the averaged

simulations. The fluctuations in averaged simulations may be considered using the Central Limit

Theorem, so that the difference between the true mean value and that found by n samples converges

to a normal distribution with variance 1/nσ2. For our simulations, n may be considered to be the

total number of cell paths averaged over, so that for 30 cells and 1000 repetitions, 1/n = O(10−5).

In addition, since all compared values of D are averaged over the same number of repetitions, the

error in each should be of the same order of magnitude and thus be comparable.

4.6.1 Likelihood of successful movement

The first pair of parameters we consider is the radius of a cell, R, and the distance moved during

each cell jump, d. If we hold the number of cells, N , constant then the occupied space (2RN) and

the distance sensed in each attempted move (d) determine the likelihood of an attempted move

being successful. In turn, if attempted moves are less likely to succeed then we would expect the

total excluded volume effect over the domain to be larger. However, when 4R < d we find that the

excluded volume term in equation (4.30) becomes negative, reducing the diffusivity of the population.

The reduction in diffusion results from the playoff between reduced rates of successful movement

due to volume exclusion and the resultant increase in the proportion of successful cell jumps towards

unoccupied areas of the domain. The system is best approximated by the diffusion equation when

4R = d (Figure 4.5(c)).

Varying parameter values changes the volume exclusion effects, but the error due to our approxima-

tions is also affected. Two different types of approximations are taken during our derivation: firstly

the moment closure approximation that the positions of pairs of cells are approximately independent;

and secondly the truncation of Taylor expansions in powers of (2R + d). The error in our predictive

equation is a combination of higher order terms from each of these approximations. Whilst we may
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compute the next order term in our Taylor series expansions, this is highly complex and depends

non-linearly on both R and d. In addition it is unclear how to make a higher order moment closure

approximation (although these have been attempted, see Baker and Simpson, 2010; Singer, 2004)

and this would be necessary to reliably analyse higher order terms. It is difficult to predict, therefore,

the error introduced by our approximations and how this will vary as our parameters change.

However, we may find the error in our approximations as R and d change by determining the

difference between a numerical solution to equation (4.30) and averaged simulations (Figure 4.5(a)).

For small values of d and R, the errors in our predictions are very small (Figure 4.5(a)), however

the effect of excluded volume is also reduced (Figure 4.5(b)). It is clear from Figure 4.5 that the

greatest excluded volume effect with the minimum error can be found by increasing d whilst keeping

R small. For 30 of the 36 parameter combinations tried, equation (4.30) (C) was more accurate

than the diffusion equation (Cd), when compared to data (S) averaged over many simulations. In

addition, the diffusion equation was only very slightly more accurate than equation (4.30), with

D(S, Cd) − D(S, C) > −10−4 for all parameter combinations that were tried.

4.6.2 Population crowding

The second pair of parameters we vary is the number of cells, N , and the radius of a cell, R. Taken

in combination, these parameters give an indication of the total space occupied by cells (2RN) and

hence the level of crowding due to the cell population. As R and N increase we would expect the effect

of volume exclusion to become more pronounced. This expectation is supported by equations (4.30)

and (4.31) since increasing R and N increases the exclusion term 4R(N − 1)/N . We note that as

N → ∞, (N − 1)/N → 1, reflecting the decreasing relative impact of each additional cell as the

existing numbers increase. Unfortunately, whilst increasing R and N gives a greater excluded volume

effect, the inaccuracies introduced by our approximations also become more significant. As with R−d

space, the error surface for our predictions is complex and difficult to find analytically. The accuracy

of both the moment closure approximation and the truncated Taylor expansions depend on the size

of R and N , since higher order terms in the Taylor expansions are also multiplied by (N − 1)/N .

Since (N − 1)/N is bounded above by 1 as N increases, however, we expect the major change in

errors when varying the number of individuals to be due to higher order correlations between cells

that are not accounted for in our moment closure approximation. In R − N space the exclusion

effects and the approximation errors seem to be highly correlated (Figure 4.6). However, for small
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Figure 4.5: Exploring the effect of changing the likelihood of successful movement (by changing d
and R whilst keeping α̂ = αd2/2 = 0.025 constant) on the error introduced by our approximations
(D(C, S)), our prediction of the effect of volume exclusion (D(C, Cd)) and the actual effect of volume
exclusion (D(S, Cd)). Here S is the average distribution of simulations of the IBM, C is the solution
to equation (4.28), Cd is the solution to the diffusion equation and the relative difference, D, is given
in equation (4.46). Parameter values are given in Table 4.1. For more details about the simulations
see Section 4.4.
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Figure 4.6: Exploring the effect of changing the occupied space (by changing N and R) on the
error introduced by our approximations (D(C, S)), our prediction of the effect of volume exclusion
(D(C, Cd)) and the actual effect of volume exclusion (D(S, Cd)). Here S is the average distribution
of simulations of the IBM, C is the solution to equation (4.28), Cd is the solution to the diffusion
equation and the relative difference, D, is given in equation (4.46). Parameter values are given in
Table 4.1. For more details about the simulations see Section 4.4.

R the error is relatively small, even as N increases and we note that for R > 0.05 equation (4.28)

has a smaller error than the diffusion equation.

4.6.3 The final pair of parameters

Finally we vary the number of cells, N , and the distance moved in a jump, d, in combination

(Figure 4.7). Here again, increasing N leads to an increase in both the total effect of volume

exclusion and the error in our approximations, as we would expect from the greater chance of cell-

cell encounters and the greater correlations that we would expect between cell positions. For the

value of R taken, decreasing d gives a higher exclusion effect and greater error term and this is true

for all considered values of N .
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Figure 4.7: Exploring the effect of changing the number of cells, N , and the distance moved in a
jump, d, on the error introduced by our approximations (D(C, S)), our prediction of the effect of
volume exclusion (D(C, Cd)) and the actual effect of volume exclusion (D(S, Cd)). Here S is the
average distribution of simulations of the IBM, C is the solution to equation (4.28), Cd is the solution
to the diffusion equation and the relative difference, D, is given in equation (4.46). Parameter values
are given in Table 4.1. For more details about the simulations see Section 4.4.
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4.7 Distributed distance moved

One advantage of using an off-lattice IBM is that we may consider models where the distance moved

in a jump may vary over time and between individuals. For instance, we would expect that there

would be a distribution of time-varying speeds within any population of cells. We could represent

this in our model either by varying the rate of movement for different individuals, or by using a

distribution of cell jump distances. Using a variable jump distance will affect the overall behaviour of

the population, since it enables individuals to move arbitrarily close together and, in one dimension,

prevents each cell from essentially moving on a lattice. In particular, using a normally distributed

jump distance makes the model more similar to the classic depiction of Brownian dynamics, with

(Barkai and Silbey, 2010; Bruna and Chapman, 2012) or without (Codling et al., 2008) hard core

exclusion effects.

4.7.1 Derivation of continuum equations

It is straightforward to extend our method to consider variable jump distances. With the pdf of d

given by f(ud), for ud ∈ R, so that Prob(d ∈ [ud, ud + ∆ud)) = f(ud), we may use the probabilistic

expansion:

Prob(A = a) =

∫

b∈B
Prob(A = a|B = b) Prob(B = b) db, (4.49)

to expand the probability

Prob(celli: {[x, x + ∆x), t + ∆t}) =

∫ ∞

−∞

f(ud)Prob(celli: {[x, x + ∆x), t + ∆t} |d = ud) dud.

(4.50)

Then, similarly to equation (4.18), if ∆t is small enough for only one cell movement to happen

during (t, t + ∆t),

Ci(x, t + ∆t) =

∫ ∞

−∞

f(ud)
{
Ci(x, t)
︸ ︷︷ ︸

cell i at (x, t)

[
no move attempted

︷ ︸︸ ︷

1 − α∆t + α∆tP i(x, ud, t)
︸ ︷︷ ︸

attempted move fails

]

+

cell i at x − ud tries to move
︷ ︸︸ ︷

Ci(x − ud, t)α∆t
[
1 − P i(x − ud, ud, t)

]

︸ ︷︷ ︸

attempted move succeeds

dud, (4.51)

83



where the probability, P i, that a cell other than cell i prevents movement, now depends on the jump

distance ud:

P i(x, ud, t) =
∑

j 6=i

∫ 2R+ud

2R

Cj(x + x̄, t) dx̄. (4.52)

Hence

∂Ci

∂t
= α

Z ∞

0

(f(ud) + f(−ud))(Ci(x − ud, t) − Ci(x, t)) dud

+ α
X

j 6=i

Z ∞

0

»

f(ud)

„

Ci(x, t)

Z 2R+ud

2R

Cj(x + x̄, t) dx̄ − Ci(x − ud, t)

Z 2R

2R−ud

Cj(x + x̄, t) dx̄

«

+f(−ud)

„

Ci(x, t)

Z −2R

−2R−ud

Cj(x + x̄, t) dx̄ − Ci(x + ud, t)

Z −2R+ud

−2R

Cj(x + x̄, t) dx̄

«–

dud,

(4.53)

separating the integral in equation (4.51) into ud ≥ 0 and ud < 0.

Now if the jump direction is unbiased, so that f(ud) = f(−ud), and if f(ud) is exponentially small

for ud 6∈ [−ǫ, ǫ], where ǫ ≪ 1 then, since |ud| < ǫ ≪ 1 within the integral, then we may expand in

terms of ud as in Section 4.3:

∂Ci

∂t
= α

∫ ǫ

0

u2
df(ud) dud

∂2Ci

∂x2
+ α

∞∑

m=0

22m+2R2m+1

(2m + 1)!

∂

∂x



Ci

∑

j 6=i

∂2m+1Cj

∂x2m+1





∫ ǫ

0

u2
df(ud) dud

+ O
(∫ ǫ

0

f(ud)(u
3
d) dud

)

. (4.54)

Extending the integrals to infinity, whilst introducing only exponentially small error terms,

∂Ci

∂t
=

α〈d2〉
2

∂2Ci

∂x2
+

α〈d2〉
2

∞∑

m=0

22m+2R2m+1

(2m + 1)!

∂

∂x



Ci

∑

j 6=i

∂2m+1Cj

∂x2m+1



+ O(〈d3〉). (4.55)

For example, if the jump distances are normally distributed with variance σ2 (d ∼ N (0, σ2)), then
∫∞

0
f(ud)u

3
d dud = σ3

√

2/π and 〈d2〉 = σ2, so that

∂Ci

∂t
=

ασ2

2

∂2Ci

∂x2
+

ασ2

2

∞
X

m=0

22m+2R2m+1

(2m + 1)!

∂

∂x

0

@Ci

X

j 6=i

∂2m+1Cj

∂x2m+1

1

A + O(σ3). (4.56)
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As before, if the initial distribution is the same for all Ci, then summing equation (4.56) over all i

∂C

∂t
=

ασ2

2

∂2C

∂x2
+

ασ2

2

N − 1

N

∞∑

m=0

22m+2R2m+1

(2m + 1)!

∂

∂x



Ci

∑

j 6=i

∂2m+1Cj

∂x2m+1



+ O(σ3), (4.57)

=
ασ2

2

∂2C

∂x2
+

ασ2

2

N − 1

N

(

4R − 2σ

√

2

π

)

∂

∂x

(

C
∂C

∂x

)

+ O(Rnσ2+m), (4.58)

where C =
∑N

i=1 Ci = NC1 and n + m ≥ 2. Equation (4.58) is of the same form as for the

fixed distance model (equation (4.28)), with d3 replaced by 2σ3
√

2/π. Using a normally distributed

distance with σ = d thus increases the expected effect of volume exclusion. However, taking σ → 0

whilst holding α̂ = ασ2/2 constant, as before, regains equation (4.29). In addition, we note that

taking a sum of dirac delta functions

fd(ud) = (δ(−d) + δ(d))/2,

so that individuals move a fixed distance to the left or right, recovers equation (4.28).

Numerical solutions of this model also compare well with averaged realisations of the IBM (Fig-

ure 4.8) for a range of σ, R and α. The shape of the R-N surfaces are very similar to the fixed

movement distance case, and have no significant qualitative differences (Figure 4.9). However, the

error in our approximations is somewhat reduced, and the effects of exclusion are also reduced since

we use the same fixed value of σ that we used for d in Figure 4.6 rather than a scaled value. Similarly,

the shape of the d-N surfaces are similar to those for a fixed movement distance but with slightly

lower values (result not shown). Whilst the shape of the R-d surfaces is very similar to that for a fixed

movement distance, the position of minimum volume exclusion effect is shifted in the distributed

movement distance case (Figure 4.10). This is due to the additional factor in the exclusion term

that is introduced by 〈d3〉 = 2σ3
√

2/π, which moves the parameter regime in which no first-order

exclusion effects are observed to 4R = 2σ
√

2/π. In particular, using a normally distributed jump

length requires σ to be greater than the value of d required in the constant jump model to reduce

rather than enhance diffusivity.
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Figure 4.8: Comparison between the IBM and the continuum models with d ∼ N (0, σ2) (equa-
tion (4.56)) and as σ → 0 (equation (4.31)), plotted at t = 0, 200, and 600 for x ∈ [0, 65]. The solution
to the diffusion equation is also shown for comparison. Parameters are N = 60 and dx = 0.05, with
other parameter values given in Table 4.1. For more details about the simulations see Section 4.4.

4.8 Domain growth

Domain growth is rarely incorporated into on-lattice models of movement, since growth necessitates

using a time-varying lattice. It is difficult to determine an accurate way to evolve the lattice as the

tissue grows whilst maintaining a reasonable level of detail (discussed in Baker et al., 2010; Yates

et al., 2012). A big advantage of our off-lattice model is the ability to sidestep issues of lattice size and

spacing, and move directly to a domain growth description using continuous space. The derivation of

continuum domain growth equations then follows naturally from our earlier derivation (Section 4.3),

by considering typical domain growth arguments used in PDE based modelling (Landman et al.,

2003). We discuss this in detail in this section.

4.8.1 Model description

We consider uniform domain growth, in which we fix BL = 0 and take BR = L(t), so that for

each time step of length ∆t a cell at position X(t) at time t is advected by domain growth to

X(t+∆t) = L(t+∆t)X(t)/L(t) at time t+∆t. We note that whilst domain contraction does occur

in some biological and physical situations, a reduction in domain size may force individuals closer to

each other than is permitted under volume exclusion rules. Since it is unclear how volume exclusion

should be implemented in the case of domain contraction and, furthermore, there is no contraction

in our system of interest, we will only consider domain expansion here.
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Figure 4.9: Changing the occupied space (by changing N and R) with normally distributed jump
distance (Section 4.7). We show (a) the error introduced by our approximations (D(C, S)), (b) our
prediction of the effect of volume exclusion (D(C, Cd)) and (c) the actual effect of volume exclusion
(D(S, Cd)). Here S is the average distribution of simulations of the IBM, C is the solution to
equation (4.56), Cd is the solution to the diffusion equation and the relative difference, D, is given
in equation (4.46). Parameter values are given in Table 4.1. For more details about the simulations
see Section 4.4.
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Figure 4.10: Changing the likelihood of successful movement (by changing d and R whilst keeping
α̂ = αd2/2 = 0.025 constant) with normally distributed jump distance (Section 4.7). We show (a)
the error introduced by our approximations (D(C, S)), (b) our prediction of the effect of volume
exclusion (D(C, Cd)) and (c) the actual effect of volume exclusion (D(S, Cd)). Here S is the average
distribution of simulations of the IBM, C is the solution to equation (4.58), Cd is the solution to the
diffusion equation and the relative difference, D, is given in equation (4.46). Parameter values are
given in Table 4.1. For more details about the simulations see Section 4.4.
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4.8.2 Derivation of continuum equations

We will derive continuum equations using a fixed jump distance as an example, so that it is clear

how domain growth changes the derivation. An exactly analogous derivation may be used in the

case of variable jump distances.

When considering domain growth, it is necessary to recall that for a continuous pdf, Ci(x, t), the

probability of a cell centre being at any particular point x is zero. Instead we consider the probability

of a cell centre being in an interval [x, x + δx), for δx ≪ 1:

Prob(cell centre i in [x, x + δx)) =

∫ δx

0

Ci(x + x̄, t) dx̄, (4.59)

≈ δxCi(x, t). (4.60)

On a stationary domain, the segment δx is of constant size as time increases and does not appear

in the derived equations. However, when the domain size is increasing, a segment of size δx at time

t + ∆t only contains cell centres from a smaller segment at time t. Thus it is important to consider

how δx varies in time.

For any small time increment, ∆t, L(t+∆t) = L(t)+∆tL′(t)+O(∆t2). Hence a spatial coordinate

X(t) at time t is given at time t + ∆t by

X(t + ∆t) =
L(t + ∆t)

L(t)
X(t),

= X(t)

(

1 +
∆tL′

L

)

+ O(∆t2). (4.61)

Thus a segment of size δx at time t grows to approximately δx (1 + ∆tL′/L) at (t + ∆t) and a

segment of size δx at time (t + ∆t) must have been of size

δx
1

1 + ∆tL′

L

≈ δx

(

1 − ∆tL′

L

)

, (4.62)

89



at time t. Hence equation (4.18) is modified to give

∫ δx

0

Ci(x + x̄, t + ∆t) dx̄ =

∫ δx

0

Ci

(

x + x̄

1 + ∆tL′

L

, t

)

dx̄

︸ ︷︷ ︸

cell i was in the region that became [x, x + δx)

[

no move attempted
︷ ︸︸ ︷

1 − α∆t +
α∆t

2

(

P i
L

(

x

1 + ∆tL′

L

, t

)

+ P i
R

(

x

1 + ∆tL′

L

, t

))

︸ ︷︷ ︸

attempted move fails

]

+ α∆t

∫ δx

0

Ci

(

x + d + x̄

1 + ∆tL′

L

, t

)

dx̄

︸ ︷︷ ︸

cell i in region that became [x + d, x + d + δx) tries to move

attempted move succeeds
︷ ︸︸ ︷
[

1 − P i
L

(

x + d

1 + ∆tL′

L

, t

)]

+ α∆t

∫ δx

0

Ci

(

x − d + x̄

1 + ∆tL′

L

, t

)

dx̄

︸ ︷︷ ︸

cell i in region that became [x − d, x − d + δx) tries to move

attempted move succeeds
︷ ︸︸ ︷
[

1 − P i
R

(

x − d

1 + ∆tL′

L

, t

)]

, (4.63)

assuming that ∆t is small enough that at most one cell movement occurs during the interval (t, t+∆t).

Using the expansion in equation (4.60)

δxCi(x, t + ∆t) dx̄ =

δx

(

1 − ∆tL′

L

)

Ci

(

x

1 + ∆tL′

L

, t

)[

1 − α∆t +
α∆t

2

(

P i
L

(

x

1 + ∆tL′

L

, t

)

+ P i
R

(

x

1 + ∆tL′

L

, t

))]

+ α∆tδx

(

1 − ∆tL′

L

)

Ci

(

x + d

1 + ∆tL′

L

, t

)[

1 − P i
L

(

x + d

1 + ∆tL′

L

, t

)]

+ α∆tδx

(

1 − ∆tL′

L

)

Ci

(

x − d

1 + ∆tL′

L

, t

)[

1 − P i
R

(

x − d

1 + ∆tL′

L

, t

)]

. (4.64)

Now we may Taylor expand Ci and Pi in ∆t, divide by δx, and note that all but two of the extra

terms introduced are of order (∆t)2, so that

Ci(x, t + ∆t) = Ci(x, t)
[

1 − α∆t +
α∆t

2

(
P i

L(x, t) + P i
R(x, t)

) ]

+ Ci(x + d, t)
α∆t

2

[
1 − P i

L(x + d, t)
]

+ Ci(x − d, t)
α∆t

2

[
1 − P i

R(x − d, t)
]
− ∆t

∂

∂x

(
L′x

L
Ci(x, t)

)

+ O(∆t2). (4.65)

This is a similar equation to the non-growing case (equation (4.18)), but with an extra term for the

dilution due to growth. The derivation is exactly analogous to PDE-based modelling approach, and

the dilution due to growth in the stochastic system results from the change in size of the infinitesimal
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segment δx. Hence for fixed jump distance, d, letting ∆t → 0 and using Section 4.3 gives:

∂C

∂t
+

∂

∂x

(
L′x

L
C

)

=
αd2

2

∂

∂x

((

1 + (4R − d)
(N − 1)

N
C

)
∂C

∂x

)

+ O
(
d2+mRn

)
, (4.66)

for n + m ≥ 2 and C =
∑N

i=1 Ci. Taking the limit as d → 0 with α̂ = αd2/2 constant gives

∂C

∂t
+

∂

∂x

(
L′x

L
C

)

= α̂
∂

∂x

((

1 + 4R
(N − 1)

N
C

)
∂C

∂x

)

+ O(R2). (4.67)

For normally-distributed jump distances, using Section 4.7.1,

∂C

∂t
+

∂

∂x

(
L′x

L
C

)

=
ασ2

2

∂2C

∂x2
+

ασ2

2

N − 1

N

(

4R − 2σ

√

2

π

)

∂

∂x

(

C
∂C

∂x

)

+ O(σ2+mRn), (4.68)

and as σ → 0 with α̂ = ασ2/2 constant, we recover equation (4.67).

To solve numerically, we rescale onto a fixed domain with X = x/L and T = t. Then

∂C

∂t
=

∂C

∂T
+

∂C

∂X

(

−XL′

L

)

,
∂C

∂x
=

1

L

∂C

∂X
, (4.69)

and, for a fixed jump distance, d, rescaling equation (4.66),

∂C

∂T
+

L′

L
C =

αd2

2L2

∂

∂X

((

1 + (4R − d)
(N − 1)

N
C

)
∂C

∂X

)

+ O
(
d2+mRn

)
. (4.70)

4.8.3 Simulations

Simulations of the extended model with domain growth compare well with numerical solutions to

equation (4.70) (Figure 4.11(a)). However, the inclusion of an expanding domain does reduce the

effects of volume exclusion when compared to a static migratory domain (Figures 4.11 to 4.13).

Volume exclusion effects are reduced since there are fewer cell-cell interactions due to the general

dilution of the cell concentration, so that cells encounter each other less frequently. In addition,

however, the error between equation (4.70) and averaged simulations is also reduced, and there is

still a clear distinction in our simulations between the diffusion equation with domain growth and

equation (4.70).

We anticipate that biased migratory mechanisms may mitigate the diminishing effect of exclusion, as

individuals encounter other cells more often in spite of the dilution effects of domain expansion (see
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Figure 4.11: Changing the likelihood of successful movement (by changing d and R whilst keeping
α̂ = αd2/2 = 0.025 constant) on a growing domain (Section 4.8). We show (a) an example simulation
for R = d = 0.15, (b) the error introduced by our approximations (D(C, S)), (c) our prediction of
the effect of volume exclusion (D(C, Cd)) and (d) the actual effect of volume exclusion (D(S, Cd)).
Here S is the average distribution of simulations of the IBM, C is the solution to equation (4.68), Cd

is the solution to the diffusion equation with domain growth and the relative difference, D, is given
in equation (4.46). Parameter values are given in Table 4.1. For more details about the simulations
see Section 4.4.

Section 4.9 and Chapter 6). We will therefore next consider how to extend our analysis technique

to include the effects of biased migration.

4.9 Biased movement

As a first attempt at investigating chemotactic movement, as modelled in Chapters 2 and 3, we will

consider introducing a simple bias to the movement rates used due to the changing gradient of a

given chemoattractant function, M(x, t). An initial approximation to chemotaxis is to bias the cell

movement rates so that cells move right with rate α/2 + ǫ∂M/∂x and left with rate α/2− ǫ∂M/∂x,

where the factor ǫ is used to scale the magnitude of M(x, t) so that all rates remain positive.
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Figure 4.12: Changing the likelihood of successful movement (by changing R and N) on a growing
domain (Section 4.8). We show (a) the error introduced by our approximations (D(C, S)), (b) our
prediction of the effect of volume exclusion (D(C, Cd)) and (c) the actual effect of volume exclusion
(D(S, Cd)). Here S is the average distribution of simulations of the IBM, C is the solution to
equation (4.68), Cd is the solution to the diffusion equation with domain growth and the relative
difference, D, is given in equation (4.46). Parameter values are given in Table 4.1. For more details
about the simulations see Section 4.4.
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Figure 4.13: Exploring the effect of changing the number of cells, N , and the distance moved in a
jump, d, on a growing domain (Section 4.8). We show (a) the error introduced by our approximations
(D(C, S)), (b) our prediction of the effect of volume exclusion (D(C, Cd)) and (c) the actual effect
of volume exclusion (D(S, Cd)). Here S is the average distribution of simulations of the IBM, C is
the solution to equation (4.68), Cd is the solution to the diffusion equation with domain growth and
the relative difference, D, is given in equation (4.46). Parameter values are given in Table 4.1. For
more details about the simulations see Section 4.4.
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Hence cells have movement that is biased up the gradient of chemoattractant. There are two main

drawbacks to this method of incorporating chemotaxis: firstly, it requires that α/2 > |ǫ∂M/∂x|

so that all movement rates are positive; and secondly, we have not allowed for any feedback from

the cells to the chemoattractant. We cannot analyse the system described in Chapters 2 and 3

using the form of biased movement introduced in this section, since the mechanisms are different. In

particular, in Chapters 2 and 3 chemotaxis does not directly reduce movement rates, instead affecting

the probability of successful movement so that movement is only allowed in favourable directions.

In contrast, the model presented here uses a predetermined gradient and directly increases the rate

of movement towards higher chemoattractant concentrations. Nevertheless, it is a useful first step

towards coupled chemotaxis, and enables us to determine whether volume exclusion is important

in a system incorporating biased movement before looking in more depth at coupled systems and

hybrid models in Chapter 6.

4.9.1 Derivation of continuum equations

The derivation of the continuum equation follows as in Section 4.3, with α/2± ǫ∂M/∂x in the place

of α/2. The pdf for the position of the ith cell centre is therefore given by:

Ci(x, t + ∆t) = Ci(x, t)
︸ ︷︷ ︸

cell i at (x, t)

[
no move attempted

︷ ︸︸ ︷

1 − α∆t +

(
α

2
− ǫ

∂M

∂x
(x, t)

)

∆tP i
L(x, t) +

(
α

2
+ ǫ

∂M

∂x
(x, t)

)

∆tP i
R(x, t)

︸ ︷︷ ︸

attempted move fails

]

+

cell i at (x − d, t) tries to move right
︷ ︸︸ ︷

Ci(x − d, t)

(
α

2
+ ǫ

∂M

∂x
(x − d, t)

)

∆t(1 − P i
R(x − d, t))

︸ ︷︷ ︸

attempted move succeeds

+

cell i at (x + d, t) tries to move left
︷ ︸︸ ︷

Ci(x + d, t)

(
α

2
− ǫ

∂M

∂x
(x + d, t)

)

∆t(1 − P i
L(x + d, t))

︸ ︷︷ ︸

attempted move succeeds

. (4.71)

As before we may expand Ci(x ± d, t) and ∂M/∂x(x ± d, t) to find that C =
∑

i Ci satisfies

∂C

∂t
= 2dǫ

∂

∂x

((

d
N − 1

N
C − 1

)

C
∂M

∂x

)

+
αd2

2

∂2C

∂x2
+

N − 1

N

αd2

2
(4R − d)

∂

∂x

(

C
∂C

∂x

)

+ O
(
d2+nRm + ǫd2)

)
, (4.72)
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where n + m ≥ 1 and if, for simplicity, we consider M(x, t) = x then

∂C

∂t
= 2dǫ

∂

∂x

((

d
N − 1

N
C − 1

)

C

)

+
αd2

2

∂2C

∂x2
+

N − 1

N

αd2

2
(4R − d)

∂

∂x

(

C
∂C

∂x

)

+ O
(
d2+nRm

)
.

(4.73)

As in Section 4.3, we take the limit as d → 0 and allow α to scale with d so that α̂ = limd→0 αd2/2

is finite. In addition, we require the bias term to scale with d, so that ǫ̂ = limd→0 2dǫ is finite. Hence

∂C

∂t
= −ǫ̂

∂C

∂x
+ α̂

∂

∂x

((

1 + 4R
(N − 1)

N
C

)
∂C

∂x

)

+ O
(
R2
)
. (4.74)

However, as noted in Section 4.3.3, all simulations must be carried out with d > 0, and hence

2d2ǫ∂/∂x(C2)(N − 1)/N may be significant and will be included in our numerical solutions.

Indeed, when simulating the system the neglected volume exclusion term 2d2ǫ∂/∂x(C2)(N − 1)/N

is found to be important for correctly predicting the speed of an initialised group of cells (result not

shown). We would expect biased movement to increase the overall impact of volume exclusion, since

cells will move together in similar directions and thus maintain a more cohesive group. In such a

group, cells will encounter each other more often and we would expect for this to result in a volume

exclusion term derived from the biased movement.

When we consider the effect of exclusion predicted by taking the difference between equation (4.74)

and the same equation without exclusion, there is a slight dependence on the radius of a cell, as

predicted (Figure 4.14(c)). This very small dependence of the effects of volume exclusion to changes

in R is validated when we consider the difference between the simulated system with exclusion and

the solution to the equivalent näıve equation without exclusion (Figure 4.14(d)).

As we had anticipated, the overall effect of volume exclusion is much greater than in the case

without bias, giving D(S, Cd) up to 0.5 compared to at most 0.02 without bias. The reason for

this greater exclusion effect is partially due to the decrease in speed of the peak of the cell density

profile (Figure 4.14(a)). When individuals cannot move past each other, the speed of propagation

in the direction of the bias is much slower. In addition, individuals at the back of the group move

successfully much less frequently and hence the back of the concentration profile is steeper than the

front of the wave, where the biased movement is into unoccupied areas. The difference in movement

rates between the back and the front of the wave makes the profile of the distribution more skewed

than when volume exclusion is not considered. This speed and profile difference is accentuated
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for larger cell jump distances (Figures 4.14(c) and 4.14(d)) and for higher cell population numbers

(Figures 4.15(b) and 4.15(c)) since these lead to a higher proportion of attempted cell movements

being prevented by other individuals, giving an even higher volume exclusion effect. The increased

volume exclusion effects for higher N and d is particularly seen in d-N surface plots (Figure 4.16),

where the usual shape of the surface is changed so that increasing d no longer decreases the effects

of exclusion (as in Figure 4.7(c)), but instead increases exclusion effects (Figure 4.16(c)).

The greater effect of excluded volume compared to low errors between our predictions and the

simulated model make the biased movement an example of a mechanism where our analysis technique

is very valuable compared to the näıve equations that might otherwise be used. Since the chemotactic

system that we wish to analyse will also, in effect, bias individual cell movements, we expect that

volume exclusion will also be important in that analysis (Chapter 6).

4.10 Discussion

In this chapter we have demonstrated our technique for analysing one-dimensional IBMs by deriving

PDE approximations to averaged simulations. This technique allows us to systematically derive

continuum equations from underlying microscopic rules rather than using large-scale building blocks

to construct model equations. In particular, we have shown the importance of cell volume and

their occupation of space. Understanding the role of cell crowding in biological systems is highly

important, since there may be many cells present in a small domain volume with a high degree of

cell-cell interaction.

Our framework enables the systematic derivation of continuum equations in which the size of an

individual is present explicitly in the equations. Since the radius is explicitly included, these equa-

tions could also in the future be used to investigate cells that change size over time, perhaps in

response to environmental pressures. For example, the radius of an individual could depend on the

total population size, so that individuals are compressed in more crowded conditions. In addition,

it is straightforward to consider multiple populations of cells, with differing sizes and movement

rates. It is more interesting, however, to consider multiple cell populations in two dimensions (see

Section 5.5), since in the one-dimensional formulation individuals cannot move past each other, thus

restricting the interaction of separate populations.

We have shown that there are parameter regimes in which the error due to our approximations is
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Figure 4.14: Changing the likelihood of successful movement (by changing d and R whilst keeping
α̂ = αd2/2 = 0.025 constant) with biased movement (Section 4.9). We show (a) an example
simulation for R = d = 0.15, (b) the error introduced by our approximations (D(C, S)), (c) our
prediction of the effect of volume exclusion (D(C, Cd)) and (d) the actual effect of volume exclusion
(D(S, Cd)). Here S is the average distribution of simulations of the IBM, C is the solution to
equation (4.73), Cd is the solution to the corresponding equation without volume exclusion and the
relative difference, D, is given in equation (4.46). Parameter values are given in Table 4.1. For more
details about the simulations see Section 4.4, with the difference that the centre of the first cell is
given an initial position drawn from N (10, 0.1) to give room to migrate in the direction of bias.
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Figure 4.15: Changing the occupied space (by changing R and N) with biased movement (Sec-
tion 4.9). We show (a) the error introduced by our approximations (D(C, S)), (b) our prediction of
the effect of volume exclusion (D(C, Cd)) and (c) the actual effect of volume exclusion (D(S, Cd)).
Here S is the average distribution of simulations of the IBM, C is the solution to equation (4.73), Cd

is the solution to the corresponding equation without volume exclusion and the relative difference,
D, is given in equation (4.46). Parameter values are given in Table 4.1. For more details about
the simulations see Section 4.4, with the difference that the centre of the first cell is given an initial
position drawn from N (10, 0.1) to give room to migrate in the direction of bias.
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Figure 4.16: Exploring the effect of changing the number of cells, N , and the distance moved in a
jump, d, with biased movement (Section 4.9). We show (a) the error introduced by our approxima-
tions (D(C, S)), (b) our prediction of the effect of volume exclusion (D(C, Cd)) and (c) the actual
effect of volume exclusion (D(S, Cd)). Here S is the average distribution of simulations of the IBM,
C is the solution to equation (4.73), Cd is the solution to the corresponding equation without volume
exclusion and the relative difference, D, is given in equation (4.46). Parameter values are given in
Table 4.1. For more details about the simulations see Section 4.4, with the difference that the centre
of the first cell is given an initial position drawn from N (10, 0.1) to give room to migrate in the
direction of bias.
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low compared to the impact of volume exclusion. Hence we conclude that it is important to use

our equations in modelling systems when a detailed examination of cell movement in a crowded

environment is required. When biased movement is included, our equations accurately reproduce

both the speed of a group of cells and the wavefront profile as time increases, which are not well

represented by the continuum equations that are derived when volume exclusion is not taken into

account.

However, we note that one-dimensional models are a special case for volume exclusion since indi-

viduals must always maintain their initial order in the domain, which is not the case in systems

with higher spatial dimensions. Truly one-dimensional biological systems are very rare, so that most

one-dimensional models consider a two- or three-dimensional situation that has been averaged.

To address these questions about higher dimensional systems, and enable analysis of our biologically

motivated model from Chapters 2 and 3, we will extend our analytical technique to two-dimensional

systems in Chapter 5.
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Chapter 5

Reaching for the second dimension

In the previous chapter we began by investigating simple diffusive off-lattice IBMs with volume

exclusion and progressed to consider domain growth and simple biased movement. Since our ultimate

aim is to be able to analyse the complex two-dimensional hybrid IBM developed in Chapters 2 and 3,

we must first extend the models in Chapter 4 into two spatial dimensions before considering the

dynamic feedback between the two modelling levels (see Chapter 6). Two-dimensional modelling

gives greater insight into the movement of populations where individuals can migrate around one

another and form two-dimensional groups of cells. Indeed, there are many biological systems and

population crowding situations that are inherently two-dimensional and thus cannot be accurately

represented by a one-dimensional system.

Analysing volume exclusion in a two-dimensional off-lattice model brings new challenges to the

techniques used in Chapter 4, requiring the integration of pdfs over the area newly occupied during

cell movement. We achieve this by extending the area of integration to one that is more easily

integrated over, and then Taylor expand in a similar way to Chapter 4. In this way we again reduce

the governing equations of cell density to a local form where the evolution of the density at a point

depends only upon the density and derivatives of the density at that point. We then extend the basic

two-dimensional model to include domain growth, biased movement and multiple cell populations

with differing parameter values.
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5.1 Model description

We begin by considering a simple two-dimensional model, analogous to the one in Section 4.1. Cells

are defined by a position x = (x, y) ∈ [BL, BR] × [BB, BT ] and occupy a disc of radius R around

this point. Individuals move by hopping with rate α a distance d > 0 in a random direction θ. An

attempted move is aborted if it would result in two individuals overlapping (i.e. if the centres of

two cells would be closer than 2R apart). If an individual attempts to move out of the domain, it

is reflected back from the boundary, so that all parts of a cell remain in the region. This model is

simulated using the Gillespie Algorithm, similarly to Section 4.2.

5.2 Derivation of continuum equations

If Ci(x, t) is the pdf of the position, x = (x, y), of the ith cell centre at time t, then we consider the

probability that the centre of cell i is in the region [x, x + δx) × [y, y + δy) for δx, δy ≪ 1:

∫ x+δx

x

∫ y+δy

y

Ci(x, t) dx dy ≈ δxδyCi(x, t). (5.1)

We use a similar method to Section 4.3, and expand probabilities by integrating over the direction,

θ, chosen by cell i (see Section 4.7.1). Hence for ∆t ≪ 1, dividing by δx and δy,

Ci(x, t + ∆t) =
1

2π

∫ π

−π

{
Ci(x, t)
︸ ︷︷ ︸

cell i at (x, t)

[
no move attempted

︷ ︸︸ ︷

1 − α∆t + α∆tPi(x, θ, t)
︸ ︷︷ ︸

attempted move fails

]

+

cell i at x − dθ tries to move
︷ ︸︸ ︷

α∆tCi(x − dθ, t)[1 − Pi(x − dθ, θ, t)]
︸ ︷︷ ︸

attempted move succeeds

}
dθ + O(∆t2), (5.2)

where dθ = (d cos θ, d sin θ) and Pi(x, θ, t) is the probability that there is another cell preventing the

movement of cell i from position x in direction θ, given that cell i is at position x. Hence

∂Ci

∂t
=

α

2π

∫ π

−π

[Ci(x − dθ, t) − Ci(x, t)] dθ

+
α

2π

∫ π

−π

[Pi(x, θ, t)Ci(x, t) − Pi(x − dθ, θ, t)Ci(x − dθ, t)] dθ, (5.3)

as ∆t → 0.
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5.2.1 Finding Pi(x, θ, t)

Next we need to find an expression for the probability Pi(x, θ, t) of cell movement being prevented

given that cell i is at position x. As before we will make a closure assumption to make progress

with the system of equations by assuming that the positions of two randomly chosen cells are

approximately independent. Hence Pi(x, θ, t) is given by the probability of a cell occupying the

region Ai shown in Figure 5.1. Hence

Pi(x, θ, t) =
∑

j 6=i

∫

Ai

Cj(x, t) dx. (5.4)

To determine the integral over Ai, we change variables to polar coordinates, centred at x. To simplify

the algebra in finding an analytic form of P (x, θ, t), we will extend the excluded area, Ai, so that

movement is prevented if cell i would move through any occupied area thus including the blue areas

in Figure 5.1. For a small distance moved this only introduces a small error since the additional area

integrated over is very small (of order O(d3/R)), whilst preventing the limits of φ depending on d

and R. In addition, it can be argued that requiring an unoccupied route to the cell’s new position

is more realistic. Thus

Pi(x, θ, t) =
∑

j 6=i

∫ d

0

π/2∫

−π/2

2R cosφ Cj(x + r cos θ + 2R cos(θ + φ), y + r sin θ + 2R sin(θ + φ), t) dφ dr,

(5.5)

where, once again, x = (x, y). We may now Taylor expand this expression in R, d and r ∈ [0, d],

analogous to the technique in Section 4.3. Since

∫ π

−π

cos θ dθ = 0,

∫ π

−π

sin θ dθ = 0, (5.6)

∫ π

−π

sin θ cos θ dθ = 0,

∫ π

−π

cos2 θ dθ = π, (5.7)

∫ π

−π

sin2 θ dθ = π,

∫ π/2

−π/2

cosφ sin φ dφ = 0, (5.8)

∫ π/2

−π/2

cosφ dφ = 2,

∫ π/2

−π/2

cos2 φ dφ =
π

2
, (5.9)
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Figure 5.1: P (x, θ, t) is the probability of a cell occupying the grey shaded region, Ai, shown here.
The black circle represents the current position of the cell, with centre at x, whilst the red circle
indicates the attempted movement in direction θ, so that the cell centre moves to x + dθ. Since the
considered cell occupies the black circle, it is known to be free of other cells. Hence to find whether
the movement is prevented, we must find the probability of another cell occupying the grey area,
Ai. To simplify the algebra involved, we extend the region of integration to also include b, the blue
shaded regions.

we find that the excluded term,

Ei =
α

2π

∫ 2π

0

[Pi(x, θ, t)Ci(x, t) − Pi(x − dθ, θ, t)Ci(x − dθ, t)] dθ, (5.10)

is given by

Ei = 2αR2d2π(Rπ − d)(N − 1)

{

Ci

(
∂2Ci

∂x2
+

∂2Ci

∂y2

)

+

[(
∂Ci

∂x

)2

+

(
∂Ci

∂y

)2
]}

, (5.11)

where N is the number of cells, since if the initial conditions for all the cells are the same, then

Ci = Cj ∀i, j. Hence C =
∑

i Ci satisfies

∂C

∂t
=

αd2

4
∇2C +

αd4

64
∇2
(
∇2C

)
+

N − 1

N
αRd2(Rπ − d)∇ · (C∇C) + O

(
(d + R)5

)
, (5.12)

and as d → 0 with α̂ = αd2/4 held constant (as in Section 4.3)

∂C

∂t
= α̂∇ ·

((

1 +
N − 1

N
4πR2C

)

∇C

)

. (5.13)

We may compare equation (5.13) with the equivalent equation in one dimension (equation (4.31)),

which is strikingly similar. Both the one- and two-dimensional models result in the usual diffusion

equation with an extra term representing the effects of volume exclusion, dependent on both the

concentration and the gradient of C, so that the form of both equations (4.31) and (5.13) is the

same. Indeed, the multiplying factor (4R in equation (4.31) and 4πR2 in equation (5.13)) in both

models is the area around an individual in which no other individual can be present due to volume
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exclusion.

5.2.2 Initial and boundary conditions

As with the one-dimensional models we must consider carefully how to derive appropriate boundary

conditions. Individuals are reflected from the boundaries when their centre is within R of the bound-

ary and so, analogous to Section 4.3.3 we take no flux boundary conditions as a first approximation.

5.2.3 Simulations

Realisations of the IBM were performed using the Gillespie algorithm (see Section 4.2, Gillespie,

1977), with initial conditions as follows. The centre coordinates of the bottom left individual are

drawn from a normal distribution, N (10 −
√

2RN/0.8, 1), and the remaining cells are placed in a

regular grid in the positive x- and y-directions from this first cell with grid spacing 2R/0.8 to give a

cell density of 0.8. For the PDEs we use the Numerical Algorithms Group routine d03ra, which uses

the method of lines to reduce the problem to a system of ordinary differential equations (ODEs) and

solves the resulting system using a backwards differentiation formula (see Appendix A.2). Initial

conditions are determined by the average initial distribution from the simulations, linearly inter-

polated onto a mesh with spacings dx and dy. All numerical solutions to the PDEs neglect terms

referred to as higher order in the equations. Since we are not considering any particular physical or

biological problem, we will take all parameter values and variables to be nondimensional and merely

note that dimensional systems should be nondimensionalised before using our technique, so that the

size of higher order terms may be sensibly compared. Default nondimensional parameter values are

given in Table 5.1, with other parameter values given in figures or captions.

5.2.3.1 Flux boundary conditions

We may also derive an appropriate boundary condition when cells are inserted into the domain at a

rate Pc. All inserted cells are initialised at x = R with a randomly selected y-coordinate. We may

use a similar technique to Section 4.5.1, and integrate over the domain of migration, D, minus strips
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Parameter Typical value

d 0.15
R 0.15
BL 0
BR 20
BB 0
BT 20
total time 100
total cell number 16
dx 0.5
dy 0.5
number of simulations 2000
Pc 1
α 2.22
σ 0.15
La 0.1
ǫ 0.2
φ π/4

Table 5.1: Typical nondimensional simulation parameters.

of width R next to the boundaries, D\R. Hence the rate of change of the total cell population is

∂

∂t

∫

D\R

C(x, t) dV =

∫

D\R

∂C

∂t
dV, (5.14)

=

∫

D\R

α̂∇ ·
((

1 +
N − 1

N
4R2C

)

∇C

)

dV, (5.15)

=

∫

∂(D\R)

α̂

((

1 +
N − 1

N
4R2C

)

∇C

)

· n dx, (5.16)

where n is the outward-pointing normal to the boundary. The domain boundary ∂ (D\R) can be split

into the boundary at x = BL +R and those at x = BR −R, y = BB +R and y = BT −R. Since no-

flux boundary conditions are taken on the latter three boundaries, then the integral equation (5.16)

is given by

∫

∂(D\R)

α̂

((

1 +
N − 1

N
4R2C

)

∇C

)

· n dx =

− αd2

4
(BT − BB − 2R)

(

1 +
N − 1

N
4R(Rπ − d)C

)
∂C

∂x

∣
∣
∣
∣
∣
x=R

. (5.17)
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Figure 5.2: We use the expected population size to successfully define a flux boundary condition
(see Section 5.2.3.1). Since a y-independent flux along the x = 0 boundary results in invariability of
concentration over changes to the y-coordinate (result not shown), we integrate over y and plot the
resultant one-dimensional profile. Parameter values are given in Table 5.1.

However, the change in total cell population is also given by the flux into the domain so that

−αd2

4
(BT − BB − 2R)

(

1 +
N − 1

N
4R(Rπ − d)C

)
∂C

∂x

∣
∣
∣
∣
∣
x=R

= Pc




1 −

2R∫

0

π/2∫

−π/2

rC(x + rr
θ, t) dr dθ






(5.18)

= Pc

(
1 − 2πR2C

)

∣
∣
∣
∣
∣
x=R

, (5.19)

Taylor expanding in terms of R. Numerical solutions to equation (5.13) and averaged model simula-

tions with flux boundary condition equation (5.19) are invariant to changes in y-coordinate (result

not shown) and thus we integrate numerical solutions to equation (5.13) with equation (5.19) over

y to more easily compare with averaged simulations of the IBM. It is clear that volume exclusion

has a significant effect, particularly for higher influxes of cells, since individuals prevent later cells

from entering the domain (Figure 5.2). Hence using continuum equations without volume exclusion

significantly over predicts the concentrations in the domain.

5.2.4 Results

Since an influx of cells give such a large discrepancy between simulations and predictions without

volume exclusion, we will compare the usual diffusion equation with equation (5.13) when individuals

are initialised in the domain as is described in Section 5.2.3 and no flux boundary conditions are

108



taken on all boundaries. Numerical solutions of equation (5.13) with no flux boundary conditions

compare well with averaged model simulations (Figure 5.3) and still display a significant effect of

volume exclusion (Figures 5.3(c) and 5.3(d)). In particular volume exclusion can enhance diffusivity

so that the maximum density of cells in the domain is over-estimated when volume exclusion is not

taken into account (Figure 5.3(d)), as is predicted by equation (5.12) for (Rπ − d) > 0.

5.2.5 Exploring parameter space

In this section we explore the accuracy of our continuum prediction (equation (5.12)) and the equiv-

alent equation without volume exclusion, by comparing numerical solutions to these equations with

averaged model simulations. We also determine the effect of volume exclusion on the cell density pro-

file by comparing averaged simulations with numerical solutions to the diffusion equation (obtained

by deriving an equivalent continuum equation without taking volume exclusion into account).

To find the relative difference between two normalised density functions f1(x), f2(x) over a domain,

D, we take

D(f1, f2) =

∫

D

(f1(x) − f2(x))2

f1(x) + f2(x)
dx. (5.20)

Numerical solutions of equation (5.13) continue to compare well to averaged realisations of the model

as the cell radius, R, and distance, d, moved during a jump vary (Figure 5.4(a)). In this case the

profile of the exclusion surface may be qualitatively predicted by plotting |R(Rπ − d)| (result not

shown). The magnitude of the exclusion term is a successful predictor of the effect of exclusion since

the error in our predicted equation (Figure 5.4(a)) is an order of magnitude lower than the size of

the predicted effect (Figure 5.4(c)), and is relatively constant as R and d change.

Conversely, as the number of cells, N , increases for large R, the error in our approximations also

increases (Figure 5.4(b)). Since increasing cell numbers leads to higher correlations between the

positions of cells initialised in one group, it is perhaps unsurprising that our moment closure ap-

proximation is less exact for larger populations. However, we note that the volume exclusion effect

(Figure 5.4(f)) also increases, and for higher cell numbers and R > 0.05, equation (5.13) is a much

better predictor of the population profile than if volume exclusion is not taken into account. Fur-

thermore, greater population numbers decrease the ratio of the approximation error (Figure 5.4(b))

in equation (5.13) to the error resulting from neglecting exclusion effects (Figure 5.4(f)). Hence for
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Figure 5.3: Comparison between the IBM and the continuum equation with or without volume
exclusion (equation (5.13)). The distance moved is d = 0.3, the radius of a cell is R = 0.3 and
other parameter values are given in Table 5.1. Other details about the simulations are given in
Section 5.2.3.
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(f) Exclusion effect over N − R space

Figure 5.4: Exploring the effect of changing the likelihood of successful movement in the model
by changing the distance moved, d, and the radius of a cell, R ((a), (c) and (e)) and changing the
occupied space in the model by changing the number of cells, N , and the radius of a cell, R ((b),
(d) and (f)). We consider the effect on: (a)-(b) the error introduced by our approximations (the
difference between the solution to equation (5.13) and the average of our simulations); (c)-(d) our
prediction of the effect of volume exclusion (the difference between the solution to our equation and
the solution to the diffusion equation); and (e)-(f) the actual effect of volume exclusion (the difference
between the average of our simulations and the solution to the diffusion equation). For more details,
see Sections 4.6 and 5.2.5. Other parameter values are given in Table 5.1 with α = 0.05/d2 so that
α̂ = 0.0125 is constant as d changes. Other details about the simulations are given in Section 5.2.3.
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larger cells and for greater cell populations equation (5.13) is a better average predictor than näıvely

neglecting volume exclusion effects.

5.3 Distribution of jump distances

In one dimension (Section 4.1) fixing the jump distance, d, effectively restricts each individual to a

lattice defined by the initial starting point of the individual, with spacing d. The equivalent two-

dimensional model described in Section 5.1 does not have the same drawback as the one-dimensional

model, since movement can occur in any direction so that there is a route of fixed distance jumps

between any two points in the domain. However, using a fixed distance sometimes requires individu-

als to move through a more tortuous route to move close to each other since the direct movement is

prevented by the presence of the other individual. In addition, there are situations that we may wish

to model (such as crowd dynamics; Helbing et al., 2000; Tanimoto et al., 2010; Weng et al., 2006) in

which individuals may move differing distances, perhaps dependent on the space available to move

in. We will therefore allow each jump to be of a distance, d, that is drawn from a probability distri-

bution. Using distributed distances also enables more direct comparison with previous derivations

of volume exclusion in two dimensions (Bruna and Chapman, 2012) and allows comparison with the

equations derived in one dimension (see Section 4.7).

As with the one-dimensional case, we use the probabilistic expansion

Prob(A = a) =

∫

b∈B
Prob(A = a|B = b) Prob(B = b) db, (5.21)

and integrate over the different values that the jump distance may take. In this case, we assume the

distance moved to be positive with distribution f(ud) for ud > 0, so that the range of movement

angles is θ ∈ [−π, π), as in Section 5.2. If dud

θ = (ud cos θ, ud sin θ), then

∂Ci

∂t
=

α

2π

∫ ∞

0

f(ud)
︸ ︷︷ ︸

Prob(moving ud)

∫ π

−π

Prob(successfully moving given ud)
︷ ︸︸ ︷

[Ci(x − dud

θ , t) − Ci(x, t)] dθ dud

+
α

2π

∫ ∞

0

f(ud)
︸ ︷︷ ︸

Prob of moving ud

∫ π

−π

Prob(unsuccessfully moving given ud)
︷ ︸︸ ︷

[Pi(x, θ, t)Ci(x, t) − Pi(x − dud

θ , θ, t)Ci(x − dud

θ , t)] dθ dud. (5.22)

Note that this equation is identical to equation (5.3), but integrated over all possible jump distances,
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ud. To be able to Taylor expand in terms of ud, as in Section 4.7.1, we require that the distribu-

tion f(ud) is suitably narrow, so that there exists 0 < ǫ ≪ 1 such that splitting the integral in

equation (5.22) results in an integral over [0, ǫ] that is an order of magnitude greater than that over

(ǫ,∞). Proceeding as in Laplace’s method of integration, we neglect the integral from (ǫ,∞) to give

∂Ci

∂t
=

α

2π

∫ ǫ

0

f(ud)

∫ π

−π

[Pi(x, θ, t)Ci(x, t) − Pi(x − dud

θ , θ, t)Ci(x − dud

θ , t)] dθ dud

+
α

2π

∫ ǫ

0

f(ud)

∫ π

−π

[Ci(x − dud

θ , t) − Ci(x, t)] dθ dud, (5.23)

where ǫ ≪ 1. Then we may treat the integrand in exactly the same way as in Section 5.2 with d

replaced by ud, so that

∂C

∂t
=

∫ ǫ

0

[
αu2

d

4
∇2C +

αu4
d

64
∇2
(
∇2C

)
+

N − 1

N
αRu2

d(Rπ − ud)∇ · (C∇C) + O
(
(ud + R)5

)
]

dud.

(5.24)

Since the integral over [0, ǫ] is an order of magnitude greater than that from (ǫ,∞), as specified

above, re-extending the integral to infinity only adds in higher order error terms, so that

∂C

∂t
=

α〈d2〉
4

∇2C +
α〈d4〉

64
∇2
(
∇2C

)
+

N − 1

N
αR(Rπ〈d2〉 − 〈d3〉)∇ · (C∇C) . (5.25)

For example, if we take the jump distance, d, to be drawn from the Rayleigh distribution with

parameter σ then

f(ud) =
ud

σ2
e−u2

d/2σ2

. (5.26)

Thus if θ is uniformly distributed then X = d cos(θ) and Y = d sin(θ) are normally distributed with

mean zero and variance σ2. Now if σ ≪ ǫ ≪ 1 then

Z ∞

ǫ

ude
−u2

d/2σ2
Z π

−π

[Pi(x, θ, t)Ci(x, t) − Pi(x− d
ud
θ , θ, t)Ci(x − d

ud
θ , t) + Ci(x − d

ud
θ , t) − Ci(x, t)] dθ dud,

(5.27)

is of order O
(
ǫ exp(−ǫ2/σ2)

)
and since ǫ/σ ≫ 1 this term is exponentially small compared to the

equivalent integral over [0, ǫ]. Hence we may restrict the integral to Taylor expand and then re-extend

the integral to obtain equation (5.25). Now
∫∞

0
f(ud)u

3
d dud = 3σ3

√

π/2 and
∫∞

0
f(ud)u

2
d dud = 2σ2,
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so that

∂C

∂t
=

ασ2

2
∇2C +

N − 1

N
ασ2R

(

2Rπ − 3σ

√
π

2

)

∇ · (C∇C) . (5.28)

The derived equation may be directly compared with the equation derived in the literature by Bruna

and Chapman (2012), who describe hard-core particle interactions, using the stochastic differential

equation

dXi ≡
√

2dBi + fidt, 1 ≤ i ≤ N, (5.29)

where Xi is the position of particle i and we take the external forces on the particles, fi, to be zero.

The Bi are independent two-dimensional Brownian motions (dBi ∼ N (0, dt)) so that the position

of particle i evolves according to dXi ∼ N (0, 2dt). Bruna and Chapman (2012) derive an equation

for the pdf, p(x1, t), of the position, x1, of the first particle which is given in two dimensions with

no external forces as

∂p

∂t
(x1, t) = ∇x1 ·

{

∇x1

[

p +
π

2
(N − 1)ǫ2p2

]}

, (5.30)

where ∇x1 is the derivative with respect to x1 and ǫ is the diameter of a particle so that ǫ = 2R, in

our terminology. To enable comparisons we take C1 = C/N in equation (5.28) and α̂ = ασ2/2 = 1

constant as σ =
√

2dt → 0. Then

∂C

∂t
= ∇ ·

((
1 + (N − 1)π(2R)2C

)
∇C

)
, (5.31)

= ∇ ·
(

∇
(

C + (N − 1)
π

2
(2R)2C2

))

, (5.32)

exactly as in equation (5.30). Thus our equation is consistent with that derived by Bruna and

Chapman (2012), whilst our method of derivation allows the inclusion of other distributions of jump

distances and different migratory mechanisms not included by them.

Using distributed jump distances does not significantly alter the form of the derived equation (equa-

tion (5.28)) from equation (5.12), and only changes the magnitude of the excluded volume term

when compared with a fixed jump of size σ. Hence the magnitude of the term is in general larger

than for fixed jump distances and volume exclusion decreases the diffusivity for a smaller value of

σ than for the equivalent fixed distance model. The change in magnitude of the exclusion term is
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the same as in the one-dimensional case (equation (4.58)), increasing the magnitude to 3σ3
√

π/2.

It is to be expected that the change in magnitude would be the same in any number of dimensions,

since the increased magnitude results from comparing d3 to the third moment of the Rayleigh dis-

tribution used for the jump distances, which is the same in both cases. Consequently, varying R

and σ results in similar surfaces to Figures 5.4(a), 5.4(c) and 5.4(e), whilst shifting the position of

minimum exclusion effect (Figures 5.6(c) and 5.6(e)).

The surface profiles produced by varying R and N (Figures 5.6(b), 5.6(d) and 5.6(f)) are very

similar to the equivalent fixed jump profiles (Figures 5.4(b), 5.4(d) and 5.4(f)). Interestingly, the

approximation error in our derivation is not reduced by using a distributed jump distance, in contrast

to the one-dimensional case (Section 4.7). The increased error in the one-dimensional case with

fixed movement distances may be an artefact of the inability of cells to move arbitrarily close to

one another in one dimension. Using a distributed jump distance therefore reduces the dependence

of cell positions on their initial positions and thus may reduce the error due to our assumption

of independence of cell positions. Conversely, all parts of the domain are accessible to cells in

two dimensions even when using a fixed movement distance. We note that as σ → 0 with α̂ =

limσ→0 ασ2/2 finite, equation (5.28) reduces to equation (5.13), as expected.

5.4 Domain growth

Domain growth is found in many biological systems, particularly during embryo development, which

often necessitates large amounts of cell rearrangement and migration (Painter et al., 2000; Dormann

and Weijer, 2006; Zhang et al., 2010). Growth is especially relevant during cell migration, since

changes in the size and shape of the migratory domain impact on the speed of migration and dilutes

cell concentrations. Since the system modelled in Chapters 2 and 3 involves uniform domain growth

along one axis, we will consider uniform growth, defined by a given increase in the length and/or

width of the domain. Let BL = BB = 0, BR = Lx(t) and BT = Ly(t), with L(t) = (Lx, Ly)(t) so

that after a time step, ∆t ≪ 1, a coordinate X(t) = (X, Y )(t) will move to

X(t + ∆t) =

(
Lx(t + ∆t)

Lx(t)
,
Ly(t + ∆t)

Ly(t)

)

·X(t), (5.33)

= X(t) + ∆t

(
L′

x

Lx
,
L′

y

Ly

)

·X(t). (5.34)
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Figure 5.5: Comparison between the IBM with distributed movement distances and the continuum
equation with or without volume exclusion (equation (5.28)). The distance moved is drawn from the
Rayleigh distribution with parameter σ = 0.1, the radius of a cell is R = 0.3 and other parameter
values are given in Table 5.1. Other details about the simulations are given in Section 5.2.3.
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Figure 5.6: Exploring the effect of changing the likelihood of successful movement in the model with
distributed jump distances by changing the parameter, σ, of the Rayleigh jump distribution and the
radius of a cell, R ((a), (c) and (e)) and changing the occupied space in the model by changing the
number of cells, N , and the radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b)
the error introduced by our approximations (the difference between the solution to equation (5.28)
and the average of our simulations); (c)-(d) our prediction of the effect of volume exclusion (the
difference between the solution to our equation and the solution to the diffusion equation); and (e)-
(f) the actual effect of volume exclusion (the difference between the average of our simulations and
the solution to the diffusion equation). For more details, see Sections 4.6 and 5.2.5. Other parameter
values are given in Table 5.1 with α = 0.05/σ2 so that α̂ = 0.025 is constant as σ changes. Other
details about the simulations are given in Section 5.2.3.
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The probability that cell centre i is in the region [x, x + δx) × [y, y + δy) for δx, δy ≪ 1 is

∫ x+δx

x

∫ y+δy

y

Ci(x, t) dx dy ≈ δxδyCi(x, t), (5.35)

as before, but a patch of size δx × δy at time t grows to size δx (1 + ∆tL′
x/Lx)× δy

(
1 + ∆tL′

y/Ly

)

by t + ∆t. Hence the probability that cell centre i is at time t in a region that grows to become

[x, x + δx) × [y, y + δy) at time t + ∆t is

δx
1

1 +
∆tL′

x

Lx

× δy
1

1 +
∆tL′

y

Ly

Ci(x, t) ≈ δx

(

1 − ∆tL′
x

Lx

)

× δy

(

1 − ∆tL′
y

Ly

)

Ci(x, t). (5.36)

Note that taking the factor δx/(1 + ∆tL′
x/Lx) × δy/(1 + ∆tL′

y/Ly) ensures that the total integral

of Ci over the whole domain, D(t), at time t remains constant as the domain increases in size, as

required for a pdf. This can be seen since

∫

D(t+∆t)

Ci(x, y, t + ∆t) dy dx =

∫

D(t+∆t)

1

1 +
∆tL′

x

Lx

1

1 +
∆tL′

y

Ly

Ci




x

1 +
∆tL′

x

Lx

,
y

1 +
∆tL′

y

Ly

, t



 dy dx,

(5.37)

=

∫ Lx(t)

0

∫ Ly(t)

0

Ci(X, Y, t) dX dY, (5.38)

by changing variables to

X =
x

1 +
∆tL′

x

Lx

, (5.39)

Y =
y

1 +
∆tL′

y

Ly

. (5.40)

Using equation (5.36),

new size of patch
︷︸︸︷

δxδyCi(x, t + ∆t) =

previous size of patch
︷ ︸︸ ︷

δxδy

(

1 − ∆tL′
x

Lx

)(

1 − ∆tL′
y

Ly

)[

Ci(xL, t) +
α∆t

2π

∫ π

−π

[
Ci(xL − dL

θ , t) − Ci(xL, t)
]

dθ

+
α∆t

2π

∫ π

−π

[
Pi(xL, θ, t)Ci(xL, t) − Pi(xL − dL

θ , θ, t)Ci(xL − dL
θ , t)

]
dθ

]

+ O(∆t2), (5.41)
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where

xL =




x

1 +
∆tL′

x

Lx

,
y

1 +
∆tL′

y

Ly



 , (5.42)

dL
θ =




d

1 +
∆tL′

x

Lx

cos θ,
d

1 +
∆tL′

y

Ly

sin θ



 . (5.43)

Hence, expanding further in terms of ∆t and dividing through by δxδy∆t

∂Ci

∂t
=

α

2π

∫ π

−π

[Ci(x − dθ, t) − Ci(x, t)] dθ −

terms due to domain growth
︷ ︸︸ ︷
(

∂

∂x

(
L′

xx

Lx
Ci

)

+
∂

∂y

(
L′

yy

Ly
Ci

))

+
α

2π

∫ π

−π

[
Pi(x, θ, t)Ci(xL, t) − Pi(xL − dL

θ , θ, t)Ci(xL − dL
θ , t)

]
dθ, (5.44)

as ∆t → 0.

Thus C =
∑

i Ci satisfies

∂C

∂t
+

dilution due to domain growth
︷ ︸︸ ︷
(

L′
x

Lx
+

L′
y

Ly

)

C +

(
L′

xx

Lx

∂C

∂x
+

L′
yy

Ly

∂C

∂y

)

︸ ︷︷ ︸

additional flux due to domain growth

= α̂∇2C +
N − 1

N
αRd2(Rπ − d)∇ · (C∇C)

+
αd4

64
∇2
(
∇2C

)
+ O

(
(d + R)5

)
, (5.45)

To solve equation (5.45) numerically, we rescale onto a fixed domain with X = x/Lx, Y = y/Ly and

T = t, so that dC/dt = dC/dT + (dC/dX)(XL′
x/Lx) + (dC/dY )(Y L′

y/Ly). Then as d → 0 with

α̂ = limd→0 αd2/4 constant:

∂C

∂T
+

dilution
︷ ︸︸ ︷
(

L′
x

Lx
+

L′
y

Ly

)

C = α̂∇L ·
((

1 +
N − 1

N
4R2C

)

∇LC

)

, (5.46)

where

∇L =

(
1

Lx

∂

∂X
,

1

Ly

∂

∂Y

)

, (5.47)

∇2
L = ∇L · ∇L =

(
1

L2
x

∂2

∂X2
+

1

L2
y

∂2

∂Y 2

)

, (5.48)

and the additional flux due to domain growth has been removed by rescaling onto a fixed domain.
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Figure 5.7: Comparison between the IBM with domain growth along the x-axis and the continuum
equation with or without volume exclusion (equation (5.48)). The domain grows parallel to the
x-axis at a rate La = 0.1, the distance moved is d = 0.3, the radius of a cell is R = 0.3 and
other parameter values are given in Table 5.1. Other details about the simulations are given in
Section 5.2.3.

The differences between equation (5.48) and equation (5.13) are exactly analogous to the one-

dimensional case (Section 5.4), comprising of a dilution term and an additional flux term that is

removed by rescaling onto a fixed domain. Simulations of the IBM on a domain that expands parallel

to the x-axis (so that L′
y = 0) compare well with numerical solutions to equation (5.48) (Figure 5.7).

As in one dimension, the expanding domain does not significantly qualitatively or quantitatively

change the exclusion effect surface as either R and d (Figures 5.8(a), 5.8(c) and 5.8(e)) or R and N

(Figures 5.8(b), 5.8(d) and 5.8(f)) change. The volume exclusion effects are very slightly decreased

by the dilution caused by the expansion of the domain (Figures 5.8(e) and 5.8(f)) whilst the error

in our predicted profiles is slightly increased (Figures 5.8(a) and 5.8(b)).
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(f) Exclusion effect over N − R space

Figure 5.8: Exploring the effect of changing the likelihood of successful movement in the model
with domain growth by changing the distance moved, d, and the radius of a cell, R ((a), (c) and
(e)) and changing the occupied space in the model by changing the number of cells, N , and the
radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by
our approximations (the difference between the solution to equation (5.48) and the average of our
simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference between the
solution to our equation and the solution to the diffusion equation); and (e)-(f) the actual effect
of volume exclusion (the difference between the average of our simulations and the solution to the
diffusion equation). For more details, see Sections 4.6 and 5.4. Other parameter values are given in
Table 5.1 with α = 0.05/d2 so that α̂ = 0.0125 is constant as d changes. Other details about the
simulations are given in Section 5.2.3.
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5.5 Heterogeneous populations

It is straightforward to extend our method to consider multiple populations of cells, which may

have different properties. This enables study of simple heterogeneous populations such as proteins

in signalling pathways, predator-prey systems and the immune response. For example, we could

consider the situation where one subpopulation of cells are large and slow moving, whilst the other

subpopulation is small but quick. If Ci
j is the pdf for the ith member of population j, which consists

of Nj cells of radius Rj , moving a distance dj at a rate αj , then

Ci
j(x, t + ∆t) = Ci

j(x, t)
(

does not try to move
︷ ︸︸ ︷

1 − αj∆t +
αj∆t

2π

∫ 2π

0

P i
j (x, θ, t) dθ

︸ ︷︷ ︸

movement prevented

)

+
αj∆t

2π

∫ 2π

0

(
1 − P i

j (x − dθ, θ, t)
)
Ci

j(x − dθ, t) dθ

︸ ︷︷ ︸

successful moves to x

, (5.49)

where

P i
j (x, θ, t) =

movement prevented by other cells in population j
︷ ︸︸ ︷

Nj∑

l 6=i,l=1

∫ dj

0

∫ π/2

−π/2

2Rj cosφ Cl
j(x + rθ(2Rj), t) dφ dr

+

movement prevented by cells in other populations
︷ ︸︸ ︷

∑

k 6=j

Nk∑

l=1

∫ dj

0

∫ π/2

−π/2

(Rj + Rk) cosφ Cl
k(x + rθ(Rj + Rk), t) dφ dr, (5.50)

and rθ(R) = (r cos θ + R cos(θ + φ), r sin θ + R sin(θ + φ)). Hence, expanding in terms of dj and Rj

∀j,

∂Ci
j

∂t
=

αjd
2
j

4
∇2Ci

j + αjRjd
2
j(Rjπ − dj)∇ ·



Ci
j

∑

l 6=i

∇Cl
j





+
∑

k 6=j

αjπ

4
d2

j(Rj + Rk)2∇ ·
(

Ci
j

Nk∑

l=1

∇Cl
k

)

− Nk
αj

2
d3

j (Rj + Rk)∇ ·
(

Nk∑

l=1

Cl
k∇Ci

j

)

. (5.51)

Taking dj → 0 with α̂j = limdj→0 αd2
j/4, then summing over all i, we obtain

∂Cj

∂t
= α̂j∇ ·

((

1 + 4
Nj − 1

Nj
Rj(Rjπ − dj)Cj

)

∇Cj

)

+ α̂j

∑

k 6=j

π(Rj + Rk)2∇ · (Cj∇Ck) , (5.52)
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where Cj =
∑Nj

i=1 Ci
j and Ck =

∑Nk

i=1 Ci
k.

The addition of other cell populations leads to a chemotaxis-type term of individuals of population

j, moving down concentration gradients of other populations. For two populations equation (5.52)

is

∂C1

∂t
= α̂1∇ ·

((

1 + 4
N1 − 1

N1
R1(R1π − d1)C1

)

∇C1

)

+ α̂1π(R1 + R2)
2∇ · (C1∇C2) , (5.53)

∂C2

∂t
= α̂2∇ ·

((

1 + 4
N2 − 1

N2
R2(R2π − d2)C2

)

∇C2

)

+ α̂2π(R1 + R2)
2∇ · (C2∇C1) . (5.54)

Note that the volume exclusion in equation (5.53) due to individuals of population 2 only oc-

curs through the spatial heterogeneity of C2. Hence if population 2 is homogeneously distributed

throughout the domain then the dispersal of C1 is unaffected. This is because volume exclusion

that is represented by C2 directly is at higher order and thus is negligible as d → 0. For example, if

C2 is spatially homogeneous, then the diffusion of C1 would be reduced by (R1 + R2)dC2, since we

integrate over a region of that size.

Averaged simulations of a population of larger individuals (at the bottom left) and a population of

smaller individuals (at the top right) are shown in Figure 5.9(a). We expect that the population of

smaller individuals will be less affected by volume exclusion, both within their population (since less

space is taken up by individuals), and between the two populations (since each smaller individual

requires less space to move into), than the population of larger individuals (Figure 5.9). Conversely,

whilst we expect volume exclusion to have a large effect on population dynamics between the larger

individuals, we expect there to be less volume exclusion effects where the two populations meet, since

an area that is mainly populated by smaller individuals will have more free space and thus have fewer

interactions between cells. Hence the population of larger individuals is very different with volume

exclusion in regions where there are no other individuals, but volume exclusion is less important

at the overlap between the two populations (Figure 5.9(d)). Although the volume exclusion effect

at the interface between populations is not significant, our equations do capture the interface well

(Figure 5.9(d)) for a range of parameter combinations and initial conditions (results not shown), thus

demonstrating the potential for examining the interactions of different populations of individuals.

This is an area that could be helpful in the study of diffusion in crowded environments (anomalous

diffusion) to find good representations of small, quick individuals moving amongst a large, slow

population.
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Figure 5.9: Comparison between the IBM with two populations of cells and the continuum equation
with or without volume exclusion (equation (5.51)). Sixteen cells of each population were placed
in square groups in different parts of the domain. The centre coordinates of the bottom left-most
cell of population one are drawn from two normal distributions: x ∼ N (20/3 −

√
2RN/0.8, 0.1)

and y ∼ N (10 −
√

2RN/0.8, 0.1), whilst the centre coordinates of the bottom left-most cell of
population two are drawn from two normal distributions: x ∼ N (40/3 −

√
2RN/0.8, 0.1) and y ∼

N (10−
√

2RN/0.8, 0.1). Subfigure (d) shows slices through the y-axis at the same time point, with
population 1 on the left and population 2 on the right. Blue dots are averaged IBM simulations, black
dashed lines are the continuous approximation without exclusion and red lines are the continuous
approximation with exclusion. The distance moved is d1 = d2 = 0.15, the radius of a cell is R1 = 0.4,
R2 = 0.1 and other parameter values are given in Table 5.1. Other details about the simulations are
given in Section 5.2.3.
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5.6 Biased movement

As in Section 4.9, we will make a simple first attempt at investigating chemotaxis by including

a simple bias in movement rates, leaving the analysis of a fully coupled chemotactic system to

Chapter 6. In two dimensions, we may choose a direction, φ, for a global bias, so that cells move in

a direction specified by a randomly chosen angle θ ∈ [φ− π/2, φ + π/2] with rate α/2 + ǫ, and, with

rate α/2 − ǫ in a random direction θ ∈ [φ + π/2, φ + 3π/2].

5.6.1 Derivation of continuum equations

To derive continuum equations for the globally biased system, we split the integral of θ into two

halves: towards φ; and away from φ:

Ci(x, t + ∆t) =

Ci(x, t)

(

1 − α∆t +
(α

2
+ ǫ
) ∆t

π

∫ φ+π/2

φ−π/2

Pi(x, θ, t) dθ +
(α

2
− ǫ
) ∆t

π

∫ φ+3π/2

φ+π/2

Pi(x, θ, t) dθ

)

+
(α

2
+ ǫ
) ∆t

π

∫ φ+π/2

φ−π/2

(1 − Pi(x − dθ, θ, t))Ci(x − dθ, t) dθ

+
(α

2
− ǫ
) ∆t

π

∫ φ+3π/2

φ+π/2

(1 − Pi(x − dθ, θ, t))Ci(x − dθ, t) dθ + O
(
∆t2

)
, (5.55)

and, letting ∆t → 0,

∂Ci

∂t
=

α

2π

∫ π

−π

[Ci(x − dθ, t) − Ci(x, t)] dθ

+
α

2π

∫ π

−π

[Pi(x, θ, t)Ci(x, t) − Pi(x − dθ, θ, t)Ci(x − dθ, t)] dθ

+
ǫ

π

(
∫ φ+π/2

φ−π/2

−
∫ φ+3π/2

φ+π/2

)

[Ci(x − dθ, t) − Ci(x, t)] dθ

+
ǫ

π

(
∫ φ+π/2

φ−π/2

−
∫ φ+3π/2

φ+π/2

)

[Pi(x, θ, t)Ci(x, t) − Pi(x − dθ, θ, t)Ci(x − dθ, t)] dθ. (5.56)

Hence C =
∑

i Ci satisfies

∂C

∂t
=

αd2

4
∇2C − 4ǫd

π

(

1 − 8dR
N − 1

N
C

)(

cosφ
∂C

∂x
+ sin φ

∂C

∂y

)

+
N − 1

N
αRd2(Rπ − d)∇ · (C∇C) + O

(
(d + R)5

)
, (5.57)
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and taking d → 0 with α̂ = limd→0 αd2/4 and ǫ̂ = limd→0 4ǫd/π finite, we obtain

∂C

∂t
= α̂∇ ·

((

1 +
N − 1

N
4R2C

)

∇C

)

− ǫ̂

(

cosφ
∂C

∂x
+ sin φ

∂C

∂y

)

. (5.58)

The inclusion of a global bias thus introduces a further term to our equations, corresponding to a

flux in the direction of bias, as was also found in one dimension (equation (4.74)).

Simulations of individuals initialised in one group with biased movement compare well with numerical

solutions to equation (5.58) (Figure 5.10). The pdf profile evolves as a two-dimensional wavepulse,

moving in the direction of bias and spreading out into a less tightly packed group of individuals as

time increases. As in one dimension, the addition of biased movement increases the effect of volume

exclusion, since movement is severely limited at the back of the cell group. The prevention of some

cell jumps also reduces the speed of movement of the group of cells so that both the speed and

profile of the pdf are not accurately predicted by the continuum equation without volume exclusion

(Figure 5.10). The discrepancy in speed and profile predictions without volume exclusion for biased

movement (Figures 5.11(a), 5.11(c) and 5.11(e)) lead to exclusion effects of up to 2.86 times those

without biased movement (Figures 5.4(a), 5.4(c) and 5.4(e)), measured as the distance between

averaged simulations and the continuum equation derived without volume exclusion. Greater jump

distances, d, and cell radii, R, further increase the chance of individuals at the back of the group

encountering those ahead, and hence increase the overall effect of volume exclusion (Figures 5.11(c)

and 5.11(e)). Similarly, larger cell populations have even slower group travelling speeds, since trailing

cells are more likely to encounter those ahead and thus display greater volume exclusion effects

(Figures 5.11(d) and 5.11(f)).

5.7 Discussion

In this chapter we have extended our technique from Chapter 4 into two spatial dimensions, finding

the probability of volume exclusion by integrating over a suitable area close to the moving cell. To

reduce this to a local PDE model, we assume that the radius of a cell is small and take the limit as

the distance moved during a time step tends towards zero so that local values of the concentration

and its derivatives are enough to predict cell population development over time. We find similarities

between the equations derived in one and two dimensions, and the addition of distributed jump

distances and domain growth are exactly analogous to one-dimensional derivations and equations.
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Figure 5.10: Comparison between the IBM with biased movement and the continuum equation with
or without volume exclusion (equation (5.57)). Movement is biased with ǫ = 0.2 towards φ = π/4,
distance moved is taken as d = 0.3, the radius of a cell is R = 0.3 and other parameter values are
given in Table 5.1. To allow room to migrate in the direction of bias, the centre coordinates of the
bottom left-most cell are drawn from the normal distribution, N (5 −

√
2RN/0.8, 1) and other cells

are initialised in a grid as described, with other details about the simulations in Section 5.2.3.
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Figure 5.11: Exploring the effect of changing the likelihood of successful movement in the model
with biased movement by changing the distance moved, d, and the radius of a cell, R ((a), (c) and
(e)) and changing the occupied space in the model by changing the number of cells, N , and the
radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by
our approximations (the difference between the solution to equation (5.57) and the average of our
simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference between the
solution to our equation and the solution to the diffusion equation); and (e)-(f) the actual effect
of volume exclusion (the difference between the average of our simulations and the solution to the
diffusion equation). For more details, see Sections 4.6 and 5.6. Movement is biased with ǫ = 0.2
towards φ = π/4 and other parameter values are given in Table 5.1. To allow room to migrate in
the direction of bias, the centre coordinates of the bottom left-most cell are drawn from the normal
distribution, N (5 −

√
2RN/0.8, 1) and other cells are initialised in a grid as described, with other

details about the simulations in Section 5.2.3.
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As in one dimension, the inclusion of a global movement bias changes both the profile of the cell

density and the speed with which a group of individuals migrate across the domain. Despite the

two-dimensional setting providing more unoccupied volume in which to move, biased movement

results in a large number of interactions between individuals so that it is very important to consider

volume exclusion when deriving continuum equations. We also studied heterogeneous populations,

where we may define several subpopulations with different characteristics. This was not considered

in a one-dimensional setting since the inability of cells to migrate past each other means that there

would be hardly any interaction between different subpopulations. In a two-dimensional setting,

the interface between the subpopulations was captured well by our derived equations and this is a

promising avenue for studying heterogeneous and crowded environments.

It is expected that a hybrid chemotactic system in which individuals deplete chemoattractant close

to them will result in a movement bias away from areas that have been occupied for longer periods

of time (as in Chapters 2 and 3). Chemotactic systems of this type have been widely studied in a

continuum setting (Keller and Segel, 1971; Hillen and Painter, 2009; Nicolau, 2008) but the stochastic

nature of our IBMs may result in new and interesting behaviours. Any kind of widespread bias would

be likely to increase interactions between individuals travelling in a group. The bias introduced by

the inclusion of chemotaxis may therefore also result in significant effects from volume exclusion

leading us to consider chemotactic systems in the next chapter.

Since biological systems that rely upon chemotaxis often rely upon relatively high concentrations

of chemoattractant guiding relatively few individuals (Dallon and Othmer, 1997; Guo et al., 2008),

such as the system studied in Chapters 2 and 3, we will consider hybrid systems in which discrete

individuals are guided by a continuum chemoattractant. Hybrid systems are studied in a variety of

systems, with and without chemotaxis, and can include strong coupling between the two systems. It

is important, therefore, to find methods of analysis that are successful at predicting averaged profiles

in the presence of such coupling between both species. In Chapter 6 we will extend our analytical

technique to chemotactic systems, particularly those in which chemotaxis is modelled as a hybrid

system. In addition, we will investigate the coupling between the discrete and continuous systems

and discuss how to find hybrid formulations of given discrete systems.
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Chapter 6

Chemotaxis

Chapters 4 and 5 have focused on deriving continuum equations from one- and two-dimensional

IBMs with volume exclusion. In this chapter we consider coupled chemotactic systems, where the

motion of cells is influenced by the concentration of a chemical which is, in turn, affected by the

presence of cells. We then use the techniques from Chapters 4 and 5 to consider volume exclusion

in one- and two-dimensional chemotactic systems in preparation for deriving a system of equations

in Chapter 7 from the chemotactic models in Chapters 2 and 3.

6.1 Model 1: on-lattice cells and chemoattractant

Since coupled chemotaxis systems are not well-studied in IBMs in either an on-lattice or off-lattice

setting, we begin by considering a one-dimensional on-lattice model with discrete cells and chemical.

We take a similar approach to Baker et al. (2010, Appendix A.3) who investigate a model consisting

of a signalling molecule that is produced by cells and decays linearly. However, since we wish to

later extend our method to an off-lattice setting, where they find the probability distribution of

the number of cells at a lattice point, we instead consider the positions, c = (c1, · · · , cN ), of the

N cells. In addition, we take s = (s1, · · · , sL) chemical molecules initially present at each lattice

point that are consumed by cells at that lattice site with a rate λs. Movement of the chemical is

incorporated at a rate ds to the left or right. Cell movement may depend on the distribution of

chemical molecules, with a cell at lattice site i moving at a rate T−
i (s) and T +

i (s) to the left and

right, respectively. Whilst this formulation allows for cell movement to depend on the chemical
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concentration far from the position of the cell, in this thesis we consider only movement dependent

on chemical concentrations close to the cell. In addition to the migration of cells and chemical, there

is a flux, Pc, of cells into the first lattice point. Cells and chemical molecule movements that would

leave the domain are prevented so that there is no flux of cells or chemical out of the domain.

6.1.1 Derivation of continuum equations

We begin by deriving the evolution of the probability, Ck(i, t), that cell k will be at lattice point i

at time t, using an analogous technique to that in Chapters 4 and 5. We note that the probability

of cell k moving right (for example) from lattice point i at time t is given by

Prob(cell k moving right from site i) =
∑

s1

· · ·
∑

sL

Prob(moving right given s)Prob(s), (6.1)

=
∑

s

T +
i (s)P (s, t), (6.2)

where P (s, t) is the probability that s = (s1, · · · , sL) chemical molecules are present at time t, and

∑

s =
∑

s1
· · ·∑sL

. Hence

Ck(i, t + ∆t) =

cell k at i stays at i
︷ ︸︸ ︷

Ck(i, t)

(

1 − ∆t
∑

s

(
T +

i (s)P (s, t) + T−
i (s)P (s, t)

)

)

+ ∆t
∑

s

T +
i−1(s)P (s, t)Ck(i − 1, t)

︸ ︷︷ ︸

cell k at i − 1 moves to i

+ ∆t
∑

s

T−
i+1(s)P (s, t)Ck(i + 1, t)

︸ ︷︷ ︸

cell k at i + 1 moves to i

, (6.3)

where we make the moment closure assumption that the chemical profile is approximately uncorre-

lated with the position of cell k when averaged over multiple simulations. That is

∑

s

∑

l

T±
i (s)Prob(Cl

k(i, t), s(t)) ≈ 〈Cl
k(i, t)〉〈T±

i (s)〉, (6.4)

= Ck(i, t)
∑

s

T±
i (s)P (s, t), (6.5)

where Ck(i, t) can be thought of as the average position of cell k over all simulations, so that

Prob(Cl
k(i, t), s(t)) is the probability that cell k is at position i at time t during simulation l and
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that the chemical profile is given by s at time t. Taking ∆t → 0

∂Ck

∂t
=
∑

s

[
T +

i−1(s)P (s, t)Ck(i − 1, t) −
(
T +

i (s) + T−
i (s)

)
P (s, t)Ck(i, t)

+T−
i+1(s)P (s, t)Ck(i + 1, t)

]
. (6.6)

The evolution of the chemical distribution, P (s, t) may then be found as follows:

∂P

∂t
=

L∑

i=1

[

s moving right
︷ ︸︸ ︷

ds

(
(si + 1)P (J+

i s, t) − siP (s, t)
)

+

s moving left
︷ ︸︸ ︷

ds

(
(si + 1)P (J−

i s, t) − siP (s, t)
)]

+
L∑

i=1

N∑

k=1

consumption by cell k at i
︷ ︸︸ ︷

λs ((si + 1)Prob(Ac
i s(t), Ck(i, t)) − siProb(s(t), Ck(i, t))), (6.7)

where the operators

J+
i s = (s1, · · · , si−1, si + 1, si+1 − 1, · · · , sL), (6.8)

J−
i s = (s1, · · · , si−1 − 1, si + 1, si+1, · · · , sL), (6.9)

Ac
is = (s1, · · · , si + 1, · · · , sL), (6.10)

describe a chemical molecule at i moving right, left or being consumed, respectively and the proba-

bility that the chemical profile is s(t) at time t and that cell k is at position i at time t is given by

Prob(s(t), Ck(i, t)). We now derive the average chemical profile:

(〈s1〉, . . . , 〈sL〉) =
∑

s1

· · ·
∑

sL

(s1P (s, t), . . . , sLP (s, t)), (6.11)

〈(s1, . . . , sL)〉 =
∑

s1

· · ·
∑

sL

(s1, . . . , sL)P (s, t), (6.12)

〈s〉 =
∑

s

sP (s, t), (6.13)

by multiplying equation (6.7) by s and summing over all s. Then sj satisfies

∂〈sj〉
∂t

=
∑

s

L∑

i=1

[
ds

(
(si + 1)sjP (J+

i s, t) − sisjP (s, t)
)

+ ds

(
(si + 1)sjP (J−

i s, t) − sisjP (s, t)
) ]

+

L∑

i=1

N∑

k=1

Ck(i, t)λs ((si + 1)sjP (Ac
is, t) − sisjP (s, t)) , (6.14)
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where we employ the moment closure assumption

∑

si

siProb(s(t), Ck(i, t)) =
∑

s

siProb

(

s(t),
∑

l

Cl
k(i, t)

)

, (6.15)

≈ 〈si〉〈Cl
k(i, t)〉, (6.16)

= Ck(i, t)
∑

si

siP (s, t), (6.17)

as before. For i 6= j − 1, j, taking the first two terms on the right-hand side of equation (6.14),

ds

∑

si

(si + 1)sjP (J+
i s, t) − ds

∑

si

sisjP (s, t) = ds

∑

ŝi

ŝisjP (ŝ, t) − ds

∑

si

sisjP (s, t) = 0, (6.18)

where ŝi = si + 1 and ŝi+1 = si+1 − 1 in equation (6.18) so that J+
i s = ŝ. Similarly, relabelling

ŝi = si + 1 and ŝi−1 = si−1 − 1 for i 6= j, j + 1 ensures that the second two terms in equation (6.14)

cancel and relabelling ŝi = si + 1 for i 6= j cancels the final two terms.

If i = j − 1 then

ds

∑

si

(si + 1)si+1P (J+
i s, t) − ds

∑

si

sisi+1P (s, t) = ds

∑

ŝi

ŝi(ŝi+1 + 1)P (ŝ, t) − ds

∑

si

sisi+1P (s, t),

(6.19)

= ds

∑

si

siP (s, t). (6.20)

Proceeding similarly for i = j, j + 1, or j − 1 in the other terms we obtain

∂〈sj〉
∂t

= ds (〈sj−1〉 − 2〈sj〉 + 〈sj+1〉) − λs〈sj〉
N∑

k=1

Ck(j, t), (6.21)

and, taking the continuous functions s(x, t) = s(j∆x, t) = 〈sj(t)〉 and Ĉk(x, t) = Ĉk(j∆x, t) =

Ck(j, t) for lattice spacing ∆x ≪ 1 and Taylor expanding in ∆x,

∂s

∂t
= ds(∆x)2

∂2s

∂x2
− λss

N∑

k=1

Ĉk + O(∆x3). (6.22)

Similarly to Chapters 4 and 5, to maintain cell migration as the lattice spacing ∆x → 0, the
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diffusivity ds must scale so that D = lim∆x→0,ds→∞ ds(∆x)2 is constant and

∂s

∂t
= D

∂2s

∂x2
− λss

N∑

k=1

Ĉk. (6.23)

6.1.2 Types of sensing

We consider two forms of chemotactic sensing, as in Baker et al. (2010):

1. local sensing: T±
i = αsi;

2. non-local sensing: T±
i = αsi±1.

6.1.2.1 Local sensing (T±
i = αsi)

Local sensing leads to movement down the concentration gradient of s, since movement rates increase

when cells are in areas with large numbers of chemicals. Cells therefore move frequently until they

have moved to an area of low chemical. Hence the chemical is a chemorepellent (as in the excluded

regions between CNCC migratory streams). Taking T±
i = αsi in equation (6.6) gives

∂Ck

∂t
= α

∑

s

[si−1P (s, t)Ck(i − 1, t) − 2siP (s, t)Ck(i, t) + si+1P (s, t)Ck(i + 1, t)] , (6.24)

= α (〈si−1〉Ck(i − 1, t) − 2α〈si〉Ck(i, t) + 〈si+1〉Ck(i + 1, t)] , (6.25)

where 〈si〉 =
∑

s siP (s, t), as before.

Taking s(x, t) = s(j∆x, t) = 〈sj(t)〉 and Ĉk(x, t) = Ĉk(j∆x, t) = Ck(j, t) for lattice spacing ∆x ≪ 1

as before, we Taylor expand in ∆x to give

∂Ĉj

∂t
= α(∆x)2

∂2

∂x2

(

sĈj

)

+ O(∆x3). (6.26)

Now we let ∆x → 0 and α → ∞ with α̂ = lim∆x→0 α(∆x)2 constant and note that the resultant

equation is the same for all Cj . Hence if all cells have the same initial conditions then Cj = C1 ∀j

and C(x, t) =
∑

j Ĉj(x, t) satisfies

∂s

∂t
= D

∂2s

∂x2
− λssC, (6.27)

∂C

∂t
= α̂

∂2

∂x2
(sC) . (6.28)
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At x = L∆x

∂C

∂t
=

α̂

∆x

∂

∂x

(

s
∂C

∂x
+ C

∂s

∂x

)

, (6.29)

so that as ∆x → 0 we require

∂

∂x
(sC)

∣
∣
∣
∣
x=L

= 0, (6.30)

and no-flux boundary conditions are similarly derived for the chemorepellent at x = 0 and x = L∆x.

At x = 0

∂C

∂t
= αs(∆x)C(∆x) − αs(0)C(0) + Pc, (6.31)

= α∆x

(

s
∂C

∂x
+ C

∂s

∂x

)

+ Pc. (6.32)

This typifies a common problem with flux boundary conditions, in which the order of the approxi-

mation at the boundary is lower than in the domain. In this example, we take α̂ = lim∆x→0 α(∆x)2

to be finite, but the boundary condition depends upon α∆x. Hence as ∆x → 0 whilst keeping α̂

finite, then α∆x → ∞. For any particular value of ∆x, however, we may solve the system using

equation (6.32), and this compares well with averaged simulation data (Figure 6.1(a)) for a range

of parameter values (results not shown). Alternatively, if the influx of cells, Pc, is of order O(1/∆x)

then taking ∆x → 0 in equation (6.32) gives the flux boundary condition

α̂

(

s
∂C

∂x
+ C

∂s

∂x

)

+ P̂c = 0, (6.33)

where P̂c = lim∆x→0 Pc∆x is finite since Pc = O(1/∆x). Numerical solutions to the system with

equation (6.33) are found to be equivalent to those with equation (6.32) (result not shown).

The right-hand side of equation (6.28) can be thought of as two terms:

∂C

∂t
= α̂

∂

∂x

(

s
∂C

∂x
+ C

∂s

∂x

)

. (6.34)

The first is a chemical-dependent diffusion term, with higher diffusivity where there is more chemical,

whilst the second is an advection term down concentration gradients of s. Thus the cells move away

quickly from areas of high chemical, down the concentration gradient, to areas where the chemical is

sparse, thus demonstrating chemorepellence. Since cells enter the domain at the left-hand boundary
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(c) Local sensing with volume exclusion
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(d) Non-local sensing with volume exclusion

Figure 6.1: A comparison of typical averaged simulations of the on-lattice chemotaxis models
described in Section 6.1 and numerical solutions to the derived equations for (a) local sensing (equa-
tions (6.27) and (6.28)); (b) non-local sensing (equations (6.38) and (6.39)); (c) local sensing with
volume exclusion (equations (6.48) and (6.49)) and (d) non-local sensing with volume exclusion
(equations (6.56) and (6.57)). Each simulation is performed with α = 2.22, ∆t = 1, ∆x = 1,
Ds = 1, λs = 0.01 and is averaged over 1000 runs. The domain is initially empty with an influx of
cells at a rate Pc = 0.05.

and reduce the chemorepellent in that area, thus creating an area of lower chemical concentration, the

cellular density grows next to the boundary. The increasing levels of cell densities next to the domain

entrance is demonstrated in both the IBM simulations and numerical solutions to equations (6.27)

and (6.28) with equation (6.32) (Figure 6.1(a)).
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(a) Local sensing with volume exclusion
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(b) Non-local sensing with volume exclusion

Figure 6.2: A comparison of typical averaged simulations of the on-lattice chemotaxis models
described in Section 6.1 and numerical solutions to the derived equations for (a) local sensing with
volume exclusion (equations (6.48) and (6.49)) and (b) non-local sensing with volume exclusion
(equations (6.56) and (6.57)). Each simulation is performed with α = 2.22, ∆t = 1, ∆x = 1,
Ds = 1, λs = 0.01 and is averaged over 1000. Ten cells are initially placed, one at each lattice site,
in the middle of the domain and no flux conditions are taken at each boundary.

6.1.2.2 Non-local sensing (T±
i = αsi±1)

Non-local sensing gives rise to movement up concentration gradients of s, so that s is now a chemoat-

tractant. Substituting T±
i = αsi±1 into equation (6.6):

∂Ck

∂t
= α

∑

s

[siP (s, t)Ck(i − 1, t) − (si+1 + si−1)P (s, t)Ck(i, t) + siP (s, t)Ck(i + 1, t)] , (6.35)

= α (〈si〉Ck(i − 1, t) − (〈si+1〉 + 〈si−1〉) Ck(i, t) + 〈si〉P (s, t)) . (6.36)

If s(x, t) = s(j∆x, t) = 〈sj(t)〉 and Ĉk(x, t) = Ĉk(j∆x, t) = Ck(j, t) for lattice spacing ∆x ≪ 1 as

before, then expanding in ∆x gives

∂Ĉk

∂t
= α(∆x)2

∂

∂x

(

s
∂Ĉk

∂x
− C

∂s

∂x

)

, (6.37)

and if ∆x → 0 and α → ∞ with α̂ = lim∆x→0 α(∆x)2 constant then C(x, t) =
∑

j Ĉj(x, t) and s

satisfy

∂s

∂t
= Ds

∂2s

∂x2
− λssC, (6.38)

∂C

∂t
= α̂

∂

∂x

(

s
∂C

∂x
− C

∂s

∂x

)

. (6.39)
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At x = L∆x

∂C

∂t
=

α̂

∆x

∂

∂x

(

s
∂C

∂x
− C

∂s

∂x

)

, (6.40)

so that as ∆x → 0

s
∂C

∂x
|x=L − C

∂s

∂x

∣
∣
∣
∣
x=L

= 0. (6.41)

No flux conditions are similarly taken at both boundaries for the chemoattractant, as before. At

x = 0 there is an influx of cells, with

∂C

∂t
= αs(0)C(∆x, t) − αs(∆x)C(0, t) + Pc, (6.42)

= α∆x

(

s
∂C

∂x
− C

∂s

∂x

)

+ Pc. (6.43)

As before we may solve for a particular value of ∆x and find that this compares to averaged sim-

ulation data (Figure 6.1(b)) for a range of parameter values (results not shown). In this case the

diffusion term with diffusivity s is modified by an advection term up concentration gradients of the

chemical, as we would expect, since our sensing mechanism results in chemoattraction up gradients

of s. Individuals entering at the left-hand boundary still reduce the levels of s as in Section 6.1.2.1,

but the positive gradient in s now drives movement away from the boundary (Figure 6.1(b)), so

that the cell density profile is more spread out towards the end of the domain, and the numbers of

individuals at the left-hand boundary is reduced compared to local sensing (Figure 6.1(a)).

6.1.3 Excluded volume effects

This model may be extended to incorporate volume exclusion by allowing at most one cell at each

lattice point. equations (6.27) and (6.38) are not affected by volume exclusion, whilst equation (6.3)
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is modified in the following way:

∂Ck

∂t
= −

∑

s

Ck(i, t)



T +
i (s)P (s, t)



1 −
∑

j 6=k

Cj(i + 1, t)



+ T−
i (s)P (s, t)



1 −
∑

j 6=k

Cj(i − 1, t)









+
∑

s

T +
i−1(s)P (s, t)Ck(i − 1, t)



1 −
∑

j 6=k

Cj(i, t)





+
∑

s

T−
i+1(s)P (s, t)Ck(i + 1, t)



1 −
∑

j 6=k

Cj(i, t)



 , (6.44)

taking the moment closure assumption that the probability that cell k is at point i and cell j is at

point i + 1 is approximately equal to Ck(i, t)Cj(i + 1, t).

6.1.3.1 Local sensing

For local sensing, substituting T±
i (s) = αsi into equation (6.44),

∂Ck

∂t
= − α〈si〉Ck(i, t)







1 −
∑

j 6=k

Cj(i + 1, t)



+



1 −
∑

j 6=k

Cj(i − 1, t)









+ α〈si−1〉Ck(i − 1, t)



1 −
∑

j 6=k

Cj(i, t)



+ α〈si+1〉Ck(i + 1, t)



1 −
∑

j 6=k

Cj(i, t)



 , (6.45)

for 〈si〉 =
∑

s siP (s, t). If s(x, t) = s(j∆x, t) = 〈sj(t)〉 and Ĉk(x, t) = Ĉk(j∆x, t) = Ck(j, t) for

lattice spacing ∆x ≪ 1 as before, then expanding in ∆x gives

∂Ĉk

∂t
= α(∆x)2

∂2

∂x2

(

sĈk

)

− α(∆x)2
∂2

∂x2

(

sĈk

)∑

j 6=k

Ĉj + α(∆x)2sĈk

∑

j 6=k

∂2Ĉj

∂x2
+ O(∆x3). (6.46)

If all cells have the same initial conditions, then Ĉk = Ĉ1, for k = 1, . . .N , so that

∂Ĉk

∂t
= α(∆x)2

∂

∂x

(
∂

∂x

(

sĈk

)

− (N − 1)Ĉ2
k

∂s

∂x

)

+ O(∆x3). (6.47)

Letting ∆x → 0 and α → ∞ with α̂ = lim∆x→0,α→∞ α(∆x)2 and Dx = lim∆x→0,ds→∞ ds(∆x)2

constant then C(x, t) =
∑

j Ĉj(x, t) and s satisfy

∂s

∂t
= Ds

∂2s

∂x2
− λssC, (6.48)

∂C

∂t
= α̂

∂

∂x

(
∂

∂x
(sC) − N − 1

N
C2 ∂s

∂x

)

, (6.49)
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and we take no-flux boundary conditions on s at x = 0, x = L and C at x = L, and

∂C

∂t
= αs(∆x, t)C(∆x, t)

(

1 − N − 1

N
C(0, t)

)

− αs(0, t)C(0, t)

(

1 − N − 1

N
C(∆x, t)

)

+ Pc(1 − C(0, t)), (6.50)

= α∆x

(

s
∂C

∂x
+ C

∂s

∂x
− N − 1

N
C2 ∂s

∂x

)

+ Pc(1 − C), (6.51)

at x = 0. Volume exclusion thus modifies the equation previously derived for local sensing (equa-

tion (6.28)), reducing the flux. Equation (6.49) can be thought of as

∂C

∂t
= α̂

∂

∂x

(

s
∂C

∂x
+

∂s

∂x
C

(

1 − N − 1

N
C

))

, (6.52)

so that the diffusive term calculated previously in equation (6.28) is unchanged (since all modifica-

tions to diffusion due to volume exclusion are higher order terms), whilst the rate of advection down

gradients of s is reduced by the presence of other individuals. Note that taking s to be homogeneous,

so that there is no chemotaxis, reduces equation (6.52) to on-lattice diffusion with volume exclusion,

which is simply given by the diffusion equation.

Numerical solutions to equations (6.50) and (6.51) compare well to averaged simulation data (Fig-

ure 6.1(c)) for a range of parameter values (results not shown) and display a significantly different

profile to the system without volume exclusion (Figure 6.1(a)). As is expected, volume exclusion

further slows the rate of cellular migration into the domain, since new cells are often prevented from

entering the first lattice site by the presence of other cells. We also expect the rate of migration

through the domain to increase due to the reduction in advection down the chemical gradient, how-

ever this effect is so small as to be negligible when the dominating flux boundary effects are removed

(Figure 6.2(a)).

6.1.3.2 Non-local sensing

Similarly, with non-local sensing and excluded volume, substituting T±
i (s) = αsi±1 in equation (6.44),

∂Ck

∂t
= − αCk(i, t)



〈si+1〉



1 −
∑

j 6=k

Cj(i + 1, t)



+ 〈si−1〉



1 −
∑

j 6=k

Cj(i − 1, t)









+ α〈si〉Ck(i − 1, t)



1 −
∑

j 6=k

Cj(i, t)) + α〈si〉Ck(i + 1, t)(1 −
∑

j 6=k

Cj(i, t)



 , (6.53)
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where 〈si〉 =
∑

s siP (s, t). If s(x, t) = s(j∆x, t) = 〈sj(t)〉 and Ĉk(x, t) = Ĉk(j∆x, t) = Ck(j, t) for

lattice spacing ∆x ≪ 1 as before, then expanding in ∆x gives

∂Ĉk

∂t
= α(∆x)2

∂

∂x

(

s
∂Ĉk

∂x
− Ĉk

∂s

∂x

)

+ α(∆x)2Ĉk
∂2

∂x2



s
∑

j 6=k

Cj



− s
∂2C

∂x2

∑

j 6=k

Cj + O(∆x3).

(6.54)

If all cells have the same initial conditions, then Ĉk = Ĉ1, for k = 1, . . .N , so that

∂Ĉk

∂t
= α(∆x)2

∂

∂x

(

s
∂Ĉk

∂x
− Ĉk

∂s

∂x
+ (N − 1)C2

k

∂s

∂x

)

+ O(∆x3). (6.55)

Letting ∆x → 0 and α → ∞ with α̂ = lim∆x→0,α→∞ α(∆x)2 and Dx = lim∆x→0,ds→∞ ds(∆x)2

constant, C(x, t) =
∑

j Ĉj(x, t) and s satisfy

∂s

∂t
= Ds

∂2s

∂x2
− λssC, (6.56)

∂C

∂t
= α̂

∂

∂x

(

s
∂C

∂x
− C

∂s

∂x
+

N − 1

N
C2 ∂s

∂x

)

, (6.57)

with no-flux boundary conditions on s at x = 0, x = L and on C at x = L, and

∂C

∂t
= αs(0)C(∆x, t)

(

1 − N − 1

N
C(0, t)

)

− αs(∆x)C(0, t)

(

1 − N − 1

N
C(∆x, t)

)

+ Pc(1 − C(0, t)), (6.58)

= α∆x

(

s
∂C

∂x
− C

∂s

∂x
+

N − 1

N
C2 ∂s

∂x

)

+ Pc(1 − C), (6.59)

at x = 0. As with local sensing, we may rewrite equation (6.57) as

∂C

∂t
= α̂

∂

∂x

(

s
∂C

∂x
− C

∂s

∂x

(

1 − N − 1

N
C

))

, (6.60)

where the diffusive term is again unchanged by volume exclusion, but the advective flux up gradients

of chemical is reduced by the presence of other individuals.

Numerical solutions to equations (6.50) and (6.51) also compare well to averaged simulation data

(Figure 6.1(d)) for a range of parameter values (results not shown), with volume exclusion slowing the

rate of entry into the domain as predicted (Figure 6.1(d) compared to Figure 6.1(b)). In fact, when

the rates of advection in the local and non-local sensing cases are reduced by volume exclusion the
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resulting cell density profiles are very similar (Figures 6.1(c) and 6.1(d)). The similarity in profiles

with volume exclusion indicates that the diffusion term, which is the same in both equations (6.52)

and (6.60), is dominant over the exclusion-reduced advection term down (equation (6.52)) or up

(equation (6.60)) concentration gradients of the chemical. As in the local sensing case, the expected

slowing of migration rate through the domain is negligible when the flux boundary effects are removed

(Figure 6.2(b)).

6.2 Model 2: on-lattice cells with continuum chemoattrac-

tant

For large numbers of chemical molecules, the models in Section 6.1 may be inefficient, since higher

numbers of molecules take longer to simulate. However, models can often be accurately approximated

by a continuum equation, even within a single simulation. Numerical solutions to a continuum

equation are typically faster to compute than the equivalent individual-based system. Since biological

systems often involve many different species of chemicals and cell populations (Vigmond et al.,

2009; Perfahl et al., 2011), the speed-up from using such hybrid models, in which some species are

represented by continuum equations whilst others are modelled using an individual-based framework,

may be significant. Large-scale computational models are becoming more widespread, leading to an

increasing demand to analyse the effect of moving from a purely individual-based model to a hybrid

model. Determining which equations to use for continuum-modelled species and how best to link

between the continuum and discrete parts of models is a current and highly relevant question in the

field (Franz and Erban, 2013).

6.2.1 Hybrid model

As in Chapters 2 and 3, the chemoattractant will diffuse and be consumed by the cells around their

position so that

∂s

∂t
= Ds

∂2s

∂x2
− λss

N∑

i=1

e−(x−ci)
2/δ, (6.61)

where Ds is the diffusion coefficient, the current position of cell i is given by ci and δ gives a

measure of how far away cells may consume chemoattractant. With this model each cell consumes

the chemoattractant at their current lattice site at a rate, λs, as in the non-hybrid system. The
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cells are modelled as on-lattice individuals, as in Section 6.1, and move to the left or right with rate

T±
i = αs(ci ± ∆x).

6.2.2 Hybrid simulation algorithm

In previous simulations we have used the Gillespie simulation algorithm (Gillespie, 1977), which

derives the distribution of waiting times for the next “event” and then draws the next time step in

the simulation from this distribution. In this derivation, the rate of events is dependent only upon

the distribution of species at the previous time point, which is assumed not to change before the next

time step. In the hybrid model, however, the chemoattractant equation is continuously changing

in time, so that the rates of cell movement, which depend upon the chemical concentration, also

change over time. Hence the distribution of next time points cannot be derived as in the Gillespie

algorithm.

Note that in the special case where there is no diffusion of chemical (i.e. Ds = 0), it is possible to

modify the derivation of the Gillespie algorithm to find the modified distribution of waiting times in

the following way. Let Pµ(τ |c, t) be the probability that the next µ event occurs in (t+ τ, t+ τ + δτ)

given that the cells are currently at positions c. If aµ(t) is the propensity function for event µ at

time t,

Pµ(τ |c, t) = Prob(no µ events in [t, t + τ))Prob(µ event in [t + τ, t + τ + δτ)), (6.62)

= Gµ(τ)Prob(µ event in [t + τ, t + τ + δτ)), (6.63)

where Gµ(τ) is the probability that no µ events occur in [t, t + τ). We consider the case where

aµ(t) = αs(cµ, t) (other forms of T±
i can be derived similarly). Since we take Ds = 0

∂s

∂t
= −λss

N∑

i=1

e−(x−ci)
2/δ, (6.64)
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so s(x, t + τ) = s(x, t) exp[−A(c, x)τ ] where A(c, x) = λs

∑

j exp[−(cj − x)2/δ]. Then

Gµ(σ + δσ) = Prob(no µ events in [t, t + σ))Prob(no µ events in [t + σ, t + σ + δσ)), (6.65)

= Prob(no µ events in [t, t + σ))(1 − Prob(µ events in [t + σ, t + σ + δσ)), (6.66)

= Gµ(σ)(1 −
∫ σ+δσ

σ

αs(cµ, t + σ̄) dσ̄, (6.67)

= Gµ(σ)(1 −
∫ σ+δσ

σ

αs(cµ, t)e−A(c,cµ)σ̄ dσ̄, (6.68)

but

∫ σ+δσ

σ

e−A(c,cµ)σ̄ dσ̄ =

[

−e−A(c,cµ)σ̄

A(c, cµ)

]σ+δσ

σ

, (6.69)

=
e−A(c,cµ)σ

A(c, cµ)

(

1 − e−A(c,cµ)δσ
)

, (6.70)

= δσe−A(c,cµ)σ + O(δσ2). (6.71)

Hence

Gµ(σ + δσ) = Gµ(σ)(1 − αs(cµ, t)δσe−A(c,cµ)σ + O(δσ2), (6.72)

∂Gµ

∂σ
= − αs(cµ, t)e−A(c,cµ)σ, (6.73)

letting δσ → 0. Solving for Gµ(σ) whilst noting that Gµ(0) = Prob(no µ events in [t, t)) = 1,

Gµ(σ) = exp

(

α
s(cµ, t)

A(c, cµ)
e−A(c,cµ)σ

)

, (6.74)

and hence

Pµ(τ |c, t) = exp

(

α
s(cµ, t)

A(c, cµ)
e−A(c,cµ)τ

)

Prob(µ event in [t + τ, t + τ + δτ)), (6.75)

= αs(cµ, t)e−A(c,cµ)τ exp

(

α
s(cµ, t)

A(c, cµ)
e−A(c,cµ)τ

)

. (6.76)

The cumulative distribution function (CDF) is distributed uniformly (similarly to the Gillespie
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algorithm) and is given by

Fµ(τ |c, t) =

∫ τ

0

Pµ(τ ′|c, t) dτ ′, (6.77)

= exp

(

α
s(cµ, t)

A(c, cµ)
e−A(c,cµ)τ

)

− exp

(

α
s(cµ, t)

A(c, cµ)

)

, (6.78)

so if r ∼ U([0, 1])

τµ = − 1

A(c, cµ)
log

(
A(c, cµ)

αs(cµ, t)
log

(

r + e
α

s(cµ,t)

A(c,cµ)

))

, (6.79)

is distributed according to Fµ(τ |c, t). Thus to simulate the model with no chemical diffusion we

may draw a uniformly-distributed random number, r, for each reaction µ and use equation (6.79) to

find the next time for that reaction. The smallest of these times is then used and the corresponding

reaction occurs.

To simulate the model with chemical diffusion, however, we cannot use the Gillespie algorithm

described here since there is no simple form of solution to equation (6.61). Instead we take a

fixed time step, small enough that there is very little chance that more than one movement will

occur during any time step. Then at each time step any particular movement happens with a

calculated probability and we assume that at most one movement occurs. This is less efficient than

the Gillespie algorithm, since during most time steps there is no change in individual positions, the

only calculation that occurs is to solve for the chemical profile at that time point. However, this

does allow simulation of a wider range of chemical evolution equations, including those with spatial

dependencies.

6.2.3 Derivation of continuum equations

Modelling a species as a continuum whilst keeping track of the concentration at each spatial point

presents an additional challenge to the models discussed in Section 6.1. The question is how to find

the probability of the chemoattractant functional form in some tractable way that enables us to find

the rates of cell movement. Since the cells are on-lattice, their rates of movement depend only on

the chemoattractant concentration at the lattice points, and not in the entirety of the x-axis. The

evolution of the chemoattractant may be continuous in space, however, we may restrict it naturally

to depend only upon values at lattice sites by taking a finite difference approximation to spatial

derivatives. We will then let the lattice spacing ∆x tend to zero to obtain a continuous cell density

(equation (6.28)), thus recovering the original continuous derivatives. Hence we consider P (s, t) =
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P (s+ δs, t) to be the probability that the concentration of s at the lattice points x = [1, . . . , L] is in

the region s + δs = (s1 + δ1, . . . , sL + δL) at time t for |δs| ≪ 1. Then the probability, Ck(i, t), that

a cell k will be at lattice point i at time t is given by equation (6.6), as before.

If the chemoattractant evolves according to

∂s

∂t
= g(c, s, x), (6.80)

then to find the evolution of s(x) = s, we take a finite difference approximation, ĝ(c, s, i), to

equation (6.80) for lattice spacing ∆x ≪ 1 and time step ∆t ≪ 1 so that

si(t + ∆t) = si(t) + ∆tĝ(c, s(t), i). (6.81)

Hence

Prob(s at t + ∆t) =
∑

c

Prob(cells at c and s(x, t) is such that s(x, t + ∆t) = s given cells at c),

(6.82)

and the average chemoattractant profile,

〈(s1, · · · , sL)〉 =

∫

s1

· · ·
∫

sL

(s1, · · · , sL)P (s, t) ds1 · · · dsL, (6.83)

〈s〉 =

∫

s

sP (s, t) ds, (6.84)

can be found by multiplying equation (6.84) by si and integrating over all s:

∫

s

siP (s, t + ∆t) ds =

∫

s

∑

c

Prob

(
∑

l

Cl
1(c1, t), . . . ,

∑

l

Cl
N (cN , t), s given c

)

, (6.85)

≈ 〈Cl
1(c1, t)〉 · · · 〈Cl

N (cN , t)〉〈s given c〉, (6.86)

=

∫

s

∑

c1

· · ·
∑

cN

C1(c1, t) · · ·CN (cN , t)siP (R(c, s)−1, t)

∣
∣
∣
∣
det

(
∂s

∂R(s, c)

)∣
∣
∣
∣

ds,

(6.87)

where we define (R(c, s))i = si + ∆tĝ(c, s, i), and the Jacobian, |det (∂s/∂R(s, c))|, is due to the

change in volume of the infinitesimal, δs, when changing variables. Here, equation (6.86) follows

from equation (6.85) by taking a moment closure approximation, as in Section 6.1.1.
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Now we make the change of variables ŝ = R(c, s)−1 and note that this introduces a factor

|det (∂R(s, c)/∂s)| so that

∫

s

siP (s, t + ∆t) ds =

∫

ŝ

∑

c

C1(c1, t) · · ·CN (cN , t)(R(c, ŝ))iP (ŝ, t) dŝ, (6.88)

=

∫

ŝ

∑

c

C1(c1, t) · · ·CN (cN , t)(ŝi + ∆tĝ(c, ŝ, i))P (ŝ, t) dŝ. (6.89)

Since
∑

cj
Cj(cj , t) = 1,

1

∆t

(∫

s

siP (s, t + ∆t) ds−
∫

ŝ

ŝiP (ŝ, t) dŝ

)

=

∫

ŝ

∑

c

C1(c1, t) · · ·CN (cN , t)ĝ(c, s, i))P (ŝ, t) dŝ,

(6.90)

and as ∆t → 0

∂〈si〉
∂t

=

∫

ŝ

∑

c

C1(c1, t) · · ·CN (cN , t)ĝ(c, s, i))P (ŝ, t) dŝ. (6.91)

For example, if

g(c, s, x) = Ds
∂2s

∂x2
− λss

N∑

j=1

e−(x−cj)
2/δ, (6.92)

then, making a finite difference approximation using the lattice spacing ∆x ≪ 1

ĝ(c, s, i) = Ds
si+1 − 2si + si−1

(∆x)2
− λssi

N∑

j=1

e−(i−cj)
2/δ, (6.93)

and

∂〈si〉
∂t

=

∫

ŝ

∑

c

C1(c1, t) · · ·CN (cN , t)ĝ(c, s, i))P (ŝ, t) dŝ, (6.94)

= Ds
〈si+1〉 − 2〈si〉 + 〈si−1〉

(∆x)2
− λs

∑

c

C1(c1, t) · · ·CN (cN , t)〈si〉
N∑

j=1

e−(i−cj)
2/δ, (6.95)

= Ds
〈si+1〉 − 2〈si〉 + 〈si−1〉

(∆x)2
− λs

N∑

j=1

∏

k 6=j

∑

ck

Ck(ck, t)〈si〉
∑

cj

Cj(cj , t)e
−(i−cj)

2/δ. (6.96)
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For k 6= j
∑

ck
Ck(ck, t) = 1, so

∂〈si〉
∂t

= Ds
〈si+1〉 − 2〈si〉 + 〈si−1〉

(∆x)2
− λs

N∑

j=1

L∑

l=1

Ĉj(l∆x, t)〈si〉e−(i−l)2/δ, (6.97)

= Ds
〈si+1〉 − 2〈si〉 + 〈si−1〉

(∆x)2
− λs

L∑

l=1

C(l∆x, t)〈si〉e−(i−l)2/δ, (6.98)

and as δ → 0 and ∆x → 0 with ds = Ds/(∆x)2 constant

e−(i−l)2/δ →







0 l 6= i

1 l = i

, (6.99)

= δil, (6.100)

the Kronecker delta function. Hence

∂ŝ

∂t
= ds

∂2ŝ

∂x2
− λsŝC, (6.101)

for ŝ(k∆x, t) = 〈sk(t)〉. Since s = s(x, t), the cell evolution equations are exactly as before (see

Section 6.1) and so the complete system remains unchanged from the non-hybrid case with

∂ŝ

∂t
= ds

∂2ŝ

∂x2
− λsŝC, (6.102)

∂C

∂t
= α̂

∂

∂x

(

ŝ
∂C

∂x
− C

∂ŝ

∂x

)

, (6.103)

for non-local sensing and

∂ŝ

∂t
= ds

∂2ŝ

∂x2
− λsŝC, (6.104)

∂C

∂t
= α̂

∂2

∂x2
(ŝC) , (6.105)

for local sensing. Simulations of this system, averaged over multiple realisations to obtain a histogram

of cell positions and the average chemical density at each lattice point, compare well with numerical

solutions to equations (6.102) and (6.103) (Figure 6.3(b)) and equations (6.104) and (6.105)) (Fig-

ure 6.3(a)) for a range of parameter values, including changes in δ (results not shown). The addition

of volume exclusion modifies equations (6.103) and (6.105) to give equations (6.49) and (6.57), re-

spectively, derived in the non-hybrid system (Section 6.1). As in the on-lattice non-hybrid system
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(Figure 6.2), the addition of volume exclusion makes very little difference to either the simulations

or numerical solutions to the equations within the domain (Figures 6.3(c) and 6.3(d)).

6.3 Model 3: off-lattice cells with continuum chemoattrac-

tant

Off-lattice IBMs often give different results than the equivalent on-lattice models (Plank and Simp-

son, 2012). To investigate whether an off-lattice version of our hybrid model from Section 6.2 behaves

similarly to the on-lattice version, and work towards a method that can be used to analyse the mod-

els from Chapters 2 and 3, we will extend Section 6.2 to include off-lattice cells. Cells in our model

move a distance d ≪ 1 at a rate T±(s, x) = αs(x ± d) left or right from a position x. The rates

T±(s, x) depend on the chemoattractant concentration, s which evolves according to

∂s

∂t
= g

(

c, s,
∂2s

∂x2
, x

)

. (6.106)

We begin with a model without volume exclusion. We take the same chemical evolution equation

as our on-lattice model (Section 6.2), that is,

g

(

c, s,
∂2s

∂x2
, x

)

= Ds
∂2s

∂x2
− λss

N∑

j=1

e−(x−cj)
2/δ. (6.107)

6.3.1 Derivation of continuum equations

To analyse the off-lattice model, we consider the pdf, P (s, x, t), for the chemoattractant concentration

at position, x, and time, t. Then the pdf, Ck(x, t), for the position x, of cell k at time t, satisfies

Ck(x, t + ∆t) =

cell k at x stays at x
︷ ︸︸ ︷

Ck(x, t)

(

1 − α∆t

(∫

s

sP (s, x + d, t) + sP (x, x − d, t) ds

))

+ α∆t

∫

s

sP (s, x, t) ds Ck(x − d, t)

︸ ︷︷ ︸

cell k at x − d moves to x

+ α∆t

∫

s

sP (s, x, t) ds Ck(x + d, t)

︸ ︷︷ ︸

cell k at x + d moves to x

, (6.108)

= Ck(x, t)(1 − α∆t(〈s(x + d, t)〉 + 〈s(x − d, t)〉)) + α∆t〈s(x, t)〉Ck(x − d, t)

+ α∆t〈s(x, t)〉Ck(x + d, t), (6.109)
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(c) Local sensing with volume exclusion
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Figure 6.3: A comparison of typical averaged simulations of the on-lattice hybrid chemotaxis mod-
els described in Section 6.2 and numerical solutions to the derived equations for (a) local sensing
(equations (6.104) and (6.105)); (b) non-local sensing (equations (6.102) and (6.103))); (c) local
sensing with volume exclusion (equations (6.49) and (6.104)) and (d) non-local sensing with volume
exclusion (equations (6.57) and (6.104)). Each simulation is performed with α = 0.5, ∆t = 0.5,
∆x = 0.1, Ds = 0, λs = 0.02 and is averaged over 10, 000 runs. Ten cells are initially placed, one
at each lattice site, in the middle of the domain and no flux conditions are taken at each boundary.
Solutions are plotted at t = 10.
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where 〈s(x, t)〉 =
∫

s
sP (s, x, t) ds and we have used the moment closure approximation

∫

s

sProb(cell k at (x, t) and chemoattractant is s at (x, t)) ds =

∫

s

Prob

(
∑

l

Cl
k(x, t), s

)

ds,

(6.110)

≈ 〈Cl
k(x, t)〉〈s(x, t)〉, (6.111)

= Ck(x, t)

∫

s

sP (s, x, t) ds, (6.112)

where Cl
k(x, t) is the probability that cell, k, is at position, x, at time, t, during simulation l. Now

if ŝ(x, t) = 〈s(x, t)〉 and we Taylor expand in terms of d ≪ 1,

∂Ck

∂t
= αd2 ∂

∂x

(

ŝ
∂Ck

∂x
− Ck

∂ŝ

∂x

)

+ O(d3), (6.113)

as ∆t → 0.

To find P (s, x, t) we use a similar technique to Section 6.2.3, but cell movement rates now require

the chemoattractant concentration at arbitrary points in the domain, since the cells are no longer

only present at lattice sites. We therefore use ∂2s/∂x2 instead of a finite difference approximation

to the second derivative. Then

P (s, x, t + ∆t) =
∫

c

∫

y

P (g−1(c, s, y, x, t), x, t)Prob

(
∂2s

∂x2
= y

) ∣
∣
∣
∣
det

(
∂s

∂g(c, s, y, x, t)

)∣
∣
∣
∣

dy dc, (6.114)

and hence

∫

s

sP (s, x, t + ∆t) ds

=

∫

s

∫

c

∫

y

sP (g−1(c, s, y, x, t), x, t)Prob

(
∂2s

∂x2
= y

) ∣
∣
∣
∣
det

(
∂s

∂g(c, s, y, x, t)

)∣
∣
∣
∣

dy dc ds, (6.115)

=

∫

ŝ

∫

c

∫

y

g(c, ŝ, y, x, t)P (ŝ, x, t)Prob

(
∂2s

∂x2
= y

)

dy dc dŝ, (6.116)
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making a change of variables as before. Then

〈s(x, t + ∆t)〉 = Ds

∫

y

y Prob

(
∂2s

∂x2
= y

)

dy

− λs

∫

ŝ

ŝP (ŝ, x, t) dŝ

∫

y

N∑

j=1

Cj(y, t)e−(x−y)2/δ dy, (6.117)

= Ds〈sxx(x, t)〉 − λs〈s(x, t)〉
∫

y

C(y, t)e−(x−y)2/δ dy, (6.118)

for C =
∑

j Cj . Assuming 〈sxx(x, t)〉 = ∂2〈s〉/∂x2 = ∂2ŝ/∂x2

∂ŝ

∂t
= Ds

∂2ŝ

∂x2
− λsŝ

∫

y

C(y, t)e−(x−y)2/δ dy. (6.119)

For δ ≪ 1 we use Laplace’s method,

∫

y

C(y, t)e−(x−y)2/δ dy

=

∫

y

e−(x−y)2/δ

(

C(x, t) + Cx(x, t)(y − x) +
1

2
Cxx(x, t)(y − x)2 + O((y − x)3)

)

dy, (6.120)

then, extending the integral to y ∈ (−∞,∞) (introducing at most exponentially small errors),

∫

y

C(y, t)e−(x−y)2/δ dy = C(x, t)

∫ ∞

−∞

e−(x−y)2/δ dy +

∞∑

n=1

C(n)(x, t)

∫ ∞

−∞

(x − y)ne−(x−y)2/δ dy,

(6.121)

=
√

δπC(x, t) +
∑

n even

√
2π

(
δ

2

)n+1
2

(n − 1) · · · (3)(1)C(n)(x, t), (6.122)

=
√

δπC(x, t) + O
(

δ
3
2

)

. (6.123)

Hence as δ → 0 we take λs → ∞ with λ̂s =
√

δπλs constant so that summing equation (6.113) over

k = 1, . . . , N and taking d → 0:

∂ŝ

∂t
= Ds

∂2ŝ

∂x2
− λ̂sŝC(x, t), (6.124)

∂C

∂t
= α̂

∂

∂x

(

ŝ
∂C

∂x
− C

∂ŝ

∂x

)

, (6.125)

where α̂ = limd→0,α→∞ αd2. Thus we find that moving to an off-lattice setting for the individual-

based cells, using an approximation to the continuous delta function in place of the previously taken

approximation to the Kronecker delta, results in an equivalent system of continuum equations (equa-
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tions (6.124) and (6.125)) to that for on-lattice cells moving via non-local sensing (equations (6.38)

and (6.39)). The lattice spacing, ∆x, is replaced by the distance, d, moved in a single jump, since

when individuals move a constant distance at each jump they remain a distance di away from their

initial position, where i is an integer. Hence each individual is effectively on a lattice, defined by their

initial position, with spacing d. Since we do not consider volume exclusion, it makes no difference

that each individual moves on an independent lattice, as there is no direct interaction between the

individuals. Thus the only change due to moving to an off-lattice setting is that the consumption

term in equation (6.124) is scaled by
√

δπ. This difference in scaling is due to the difference between

the approximation to the Kronecker delta, δij , and the approximation we take to the delta function

δ(x − y). Hence to regain an equivalent averaged system to equation (6.102) we need to take

g

(

c, s,
∂2s

∂x2
, x

)

= Ds
∂2s

∂x2
− λs√

δπ
s

N∑

j=1

e−(x−cj)
2/δ. (6.126)

If instead we consider local sensing, T±
x = αs(x), (with equation (6.107)) then equation (6.119)

remains the same, whilst

Ck(x, t + ∆t) =

cell k at x stays at x
︷ ︸︸ ︷

Ck(x, t)

(

1 − 2α∆t

∫

s

sP (s, x, t) ds

)

+ α∆t

∫

s

sP (s, x − d, t) dsCk(x − d, t)

︸ ︷︷ ︸

cell k at x − d moves to x

+ α∆t

∫

s

sP (s, x + d, t) dsCk(x + d, t)

︸ ︷︷ ︸

cell k at x + d moves to x

,

(6.127)

= Ck(x, t)(1 − 2α∆t〈s(x, t)〉) + α∆t〈s(x − d, t)〉Ck(x − d, t)

+ α∆t〈s(x + d, t)〉Ck(x + d, t), (6.128)

where 〈s(x, t)〉 =
∫

s sP (s, x, t) ds. Now setting ŝ(x, t) = 〈s(x, t)〉, and expanding in terms of d,

∂Ck

∂t
= αd2 ∂2

∂x2
(ŝCk) + O(d3), (6.129)

as ∆t → 0. Summing over k and taking d → 0 with α̂ = limd→0,α→∞ αd2 held constant, gives the
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full system

∂ŝ

∂t
= Ds

∂2ŝ

∂x2
− λ̂sŝC(x, t), (6.130)

∂C

∂t
= α̂

∂2

∂x2
(ŝC), (6.131)

where C(x, t) =
∑N

k=1 Ck(x, t), as before. Here again we find that moving to an off-lattice setting

makes very little difference to the cell equation, merely replacing the lattice spacing, ∆x, with the

distance moved, d. Simulations of the hybrid system averaged over many repetitions compare well

with numerical solutions to the systems derived, with both local (equations (6.130) and (6.131)) and

non-local (equations (6.124) and (6.125)) sensing (Figures 6.4(a) and 6.4(b)). Hence we conclude

that moving to an off-lattice hybrid system in this manner does not affect the cell concentration

equations, only the chemical equation.

We now investigate the effect of changing the consumption parameter, δ, whilst scaling λs in the

simulations resulting in constant λ̂s so that the PDEs to be solved are the same for all values of

δ. Unlike the on-lattice hybrid system, however, changing δ has a significant effect on the chemical

density profile (Figure 6.5). Surprisingly, our predictions are less good as δ is reduced, despite

taking δ → 0 in our derivation. There are two possible reasons for this. Firstly, highly localised

consumption terms may be missed in the hybrid simulations if they do not have any impact on

the chemical on the lattice used for numerical solutions. Secondly, less localised consumption terms

reduce the dependence on the exact location of each cell. Hence the stochastic effects are reduced

and thus the deterministic equations derived may be more exact.

Volume exclusion is known to affect off-lattice systems differently to on-lattice systems, for example

in the case of unbiased motion, where volume exclusion does not alter the derived diffusion coefficient

in the on-lattice setting. We would expect, therefore, that volume exclusion would also affect the

off-lattice hybrid system differently than the on-lattice hybrid system and will consider next the

effects of volume exclusion on the off-lattice hybrid system.

6.3.2 Excluded volume effects

The off-lattice cell models in this section may be extended to incorporate volume exclusion using

similar methods to Chapter 4. In particular, the modification to cell movement due to volume exclu-

sion does not affect the chemoattractant evolution equation (equation (6.119)) since the derivation
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(a) Local sensing without exclusion
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(b) Non-local sensing without exclusion
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(c) Local sensing with exclusion
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(d) Non-local sensing with exclusion

Figure 6.4: A comparison of typical averaged simulations of the off-lattice hybrid chemotaxis mod-
els described in Section 6.3 and numerical solutions to the derived equations for (a) local sensing
(equations (6.130) and (6.131)); (b) non-local sensing (equations (6.124) and (6.125)); (c) local sens-
ing with volume exclusion (equations (6.130) and (6.140)) and (d) non-local sensing with volume
exclusion (equations (6.130) and (6.149)). Each simulation is performed with α = 1.25, ∆t = 1,
Ds = 0.0706, λs = 0.01, δ = 0.01, d = 0.2, R = 0.15 and is averaged over 1, 000 runs. Thirty cells
are initially placed at regular intervals in the middle of the domain with the leftmost cell centre
drawn from the normal distribution at x ∼ N ((BR − BL)/2 − NR/0.8, 10) and no flux conditions
are taken at each boundary. Solutions are plotted at t = 200.
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Figure 6.5: An investigation of the effects of varying δ in the chemical consumption term. Each
simulation is performed with α = 0.5, ∆t = 1, Ds = 0.0706, d = 0.15, R = 0.15 and is averaged over
1, 000 runs. Thirty cells are initially placed at regular intervals in the middle of the domain with
the left most cell centre drawn from the normal distribution at x ∼ N ((BR − BL)/2 − NR/0.8, 10)
and no flux conditions are taken at each boundary. Solutions are plotted at t = 200. λs is taken
to be 0.01/

√
δπ, so that λ̂s in equation (6.124) remains constant. We therefore plot the numerical

solution to equation (6.124), and simulations as δ changes.

of equation (6.119) does not consider cell movement. However, equation (6.108) is modified if each

cell occupies a distance R from its centre. For local sensing (T±(s, x) = αs(x)), we have

Ck(x, t + ∆t) =

cell k at x
︷ ︸︸ ︷

Ck(x, t)

(
does not try to move

︷ ︸︸ ︷

1 − α∆t

(∫

s

sP (s, x + d, t) + sP (x, x − d, t) ds

)

+ α∆t

(∫

s

sP (s, x + d, t)P k
R(x, t) + sP (x, x − d, t)P k

L(x, t) ds

)

︸ ︷︷ ︸

tries to move and fails

)

+ α∆t

∫

s

sP (s, x, t) ds Ck(x − d, t)(1 − P k
R(x − d, t))

︸ ︷︷ ︸

cell k at x − d moves to x

+ α∆t

∫

s

sP (s, x, t) ds Ck(x + d, t)(1 − P k
L(x + d, t))

︸ ︷︷ ︸

cell k at x + d moves to x

, (6.132)

= Ck(x, t)(1 − α∆t(〈s(x + d, t)〉P k
R(x, t) + 〈s(x − d, t)〉P k

L(x, t))

+ α∆t
(
〈s(x + d, t)〉P k

R(x, t) + 〈s(x − d, t)〉P k
L(x, t)

)
)

+ α∆t〈s(x, t)〉Ck(x − d, t)(1 − P k
R(x − d, t)) + α∆t〈s(x, t)〉Ck(x + d, t)(1 − P k

L(x + d, t)),

(6.133)

156



0.05
0.10

0.15
0.20

0.25
0.30

0.10
0.15

0.20
0.25

0.30

0.000

0.002

0.004

0.006

0.008

0.010

Rd

D
(S

,C
)

(a) Error as d − R change

0.05
0.10

0.15
0.20

0.25
0.30

5
10

15
20

25
30

0.000

0.002

0.004

0.006

0.008

0.010

RN

D
(S

,C
)

(b) Error as N − R change

0.05
0.10

0.15
0.20

0.25
0.30

0.10
0.15

0.20
0.25

0.30

0.5

1.5

2.5
x 10

-3

Rd

D
(C

d,C
)

(c) Predicted exclusion as d − R change

0.05
0.10

0.15
0.20

0.25
0.30

5
10

15
20

25
30

0

1

2

3

4

5

6

7
x 10

-3

RN

D
(C

d,C
)

(d) Predicted exclusion as N − R change

0.05
0.10

0.15
0.20

0.25
0.30

0.10
0.15

0.20
0.25

0.30

0.000

0.005

0.010

0.015

0.020

Rd

D
(S

,C
d)

(e) Exclusion as d − R change

0.05
0.10

0.15
0.20

0.25
0.30

5
10

15
20

25
30

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RN

D
(S

,C
d)

(f) Exclusion as N − R change

Figure 6.6: Exploring the effect of changing the likelihood of successful movement in Model 3 with
local chemotactic sensing by changing the distance moved, d, and the radius of a cell, R ((a), (c)
and (e)) and changing the occupied space in the model by changing the number of cells, N , and
the radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by
our approximations (the difference between the solution to equations (6.130) and (6.140) and the
average of our simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference
between the solution to equations (6.130) and (6.140) and equations (6.130) and (6.131); and (e)-(f)
the actual effect of volume exclusion (the difference between the average of our simulations and
the solution to equations (6.130) and (6.131)). Differences are calculated using equation (4.46) and
non-varying parameters are: R = 0.05, d = 0.1, ∆t = 1, ∆x = 8/3, Ds = 0.07, λs = 0.01, δ = 0.1,
whilst α = 0.05/d2 and simulations are averaged over 1, 000 runs. Thirty cells are initially placed at
regular intervals in the middle of the domain with the left most cell centre drawn from the normal
distribution at x ∼ N ((BR−BL)/2−NR/0.8, 10) and no flux conditions are taken at each boundary.
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Figure 6.7: Exploring the effect of changing the likelihood of successful movement in Model 3 with
non-local chemotactic sensing by changing the distance moved, d, and the radius of a cell, R ((a), (c)
and (e)) and changing the occupied space in the model by changing the number of cells, N , and the
radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by our
approximations (the difference between the solution to equations (6.124) and (6.149) and the average
of our simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference between
the solution to equations (6.124) and (6.149) and equations (6.124) and (6.125); and (e)-(f) the actual
effect of volume exclusion (the difference between the average of our simulations and the solution
to equations (6.124) and (6.125)). Differences are calculated using equation (4.46) and non-varying
parameters are: R = 0.05, ∆t = 1, ∆x = 8/3, Ds = 0.07, λs = 0.01, δ = 0.1, whilst α = 0.05/d2

and simulations are averaged over 1, 000 runs. Thirty cells are initially placed at regular intervals
in the middle of the domain with the left most cell centre drawn from the normal distribution at
x ∼ N ((BR − BL)/2 − NR/0.8, 10) and no flux conditions are taken at each boundary.
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where P k
L(x, t) and P k

R(x, t) are the probabilities of a cell, other than cell k, being present in the

regions (x− d, x] and [x, x + d), respectively, given that cell k is at x at time t. The moment closure

assumption has been taken as before (see equation (6.111)). We have

P k
R(x, t) =

∑

i6=k

∫ 2R+d

2R

Ci(x + x̄, t) dx̄, (6.134)

=
∑

i6=k

(

dCi +
d

2
(4R + d)

∂Ci

∂x
+

d

6
(12R2 + 6Rd + d3)

∂2Ci

∂x2
+ O((2R + d)4)

)

, (6.135)

P k
L(x, t) =

∑

i6=k

∫ −2R

−2R−d

Ci(x + x̄, t) dx̄, (6.136)

=
∑

i6=k

(

dCi −
d

2
(4R + d)

∂Ci

∂x
+

d

6
(12R2 + 6Rd + d3)

∂2Ci

∂x2
+ O((2R + d)4)

)

, (6.137)

assuming 2R + d is small compared to the length scale on which C changes so that we can Taylor

expand P k
L(x, t) and P k

R(x, t). Substituting equations (6.135) and (6.137) into equation (6.133) and

Taylor expanding in d:

∂Ck

∂t
= αd2 ∂2

∂x2
(ŝCk) + 4αRd2 ∂

∂x



ŝCk

∑

i6=k

∂Ci

∂x



− αd3 ∂

∂x




∂

∂x
(ŝCk)

∑

i6=k

Ci





− 2αR2d3 ∂2

∂x2
(ŝCk)

∑

i6=k

Ci + O
(
(R + d)4

)
, (6.138)

as ∆t → 0. As before, if the initial condition for all cells is the same, then Ci = Cj ∀i, j so

C =
∑N

k=1 Ck = NCk and

∂C

∂t
= αd2 ∂

∂x

((

1 − N − 1

N
dC

)
∂

∂x
(sC) + 4R

N − 1

N
sC

∂C

∂x

)

. (6.139)

As d → 0 with α → ∞ so that α̂ = αd2 remains constant,

∂C

∂t
= α̂

∂

∂x

(
∂

∂x
(ŝC) + 4R

N − 1

N
ŝC

∂C

∂x

)

. (6.140)

Incorporating excluded volume into the off-lattice model results in a modified form (equation (6.140))

of the previously derived equation (equation (6.131)), with an additional radius-dependent term.

Although without volume exclusion the on- and off-lattice models resulted in the same equations

with ∆x replaced by d (equations (6.28) and (6.131)), when excluded volume is included, the form of

the equations is different. This is due to modelling differences, since in the on-lattice model volume

exclusion allows at most one individual at each lattice site. Hence the lattice spacing is the same as
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Figure 6.8: Different values of δ result in different consumption profiles from a population of 100
normally distributed cells.

the radius of an individual and letting ∆x → 0 also lets the radius tend to zero, affecting the volume

exclusion. Thus there cannot be any dependence on the cell radius in the final equation on-lattice as

there is in the off-lattice equation, where the radius of an individual is independent of the distance

moved during a jump.

In addition, however, the form of the equation is changed in an off-lattice formulation. In the on-

lattice model, volume exclusion reduces advection down the concentration gradient of other cells

(equation (6.49)), whereas off-lattice, equation (6.140) can be thought of as

∂C

∂t
= α̂

∂

∂x

(

ŝ
∂C

∂x

(

1 + 4R
N − 1

N
C

)

+
∂ŝ

∂x
C

)

, (6.141)

so that the advection term is unchanged, whilst the diffusion term has increased diffusivity due to

the presence of other individuals. Thus volume exclusion still interferes with the efficiency of the

advective flux, since the smoothing effects of diffusion can work against chemotactic directed motion,

without directly influencing the advection term. Indeed, numerical solutions to equations (6.119)

and (6.140), validated by averaged repetitions of the hybrid model (Figure 6.4(c)), are significantly

different when compared to the equations without volume exclusion (equations (6.130) and (6.131)).

Specifically, with volume exclusion the initial population spreads more rapidly, as we would expect

from the increased diffusivity term in equation (6.141).

It is known that using consumption terms of the form exp(−(x−ci)
2/δ) can result in wider chemical

consumption than the underlying cell density for large δ, whilst for small δ the consumption density

oscillates widely (Figure 6.8; Franz and Erban, 2013). When including volume exclusion, however,

we may include chemical consumption as a constant rate of consumption over the body of each cell.
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Hence a cell at position x consumes chemoattractant at a rate λ in the segment [x−R, x+R]. Then

equation (6.119) becomes

∂ŝ

∂t
= Ds

∂2ŝ

∂x2
− λsŝ

∫ R

−R

C(x + y, t) dy, (6.142)

= Ds
∂2ŝ

∂x2
− λsŝ

∫ R

−R

(

C(x, t) + yCx(x, t) +
y2

2
Cxx(x, t) + O(y3)

)

dy, (6.143)

= Ds
∂2ŝ

∂x2
− λsŝ2RC + O(R2), (6.144)

= Ds
∂2ŝ

∂x2
− λ̂sŝ, (6.145)

for λ̂s = 2Rλs finite as R → 0. Numerical solutions to equation (6.145) compare well to averaged

simulations as R varies (Figure 6.9). As for the δ consumption term, the derived equations are less

accurate for smaller values of R, but the reduction in accuracy is much less marked than in the δ

case. To enable comparison with the earlier models without volume exclusion, we will continue to

use the δ consumption term, whilst being careful to maintain the same value of δ compared to the

lattice spacing.

We may measure the error in our approximations as the model parameters change by using equa-

tion (5.20) to find the difference between numerical solutions to equation (6.140) and a histogram

derived from average positions of cells over multiple realisations of the model. For local sensing, our

approximation is less accurate for lower values of R or d (Figure 6.6(a)). This is particularly surpris-

ing, since we would expect the Taylor expansions in our derivation to be better approximations for

small values of d and R. However, for local sensing, small movement distances relative to the radius

of a cell result in underprediction of population spreading whereas larger movement distances result

in overprediction of population spreading. Since local sensing leads to the aggregation of individuals

in areas of low chemical, we expect our moment closure approximation to be less good since the

positions of different individuals are correlated. Cell aggregation is exacerbated by a smaller cell

radius, R, leading to slower diffusion, and higher cell movement distances, d, which is reflected in a

higher multiplier, α̂, for the advection term and may explain the relatively high error for small R

and larger d.

The actual and predicted effects of volume exclusion can be measured similarly to Section 5.2.5 by

finding the difference between numerical solutions to equation (6.131) and averaged simulations of

the model or numerical solutions to equation (6.140), respectively. The error in our approxima-

tions affects the shape of the surface of the predicted effect of volume exclusion as R and d change
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(Figure 6.6(c)) compared to the shape of the surface of the actual effect of volume exclusion (Fig-

ure 6.6(e)). We note, however, that for all but three of the parameter combinations simulated, the

error in our approximations was lower than the error obtained by using the equations without volume

exclusion. Hence including volume exclusion increases the accuracy of our predictions compared to

näıvely ignoring the space occupied by cells. We expect from equation (6.140) that increasing the

radius of a cell will have an impact on volume exclusion and, whilst the effect is less marked than

is predicted in Figure 6.6(c), this is still generally found to be the case when comparing against

averaged simulations of the model (Figure 6.6(e)).

When varying the number of individuals in the population and the radius of a cell, we expect more

numerous populations and larger individuals will be more affected by incorporating volume exclusion.

We make this prediction both because we would expect individuals to encounter each other more

often and because, in equation (6.140), greater values of R and larger populations leading to a higher

total C when integrated over the domain increase the volume exclusion term 4R(N −1)/NsC∂C/∂x

(Figure 6.6(d)). Whilst the higher population numbers and larger cells also increase the error in our

approximations (Figure 6.6(b)), our prediction of greater volume exclusion effects is also validated

in general by averaged simulation data (Figure 6.6(f)).

With non-local sensing (T±(s, x) = αs(x ± d)), equation (6.133) becomes

Ck(x, t + ∆t) =

Ck(x, t)(1 − α∆t〈s(x, t)〉(P k
R(x, t) + P

k
L(x, t)) + α∆t〈s(x, t)〉

“

P
k
R(x, t) + P

k
L(x, t)

”

)

+ α∆t〈s(x − d, t)〉Ck(x − d, t)(1 − P
k
R(x − d, t)) + α∆t〈s(x + d, t)〉Ck(x + d, t)(1 − P

k
L(x + d, t)),

(6.146)

with P k
L(x, t) and P k

R(x, t) given by equations (6.134) and (6.136), as before. Hence, expanding in d

and R,

∂Ck

∂t
= αd2 ∂

∂x

(

ŝ
∂Ck

∂x
− Ck

∂ŝ

∂x

)

+ 4αRd2 ∂

∂x



ŝCk

∑

i6=k

∂Ci

∂x



+ O
(
d3
)
, (6.147)

where ŝ(x, t) = 〈s(x, t)〉 as before and if the initial conditions are the same for all cells then C =

∑N
k=1 Ck = NCk and

∂C

∂t
= αd2 ∂

∂x

((

1 − N − 1

N
dC

)(

s
∂C

∂x
− C

∂s

∂x

)

+ 4R
N − 1

N
sC

∂C

∂x

)

. (6.148)
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Then, as d → 0 with α̂ = limd→0,α→∞ αd2 constant

∂C

∂t
= α̂

∂

∂x

(

ŝ
∂C

∂x
− C

∂ŝ

∂x

)

+ 4α̂R
N − 1

N

∂

∂x

(

ŝC
∂C

∂x

)

. (6.149)

As with local sensing, volume exclusion introduces the same additional term to the original equation

(equation (6.125)), corresponding to the same increase in diffusivity when considered as

∂C

∂t
= α̂

∂

∂x

(

ŝ
∂C

∂x

(

1 + 4R
N − 1

N
C

)

− C
∂ŝ

∂x

)

. (6.150)

Due to the increased diffusivity, numerical solutions to equations (6.119) and (6.149), validated

by averaged repetitions of the hybrid model, also display a faster spread of the initial population

compared to equations (6.124) and (6.125), without volume exclusion (Figure 6.4(d)).

Hence volume exclusion in an off-lattice setting increases diffusivity, compared to reducing the

advective flux in the on-lattice regime. In both on- and off-lattice formulations, volume exclusion

modifies the equations in the equivalent ways for local and non-local sensing.

We find that the errors in our approximations and the predicted and actual volume exclusion effects

as the number and size of cells change is very similar to those with local sensing (Figures 6.7(b),

6.7(d) and 6.7(f)), so that it does not seem to matter whether the system is chemoattractive or

chemorepellent. Conversely, when changing R and d, whilst the volume-exclusion-effects surface has

not changed significantly (Figure 6.7(e)); our predictions are more exact (Figure 6.7(a)) and thus

our predicted-volume-exclusion effects surface (Figure 6.7(c)) is more similar to Figure 6.7(e). The

slight reduction in errors in the non-local sensing model compared to the local sensing case may be

explained by the change from chemotaxis down gradients in the chemical, leading to cell aggregation,

to chemotaxis up chemical gradients thus spreading individuals away from the initial population of

cells. We therefore expect errors due to our moment closure approximation to be reduced compared

to predictions for the model with local sensing since the positions of individuals are less correlated

in the model with non-local sensing.

6.4 Model 4: two spatial dimensions

To be able to compare these results with those in Chapters 2 and 3, we must extend our methods to

two spatial dimensions. We achieve this by combining the coupled systems techniques used in this
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(a) R = 0.1
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(b) R = 0.15
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(c) R = 0.2
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(d) R = 0.25

Figure 6.9: An investigation of the effects of varying R when cells consume chemoattractant at a
constant rate over their cell body. Each simulation is performed with α = 0.5, ∆t = 1, Ds = 0.0706,
d = 0.15, R = 0.15 and is averaged over 1, 000 runs. Thirty cells are initially placed at regular
intervals in the middle of the domain with the left most cell centre drawn from the normal distribution
at x ∼ N ((BR −BL)/2−NR/0.8, 10) and no flux conditions are taken at each boundary. Solutions

are plotted at t = 200. λs is taken to be 0.01/
√

δπ, so that λ̂s in equation (6.124) remains constant.
We therefore plot the numerical solution to equation (6.124), and simulations as δ changes.
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chapter, and the volume exclusion methods used in Chapter 5.

We use a similar model formulation to Section 6.3 with a continuum chemoattractant, s(x, t), and

individual-based cells that move a distance d in a direction θ at a rate T (s, θ,x, t) away from

x = (x, y). Cells consume the chemoattractant, s, which diffuses with diffusivity Ds, so that the

evolution of the chemoattractant is given by

∂s

∂t
= g(c, s,∇2s,x), (6.151)

= Ds∇2s − λss

N∑

j=1

e−(|x−cj |
2)/δ, (6.152)

where |x − cj |2 is the square of the Euclidean distance between x and the position, cj = (xj , yj),

of cell j. This is analogous to equation (6.107) since the exponential term in equation (6.152) is a

continuous approximation to a delta function, scaled so that cells consume chemoattractant with

rate λs at their cell centre.

As in Section 6.3.1, we find the pdf P (s,x, t) for the value of the chemoattractant, s(x, t), at position,

x = (x, y), and time, t. Then if G(c, s,∇2s,x) = s + ∆tg(c, s,∇2s,x) so that s(x, t + ∆t) =

G(c, s,∇2s,x) and

P (s,x, t + ∆t) =

∫

c̄

∫

f

Prob(the chemoattractant was G−1(c, s, f,x) and ∇2s = f) df dc̄,

(6.153)

where
∫

c̄
=
∫

c1
· · ·
∫

cN
and dc̄ = dc1 · · · dcN . Then to find the average chemoattractant profile,

we multiply equation (6.153) by s and integrate over all s:

∫

s

sP (s,x, t + ∆t) ds

=

∫

s

∫

c̄

∫

f

sP (G−1(c, s, f,x),x, t)Prob
(
∇2s = f

)
∣
∣
∣
∣
det

(
∂s

∂G(c, s, f,x)

)∣
∣
∣
∣

df dc̄ ds, (6.154)

taking the moment closure approximation

∫

c̄

∫

f

sProb(the chemoattractant was G−1(c, s, f,x) and ∇2s = f) df dc̄

≈
∫

s

∫

c̄

∫

f

sP (G−1(c, s, f,x),x, t)Prob
(
∇2s = f

)
∣
∣
∣
∣
det

(
∂s

∂G(c, s, f,x)

)∣
∣
∣
∣

df dc̄ ds. (6.155)
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Then

∫

s

sP (s,x, t + ∆t) ds

∫

ŝ

∫

c̄

∫

f

G(c, s, f,x)P (ŝ,x, t)Prob
(
∇2s = f

)
df dc̄ dŝ, (6.156)

by making the change of variables ŝ = G−1(c, s, f,x). Hence

∂〈s〉
∂t

= Ds

∫

f

fProb
(
∇2s = f

)
df − λs

∫

ŝ

ŝP (ŝ,x, t) dŝ

∫

x̂

N∑

j=1

Cj(x̂, t)e−|x−x̂|2/δ dx̂, (6.157)

= Ds〈∇2s〉 − λs〈s〉
∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂, (6.158)

for C =
∫

j Cj , and since 〈∇2s〉 = ∇2〈s〉 = ∇2ŝ for ŝ(x, t) = 〈s(x, t)〉,

∂ŝ

∂t
= Ds∇2ŝ − λsŝ

∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂. (6.159)

For δ ≪ 1 we may use Laplace’s method iterated over the two nested integrals, first Taylor expanding

C(x̂, t):

∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂ =
∑

nx

∑

ny

∂(nx+ny)C

∂xnx∂yny

∫

x̂

(x − x̂)nx

i!
e−(x−x̂)2/δ dx̂

∫

ŷ

(y − ŷ)ny

j!
e−(y−ŷ)2/δ dŷ,

(6.160)

and then extending the integral to R
2 (introducing at most exponentially small errors),

∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂

=
∑

nx

∑

ny

∂(nx+ny)C

∂xnx∂yny

∫ ∞

−∞

(x − x̂)nx

i!
e−(x−x̂)2/δ dx̂

∫ ∞

∞

(y − ŷ)ny

j!
e−(y−ŷ)2/δ dŷ, (6.161)

=
∑

nx,ny even

∂(nx+ny)C

∂xnx∂yny
2π

(
δ

2

)nx+1
2
(

δ

2

)ny+1

2

nx!!ny!!, (6.162)

= δπC(x, t) + O
(

δ
3
2

)

, (6.163)

where n!! is the product of every odd number from n to 1. Hence as δ → 0 with λ̂s = δπλs constant

∂ŝ

∂t
= Ds∇2ŝ − λ̂sŝC(x, t), (6.164)

so that ŝ is governed by a similar equation to the one-dimensional case (equation (6.119)), with a

166



scaling factor of δπ rather than
√

δπ, as was found in the one-dimensional model. It seems, therefore,

that extending our characterisation of consumption as a continuous approximation to the dirac delta

function to higher dimensions has been successful at reproducing the classical consumption term

−f(x)s, where f(x) is the rate of consumption at position x.

The pdf for the position of cell k at time t satisfies

Ck(x, t + ∆t)

= Prob(cell k at x stays at x) +

∫ π

−π

Prob(cell k moves in direction θ from x − dθ) dθ, (6.165)

=

cell k at x
︷ ︸︸ ︷

Ck(x, t)

(

stays at x
︷ ︸︸ ︷

1 − ∆t

∫ π

−π

∫

s

T (s, θ,x, t)P (s,x, t) dθ ds

)

+

cell k at x − dθ moves to x
︷ ︸︸ ︷

∆t

∫ π

−π

∫

s

T (s, θ,x− dθ, t)Ck(x − dθ, t)P (s,x, t) dθ ds, (6.166)

where dθ = d(cos θ, sin θ) and we have made the moment closure approximation

∑

l

∫

s

Prob(Cl
k(x, t) and T (s, θ,x, t)) ds ≈ 〈Cl

k(x, t)〉〈T (s, θ,x, t)〉, (6.167)

= Ck(x, t)

∫

s

T (s, θ,x, t)P (s,x, t) ds. (6.168)

As ∆t → 0 in equation (6.166)

∂Ck

∂t
=

∫ π

−π

∫

s

[T (s, θ,x− dθ, t)Ck(x − dθ, t) − T (s, θ,x, t)Ck(x, t)] P (s,x, t) ds dθ. (6.169)

To progress further with equation (6.169) we consider, as before, different forms for the rate of

movement, T (s, θ,x, t), due to cell sensing.

6.4.1 Local sensing

For local sensing of s we take T (s, θ,x, t) = αs(x, t) so that cells move down concentration gradients

of s. Then, if d is small compared to the length scale over which Ck changes we may Taylor expand

equation (6.169) in d so that

∂Ck

∂t
=

αd2π

2
∇2 (sCk) + O(d3), (6.170)
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and as d → 0 and α → ∞ with α̂ = αd2π/2 constant, summing equation (6.170) over k, C =

∑N
k=1 Ck satisfies

∂C

∂t
= α̂∇2 (sC) . (6.171)

We find, therefore, that using an equivalent model of local chemotactic sensing results in an equiv-

alent cell concentration equation to that derived in one dimension (equation (6.131)). We would

expect this to be the case, since moving into two spatial dimensions does not significantly impact on

the mechanism of migration, and only changes the multiplier α̂ from αd2 in one dimension to αd2π/2

in two dimensions. Thus in two dimensions, the diffusivity is changed. Indeed, even if we take a

constant y-coordinate, the equations do not reduce to those derived in Section 6.3, since taking a

slice through constant y does not reduce the model to the one-dimensional version. The model with

constant y-coordinate differs to the one-dimensional formulation in the distance an individual can

move during a single jump. Since in two dimensions individuals move a constant distance with a

particular angle of movement, if that angle is not 0 or π, then when it is projected down onto a

constant y-coordinate, it can be viewed as a smaller jump along the slice considered. Hence the

two-dimensional system cannot be readily reduced to the initial one-dimensional model. Numeri-

cal solutions to equations (6.164) and (6.171) compare well to averaged simulations of the model

(Figure 6.10(a)) for a range of parameter values (results not shown).

6.4.2 Non-local sensing

To simulate a chemoattractant we use non-local sensing, with T (s, θ,x, t) = αs(x + dθ, t) where

dθ = d(cos θ, sin θ). Then, Taylor expanding in terms of d, equation (6.169) becomes

∂Ck

∂t
=

αd2π

2

(
s∇2Ck − Ck∇2s

)
+ O(d3), (6.172)

and summing equation (6.172) over k, and letting d → 0 and α → ∞ with α̂ = αd2π/2 constant,

∂C

∂t
= α̂

(
s∇2C − C∇2s

)
, (6.173)

where C =
∑N

k=1 Ck. As with the local sensing case, the two-dimensional non-local sensing model

has a very similar equation (equation (6.173)) to the one-dimensional equivalent (equation (6.125)),

with the one-dimensional derivatives replaced by higher-dimensional equivalents. In addition, as with
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the local sensing case the scaling αd2 is reduced to αd2π/2 in the two-dimensional model due to the

increase in possible directions of movement. Numerical solutions to equations (6.164) and (6.173)

compare well to averaged simulations of the model (Figure 6.10(c)) for a range of parameter values

(result not shown).

6.4.3 Volume exclusion

We may consider volume exclusion using similar techniques to Chapter 5, by excluding all cell

movements which would result in cells overlapping either during or at the end of movement. We

may then integrate over the area the cell moves through to find the probability of any given movement

being prevented. With chemotactic movement,

Ck(x, t + ∆t) =

∫ π

−π

∫

s

{
Ck(x, t)
︸ ︷︷ ︸

cell k at (x, t)

[
no move attempted
︷ ︸︸ ︷

1 − α∆tT (s, θ,x, t) + α∆tT (s, θ,x, t)Pk(x, θ, t)
︸ ︷︷ ︸

attempted move fails

]

+

cell k at x − dθ tries to move
︷ ︸︸ ︷

α∆tT (s, θ,x − dθ, t)Ck(x − dθ, t)[1 − Pk(x − dθ, θ, t)]
︸ ︷︷ ︸

attempted move succeeds

P (s,x, t) ds dθ, (6.174)

where Pk(x, θ, t) is the probability that another cell prevents the movement of cell k from position

x in direction θ and P (s,x, t) is the probability of having chemoattractant s at position x at time

t. Pk(x, θ, t) is given by equation (5.5), so that

Pk(x, θ, t) =
∑

j 6=k

∫ d

0

π/2∫

−π/2

2R cosφ Cj(x + r cos θ + 2R cos(θ + φ), y + r sin θ + 2R sin(θ + φ), t) dφ dr.

(6.175)

6.4.3.1 Local sensing

For local sensing we substitute T (s, θ,x, t) = αs(x, t) into equation (6.174) to give

∂Ck

∂t
= α

∫ π

−π

[s(x − dθ, t)Ck(x − dθ, t) − s(x, t)Ck(x, t)] dθ

− α

∫ π

−π

[Pk(x − dθ, θ, t)s(x − dθ, t)Ck(x − dθ, t) − Pk(x, θ, t)s(x, t)Ck(x, t)] dθ, (6.176)
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as ∆t → 0. Substituting equation (6.175) into equation (6.176) and Taylor expanding in R and r,

since r ∈ [0, d] gives

∂Ck

∂t
=

αd2π

2
∇ ·



∇ (sCk)



1 − 4Rd
∑

j 6=k

Cj



+ 4πR2sCk

∑

j 6=k

∇ · Cj



+ O(d3), (6.177)

and as d → 0 with α̂ = αd2π/2 constant then, summing equation (6.177) over k,

∂C

∂t
= α̂

(

∇2 (sC) +
N − 1

N
4πR2∇ · (sC∇ · C)

)

, (6.178)

where C =
∑N

k=1 Ck. Thus volume exclusion results in modifications to equation (6.171) to give

equations (6.177) and (6.178), which are equivalent to those in one dimension (equation (6.131)

compared to equations (6.139) and (6.140)). As in one dimension this can be regarded as an increase

in the diffusion term due to a higher proportion of successful movements towards less populated

areas. The surfaces found by varying pairs of parameters and measuring the error between the

numerical solution to equation (6.178) and averaged simulations (Figures 6.11(a) and 6.11(b)), the

predicted volume exclusion effect (Figures 6.11(c) and 6.11(d)), and the actual volume exclusion

effect (Figures 6.11(e) and 6.11(f)) are changed, however, compared to the one-dimensional system

(see Figure 6.6). In particular, the error in both the R−d (Figure 6.11(a)) and R−N (Figure 6.11(b))

surfaces depends less sensitively on the parameter values and the R − d error is much smaller

compared to the volume exclusion found from data (Figure 6.11(e)). The reduction in errors may

be due to the smaller correlations between cell positions in two dimensions compared to the one-

dimensional case, where individuals cannot move past each other and therefore are constrained

to their initial ordering. Higher correlations reduce the accuracy of our derived equations in one

dimension, since our derivation assumes approximate independence of cell positions. The reduction

in errors thus improves the predicted exclusion surfaces (Figures 6.11(c) and 6.11(d)) so that they are

more qualitatively similar to those found from averaged simulation data (Figures 6.11(e) and 6.11(f)).

In addition, the error no longer peaks at the highest values of R and N , instead it is greatest where

there are a large number of small cells. This may be due to higher correlations from initialising a

large number of cells very close together thus leading to higher errors for a large group of small cells.

However, initialising a greater number of cells close together also increases the interactions between

the individuals, so that there are comparatively higher volume exclusion effects (Figures 6.11(d)

and 6.11(f)).
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6.4.3.2 Non-local sensing

For non-local sensing, T (s, θ,x, t) = αs(x + dθ, t) and equation (6.174) becomes

∂Ck

∂t
= α

∫ π

−π

[s(x, t)Ck(x − dθ, t) − s(x + dθ, t)Ck(x, t)] dθ

− α

∫ π

−π

[Pk(x − dθ, θ, t)s(x, t)Ck(x − dθ, t) − Pk(x, θ, t)s(x + dθ, t)Ck(x, t)] dθ, (6.179)

as ∆t → 0. Substituting equation (6.175) into equation (6.176) and Taylor expanding in R and r,

where r ∈ [0, d] gives

∂Ck

∂t
=

αd2π

2
∇ ·



(s∇Ck − Ck∇s)



1 − 4Rd
∑

j 6=k

Cj



+ 4πR2sCk

∑

j 6=k

∇ · Cj



+ O(d3), (6.180)

and as d → 0 with α̂ = αd2π/2 constant, summing equation (6.180) over k,

∂C

∂t
= α̂

(

s∇2Ck − Ck∇2s +
N − 1

N
4πR2∇ · (sC∇ · C)

)

, (6.181)

where C =
∑N

k=1 Ck. Thus the terms due to volume exclusion in equations (6.180) and (6.181) are

comparable to those in equations (6.177) and (6.178) and are again equivalent to those seen in one

dimension (equations (6.148) and (6.149)). As with local sensing, the error surfaces (Figures 6.12(a)

and 6.12(b)) are much reduced from the one-dimensional case (Figures 6.7(a) and 6.7(b)), due to

decreased correlations between individuals. For non-local chemotactic sensing, the volume exclusion

effects as R−N (Figure 6.12(f)) and R−d (Figure 6.12(e)) vary are similar to their one-dimensional

counterparts (Figures 6.7(e) and 6.7(f), increasing with R and N , but also increasing as R decreases

and is smaller than d. The non-monotonic profile of exclusion effects as R changes may be explainable

as in the diffusion-only case (see Chapter 5) by the playoff between migration enhanced by volume

exclusion (due to a higher proportion of successful moves away from populated areas) and migration

hindered by volume exclusion (due to a lower number of successful moves). Thus there is a region

in parameter space where the two effects cancel so that the model with volume exclusion is very

similar to the model without exclusion.
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(a) Local sensing
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(b) Local sensing with volume exclusion
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(c) Nonlocal sensing
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(d) Nonlocal sensing with volume exclusion

Figure 6.10: A comparison of typical averaged simulations of the two-dimensional off-lattice chemo-
taxis models described in Section 6.4 and numerical solutions to the derived equations for (a) local
sensing (equations (6.164) and (6.171)); (b) non-local sensing (equations (6.164) and (6.173)); (c)
local sensing with volume exclusion (equations (6.164) and (6.178)) and (d) non-local sensing with
volume exclusion (equations (6.164) and (6.181)). Each simulation is performed with R = 0.05,
d = 0.1, ∆t = 1, ∆x = ∆y = 0.5, Ds = 0.01, λs = 0.01, δ = 0.1, whilst α = 5 and simulations
are averaged over 1, 000 runs. Sixteen cells are initially placed in a regular grid in the middle of
the domain with the left most, bottom-most cell centre (x, y) drawn from the normal distribution
x, y ∼ N (10 −

√
2RN/0.8, 1) and no flux conditions are taken at each boundary.
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(f) Volume exclusion as N − R change

Figure 6.11: Exploring the effect of changing the likelihood of successful movement in Model 4 with
local chemotactic sensing by changing the distance moved, d, and the radius of a cell, R ((a), (c)
and (e)) and changing the occupied space in the model by changing the number of cells, N , and
the radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by
our approximations (the difference between the solution to equations (6.164) and (6.178) and the
average of our simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference
between the solution to equations (6.164) and (6.178) and equations (6.164) and (6.171); and (e)-(f)
the actual effect of volume exclusion (the difference between the average of our simulations and
the solution to equations (6.164) and (6.171). Differences are calculated using equation (5.20) and
non-varying parameters are: R = 0.05, d = 0.1, ∆t = 1, ∆x = ∆y = 0.5, Ds = 0.01, λs = 0.01,
δ = 0.1, whilst α = 0.05/d2 and simulations are averaged over 1, 000 runs. Sixteen cells are initially
placed in a regular grid in the middle of the domain with the left most, bottom-most cell centre
(x, y) drawn from the normal distribution x, y ∼ N (10 −

√
2RN/0.8, 1) and no flux conditions are

taken at each boundary.
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Figure 6.12: Exploring the effect of changing the likelihood of successful movement in Model 4 with
non-local chemotactic sensing by changing the distance moved, d, and the radius of a cell, R ((a),
(c) and (e)) and changing the occupied space in the model by changing the number of cells, N , and
the radius of a cell, R ((b), (d) and (f)). We consider the effect on: (a)-(b) the error introduced by
our approximations (the difference between the solution to equations (6.164) and (6.181) and the
average of our simulations); (c)-(d) our prediction of the effect of volume exclusion (the difference
between the solution to equations (6.164) and (6.181) and equations (6.164) and (6.173); and (e)-(f)
the actual effect of volume exclusion (the difference between the average of our simulations and
the solution to equations (6.164) and (6.173). Differences are calculated using equation (5.20) and
non-varying parameters are: R = 0.05, d = 0.1, ∆t = 1, ∆x = ∆y = 0.5, Ds = 0.01, λs = 0.01,
δ = 0.1, whilst α = 0.05/d2 and simulations are averaged over 1, 000 runs. Sixteen cells are initially
placed in a regular grid in the middle of the domain with the left most, bottom-most cell centre
(x, y) drawn from the normal distribution x, y ∼ N (10 −

√
2RN/0.8, 1) and no flux conditions are

taken at each boundary.
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6.5 Conclusions

In this chapter we have discussed the problems of analysing two-species hybrid models, in which

one species is modelled as a continuum whilst the other is modelled discretely. We have focussed on

chemotactic systems such as the biological system investigated in Chapters 2 and 3. We began with

on-lattice chemotactic systems with local or non-local sensing of the chemical. Local sensing resulted

in a chemorepellent system and the derived continuum system of equations included a diffusion term

together with an advection term down concentration gradients of the chemorepellent. In contrast, a

chemoattractant system results from non-local sensing and gives a similar system, with the advection

term leading to cell movement up concentration gradients of the chemoattractant. The addition of

volume exclusion did not significantly change the cell concentration profiles within the domain, but

did greatly increase cell concentrations next to the boundary when flux boundary conditions are

included. In these on-lattice models volume exclusion reduced the advection term proportional to

the cell concentration. Extending these models to a hybrid model with a continuum chemoattractant

resulted in exactly the same equations, which also compared well with averaged simulations of the

model.

We next extended our analysis to off-lattice hybrid models and found that the continuum equa-

tions derived were equivalent to those on-lattice, with a scaled chemical consumption term due to

our choice of coupling between the continuum chemical and the individual-based cells. Using the

techniques from Chapter 4, we incorporated volume exclusion into the model, resulting in a differ-

ent modification to our derived continuum equations than was found in the on-lattice models. In

particular, not only were the multipliers of the volume exclusion terms different to those on-lattice,

but also the form of the equations were different. In contrast to the reduced advection on-lattice,

volume exclusion in our off-lattice hybrid system modified the diffusion term in a similar way to the

diffusive system studied in Chapter 4.

Finally, using the analysis technique discussed in Chapter 5 we considered two spatial dimensions

and derived a continuum system from off-lattice hybrid chemotactic models. The systems derived

in this way were found to be straightforward two-dimensional generalisations of the systems in one

dimension, and volume exclusion modified the diffusion term as in Chapter 5.

Recall that our goal is to derive continuum equations for the chemotactic models in Chapters 2

and 3 to enable us to analyse the effects of changes of parameters on the distribution and speed

of migration of the cell population. In the final chapter we will put together the techniques from
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Chapters 4 to 6 to gain further insight into the models from Chapters 2 and 3.
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Chapter 7

Discussion and conclusions

We began in Chapters 2 and 3 by considering the migration of CNCCs, building a hybrid model of

cell migration with chemotaxis and using it to investigate the biological system and its response to

experimental perturbations. However, the time taken for each simulation of the model prohibited

a detailed investigation into the effects of varying parameter values. Our desire to investigate

such systems further motivated us to build systematic techniques to derive PDE representations of

individual-based and hybrid systems in one and two dimensions.

In this chapter we summarise the aims and results of this study and discuss how the methods derived

in Chapters 4 to 6 may be used in the future to analyse models such as those in Chapters 2 and 3.

Finally we consider more broadly, future avenues of research into the areas discussed here.

7.1 Summary and conclusions

In this thesis we have investigated the migration of CNCCs in the developing chick embryo using

mathematical modelling and analytical examination of the resulting IBMs. Specifically, our aim

was to determine possible mechanisms for cell migration consistent with experimental evidence, to

make predictions for experimental outcomes using these mechanisms and test our predictions against

the results of these experiments (Chapter 3). The resultant model motivated the development of

systematic techniques for predicting the results of one-dimensional individual-based simulations in

large numbers and extending these to two dimensions and chemotactic systems.
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7.1.1 Main results

The main results from this thesis are summarised here. We began in Chapter 1 by summarising the

research to date in: the experimental and biological fields of CNCC migration; the mathematical

modelling of the system and related migratory systems; and the derivation of continuum equations

from IBMs. In Chapter 2 we built an IBM of the system and demonstrated that a solely chemotactic

system, in which cells create a gradient by consuming chemoattractant and then move up that gra-

dient, results in later emerging cells being trapped next to the domain entrance. Thus we extended

this model to include two subpopulations of cells with later emerging cells gaining directional infor-

mation from earlier cells and postulate that this may be a possible mechanism for the migration of

the cell stream seen in vivo. We did not speculate on the precise anatomy of the migratory stream,

but instead present this as an alternative to the previously hypothesised chemotactic system.

In Chapter 3 we used the developed model to predict experimental outcomes. In particular, using a

chemoattractant gradient dynamically produced by cell consumption, our model predicted that:

• the cell population spread along the migratory route when the neural tube is removed partway

through migration, preventing later cells from entering the domain;

• cells transplanted from the leading portion of a donor migratory stream to the neural tube of

a host embryo fail to migrate out of the transplanted region;

• cells transplanted from the trailing portion of a donor embryo ahead of a host migratory stream

also fail to migrate out of the transplanted region.

The first two of these predictions were subsequently observed experimentally and, prior to collab-

orative discussions, the failure of migration in the front-to-back transplant had been regarded as a

failure of the experiment techniques, rather than evidence for our modelling hypotheses. The final

prediction was found to be incorrect and motivated further extensions to our model. Specifically,

allowing cells to change between subpopulations and modelling the transplanted region as smaller

than the migratory domain width enabled a successful simulation of the back-to-front transplant

experiment.

To analyse the hybrid models developed in Chapters 2 and 3 more closely under varying parameter

regimes required a measure of the general outcome of the model over many simulations. This

motivated us to develop systematic techniques for deriving PDE descriptions from IBMs which may

also then be compared with the more standard PDE representations. In addition, this allows for a
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more explicit connection between biological and experimental results and the parameterisation of

the mathematical model.

In Chapter 4 we began with one-dimensional off-lattice models with volume exclusion and derived a

modified diffusion equation with diffusivity dependent on the cell concentration. Next we extended

our models to include other mechanisms such as domain growth and biased movement. Our derived

equations with volume exclusion were consistently more accurate than the diffusion equation at

predicting the cell profile averaged over multiple simulations. We concluded, therefore, that it

is important to consider the space occupied by individuals, particularly in cases involving biased

movement.

Since the models studied in Chapters 2 and 3 were two-dimensional, in Chapter 5 we extended

our techniques from Chapter 4 into two dimensions. To enable analysis of the system with volume

exclusion, we extended the area excluded in a cell movement to all regions moved through during

the jump, rather than just the final destination. We then used Taylor expansions in the distance

moved in a jump and the radius of a cell to derive a continuum equation and demonstrated that

the derived PDE is of a similar form to those found in Chapter 4. The multiplier of the extra term,

however, was found to be the area, π(2R)2, excluded by an individual in two dimensions, rather than

the distance, 2R, excluded by an individual in one dimension. As before, the derived equations with

volume exclusion were consistently better at predicting the results of averaged simulations than the

equivalent equations without volume exclusion, and we also used our technique to derive equations

for models with additional mechanisms.

Finally, in Chapter 6 we considered models of chemotaxis and derived systems of equations for on-

and off-lattice hybrid models with local and non-local chemotactic sensing. The derived equations

consisted of a diffusion and an advection term, up or down gradients of the chemical, dependent on

the choice of local or non-local chemotactic sensing. We showed that hybrid chemotactic systems

result in similar continuum equations, but that the chemical consumption term must be scaled

accordingly. The effect of volume exclusion on the derived equation was found to differ for off-lattice

models, reducing the advection term, compared to the modification of the diffusivity found in on-

lattice models. Next we extended our analysis to two-dimensional models and demonstrated that

the equations derived were higher-dimensional equivalents to the one-dimensional systems studied.
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7.2 Future work

Future work may be divided into three main categories. Firstly, work is required to directly apply

the analytical techniques from Chapters 4 to 6 to the models used in Chapters 2 and 3. Secondly,

further investigation, both experimental and through modelling, into the biological system. Finally,

we consider other physical and biological systems that may be examined using similar techniques to

those in this work.

7.2.1 Analysing the models from Chapters 2 and 3

In Chapter 6 we derived continuum equations from a two-dimensional hybrid chemotaxis model with

volume exclusion. There are several additional mechanisms that we must consider to compare this

model with that constructed in Chapter 2. In particular, the model in Chapter 2 includes domain

growth parallel to the x-axis and a flux boundary condition at x = 0. These are easily incorporated

into our derivation in a similar way to Section 5.4 and Section 5.2.3.1 in the following sections.

However, the exact form of chemotaxis in our derivation differs from that used in Chapter 2. In

Chapters 2 and 3, chemotaxis is represented by attempted movement by each cell at each time step

in a random direction. Movement is successful if, and only if, the chemoattractant is favourable

in the desired direction and there are no other cells or boundaries blocking the movement. In

contrast, in Chapter 6 we modify the rate of movement directly so that movement is only attempted

at a rate determined with respect to the chemoattractant concentration. In addition, whilst the

chemoattractant sensing is non-local in our derivations, it is carried out at a point a distance d

away from the individual. Hence the sensing and movement distances are linked, and both tend

to zero during our derivation so that in the limit sensing can be approximated from the value and

derivatives of the chemical concentrations using Taylor expansions.

Future work, beyond the scope of this thesis, should consider the incorporation of truly non-local

sensing into our derivation. In addition, the inclusion of subpopulations of cells, and the mechanisms

governing trailing cells, is beyond the scope of this thesis. We therefore derive continuum equations

using the form of chemotaxis used in Chapter 6, with only one cell population, and use these equa-

tions to explore the behaviour of the model under different parameter regimes. This methodology

can then be used in the future with equations derived from the chemotactic mechanisms used in

Chapters 2 and 3.
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7.2.1.1 Domain growth

It is straightforward to include domain growth into our derivation from Section 6.4.3.2 in a similar

way to Section 5.4 since equation (6.174) may be written as

Ck(x, t + ∆t) = Ck(x, t) + ∆tf(s, Ck,x,dθ), (7.1)

where f(s, Ck,x,dθ) is determined by the type of cell movement in the model. Hence, if the domain

grows uniformly, parallel to the x-axis, so that the domain at time t is given by [0, L(t)] × [0, Ly],

δxδyCk(x, t + ∆t) = δxδy

(

1 − ∆tL′

L

)

(Ck(x · L, t) + ∆tf(s, Ck,x · L,dθ · L)) , (7.2)

Ck(x, t + ∆t) = Ck(x, t) + ∆tf(s, Ck,x,dθ) −
∆tL′

L
Ck − ∆tL′x

L

∂Ck

∂x
+ O(∆t2), (7.3)

where L = (1/(1 + ∆tL′/L), 1) ≈ (1 − ∆tL′/L + O(∆t2), 1). Then taking ∆t → 0

∂Ck

∂t
= f(s, Ck,x,dθ) −

∂

∂x

(
L′x

L
Ck(x, t)

)

. (7.4)

Thus the effect of domain growth is an additional term ∂/∂x (L′x/LCk(x, t)) to equation (6.181). If

we rescale x′ = x/L(t), so that the domain is stationary, with unit length, under the new coordinates

then, with non-local sensing, dropping the dashes,

∂C

∂t
+

L′

L
C = α̂

(

s∇2
LC − C∇2

Ls +
N − 1

N
4πR2∇L · (sC∇L · C)

)

, (7.5)

∇L =

(
1

L

∂

∂x
,

∂

∂y

)

, (7.6)

∇2
L =

(
1

L2

∂2

∂x2
,

∂2

∂y2

)

. (7.7)

Similarly, for the chemoattractant equation, using equation (6.157),

δxδy〈s(x, t + ∆t)〉 = δxδy

(

1 − ∆tL′

L

)(

〈s(x · L, t〉

+Ds∆t

∫

sn

snProb
(
∇2s = sn

)
dsn

−λs∆t

∫

ŝ

ŝP (ŝ,x, t) dŝ

∫

x̂

N∑

j=1

Cj(x̂, t)e−|x·L−x̂|2/δ dx̂



 , (7.8)
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Hence

∂〈s〉
∂t

= Ds〈∇2s〉 − λs〈s〉
∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂ − ∂

∂x

(
∆tL′x

L
〈s〉
)

, (7.9)

and, since 〈∇2s〉 =
∫

x
(∇2s) = ∇2(

∫

x
s) = ∇2〈s〉 = ∇2ŝ for ŝ(x, t) = 〈s(x, t)〉 , rescaling x′ = x/L(t)

and dropping dashes,

∂ŝ

∂t
+

L′

L
ŝ = Ds∇2

Lŝ − λsŝ

∫

x̂

C(x̂, t)e−|x−x̂|2/δ dx̂, (7.10)

where ∇L is as defined in equations (7.6) and (7.7). Finally, Taylor expanding in terms of δ as in

Section 6.4 gives

∂ŝ

∂t
+

L′

L
ŝ = Ds∇2

Lŝ − λ̂sŝC(x, t). (7.11)

7.2.1.2 Flux boundary condition

We consider an influx of cells at x = R, with new individuals inserted at uniformly distributed

y-positions with rate Pc whilst cancelling insertions that would result in overlapping cells. To derive

an appropriate boundary condition for equation (7.5) we proceed as in Section 5.2.3.1 to consider

the change in the expected number of cells in the domain at time t

∂

∂t

∫

D

C dx =

∫

D

∂C

∂t
dx, (7.12)

=

∫

D

α̂∇L ·
(

s∇LC − C∇Ls +
N − 1

N
4πR2 (sC∇L · C)

)

− L′

L
C dx, (7.13)

= α̂

(

s∇LC − C∇Ls +
N − 1

N
4πR2 (sC∇L · C)

)∣
∣
∣
∂D

− L′

L

∫

D

C dx, (7.14)

= − Lyα̂
1

L

(

s
∂C

∂x
− C

∂s

∂x
+

N − 1

N
4πR2

(

sC
∂C

∂x

)) ∣
∣
∣
x=R

− L′

L

∫

D

C dx, (7.15)

where D = [0, 1] × [0, Ly] is the domain with scaled x-coordinate, as described in Section 7.2.1.1.

However, this may also be expressed as

∂

∂t

∫

D

C dx = Pc

(

1 −
∫ 2R

0

∫ π/2

−π/2

rC(x + rr
θ) dr dθ

)

− L′

L

∫

D

C dx, (7.16)

= Pc

(
1 − 2πR2C

)
∣
∣
∣
x=R

− L′

L

∫

D

C dx, (7.17)
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where we Taylor expand in terms of R and r as before, and the final term is due to dilution from

the expansion of the domain. Hence

Pc

(
1 − 2πR2C

)
∣
∣
∣
x=R

= −Lyα̂
1

L

(

s
∂C

∂x
− C

∂s

∂x
+

N − 1

N
4πR2

(

sC
∂C

∂x

)) ∣
∣
∣
x=R

. (7.18)

If L(t) = Lx for all time, t, then without rescaling x this becomes

Pc

(
1 − 2πR2C

)
∣
∣
∣
x=R

= −LyLxα̂

(

s
∂C

∂x
− C

∂s

∂x
+

N − 1

N
4πR2

(

sC
∂C

∂x

)) ∣
∣
∣
x=R

. (7.19)

7.2.1.3 Parameters

We wish to use the same parameters set as in Table 2.1 and thus take Ly = 120, R = 7.5 and

L(t) given by equation (2.1). It is not clear, however, how best to use the experimentally found

cell movement speed (45µm/hr) to find α and d. Whilst λs and Ds are specified in the models

in Chapters 2 and 3, since there is little experimental data for the values taken, we will regard α,

Ds, λs and Pc as free parameters to explore. We have assumed that δ is small in our derivations,

however, when considering domain growth and rescaling the x-coordinate, we require δ/L ≪ 1 so

that δ = 30µm, as used in Chapters 2 and 3 still satisfies this requirement.

7.2.1.4 Results

We solve equation (7.5) with equation (7.18) over a range of parameter values with (Figure 7.1) and

without (Figure 7.2) volume exclusion. In Chapters 2 and 3 the profile of the cell population changes

as the y-coordinate varies, with the boundaries of the domain affecting the movement of individuals,

since sensing next to the boundary is over a smaller area than in the middle of the domain, resulting

in a lower concentrations being sensed next to the boundaries (see Figure 2.7). In contrast, the

localised approximation to chemotaxis in our derivation results in numerical solutions, C(x, y, t),

that are invariant with respect to y. We therefore only show the profile for a particular y-coordinate

as x changes. Since our experimental data are given for t ≤ 24 hours, we plot the cell concentration

profile at t = 24 hours. We compare to the distance migrated by cells in vivo (∼ 600µm, see

Figure 3.3) and in the model described in Section 2.5, which includes only chemotactic ‘leader’

cells, (∼ 500µm, see Figure 2.10). We find that taking α = 500/hr with d = 5µm does reproduce

the approximate migration distances seen in Figures 2.10 and 3.3 when volume exclusion is taken

into account (Figures 7.1(a) and 7.1(b)) and, furthermore, this distance is not increased further
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Figure 7.1: A comparison of cell concentration profiles after 24 hours with varying parameter combi-
nations, found by solving equation (7.5) numerically with volume exclusion, with equation (7.18) at
x = 0 and no flux boundary conditions at the other boundaries. Solutions are given as a slice through
constant y = 60µm. Other parameter values are: α = 500µm/hr, d = 5µm, Ds = 0.01µm2/hr,
λs = 0.01/hr, Pc = 1/hr, χ = 0/hr and R = 7.5µm.
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Figure 7.2: A comparison of cell concentration profiles after 24 hours with varying parameter
combinations, found by solving equation (7.5) numerically without volume exclusion, with equa-
tion (7.18) at x = 0 and no flux boundary conditions at the other boundaries. Solutions are given
as a slice through constant y = 60µm. Other parameter values are: α = 500µm/hr, d = 5µm,
Ds = 0.01µm2/hr, λs = 0.01/hr, χ = 0/hr and Pc = 1/hr.
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Figure 7.3: A comparison of cell concentration profiles at different time points with varying param-
eter combinations, found by solving equation (7.5) numerically with and without volume exclusion,
with equation (7.18) at x = 0 and no flux boundary conditions at the other boundaries. Solutions are
given as a slice through constant y = 60µm. Other parameter values are: α = 500µm/hr, d = 5µm,
Ds = 0.01µm2/hr, λs = 0.01/hr, χ = 0/hr and Pc = 1/hr.

by taking larger values of α or d (result not shown). The growth of the domain may account

for this surprising maximum movement distance since the migration profile is essentially fixed at

the gradient attained when the chemoattractant is reduced to zero due to the rapid growth-driven

dilution. When the chemoattractant is fully depleted there is no further migration in the domain

and the cell concentration is fixed. If chemoattractant production is included, however, whilst the

chemoattractant is not fully depleted, the growth of the domain effectively restricts further movement

since the distances moved during a time step is no longer significant compared to the length of the

domain (result not shown). Hence the steady state profile is essentially dependent on the form of the

domain growth, and not the diffusivity or rate of consumption of the chemoattractant (Figures 7.1(c)

and 7.1(d)). The final cell concentration profile is therefore not very sensitive to the parameter values

chosen, with the exception of the domain growth parameters, which have been well characterised

experimentally (Figure 2.2).

It is interesting to note that nearly all cell concentration profiles, over the parameter combinations

tried, rise substantially next to the left-hand boundary where there is an influx of cells. The only

parameter value that affects the concentration profiles after 24 hours is when a chemoattractant

production term, χs(1 − s), is included. At higher values of χ, the cell profile is less steep at the

boundary. However, the profile still rises towards x = 0, where the flux boundary condition inputs

new cells. Even when the flux rate, Pc, is reduced (Figure 7.1(e)) or the rate of movement, α

(Figure 7.1(a)), (or, equivalently, the distance moved, d; Figure 7.1(b)) is increased, there are no
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travelling wave-like solutions such as those predicted by Landman et al. (2003) in the enteric neural

crest, in which a fixed wavefront profile travelled with a given speed through the domain. The

difference in the two predictions is due to the lack of extensive proliferation of cells during migration

in the cranial neural crest. In comparison, the enteric neural crest invade primarily due to prolifera-

tion, leading to Fisher-type invasive waves. Indeed, in our model, the concentration profiles become

steeper at later time points, particularly in the case with volume exclusion (Figure 7.3(a)), as the

chemotactic flux in the positive x-direction exceeds the influx of cells at the x = 0 boundary. In the

model with volume exclusion (Figure 7.3(a)), the concentration profiles do not change significantly

after t = 24 hours, as the concentration at x = 0 is already at the maximum allowed by volume

exclusion and since the chemoattractant has been consumed to the point where there is no longer a

gradient in the domain, there is no further migration towards the x = L(t) boundary. When volume

exclusion is not incorporated into the model (Figure 7.3(b)), there is no maximum concentration to

limit the value of C at the x = 0 boundary and hence the density continues to increase. However the

chemoattractant is still consumed and hence the additional cell mass that is input at the boundary

does not migrate from there and instead increases the boundary values much higher than within

the domain (Figure 7.3(b)). Increasing Pc without volume exclusion does give greater penetration

into the domain, however the profile is the same qualitative shape as with smaller values of Pc so

that massive, biologically-unrealistic, cell concentrations are required at the boundary to allow the

density to reach 600µm in 24 hours (Figure 7.2(e)). Changing the other parameters does not sig-

nificantly affect the cell concentration profile at t = 24 hours (Figures 7.1(d) and 7.2(a) to 7.2(c)).

Hence the continuous equations derived from a similar model to that in Section 2.5 also display an

inability to successfully migrate to the end of the domain and colonise the migratory route.

To enable direct comparison of the models considered here with those used in Chapters 2 and 3, future

work will concentration on different ways of modelling chemotactic movement and the addition of

subpopulations of cells that migrate by the ‘following’ mechanism described in Section 2.6.0.1. Thus

to progress further with the analysis of the models described in Chapters 2 and 3 in the future it will

be necessary to include a second cell population (as in Chapter 5), and investigate ways of allowing

individuals to gain directional information from others. Finally, to compare with Chapters 2 and 3,

the chemotactic movement must be modelled as a constant rate of movement where the success

of movement depends solely on whether the chemoattractant gradient is favourable. In addition

we will consider a nonlocal sensing mechanism in which the distance at which the chemoattractant

is sensed is different to the distance moved at each time step. Thus we may take the limit as the
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movement distance tends to zero, whilst keeping the sensing distance non-zero. We might expect that

such a system would result in an integro-differential equation where non-local effects are explicitly

included in the resulting equation. Maintaining a non-zero sensing distance is also likely to lead to

non-homogeneous solutions over y-coordinates.

7.2.2 Further investigation into the biological system

Future work to further interrogate the biological system could focus on multiple different aspects

of the migratory system. It is clear that any further work will require close collaboration with

experimental biologists to provide further data and expertise, and enable feedback between modelling

predictions and experimental outcomes. In particular, it is unclear at present whether there are more

subpopulations than the two indicated by morphological analysis and gene profiling. Further work

could therefore focus on establishing more precisely the makeup of the stream population and the

mechanisms by which the subpopulations migrate. For example, cell adhesion profiles and cell-cell

contact dynamics give insight into cell movement patterns and methods of migration. Mathematical

modelling could focus on including and testing new potential mechanisms, and including different

proportions of the subpopulations to test whether there is an optimum makeup for the migratory

stream. In addition, it is possible that leading CNCCs may secrete substances that break down the

ECM, thus making it easier for later, trailing, cells to pass through the same routes. Thus when

trailing cells follow behind leading cells, this may not imply informational exchange between the

cells but rather that a ‘pathway’ has been established that increases the likelihood of other cells

migrating the same way. This could be tested by establishing whether the migratory routes of later

cells change during migration or are fixed en-route, whilst taking the growth of the domain into

account.

7.2.3 Future applications

We have presented a highly multi-disciplinary, collaborative exploration of a biological system using

mathematical modelling techniques and used this as motivation to develop techniques for deriving

continuum equations to analyse individual-based and hybrid models. These techniques are applica-

ble to a wide variety of IBMs in which mechanisms may be approximated as local to the individual.

For example, the multiple population models in Chapter 5 may be useful for studying diffusion and

directed migration in crowded environments. It is known that in many biological and physical sys-
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tems individuals or particles diffuse in an ‘anomalous’ way. That is, the mean squared displacement

of the individuals does not scale linearly with time as would be predicted by the diffusion equation.

There has been increasing interest in this effect, since it indicates that there may be a problem with

the many mathematical models of biological systems that assume that particles and individuals move

by diffusion. Our analysis of multi-population models may be used to investigate this phenomenon,

since we may include populations of cells of different sizes and migratory speeds and investigate the

dependence of the evolution of the mean squared displacement on these different parameters.

7.3 Concluding remarks

This thesis has investigated the migration of CNCCs through a close collaboration between mathe-

matical modellers and experimental biologists. Mathematical models have given greater insights into

in vivo experiments, some of which would have otherwise been regarded as failed experiments in-

stead of evidence for the hypothesised mechanisms. Greater insight into migratory models has been

gained through the development of techniques to analyse off-lattice individual-based and hybrid

models with volume exclusion.
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Appendix A

Numerical methods

A.1 The NAG library solver d03pc

Throughout this work we have solved systems of PDEs in one spatial dimension using the NAG

algorithm d03pc from the NAG toolbox for Matlab (Numerical Algorithms Group, documentation).

This routine solves a system of linear or nonlinear parabolic PDEs of the form

npde
∑

j=1

Pi,j
∂Uj

∂t
+ Qi = x−m ∂

∂x
(xmRi) , i = 1, 2, . . . ,npde, a ≤ x ≤ b, t ≥ t0,

(A.1)

where U = (U1, . . . , Unpde) and Ux = (U1x, . . . , Unpdex) are the vector of solutions and their

partial derivatives, respectively, Pi,j , Qi and Ri depend on x, t,U and Ux and m = 0 for Cartesian

coordinates. Boundary conditions are of the form

βi(x, t)Ri(x, t,U,Ux) = γi(x, t,U,Ux) i = 1, 2, . . . ,npde, (A.2)

where x = a or x = b. The algorithm uses finite differences and the method of lines to reduce

the problem to a system of ODEs which are then solved using a backwards differentiation formula

(BDF) method.

The solution is given at time t = tout and on the spatial mesh xi = idx, where dx is the mesh step

size. To generate solutions at multiple time points, tk = kdt, the routine is run multiple times with
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t0 = (k − 1)dt and tout = kdt. Then the solution at time tk and point xi is approximated by

uk
i ≈ U(xi, tk). (A.3)

A.1.1 Method of lines

The method of lines is used to reduce a parabolic system of PDEs into a larger system of ODEs

by discretising in space. For simple Cartesian problems a modified three-point method is used as

described here. The problem is assumed to have the form

D(x, t,U,Ux)Ut =
∂

∂x
(G(x,U)Ux) + f(x, t,U,Ux), (A.4)

so that P = D, Q = f and R = G(x,U)Ux. The problem is first reformulated into a system of two

first-order PDEs:

Ux = H(x,U)V :=
1

G(x,U)
V, (A.5)

Vx = Q(x,U,Ux,Ut) := D(x, t,U,Ux)Ut − f(x,U,Ux). (A.6)

Considering a typical mesh subinterval [α, β], then integrating equation (A.6) for V gives

V (x) = V (α) +

∫ x

α

Q(· · · ) dy, (A.7)

and substituting this into equation (A.5) and integrating reveals

U(β) = U(α) +

∫ β

α

(

V (α) +

∫ x

α

Q(· · · ) dy

)

H(· · · ) dx. (A.8)

Using β instead of α in the derivation gives

U(α) = U(β) −
∫ β

α

(

V (β) −
∫ β

x

Q(· · · ) dy

)

H(· · · ) dx. (A.9)
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Then, approximating H , D, and f by their values at a point ξ = (α + β)/2,

U(β) = U(α) +

∫ β

α

H0

(

V (α) +

∫ x

α

(D0Ut(α) − f0) dy

)

dx + σ + H0τα, (A.10)

U(α) = U(β) −
∫ β

α

H0

(

V (β) −
∫ β

x

(D0Ut(β) − f0) dy

)

dx − σ + H0τβ , (A.11)

where σ, τα and τβ are the errors due to the approximation of H ,
∫ x

α
Q dy and

∫ β

x
Q dy, respectively.

Here H0, D0 and f0 are the values of H , D and f , respectively, at ξ and U(ξ) is determined by

linear interpolation between α and β. Performing the integrations in equations (A.10) and (A.11),

and using Ux(ξ) = (U(β) − U(α)/(β − α):

G0Ux(ξ) = V (α) + (D0Ut(α) − f0)(ξ − α) + error, (A.12)

G0Ux(ξ) = V (β) − (D0Ut(α) − f0)(β − ξ) + error. (A.13)

Now if [α, β] = [xj−1, xj ] and gj−1/2 = G0Ux(ξ) then, changing notation in the obvious way,

gj−1/2 = vj−1 + (Dj−1/2u̇j−1 − fj−1/2)(xj−1/2 − xj−1), (A.14)

−gj−1/2 = − vj + (Dj−1/2u̇j − fj−1/2)(xj − xj−1/2), (A.15)

and adding equation (A.14) at [xj , xj+1] to equation (A.15) at [xj−1, xj ] then in the interior of the

domain

gj+1/2 − gj−1/2 = (Dj+1/2u̇j − fj+1/2)(xj+1/2 − xj) + (Dj−1/2u̇j − fj−1/2)(xj − xj−1/2). (A.16)

The boundary conditions are determined by solving the relevant equation from equations (A.14)

and (A.15) for vj and substituting that for g in the boundary condition. Thus a system of ODEs is

derived which must now be solved using a BDF method.

A.1.2 Backwards differentiation formula method

Equation (A.16) is of the form

∂u

∂t
= φ(u(t), t), (A.17)
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which is solved using a BDF method. An m-step BDF method finds an approximation to u at a time

step, t = tk, using a function of the approximations found at previous time steps, t = tk−1, . . . , tk−m.

The first six m-step methods are given by

BDF1: un+1 − un = hφ(un+1, tn+1),

BDF2: un+2 − 4
3un+1 + 1

3un = 2
3hφ(un+2, tn+2),

BDF3: un+3 − 18
11un+2 + 9

11un+1 − 2
11un = 6

11hφ(un+3, tn+3),

BDF4: un+4 − 48
25un+3 + 36

25un+2 − 16
25un+1 + 3

25un = 12
25hφ(un+4, tn+4),

BDF5: un+5 − 300
137un+4 + 300

137un+3 − 200
137un+2 + 75

137un+1 − 12
137un = 60

137hφ(un+5, tn+5),

BDF6: un+6 − 360
147un+5 + 450

147un+4 − 400
147un+3 + 225

147un+2

− 72
147un+1 + 10

147un = 60
147hφ(un+6, tn+6).

(A.18)

Methods for which m > 6 are not given here as they are not zero-stable, that is, a perturbation in

the initial conditions of size ǫ results in changes to the numerical solution that are greater than Kǫ

for any constant K not dependent on the step size, h.

A.2 The NAG library solver d03ra

Systems of PDEs in two spatial dimensions in this thesis are solved numerically using the NAG

toolbox for Matlab routine d03ra (Numerical Algorithms Group, documentation), which integrates

PDEs on a rectangular domain. As in d03pc (Appendix A.1), the method of lines is used to reduce

the system to ODEs which are then solved using a BDF method.

In two dimensions, d03ra reduces the PDE system

Fj(t, x, y, u, ut, ux, uy, uxx, uxy, uyy) = 0, j = 1, 2, . . . ,npde, (A.19)

by the method of lines to a system of ODEs using a standard centred second-order finite difference

scheme:

[
∂u

∂x

]

xj

=
uj+1 − uj

xj+1 − xj
. (A.20)

Here x and y in the domain xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and t0 ≤ t ≤ tout. The system

is solved on a user-supplied grid, with local uniform refinement where required. Grid refinement is

193



controlled by requiring that

max
i

(µs
i ) < 0.9, (A.21)

(or 1.0, depending on the grid level at the previous step) at each time step where

µs
i = max

j=1,npde

(

ws
j

umax
j σ

(∣
∣
∣
∣
(∆x)2

∂2

∂x2
uj(xi, yi, t)

∣
∣
∣
∣
+

∣
∣
∣
∣
(∆y)2

∂2

∂y2
uj(xi, yi, t)

∣
∣
∣
∣

))

, (A.22)

where ∆x and ∆y are the grid spacing parameters in the x- and y-directions, respectively, and σ

is the user-supplied tolerance and ws
j is a weighting factor. umax

j is the approximate maximum

absolute value of the jth component. If the condition in equation (A.21) is not satisfied, then a new

level of grid refinement is created, with all cells surrounding points at which µs
i > 0.25 quartered in

size.

The resulting system of ODEs is solved using a second-order two-step, implicit BDF method such

as BDF2 in equation (A.18).

The method also includes variable time step size, controlled by restricting the size of

µt
l =

√
√
√
√ 1

N

npde
∑

j=1

wt
j

ngpts(l)
∑

i=1

(
∆t

αij
ut(xi, yi, t)

)2

, (A.23)

where ngpts(l) is the total number of points on grid level l, N = ngpts(l)×npde, ∆t is the current

time step, ut is the first-order finite difference approximation to the time derivative of u, wt
j is a

weighting factor and

αij = τ

(
umax

j

100
+ |u(xi, yi, t)|

)

, (A.24)

for the user-specified tolerance, τ . It is required that maxl(µ
t
l) ≤ 1.0 at each time step, and the step

is retried at all levels if the condition fails.
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