AG for NT

1 Sheaves of Modules

Let X be a topological space. Recall what a sheaf is: F': U — F(U), V C U then we have a map F(U) — F(V)
with a uniqueness and existence property
We have (X, Ox) is a scheme.

Definition. A sheaf F' of abelian groups on X is an Ox-module if each F(U) is an Ox (U)-module in such a way
that for VC U, s € F(U) and t € Ox(U) we have (¢ - s)|y = t|y - sly € Ox (V).

A morphism of Ox-modules F — G is a morphism of sheafs ' — G such that each F(U) — G(U) is a
Ox (U)-module homomorphism.

Remark. Each F, is an Ox-module.
Example. New from Old:
1. (fi)ier, Ox -module then the sheaf associated to u +— @®;crf;(U) is also an Ox-module, ®;¢; f;.
2. If F,G are Ox-modules then sheaf associated tou — F(U) ®p, G(U) is an Ox-module. Denoted F ®o, G.

3. f:(X,0x) = (Y,0Oy), if Fis an Ox-module then f,F is an f.Ox-module. Have fy : Oy — f.Ox. So f.F
becomes an Oy-module.

4. As above, G an Oy-module, then F~1G is an f~'Oy-module. We have fz : Oy — f.Ox induces f~1Oy —
Ox. So Ox is also an f~'Oy-module. Define f*G := f~'G ®;-10, Ox. This is an Ox-module

Definition. A sheaf F' of Ox-module is locally free if we can cover X by open subset U; such that F'|U; is isomorphic
to a direct sum of copies of Ox|y,. And if we can just take one copy, we say that F' is an invertible sheaf.

Example (Key Example). e Let A be a ring, M an A-module, X = Spec A. We will define an Ox-module M as

follows. For f € A, set M(D(f)) = My = M ®a4 Ay, and Ox(D(f)) = Ay so My is an Ox(D(f))-module. The
restrictions maps My — M, for D(g) C D(f) is given by ® 4 M the map Ay — A,.

Exercise. Show that M is a B-sheaf, where B = {D(f)|f € A}.

Extend to M sheaf on X which is an O x-module

What are the stalks: Let f € Spec A, (M) = h%InD(f)af My = 1i_n>1D(f)9fAf ®KAM=M®a h%InD(f)af Ay =
M@AAngf

Remark. Given M — N an A-module homomorphism, we get O y-module morphism M— N by localizing.
Conversely, M — N induces an A-module homomorphism M(X) = M — N(X) = N. (This is done by taking
global sections)

Lemma 1.1. Let X = Spec A. Then

1. {M,;}ier a collection of A-module, then GBTE\I_JTL- = @ZE]M



2. L - M — N of A-modules is ezxact if and only if L — M — N is ezact. (i.e., exact on stalks)

3. M4 N=M®Ro, N

4. Let gb A — B be a ring homomorphzsm This induces f : Spec B — Spec A. Let M be a B- module Then
f*M M where the second M is viewed as an A-module via ¢. Let N be an A-module then f*(N ) N®a. ®a B.

5. Let f € A. (D(f), Ospec alD(f)) = Spec A (using the map A — Ay). Let M be an A-module, M|D(f) = M\;
as Ospec A, -module.

Proof. Exercise O

Definition 1.2. Let (X,Ox) be a scheme. An Ox-module F is quasi-coherent if we can cover X by open affine
U; = Spec A; such that F|y, = M, for some A;-module M;.
The sheaf F' is coherent if we can take each M; to be finitely generate (as modules)

1.1 Quasi-coherent Sheaves on affine schemes
Proposition 1.3. If X = Spec A, F' a quasi-coherent sheaf on X, then F = M for some A-module M.

Proof. Observe that: If F' M then I'(X, F) := F(X) is isomorphic to I'( X, ]T/f) & M. So given any quasi-coherent

sheaf F', we will show that FF = T'(X, F).

Let U = D(f) be principal open. F'(U) is an open Ox (U) = Ay-module. So we have a map I'(X, F'); — F(U)
defined by & — gf‘,? This map induces a morphism of sheaves I'(X, F) — F.

We want to show that this is an isomorphism. So we will show that I'(X, F)); — F(U) is an isomorphism for
each f € A. This is done using the following lemma

Lemma. Let X = Spec A. Take f € A, U = D(f), F a quasi-coherent sheaf on X. Then

1. If s e T'(X, F) is such that s|y =0, ten In > 0 such that f"s =0¢e (X, F)

2. Givent € F(U), there is n > 0 such that f"t is the restriction of a s € I'(X, F') (for some s)
Remark. 1. gives injectivity and 2. surjectivity of the map is the proposition.

Proof. Part 2. is an exercise
Can cover X by U; = Spec A; such that F|y, = M; for some A;-module M;. If D(g) C U; then M;|p(g) = (M;),.
So without loss of generality, U; = D(g;) for some g; € A. As X = Spec A is quasi compact, finitely many g; will

do. D(f) is covered by the sets D(f) N D(g;) = D(f - ¢:), and F(D(f - g;)) = (M;)s. Let s; be the image of s
in M;. Then s; = 0 in (M;)y, so there exists n > 0 such that f™s, = 0 in M;. By finiteness we can assume n is
independent of i. Then f™s restrict to 0 in each D(g;). Hence globally f™s = 0. O

O

Proposition 1.4. Let X = Spec A, F' is coherent sheaf on X. If A is Noetherian, then T'(X, F') is finitely generated
as an A-module. So in particular F = M for a finitely generated A-module M

Proof. Exercise O

Corollary 1.5. Let A be a ring, X = Spec A . Then the function M — M gives an equivalence of categories
between A-modules and quasi-coherent Ox modules. The ’Inverse’ is I'(X, —).
If A is Noetherian, same is true fro finitely generated A-modules and coherent O x-modules.

Corollary 1.6. If X is a scheme, F' an Ox-module, then F is quasi-coherent if and only if every open affine subset
U =SpecA, Fly =2 M for some A-module M.
If X is Noetherian, F is coherent, same is true with each M finitely generated.



1.2 Quasi-coherent Sheafs on Projs

Let S = ®¢>0S54 a graded ring. We have ProjS = {homogeneous prime ideals not containing Sy = ©4-054}. Basis
B = {D4(f)|f homogeneous, f € Sy} (where D, (f) =p € ProjS|f ¢ p})
Ox (D4 (f)) = S(y) = {degree 0 homogenous elements in S¢}. In fact (D (f), Ox|p, () = SpecS(y

Let M = ®pezM,, graded S-module. (So M, C M,1q4). We want to construct a sheaf of Ox-modules M

on X. We do this as follows: Set M(DJr(f)) = My = {degree 0 homogeneous elements of My} . This is an
S(r) = Ox (D (f))-module. Check that this a B-sheaf for B = {D,(f)} and check what the restriction maps are.

Set M to be the resulting sheaf on X. What are the stalks: (M )p = M,y =degree 0 homogeneous elements in
M(T~') where T = {homogeneous elements not in p}

Fact. M|D+(f) i]\/f(f/) is Ospec 55, -module. In particular M is quasi-coherent. If S is Noetherian, M is finitely

generated, then M is coherent.

1.2.1 Twisting

Let S be a graded ring and M a graded S-module, M = @,z M,. Define M (n) to be the S-module M, but with a
different grading given by M (n), = My4,. Thus M (n)(Dy(f)) = {degree n homogenous elements in M;}.

—

Definition 1.7. Let S be a graded ring. X = ProjS. For n € Z, define Ox(n) to be S(n). If F is any sheaf of
Ox-modules, define F(n) := F ®o, Ox(n).
Remark. Ox (1) is called the Twisting Sheaf of Serre.

Twisting is 'well-behaved’ provided that S is generated by S; as an Sp-algebra. E.g., A[xo,...,z,] for some ring
A. Indeed, we have the following proposition.

Proposition 1.8. S is a graded ring, X = ProjS. Assume that S is generated by S1 as an Sy-algebra. Then

1. Ox(n) is an invertible sheaf. (for all n)

e~

2. If M is a graded S-module, then M(n) >~ M(n).
3. Ox(ﬂ) ®o Ox(m) = Ox(m + n)
Proof.

Claim. The set D, (f) for f € Sy cover X. Proof is an exercise, uses the assumption S is generated by S; as an
Sp-algebra.

1. By the claim, it suffices to show that Ox(n)|p, () is isomorphic to g(vf) as Ospec 5(;,-modules. We know

e~

that Ox(n)|p, sy = S(n)s). Suffices to show that S(n) s = S5y as S(y)-modules. But S(n) ) =degree n
homogeneous elements in Sy. while S(y) =degree 0 homogeneous elements in Sy. We can construct a map
S¢ — S(n)s by s — f"s. This is an isomorphism as f is invertible in S¢.

2. More generally, we have M ®g N = M R0y N for graded S-modules M, N. But needs the assumption S is
generated by S; as an Sp-algebra (See Hartshornes for details)

3. Follows from part 2.



