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1 Recalling

Let X be a scheme, it is reduced at x ∈ X if the stalk OX,x is a reduced ring (it has not nilpotent elements)
A scheme is reduced if it is reduces at all points

Example. Spec(k[x]/(x2)) is not reduced.

Varieties are always reduced.
A scheme is irreducible if it is irreducible as topological spaces.
A scheme is integral if it is reduced and irreducible.

Example. Spec(k[t]/f(t)) is integral where f is a irreducible polynomial.
Spec(A×B) is not integral. A,B 6= 0.

A scheme is called normal at x ∈ X if OX,x is a normal domain (i.e, it is integrally closed in its fraction �eld)
A scheme is normal if it is normal at all points in X

Remark. (Easy to prove) A normal scheme is connected

Example. The scheme y2 = x3 − x2 (a loop) is not normal.

A scheme is Dedekind if it is normal and locally Noetherian of dimension 1. (By dimension, we mean the Krull
dimension, i.e., the maximal length of a chain of irreducible closed subschemes)

A scheme is Regular at x ∈ X, if OX,x is regular, i.e. OX,x is a local ring, mx its maximal ideal, OX,x/mx = k,
then dimOX,x = dimk

(
mx/m

2
x

)
A scheme is regular if it is regular at all points

Example. The above example is not regular.

Let f : X → Y be any morphism of schemes. Let V ⊆ Y be a�ne open, U ⊆ f−1(V ) to be a�ne open,
then OX(U) is an OY (V )-algebra. If f is quasi-compact and for all U, V as before, OX(U) is �nitely generated as
OY (V )-algebra then f is of �nite type.

A morphism is called �nite if for all V ⊂ Y open a�ne, f−1(V ) ⊂ X is a�ne and of �nite type as modules.
A morphism is called �at if f# : OY,f(x) → OX,x is a �at morphism of rings, i.e., OX,x is �at as OY,f(x)-module.

De�nition 1.1. Let k be a �led, and X a k-scheme of �nite type. Let k be an algebraic closure of k. X is smooth
at x ∈ X if the points lying above it in Xk are regular points.

X is smooth if it is smooth at every points.

De�nition 1.2. Let f : X → Y be a morphism of �nite type, suppose the rings are locally Noetherian, f is smooth
at x ∈ X if it is �at and Xf(x) → Spec k(f(x)) is smooth at x.
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2 Models

The following de�nition varies from author to author, but this is the �most general� de�nition (with the least
assumption made, e.g. connected irreducible etc)

De�nition 2.1. Let k be a �eld. A curve over k is a k-scheme of �nite type, whose irreducible components have
dimension 1.

De�nition 2.2. Let S be a scheme, a curve over S is a �at S-scheme whose �bers are curves over the corresponding
residue �elds.

From now on: let S be a Dedekind scheme. Let K = K(S) be its �eld of rational functions.

De�nition 2.3. A �bred surface over S is an integral projective �at scheme over S, X → S, of dimension 2.

De�nition 2.4. Let C be a smooth, projective, connected curve over K. A model C over S of C is a normal �bred
surface, C → S, together with an isomorphism Cη ∼= C (where η is the general point on S)

C
∼= //

��

C ×K ∼= Cη

%%yy
K

%%

C

yy
S

De�nition 2.5. A rational map Y 99K X is an equivalence class of maps (U, fU : U 99K X) where U is open, f is
a morphism. Two maps are equivalent if they agree on a non-empty open intersection of their domain

De�nition 2.6. A regular �bred surface X → S is minimal if every birational map Y 99K X of regular �bred
surfaces is a birational morphism.

Minimal regular model

Theorem 2.7 (Liu, 9.3.21). Let X → S be a regular �bred surface with generic �ber Xη of arithmetic genus ≥ 1.
Then X admits a unique minimal model over S up to unique isomorphism.

The arithmetic genus is 1− χk(OX). (where X is the Euler characteristic)

Jacobian Criterion. Let k be a �eld, X an a�ne variety, closed. X ⊂ Ank (with local coordinated T1, . . . , Tn),

x ∈ X(k), α = V (I). Let F1, . . . , Fr to be generators for I. The Jacobian J =
(
∂Fi

∂Tj

)
1≤i≤r,1≤j≤n

∈Mr×n(k). Then

X is regular at x if and only if rk Jx = n− dimOX,x.

3 Examples

Let C = Spec(Q[x, y]/(y2 − x3 + 49)), this is a curve. Construct a regular model over Z.
Let us tryX = Spec(Z[x, y]/(y2− x3 + 49)). Reduce y2− x3 + 49 modulo 7, we have y2 = x3 which has singular

point. Let m = (x, y, 7) then dimF7
(m/m2) = 3 > 2. Hence the scheme X is not regular at m.

Consider

X̃ := Blm(X) =


y2 = x3 − 72

7u = xw

7v = yw

uy = xv

where u : v : w is projective coordinated. Is X̃ regular? Regularity is local
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u = 1

X1 =


y2 = x3 − 72

7 = xw

7w = yw

y = xv

This gives 7v = yw = xzw = vxw = 7v, X1 =

{
x2v2 = x3 − x2w2

7 = xw
or in factorisation form X1 ={

x2(v2 − x+ w2) = 0

7− xw = 0
. We use Jacobian criterion J(x, v, w) =

(
−1 2v 2w
−w 0 −x

)
. X is regular if and

only if for all x ∈ X, rk J = 2. Hence we try to solve the following system

x2(v2 − x+ w2)

7− xw
−2vw

−2vx

x+ 2w2

and see there are no solutions. Hence X1 is regular

v = 1

X2 =


y2 = x3 − 7

7u = xw

7 = yw

uy = x

We also see this is smooth regular

w = 1

X3 =


y2 = x3 − 7

7u = x

7v = y

uy = xv

Again this is regular

Hence we have that X̃ is a regular model of C over Z.
We now consider a second example: Let C = Proj(Q[x, y, z]/(y2z − x3 + 49z3) be a projective curve. We want

to �nd a regular model over Z.
We try Y = Proj(Z[x, y, z]/(y2z − x3 + 49z3). Let us cover Y with three charts Y1, Y2 and Y3 which correspond

respectively to z = 1, y = 1 and x = 1.
Look at Y1, this is X of the previous example. So again, blow it up to get X̃.
Y2 = Spec(Z[x, z]/(z − x3 + 49z3)). If we look at the Jacobian, we get J(x, z) = (−3x2, 1 + 3 · 49z2), so we try

to solve the simultaneous equations 
z − x3 + 49z3 = z(1 + 49z2)− x3 = 0

−3x2 = 0

1 + 3 · 49z2 = 0

Hence Y2 → Z is smooth and Y2 is regular
The same calculation for Y3 shows that Y3 is regular
Ỹ regular model is obtained by blowing up Y1 as in the �rst example.
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4 Elliptic Curves

De�nition 4.1. An elliptic curve over a �eld K is a pair (E,O) where E is a smooth projective curve of genus 1
over K, and O ∈ E(K).

Let T = SpecA be an integral a�ne scheme.
K be the �eld of rational functions, K = Frac(OX(V )) ∼= OX,ζ where ζ is generic point

De�nition 4.2. A Weierstrass model of (E,O) elliptic curve over T is a triple (f,W, φ) where

• f ∈ A[x, y, z] homogeneous polynomial (called Weierstrass polynomial). f(x, y, z) = y2z + a1xyz + a3yz
2 −

x3 − a2x2z − a4xz2 − a6z3

• W = Proj (A[x, y, z]/(f(x, y, z)))

• φ is an isomorphism φ : E
∼→W ×SpecT SpecK with O 7→ (0 : 1 : 0)

The Weierstrass model over K is de�ned similarly

Theorem 4.3. If (E,O) is an elliptic curve and has a Weierstrass module over K, then it has a Weierstrass model
over T .

Proof. Idea: make f integral. Take the a�ne chart z = 1, f(x, y) = . . . , K = Frac(A), there exists 0 6= l ∈ A, such
that f1 = l6f ∈ A[x, y]. Take change or coordinates l2x = X and l3y = Y

Example. Take y2 = x3 + x over Q, this is the same as v2 = u3 + 16u.

Given a Weierstrass polynomial, we can de�ne ∆ = disc(f) (it is also the discriminant of the model). The
minimal Weierstrass model is a Weierstrass model which has minimal discriminant. Over Q there exists a minimal
Weierstrass model.

Remark. The minimal Weierstrass model do not need to coincide with the minimal regular model

Example. Let p be a prime in Z and consider Qp. Consider y2z = x3 +2x2z+4z3 is integral. ∆ = −28 ·29. Recall
the valuation vp(n) = ordp(n) = max{m ∈ N : pm|n}, so

vp(∆) =


8 p = 2

1 p = 29

0 else

There is a theorem which say if for all p ∈ SpecZ we have 0 ≤ vp(∆) < 12, then it is minimal. So X =
Proj(Z[x, y, z, ]/(yz2 − x3 − 2x2z − 4z3)) is a minimal Weierstrass model. We show that it is not regular. Look at
the a�ne chart z = 1, m = (x, y, 2) then dim(m/m2) = 3 > 2. Hence not regular.
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