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Books:

• Hasset: Introduction to Algebraic Geometry

• Cox, Little, O'shea Ideals, Varieties and Algorithm

1 Introduction and Basic De�nitions

Algebraic geometry starts with the study of solutions to polynomial equations.
e.g.: {(x, y) ∈ C2 : y2 = x3 − 2x+ 1} (an elliptic curve)
e.g.: {(x, y, w, z) ∈ C4 : x+ y + z + w = 0, x+ 2y + 3z = 0} (Subspace of C4)

The goals of this module is to understand solutions to polynomial equations �varieties�. That is
properties, maps between them, how to compute them and examples of them. Why would we do that?
Because varieties occurs in many di�erent parts of mathematics:
e.g.: A robot arm: any movement can be described by polynomial equations (and inequalities)
e.g.: {(x, y) ∈ (Q \ {0})2 : x4 + y4 = 1} = ∅ (by Fermat's Last Theorem)

Algebraic geometry seeks to understand these spaces using (commutative) algebra.

De�nition 1.1. Let S be the ring of polynomial with coe�cients in a �eld k.

Notation. S = k[x1, . . . , xn]

De�nition 1.2. The a�ne space is An = {(y!, . . . , yn) : yi ∈ k}. That is kn without the vector space
structure.

De�nition 1.3. Given polynomial f1, . . . fr ∈ S the a�ne variety de�ned by the fi is V (f1, . . . , fr) =
{y = (y1, . . . , yn) ∈ An : fi(y) = 0 ∀i}

Example. V (x2 + y2 − 1) = circle of radius 1

Note. Two di�erent sets of polynomials can de�ne the same varieties.

Example. V (x+ y + z, z + 2y) = V (y − z, x+ 2z) = {(2a,−a,−a) : a ∈ k}

Recall: The ideal generated by f1, . . . , fr ∈ S is I = 〈f1, . . . , fr〉 = {
∑r
i=1 hifi : hi ∈ S}. It is

closed under addition and multiplication by elements of S.

Lemma 1.4. V (f1, . . . , fr) = {y ∈ An : f(y) = 0∀f ∈ 〈f1, . . . , fr〉}. Thus if 〈f1, . . . , fr〉 = 〈g1, . . . gs〉
then V (f1, . . . , fr) = V (g1, . . . , gs).

Proof. We show the inclusion both ways:
⊆: Let y ∈ V (f1, . . . , fr). Then fi(y) = 0∀i, so let f =

∑r
i=1 hifi ∈ 〈f1, . . . , fr〉, then f(y) = 0.

⊇: Conversely if f(y) = 0∀f ∈ 〈f1, . . . , fr〉 then fi(y) = 0 ∀i. Hence y ∈ V (f1, . . . , fr).

Notation. If I = 〈f1, . . . , fr〉 we write V (I) for V (f1, . . . , fr).

De�nition. Let X ⊆ An be a set. The ideal of function vanishing on X is I(X) = {f ∈ S : f(y) =
0∀y ∈ X}

Example. X = {0} ⊆ A1. Then I(X) = 〈x〉.

Note that I ⊆ I(V (I)). To see this we have f ∈ I ⇒ f(y) = 0∀y ∈ V (I) ⇒ f ∈ I(V (I)). On the
other hand we don't have always equality.
e.g., I =

〈
x2
〉
∈ k[x], then V (I) = {0} ⊆ An, so I(V (I)) = 〈x〉 6=

〈
x2
〉
.

e.g., k = R and I =
〈
x2 + 1

〉
. Then V (I) = ∅ so I(V (I)) = 〈1〉 = R[x] 6= I2.
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2 Grobner Bases

Question: Given f1, . . . , fr, f ∈ S, how can we decide if f ∈ 〈f1, . . . , fr〉? That is: given generators for
I(X) how can we decide if f vanishes on X?

Example 2.1. • n = 1, k = Q. Is
〈
x2 − 3x+ 2, x2 − 4x+ 4

〉
=
〈
x3 − 6x2 + 12x− 8, x2 − 5x+ 6

〉
=

〈x− 2〉? Yes since we are in a PID so we can use Euler's algorithm to �nd the generator. This
is a solved problems

• Any n and f1, . . . , fr are linear

� Is y − z ∈ 〈x+ y + z, x+ 2y〉? Yes.
� Is 5x1+3x2−7x4+8x5 ∈ 〈x1 + x2 + x3 + x4 + x5, 3x1 − 7x4 + 9x5, 2x1 + 3x4〉 = 〈f1, f2, f3〉?
If f ∈ 〈f1, f2, f3〉 then f = af1 + bf2 + cf3 for a, b, c ∈ k. So the question now becomes: is

(5, 3, 0, 7, 8) ∈ row

1 1 1 1 1
3 0 0 −7 9
2 0 0 3 0

?

To solve this we use Gaussian elimination from Linear Algebra

As we seen from the above examples, we need a common generalization. This is the Theory of
Grobner bases.

De�nition 2.2. A term order (or monomial order) is a total order on the monomials (polynomial in
one variable) is S = k[x1, . . . , xn] such that:

1. 1 < xu for all u 6= 0

2. xu < xv ⇒ xu+w < xv+w for all w ∈ Nn.

Several term orders:

Lexicographic order Xu < Xv if the �rst non-zero element of v − u is positive.

Example. f = 3x2 − 8xz9 + 9y10. If x > y > z, then x2 > xz9 > y10 (since if v = (2, 0, 0), u =
(1, 0, 9) then v − u = (1, 0,−9).

Degreelicographic order Xu < Xv if

{
deg(Xu) < deg(Xv)

Xu <lex X
v if deg(Xu) = deg(Xv)

.

Example. f = 3x2 − 8xz9 + 9y10. Then xz9 > y10 > x2.

Reverse lexicographic order (revlex) X2 < Xv is

{
deg(Xu) < deg(Xv)

the last non-zero entry of v − u is negative if deg(Xu) = deg(Xv)

Example. f = 3x2 − 8xz9 + 9y10. Then y10 > xz9 > z2.

De�nition 2.3. Given a polynomial f =
∑
cuX

u ∈ S and a term order <, the initial term of f is
cvX

v with Xv > Xu for all u and cv 6= 0. This is denoted in<(f).

De�nition 2.4. The initial ideal of I with respect to < is in<(I) = 〈in<(f) : f ∈ I〉

Warning: If I = 〈f1, . . . , fr〉 then in<(I) is not necessarily generated by 〈in<(f1), . . . in<(fr)〉.
e.g., Let I = 〈x+ y + z, x+ 2y〉 and let the term ordering be x > y > z. Then in<(I) = 〈x, y〉.

De�nition 2.5. A set {g1, . . . gs} is aGrobner basis for I if {g1, . . . , gs} ⊆ I and in<(I) = 〈in<(g1), . . . , in<(gs)〉.

The point of this is that long division by a Grobner basis decides the ideal membership problem,
that is, is f ∈ 〈f1, . . . , fr〉?

De�nition 2.6. A monomial ideal is an ideal I ⊆ S generated by monomials Xu.
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Lemma 2.7. Let I be a monomial ideal, I = 〈Xu : u ∈ A〉 for some A ⊆ Nn. Then:

1. Xv ∈ I if and only if Xu|Xv for some u ∈ A.

2. If f =
∑
cvX

v ∈ I then each Xv with cv non-zero is divisible by some Xu for U ∈ A, hence they
lies in I.

Proof. Note that part 1. is a special case of part 2.
Since f ∈ I we can write f =

∑
huX

u with u ∈ A, hu ∈ S and all but �nitely many are 0. Let us
expand the RHS as a sum of monomials. Then each term is a multiple of some Xu so lies in I, hence
the same is true for the terms of f .

Theorem 2.8 (Dickson's Lemma). Let I = 〈Xu : u ∈ A〉 for some set A ⊆ Nn, then there exists
a1, . . . as ∈ A with I = 〈Xa1 , . . . , Xas〉.

Proof. The proof is by induction on n.

n = 1: We have I = 〈Xu〉 for U = min{U : U ∈ A}, this uses the fact that N is well ordered

n > 1: Name the variables of the polynomial ring x1, . . . , xn−1, y.. Let J =
〈
Xu : ∃j ≥ 0withxuyj ∈ I

〉
⊆

k[x1, . . . , xn−1]. By induction hypothesis J = 〈Xai1 , . . . Xais 〉 where (aij ,mj) ∈ A for some
mj ∈ N. Let m = max(mj). For 0 ≤ l ≤ m−1, let Jl =

〈
Xu : xuyl ∈ I

〉
⊆ k[x1, . . . , xn−1].

So again by induction we have that Jl =
〈
xbl1 , . . . , xbr(l)

〉
where bls ∈ Nn−1 and xblsyl ∈ I.

We now claim that I =
〈
xblsyl : 0 ≤ l ≤ m− 1, 1 ≤ s ≤ r(l)

〉
+ 〈xaijymj : 1 ≤ j ≤ s〉.

Indeed if xuyj ∈ I, if j < m then xu ∈ Jj so xbjs |xu for some bjs so x
bjsyj |xuyj . If j ≥ m

then xu ∈ J , so there is ai with X
ai |Xu so Xaiymi |Xuyj . In particular, every monomial

generator of I lies in
〈
xblsyl, xaijymj

〉
so the ideals are equal and I is �nitely generated.

For each of the �nite number of generators we can �nd ai ∈ A with Xai dividing the
generator (using the previous lemma).

Corollary 2.9. A term order is well ordered (every set of monomials has a least element)

Proof. If not, there would be an in�nite chain Xu1 > Xu2 > . . . . Let I = 〈Xui : i ≥ 1〉 ⊆ k[x1, . . . , xn],
then by Dickson's lemma I = 〈Xui1 , . . . , Xuis 〉 for some i1 < i2 < · · · < is. In particular for j ≥ is
there exists l such that Xuil |Xuj . Thus Xuj = XuilXw, but then Xuil < Xuj because 1 < XW . This
is a contradiction.

Corollary 2.10. Let I be an ideal in k[x1, . . . , xn] then there exists g1, . . . gs ∈ I with in<(I) =
〈in<(g1), . . . , in<(gs)〉. Hence a Grobner basis exists.

Proof. By de�nition in<(I) = 〈in<(f) : f ∈ I〉. By Disckson's lemma, there exists g1, . . . , gs ∈ I with
〈in<(g1), . . . , in<(gs)〉 = in<(I).

2.1 The Division Algorithm

Input: f1, . . . , fs, f ∈ S, < the term order

Output: Expression of the form
∑s
i=1 hifi + r where hi ∈ S and r =∑

cuX
u with {cu 6= 0⇒

Xu is not divisible by in<(fi)∀i}, such that if in<(f) = cuX
u, in<(hifi) =

cviX
vi then Xu ≥ Xvi ∀i.

Step 1: Initialize h1 = · · · = hs = 0, r = 0, p = f.
Step 2: While p 6= 0 do:

i = 1
Divisionoccured = false

While i ≤ s and Divisionoccured = false do:

If in<(fi)| in<(p) then:

hi = hi +
in<(p)
in<(fi)

p = p− in<(p)
in<(fi)

fi
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Divisionoccured = true

Else:

i = i+ 1
If Divisionoccured = false then:

r = r + in<(p)
p = p− in<(p)

Step 3: Output: h1, . . . , hs, r.

Example 2.11.

Input: f1 = x+ y + z, f2 = 3x− 2y, f = 5y + 3z, < lex (x < y < z)
Step 1: h1 = 0, h2 = 0, r = 0, p = 5y + 3z.
Step 2: i = 1

Divisionoccured = false

does in<(f1)| in<(p)? Yes:

h1 = 0 + 3
p = 5y + 3z)− 3 · (x+ y + z) = −3x+ 2y
Divisionoccured = true

Step 2: i = 1
Divisionoccured = false

does in<(f1)| in<(p)? No:

i = 2
does in<(f2)| in<(p)? Yes:

h2 = 0 +−1
p = −3x+ 2y + (−1) · (3x− 2y) = 0
Divisionoccured = true

Step 3: Output: h1 = 3, h2 = −1, r = 0

Note that the division algorithm depends on the ordering. (In the above example if x > y > z then
the output is h1 = h2 = 0 and r = 5y + 3z)

Proposition 2.12. The above algorithm terminates with the correct output .

Proof. As each stage the initial term in<(p) decreases with respect to <. Since < is a well-order, this
cannot happen an in�nite number of times, hence the algorithm must terminate.

At each stage we have f = p+
∑
hifi+r, where hifi and r satisfy the condition, so when it outputs

with p = 0, the output has the desired correct form.

Proposition 2.13. If {g1, . . . , gs} is a Grobner basis for I with respect to <, then f ∈ I if and only
if the division algorithm outputs r = 0.

Proof. The division algorithm writes f =
∑
higi + r, where no monomial in r is divisible by in<(gi).

Thus f ∈ I if and only if r ∈ I. Now if r 6= 0 then in<(r) /∈ in<(I) = 〈in<(g1), . . . , in<(gs)〉, so r /∈ I.
Hence r = 0 if and only if r ∈ I.

Corollary 2.14. If {g1, . . . , gs} is a Grobner basis for I then I = 〈g1, . . . , gs〉

Proof. We have 〈g1, . . . , gs〉 ⊆ I by the de�nition of Grobner basis. If f ∈ I, then we divide f by
g1, . . . , gs to get f =

∑
higi + r, but r = 0. So we have f ∈ 〈g1, . . . , gs〉, hence I ⊆ 〈g1, . . . , gs〉.

Corollary 2.15 (Hilbert Basis Theorem). Let I ⊆ S be an ideal. Then I is �nitely generated.

Proof. We know that I has a �nite Grobner basis (since monomial ideals are �nitely generated). By
the previous corollary, this Grobner basis generates I

De�nition 2.16. A ring R is Noetherian if all its ideals are �nitely generated.

Hence the Hilbert basis theorem says S is Noetherian. Note that there is a standard algorithm (the
Buchberger algorithm) to compute Grobner bases.

De�nition 2.17. A reduced Grobner basis for I with respect to <, is a Grobner basis of I which
satis�es:

5



1. Coe�cients of in<(gi) is 1

2. No in<(gi) divides any other-way

3. No in<(gi) divides any other term of gj .

Such a reduced Grobner basis exists and is unique. With this we can check whether two ideals are
equal. To do this we �x a term order and compute a reduced Grobner basis for I and J .
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3 Zariski Topology

Recall that a topological space is a set X and a collection θ = {U} of subsets of X called open sets,
satisfying:

1. ∅ ∈ θ

2. X ∈ θ

3. If U,U ′ ∈ θ then U ∩ U ′ ∈ θ

4. If Uα ∈ θ for α ∈ A, then ∪αUα ∈ θ.

A set Z is closed if its compliment is open.

De�nition 3.1. The Zariski Topology on An has close set V (I) for I ⊆ S an ideal.

Example. In A1, under the Zariski Topology, the closed sets are �nite set, A1 or ∅. (A1 = V (0) and
∅ = V (S))

Recall: If I, J are ideals in S then I + J = {i+ j : i ∈ I, j ∈ J}, while IJ = 〈ij : i ∈ I, j ∈ J〉. In
terms of generators, if I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gr〉 then I + J = 〈f1, . . . , fs, g1, . . . , gs〉 and
IJ = 〈figj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉.

Proposition 3.2. Let X = V (I) and Y = V (J) be two varieties in An then:

• X ∩ Y = V (I + J)

• X ∪ Y = V (I ∩ J) = V (IJ)

Proof. • Let y ∈ X ∩ Y . Then f(y) = 0 for all f ∈ I and g(y) = 0 for all g ∈ J . So (f + g)(y) = 0
for all f ∈ I and g ∈ J . Hence by de�nition y ∈ V (I + J).
Conversely: let y ∈ V (I + J), then h(y) = 0 for all h = f + 0 with f ∈ I, hence y ∈ V (I).
Similarly h(y) = 0 for all h = 0 + g with g ∈ J , hence y ∈ V (J). So y ∈ X ∩ Y .

• Let y ∈ X ∪ Y . Then y ∈ X or y ∈ Y . If y ∈ X then f(y) = 0∀f ∈ I, so f(y) = 0∀f ∈ I ∩ J ,
hence y ∈ V (I ∩ J). Similarly if y ∈ Y then g(y) = 0∀g ∈ I, so g(y) = 0∀g ∈ I ∩ J , hence
y ∈ V (I ∩ J).
Let y ∈ V (IJ). Then h(y) = 0∀h = fg with f ∈ I, g ∈ J . Thus h(y) = f(y)g(y)∀f ∈ I, g ∈ J .
Suppose y /∈ Y , that is there exists g ∈ J with g(y) 6= 0, then f(y) = 0∀f ∈ I, hence y ∈ V (I) =
X. Thus we have y ∈ X ∪ Y . So V (IJ) ⊆ X ∪ Y .
Note that I ∩ J ⊇ IJ so V (I ∩ J) ⊆ V (IJ) (This follows from the general fact I ⊆ J ⇒ V (J) ⊆
V (J))
We have shown V (I ∩ J) ⊆ V (IJ) ⊆ X ∪ Y ⊆ V (I ∩ J), thus they are all equal.

In fact, if {Xα : α ∈ A} is a collection of varieties in An with Xα = V (Iα), then ∩αXα = V (〈∪Iα〉).
Challenge question: What goes wrong with arbitrary union.

Corollary 3.3. The Zariski topology is a topology on An.

Note: This topology is weird compare to the Euclidean topology, for example it is not Haussdorf
and open sets are dense.

3.1 Morphism

De�nition 3.4. Amorphism is a map φ : An → Am with φ(y1, . . . , yn) = (φ1(y1, . . . , yn), . . . , φm(y1, . . . , yn))
where φ ∈ k[x1, . . . , xn].

Example. φ : A2 → A2 de�ned by φ(x, y) = (x2 − y2, x2 + 2xy + 3y2).

Morphism plays the role of continuous functions in topology. Questions: are all continuous functions
morphism? No.
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Example. f(x) =

{
x+ 1 x /∈ Q
x x ∈ Q

. This is a continuous function in the Zariski topology. We don't

want this, hence why we restrict to morphism.

De�nition 3.5. For f ∈ k[z1, . . . , zm], φ : An → Am, the function f ◦ φ ∈ k[x1, . . . , xn] is called the
pullback if f by φ.

Note. φ∗f = f ◦ φ.
Recall: a k-algebra is a ring R containing the �eld k. A k-algebra homomorphism is a ring

homomorphism φ with φ(a) = a∀a ∈ k.

Lemma 3.6. The map φ∗ : k[z1, . . . , zm]→ k[x1, . . . , xn] is a k-algebra homomorphism

• φ∗(1) = 1

• φ∗(0) = 0

• φ∗(a) = a ∀a ∈ k

• φ∗(fg) = φ∗(f)φ∗(g)

• φ∗(f + g) = φ∗(f) + φ∗(g)

Proof. Exercise

Note: The polynomial ring is the ring of morphism from An to A1.

De�nition 3.7. The coordinate ring k[X] of a variety X = V (I) ⊆ An is the ring of polynomial
functions from X to A1.

Equivalently: k[X] = {f ∈ k[x1, . . . , xn]}/ ∼ where f ∼ g if f(y) = g(y) for all y ∈ X.

Note. f(y) = g(y)∀y ∈ X if and only if (f − g)(y) = 0 ∀y ∈ X, that is, if and only if f − g ∈ I(X). So
k[X] = k[x1, . . . , xn]/I(X) and in particular k[X] is a ring.

Example. • X = V (x2 + y2 − 1) then k[X] = k[x, y]/
〈
x2 + y2 − 1

〉
• X = V (x3) ⊆ A1 then k[X] = k[x]/ 〈x〉 ∼= k.

De�nition 3.8. Fix X = V (I) ⊆ An. Two morphism φ, ψ : An → Am are equal in X if the induced
pullback φ∗, ψ∗ : k[z1, . . . , zm]→ k[Z] = k[x1, . . . , xn]/I(X) are equal.

De�nition 3.9. A morphism φ : X → An is an equivalence class of such morphism.

Example 3.10. Let X = V (x2 + y2 − 1), ψ : A2 → A1 de�ned by ψ(x, y) = x4 and φ : A2 → A1

de�ned by φ(x, y) = (y2 − 1)2. We claim that φ = ψ on X since ψ∗ : k[z] → k[x, y] is de�ned by
z 7→ x4 while φ∗ : k[z]→ k[x, y] is de�ned by z 7→ (y2 − 1)2. But k[X] = k[x, y]/(x2 + y2 − 1), and in
there x4 = (y2 − 1)2, hence φ∗ = ψ∗.

Lemma 3.11. If φ, ψ : An → Am are equal on X then φ(y) = ψ(y) for all y ∈ X.

Proof. If φ(y) 6= ψ(y) for some y ∈ X then they di�er in some coordinate i. Then zi(φ(y)) 6= zi(ψ(y)),
so φ∗zi(y) 6= ψ∗zi(y). Hence φ∗zi − ψ∗zi /∈ I(X), so the pullback homomorphism φ∗ and ψ∗ are
di�erent.

De�nition 3.12. Let X ⊆ An and Y ⊆ Am be varieties. A morphism φ : X → Y is a morphism
φ : X → Am with φ(X) ⊆ Y .

Example. Let X = A1 and Y = V (cy− y2) ⊆ A3 and let φ : A1 → A3 be de�ned by φ(t) = (t, t2, t3).
Then φ∗ : k[x, y, z] → k[t] is de�ned by x 7→ t, y 7→ t2 and z 7→ t3. Since tt3 − (t2)2 = 0, φ(A1) ⊆ Y ,
so φ is a morphism from A1 → Y .

Proposition. Let X ⊆ An, Y ⊆ Am be varieties. Any morphism φ : X → Y induces a k-algebra
homomorphism φ∗ : k[Y ] → k[X]. Conversely given a k-algebra homomorphism from k[Y ] → k[X] is
φ∗ for some morphism φ : X → Y .
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Proof. Let φ : X → Y be a morphism. Since φ(X) ⊆ Y we have f ◦ φ(x) = 0 ∀x ∈ X and
f ∈ I(Y ). Hence φ∗f ∈ I(X)∀f ∈ I(Y ), therefore the induced map φ∗ : k[z1, . . . , zm] → k[X] =
k[x1, . . . , xn]/I(X) factors through k[Y ]. So given a morphism φ : X → Y we get φ∗ : k[Y ]→ k[X].

Conversely given a k-algebra homomorphism α : k[Y ]→ k[X] it su�ces to �nd a k-algebra homo-
morphism α̃∗ : k[z1, . . . , zm]→ k[x1, . . . , xn] for which we have a commutating diagram

k[z1, . . . , zm]
α̃∗ //

i∗Y
��

k[x1, . . . , xn]

i∗X
��

k[Y ]
α // k[X]

Then α̃ will be a morphism An → Am with α̃(X) ⊆ Y . We construct such α̃∗ as follow. Let
gi be any polynomial in k[x1, . . . , xn] with i∗X(gi) = α(i∗Y (zi)). Set α̃∗ = gi and extend as a k-
algebra homomorphism. (gi exists since the map i∗X is surjective). This de�nes α̃∗ : k[z1, . . . , zm] →
k[x1, . . . , xn] and i

∗
X ◦ α̃∗(z1) = α ◦ i∗Y (zi) by construction, hence the diagram commutes.

Example 3.13. Let φ∗ : k[t] → k[x, y, z]/(x2 − y, x3 − z). Then φ∗(t) = x and φ∗(t) = x+ x2 − y is
the same. This is φ∗ for φ : V (x2− y, x3− z)→ A1 de�ned by φ(x, y, z) = x (or φ(x, y, z) = x+x2− y
as while they are di�erent morphism they agree on X)

So to sum up: Morphism φ : X → Y are the same as k-algebra homomorphism of the coordinate
rings φ∗ : k[Y ]→ k[X]. note that the homomorphism goes the other way! (contragradient).

Exercise 3.14. If X
φ→ Y

ψ→ Z with X
α→ Z. Then α∗ : k[Z]→ k[X] is φ∗ ◦ ψ∗.

De�nition 3.15. An isomorphism of a�ne varieties is a morphism φ : X → Y for which there is a
morphism φ−1 : Y → X with φ ◦ φ−1 = idY and φ−1 ◦ φ = idX .

An automorphism of an a�ne variety is an isomorphism φ : X → X.

WARNING: A morphism that is a bijection needs not be an isomorphism.

3.2 Images of varieties under morphism

That is, given φ : An → Am what is φ(X)?
Warning: φ(X) needs not to be a variety. For example X = V (xy − 1) ⊆ A1 and φ : A2 → A1

de�ned (x, y)→ x. Then φ(X) = A1\{0}. (REMEMBER THIS EXAMPLE!). Notice that the closure
of φ(X), is φ(X) = A1.

Another question is: Given X ⊆ An and φ : An → Am, how do we compute φ(X). We use
the following clever trick: let X ⊆ An, �rst we send x 7→ (x, φ(x)), then project unto the last m
coordinates, i.e., φ(X) is the composition of the inclusion of X into the graph of φ with the projection
onto the last m coordinates.

This breaks the problem into two parts:

• Describe the image of X 7→ An × Am

• Describe π(Y ) for Y ⊆ An × Am, where π is the projection onto the last m coordinates.

For part 1, the image of X = V (I) is V (I) ∩ V (zi − φi(x)) ⊆ An × Am = (x1, . . . , xn, z1, . . . , zm)

Example. Let φ : A2 → A2 de�ned by φ(x, y) = (x + y, x − y) and let X = V (x2 − y2). Then the
graph of X in A2 × A2 is V (x2 − y2, z1 − z − y, z2 − x+ y) ⊆ (x, y, z1, z2). Then φ(x, y) = (z1, z2)

Theorem 3.16. Let X ⊆ An be a variety and let φ : An → Am be the projection onto the last m
coordinates. Then π(X) = V (I(X) ∩ k[xn−m+1, . . . , xn])

Note. We'll soon show that if k = k then we can replace I(X) by I. But it is not true otherwise, for
example, consider k = R and X = V (x2y2 + 1) ⊆ A2 and π : (x, y) 7→ y. Then X = ∅, π(X) = ∅ and
I(X) = 〈1〉. But

〈
x2y2 + 1

〉
∩ k[y] = 〈0〉

9



Proof. If f ∈ I(X)∩k[xn−m+1, . . . , xm] then f(y) = 0 ∀y ∈ X, so f(yn−m+1, . . . , yn) = 0∀(yn−m+1, . . . , yn)
with y ∈ X, hence f(π(y)) = 0∀y ∈ X and thus π(X) ⊆ V (I(X) ∩ k[xn−m+1, . . . , xn]).

Conversely if g ∈ I(π(X)) then g(yn−m+1, . . . , yn) = 0∀y = (y1, . . . , yn) ∈ X. So g ∈ I(X) ∩
k[xn−m+1, . . . , xn] so I(π(X)) ⊆ I(X) ∩ k[xn−m+1, . . . , xn]. But since π(X) = V (I(π(X)) this shows
V (I(X) ∩ k[xn−m+1, . . . , xn]) ⊆ π(X).

This leaves the question: Given I ⊆ k[x1, . . . , xn, z1, . . . , zm] how can we compute I∩k[z1, . . . , zm]?
The answer is to use Grobner basis.

Recall: the lexicographic term order with x1 > · · · > xn > z1 > · · · > zm has xuzv > xu
′
zv
′
if

(u− u′, v − v′) has �rst non-zero entry positive.

Proposition 3.17. Let I ⊆ k[x1, . . . , xn] = S and let G = {g!, . . . , gs} be a lexicographic Grobner basis
for I. Then a lexicographic Grobner basis for I∩k[xn−m+1, . . . , xn] is given by G∩k[xn−m+1, . . . , xn] =
S′, i.e., those elements of G that are polynomials in xn−m+1, . . . , xn.

Proof. G∩S′ is a collection of polynomials in I∩S′, so we just need to show that 〈in<lex(g) : g ∈ G ∩ S′〉 =
in<lex(I∩S′) ⊆ S′. Let f ∈ I∩S′. Then in<lex(f) ∈ in<lex(I), so there is g ∈ G with in<lex(g)|in<lex(f).
Since f ∈ S′, in<lex(g) is not divisible by x1, . . . , xn−m and thus g ∈ S′. Hence in<lex(f) ∈ 〈in<lex(g) : g ∈ G ∩ S′〉,
so G ∩ S′ is a Grobner basis for I ∩ S′.

The next question is: Given X = V (I), what is I(X)?

Hilbert's Nullstellensatz. If k = k, then I(V (I)) =
√
I, where

√
I is the radical of I. (Denoted

r(I) in Commutative Algebra)

Proof. This proof will come later in the course.
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4 Sylvester Matrix

Given f, g ∈ k[x], how can we decide if they have a common factor?

De�nition. f = 5x5 + 6x4 − x3 + 2x2 − 1 and g = 7x5 + 8x3 − 3x2 + 1.
Or f = ax + b, g = cx + d. In this case we have that f, g has a common factor if and only if∣∣∣∣a b

c d

∣∣∣∣ = 0. Notice the analogy with Z, that is, n,m ∈ Z have a common factor when there is no a, b

such that an+ bm = 1. This naturally leads to the next proposition.

Proposition 4.1. Let f =
∑l
i=0 aix

i and g =
∑m
j=0 bjx

j be two polynomials in k[x]. Then the
following are equivalent.

1. f, g have a common root, i.e., there exists α ∈ k such that f(α) = g(α) = 0

2. f, g have a non-constant common factor h

3. There does not exists A,B ∈ k[x] with Af +Bg = 1

4. 〈f, g〉 6= k[x]

5. There exists Ã, B̃ ∈ k[x] with deg(Ã) ≤ m− 1,deg(B̃) ≤ l − 1 and Ãf + B̃g = 0.

Proof. 1⇒ 3: If f(α) = g(α) = 0 and Af + Bg = 1 then A(α)f(α) + B(α)g(α) = 1 ⇒ 0 + 0 = 1
which is a contradiction, hence no such A,B exists.

3⇒ 4: Suppose 〈f, g〉 = 1 = k[x], then 1 ∈ 〈f, g〉 so there exists A,B ∈ k[x] with Af +Bg = 1

4⇒ 2: If 〈f, g〉 6= k[x] then, since k[x] is a PID, the ideal 〈f, g〉 = 〈h〉 for some h ∈ k[x] non-

constant. So f, g ∈ 〈h〉 ,that is, f = f̃h, g = g̃h and thus f, g have a non-constant common
factor.

2⇒ 5: We write f = f̃h, g = g̃h and set Ã = g̃ and B̃ = −f̃ . Then Ãf + B̃g = 0 and Ã, B̃satisfy
the degree bound.

5⇒ 2: If Ãf + B̃g = 0, then every irreducible factor of g divides Ãf , since k[x] is a UFD. Since

deg(g) > deg(Ã) at least one irreducible factor must divide f . Hence f and g have a
common factor.

2⇒ 1: If f, g have a non-constant common factor h, let α be any root of h, then f(α) = g(α) = 0.
So f and g have a common root.

Part 5 is the key idea here. Given f =
∑
aix

i and g =
∑
bjx

j with 0 ≤ i ≤ l and 0 ≤ j ≤ m, write

Ã =
∑m−1
i=0 cix

i and B̃ =
∑l−1
j=0 djx

j where ci, dj are undeterminate coe�cients.

0 = (cm−1x
m−1 + · · ·+ c0)(alx

l + · · ·+ a0) + (dl−1x
l−1 + · · ·+ d0)(bmx

m + · · ·+ b0)

= (cm−1al + dl−1bm)xl+m−1 + (cm−1al−1 + cm−2al + dl−1bm−1 + dl−2bm)xl+m−2 + · · ·+ (c0a0 + d0b0)

Thus all the coe�cients of xj are zero. Remember that ai and bj are given, so we have a set of linear
equations in the c and d variables. We can count that we have l +m variables and linear equations.
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This gives the following matrix

al 0 . . . bm 0 . . .
al−1 al . . . bm−1 bm . . .

al−2 al−1
. . . bm−2 bm−1

. . .
...

...
. . .

...
...

. . .

a0 b0


︸ ︷︷ ︸

m

︸ ︷︷ ︸
l

There exists non-zero Ã, B̃ if the correct degree with Ãf + B̃g = 0 if and only if the determinant of
this matrix is zero.

De�nition 4.2. Let f =
∑l
i=0 aix

i and g =
∑m
j=0 bjx

j be polynomials in k[x] with al, bm 6= 0. The
Sylvester matrix of f, g with respect to x is the (l +m)× (l +m) matrix

Syl(f, g, x) =



al 0 . . . bm 0 . . .
al−1 al . . . bm−1 bm . . .

al−2 al−1
. . . bm−2 bm−1

. . .
...

...
. . .

...
...

. . .

a0 b0


︸ ︷︷ ︸

m

︸ ︷︷ ︸
l

The determinant of Syl(f, g, x) is a polynomial in ai, bi with integer coe�cients. This is called the
resultant of f and g and is denoted Res(f, g, x).

Example. Let f = x2 + 3x+ a and g = x+ b. Then

Syl (f,g,x) =

1 1 0
3 b 1
a 0 b


so Res(f, g, x) = b2− (3b−a) = b2−3b+a, so f and g have a common factor if and only if a = 3b− b2.

Theorem 4.3. Fix f, g ∈ k[x], then f, g have a common factor if and only if Res(f, g, x) = 0

Proof. This is what the previous work has been about.

Example. f = x2 + 2x+ 1, g = x2 + 3x+ 2

Syl(f, g, x) =


1 0 1 0
2 1 3 1
1 2 2 3
0 1 0 2


We see that (r3 − r1)− (r2 − r1)− r4 = 0, so Res(f, g, x) = 0. (In fact the common factor is x+ 1)

f = ax2 + bx+ c, g = f ′ = 2ax+ b

Syl(f, g, x) =

a 2a 0
b b 2a
c 0 b


So Res(f, g, x) = ab2 − 2a(b2 − 2ac) = −ab2 + 4a2c = −a(b2 − 4ac)
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Notice how in the second example we nearly ended up with the discriminant of a quadratic equa-
tions.

De�nition 4.4. Let f =
∑l
i=0 aix

i. Then the discriminant of f , disc(f) = (−1)l−1

al
Res(f, f ′, x)

Proposition 4.5. The polynomial disc(f) lies in Z[a0, . . . , al]. The polynomial f has a multiple root
if and only if disc(f) = 0.

Proof. Note that the �rst row of Syl(f, f ′, x) is (al, 0, . . . , 0, lal, 0, . . . , 0) so al|Res(f, f ′, x) and thus
disc(f) ∈ Z[a0, . . . , al].

Since deg(f) = l and al 6= 0, we have disc(f) = 0 if and only if f and f ′ have a common root, so
we just need to check that this happens if and only if f has a multiple root. Fix a root α of f and
write f = (x− α)mf̃ where f̃(α) 6= 0. Then f ′ = m(x− α)m−1f̃ + (x− α)mf̃ ′, so f ′(α) = 0 if m > 1.

If m = 1 then f ′(α) = f̃(α) 6= 0. So α is a root of f ′ if and only if α is a multiple root of f .

Generalizations:

1. More variables:

Given f, g ∈ k[x1, . . . , xn], write f =
∑l
i=0 aix

i
1 and g =

∑m
j=0 bjx

j
1 where ai, bj ∈ k[x2, . . . , xn]

and al, bm 6= 0. Then Res(f, g, x1) = det(Syl(f, g, x1)) ∈ k[x2, . . . , xn].
Note. We can think about f, g as polynomials in k(x2, . . . , xn)[x1] (�elds of rational functions).
So this is a special case of the �rst one. In particular, either Res(f, g, x1) = 0 or there exists
A,B ∈ k(x1, . . . , xn)[x1] with Af +Bg = 1.

Example. Ã = ARes(f, g, x1), B̃ = BRes(f, g, x1) are polynomials in k[x1, x2, . . . , xn] so Ãf +

B̃g = Res(f, g, x1). A and B comes from solution to

Syl(f, g, x1)



cm−1
...
c0
dl−1
...
d0


=


0

...

1



Cramer's rule states Ax = b, xi =
(−1)|Ai|
|A| where Ai is A with ith column replaced by b. By

Cramer's rule, the ci and dj have the form polynomial is x2, . . . xn/Res(f, g, x1). So ARes(f, g, x1)
is a polynomial in k[x1, . . . , xn]

As a corollary to all of this we have that Res(f, g, x1) ∈ 〈f, g〉 ∩ k[x2, . . . , xn]. This is a cheaper
way to do elimination/projection.

Proposition 4.6. Fix f, g ∈ k[x1, . . . , xn] for degrees l,m in x1 respectively. If Res(f, g, x1) ∈
k[x2, . . . , xn] is zero at (c2, . . . , cn) ∈ kn−1 then either al(c2, · · · , cn) = 0 or bm(c2, . . . , cn) = 0
or ∃c1 ∈ k such that f(c1, . . . , cn) = g(c1, . . . , cn) = 0.

Proof. Let f(x1, c) = f(x1, c2, . . . , cn) ∈ k[x1] and similarly let g(x1, c) ∈ k[x1]. If neither al(c),
bm(c) = 0 then f(x1, c) had degree l and g(x1, c) has degree m. So Syl(f(x1, c), g(x1, c, ), x1)
is Syl(f, g, x1) with c2, . . . , cn substituted for x2, . . . , xn. Thus Res(f(x1, c), g(x1, c), x1) = 0, so
f(x1, c) and g(x1, c) have a common root ci ∈ k. Hence f(c1, c2, . . . , cn) = g(c1, c2, . . . , cn) =
0.

2. Resultants of several polynomials.

Given f1, . . . , fs ∈ k[x1, . . . , xn] we introduce new variables u2, . . . , us and let g = u2f2+ . . . usfs.
Write Res(f1, g, x1) =

∑
hα(x2, . . . , xn)u

α with α ∈ Ns−1. We call hα ∈ k[x2, . . . , xn] the
generalised resultant.
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Example. Let f1 = x3 + 3x+ 2, f2 = x+ 1, f3 = x+ 5. Then g = u2(x+ 1) + u3(x+ 5) and

Syl(f, g, x1) =

1 u2 + u3 0
3 u2 + 5u3 u2 + u3
2 0 u2 + 5u3


so Res(f1, g, x1) = −4u2u3 + 12u23. Hence h1,1 = −4 and h0,2 = 12.

Lemma 4.7. The polynomial hα lies in 〈f1, . . . , fs〉 ∩ k[x2, . . . , xn]

Proof. Write Res(f1, g, x1) = Af1 + Bg for A,B ∈ k[u2, . . . , us, x1, . . . , xn]. Write A =
∑
Aαu

α

and B =
∑
Bβu

β for Aα, Bβ ∈ k[x1, . . . , xn]. Then Res(f1, g, x1) =
∑
hαu

α =
∑
α(Aαf1 +∑s

i=2Bα−eifi)u
α. So hα = Aαf1+

∑
Bα−eifi ∈ 〈f1, . . . , fs〉. Furthermore hα ∈ k[x2, . . . , xn] by

construction.

4.1 Hilbert's Nullstellensatz

Consider π : An → Am projection onto the lastm coordinates. We saw π(X) = V (I(X)∩k[xn−m+1, . . . , xn]).
The question is what do we add then we take the closure? Given y ∈ π(X) is y ∈ π(X)?

Theorem 4.8 (Extension Theorem. ). Let k = k. Let X = V (I) ⊆ An and let π : An → An−1 be
projection onto the last n−1 coordinates. Write I = 〈f1, . . . , fs〉 with fi = gi(x2, . . . , xn)x

Ni
1 +l.o.t. inxi.

Let (c2, . . . , cn) ∈ V (I ∩ k[x2, . . . , xn]). If (c2, . . . , cn) /∈ V (g1, . . . , gs) ⊆ An−1 then ∃c1 ∈ k with
(c1, . . . , cn) ∈ X.

Example. X = V (xy − 1), f1 = xy − 1, g1 = x. Then the theorem say if c1 ∈ V (0) = A1 and
c1 /∈ V (x) then there exists c2 with (c1, c2) ∈ V (xy − 1). Note that V (0) comes from 〈xy − 1〉 ∩ k[x].

Note. I ⊆ I(X) so I ∩ k[x2, . . . , xn] ⊆ I(X)∩ k[x2, . . . , xn] so V (I ∩ k[x2, . . . , xn]) ⊇ π(X). How useful
this is depends on the choice of the generators of I. The theorem talks about I, not I(X), so this
brings us closer to the Nullstellensatz.

Proof. s = 1: In this case f = g1(x2, . . . , xn)x
N
1 + l.o.t.We have 〈f〉 ∩ k[x2, . . . , xn] = 〈0〉 , and

(c2, . . . , cn) ∈ V (〈f〉 ∩ k[x2, . . . , xn]

Case 1. N 6= 0: g1(c1, . . . , cn) 6= 0, then f(x1, c2, . . . cn) is a polynomial of degree N in
x1 so has a root c1 in k.

Case 2. N = 0 then g1 = f1, so if (c2, . . . , cn) ∈ V (〈f〉 ∩ k[x2, . . . , xn]) = V (f) ⊆ An−1

s = 2: The (previous) proposition shows that if g1(c1, . . . , cn) 6= 0 and g2(c2, . . . , cn) 6= 0 then
the desired c1 exists. Suppose (c2, . . . , cn) /∈ V (g1, g2) then without loss of generality
g1(c2, . . . , cn) 6= 0. If g2(c2, . . . , cn) 6= 0 then c1 exists. Otherwise replace f2 by f2 + xN1 f1
for N � 0. This does not change the ideal 〈f1, f2〉 and it does not change (c2, . . . , cn) /∈
V (g1, g2) = V (g1, g1). Then the proposition implies there exists c1 with f1(c1, . . . , cn) =
f2(c1, . . . cn) = 0.

s ≥ 3: Also assume g1(c2, . . . , cn) 6= 0. Replace f2 by f2+x
N
1 f1 for N � 0 if necessary to guaran-

tee g2(c) 6= 0 and degx1
(f2) > degx1

(fi) for i > 2. Write Res(f,
∑s
i=2 uifi, x1) =

∑
hαu

α.
Since hα ∈ I∩k[x2, . . . , xn] we have hα(c2, . . . , cn) = 0∀α. Thus Res(f,

∑
uifi, x1)(c2, . . . , cn, u1, . . . , us)

is the zero polynomial.
By construction the coe�cients of the maximal power of x1 in f1 and in

∑
uifi are g1 and

g1u1, so are non-zero are (c2, . . . , cn). Thus 0 = Res(f,
∑
uifi, x1)(c2, . . . , cn, u1, . . . , us) =

Res(f1(x1, c2, . . . , cn),
∑
uifi(x1, c2, . . . , cn), x1). Thus there exists F ∈ k(u2, . . . , us)[x1]

with degx1
F > 0, F |f1(x1, c2, . . . , cn). Write F = F̃ /g where F̃ = k[u2, . . . , us, x1],

g ∈ k[u2, . . . , us]. Then F̃ divides f1(x1, c2, . . . , cn)g(u2, . . . , us). Let F ′′ be an irredu-

cible factor of F̃ with positive degree in x1. Then F
′′|f1(x1, c2, . . . , cn). Thus it does not

contain any ui. So F
′′|
∑
uifi(xi, c2, . . . , cn) but F

′′ ∈ k[x1] thus F ′′|fi(x1, c2, . . . , cn) for
2 ≤ i ≤ n. Then F ′′|fi(x1, c2, . . . , cn) for all 1 ≤ i ≤ s. Then choose a root c1 of F

′′. Then
F ′′(c1) = 0 so fi(c1, . . . , cn) = 0 so (c1, . . . , cn) ∈ X
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Weak Nullstellensatz. Let k = k. Suppose I ⊆ k[x1, . . . , xn] satis�es V (I) = ∅, then I = 〈1〉 =
k[x1, . . . , xn].

Proof. We use an induction proof on n.

n = 1: I = 〈f〉 ⊆ k[x1]. If f /∈ k there exists α ∈ k with f(α) = 0 so V (I) 6= ∅. Thus if V (I) = ∅,
I = 〈f〉 = 〈1〉.

n > 1: Let I = 〈f1, . . . , fs〉 and suppose V (I) = ∅. We may assume deg(fi) > 0 for all i. Let the
degree of f1 be N . Consider the morphism φ : An → An given by φ∗ : k[x1, . . . , xm] →
k[z1, . . . , zn] with φ

∗(xi) = zi + aiz1 with a1 = 0 and ai ∈ K for i > 1.
Note: φ∗ is an isomorphism, since the matrix is

1 0 0 . . . 0
a2 1 0 . . . 0
a3 0 1 . . . 0
...

...
...

. . .
...

an 0 0 . . . 1


is invertible. (φ∗)−1(zi) = xi − aix1. This means that 1 ∈ I if and only if 1 ∈ φ∗(I), and
φ−1(X) = V (φ∗(I)) = ∅. (This is because V (φ∗(I)) = {y : φ∗f(y) = 0 ∀f ∈ I} = {y :
f ◦ φ(y) = 0∀f ∈ I} = {y : φ(y) ∈ V (I)}. )
Let f1 =

∑
cux

u. Note that φ∗(f1) = c(a2, . . . , an)z
N
1 + l.o.t in z1 where c(a2, . . . , an) is

the non-zero polynomial in a2, . . . , an, i.e., c(a2, . . . , an) =
∑
|u|=N cu

∏
auii . Thus we can

choose (a2, . . . , an) ∈ kn−1 with c(a2, . . . , an) 6= 0. (Exercise: this holds because the �eld
is in�nite)
Then g1 ∈ k, so V (g1, . . . , gs) = ∅ for φ∗1(fi) = giz

Ni
1 + l.o.t. Let J = φ∗(I) ∩ k[z1, . . . , zn],

then by the extension theorem, if (c2, . . . , cn) ∈ V (J) then there exists c1 ∈ k with
(c1, . . . , cn) ∈ V (φ∗(I)). Thus V (J) = ∅ and by induction J = 〈1〉, so 1 ∈ φ∗(I) and
so 1 ∈ I.

Note that is 1 ∈ I, we can write 1 =
∑
Aifi with Ai ∈ k[x1, . . . , xn].

Nullstellensatz. Let k = k. Then I(V (I)) =
√
I.

Proof. Let fm ∈ I, then fm(x) = 0∀x ∈ V (I) so f(x) = 0 for all x ∈ V (I). Hence f ∈ I(V (I)), thus√
I ⊆ I(V (I))

For the reverse inclusion, suppose f ∈ I(V (I)) and let I = 〈f1, . . . , fs〉 and Ĩ = 〈f1, . . . , fs, 1− yf〉 ⊆
k[x1, . . . , xn, y]. Now that V (Ĩ) = ∅ since if f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 then f(x1, . . . , xn) =

0 so 1 − yf(x1, . . . , xn) 6= 0∀y. So by the Weak Nullstellensatz we have that 1 ∈ Ĩ. So there ex-
ists p1, . . . , ps, q ∈ k[x1, . . . , xn, y] with 1 =

∑
pifi + q(1 − yf). Regard this as an expression in

k(x1, . . . , xn, y) and substitute y = 1
f , then 1 =

∑
pi(x1, . . . , xn

1
f )fi. Choose m > 0 for which

pi(x1, . . . , xn
1
f )f

m ∈ k[x1, . . . , xn] then fm =
∑

(pi(x1, . . . , xn
1
f )f

m)fi, hence fm ∈ I and thus

f ∈
√
I.
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5 Irreducible Components

(There is some cross-over with commutative algebra here, revise both!)

De�nition 5.1. A variety X ⊆ An is reducible if X = X1 ∪X2 with X1, X2 non-empty varieties in
An and X1, X2 $ X

X is irreducible if it is not reducible.

Example. • X = V (x, y) ⊆ A2 then X = V (x) ∪ V (y).

• V (x2 + y2 − 1) ⊆ A2 is irreducible but it is not trivial to prove. We will prove this later.

• X ⊆ A1 is reducible if and only if 1 < |X| <∞

• X = V (f) is a hypersurface in An. Let f = cfα1
1 . . . fαrr where c ∈ k and fi are distinct irreducible

polynomials. Then V (f) = V (f1) ∪ · · · ∪ V (fr). Claim: If r > 1 then V (f) is reducible. We just
need too show that V (fi) 6= ∅, X for all i. Now V (fi) 6= ∅ since 1 /∈ 〈fi〉. If V (fi) = X
then V (fj) ⊆ V (fi) for some j 6= i. Hence fi ∈ I(V (fj)) =

√
fj = 〈fj〉 (exercise). So

fj |fi which contradicts fi, fj being distinct irreducible. Actually V (fi) are all irreducible, so
X = V (f1) ∪ · · · ∪ V (fr) is a decomposition into irreducible.

Theorem 5.2. Let X ⊆ An be a variety. Then X = X1 ∪ · · · ∪Xr, where each Xr is irreducible. This
representation is unique up to permutation provided it is irredundant (i.e., Xi * Xj for any i 6= j)

Proof. For this theorem, we use the fact that k[x1, . . . , xn] is Noetherian, in particular, that there is
no in�nite ascending chain I1 ( I2 ( I3 ( . . . of ideals in k[x1, . . . , xn].

Existence: If X is irreducible then we are done. Otherwise write X = X1 ∪X2 where X1, X2 are
proper subvarieties. Again if both are irreducible then we are done. Otherwise we can write X1 =
X11∪X12 and X2 = X21∪X22 where Xij are proper subvarieties of Xi. Iterate this process. We claim
that this process terminates with X = ∪Xj (Finite union). If not we have an in�nite descending chain
X ) X1 ) X11 ) X111 ) . . . . This gives a reverse containment I(X) ( I(X1) ( I(X11) ( . . . . This
chain must stabilize, so I(X111...11) = I(X111...11111) but V (I(X11...111) = X11...11which contradicts
the proper inclusion of varieties. Since V (I(V (I))) = V (I). Hence the decomposition process must
terminates.

Uniqueness: Suppose X = X1 ∪ X2 ∪ · · · ∪ Xr = X ′1 ∪ · · · ∪ X ′s are two irredundant irreducible
decompositions. Consider

X ∩ (X ′i) = X ′i

= (X1 ∪ · · · ∪Xr) ∩X ′i
= (X1 ∩ (X ′i)) ∪ · · · ∪ (Xr ∩ (X ′i))

Since X ′i is irreducible, there must be j with Xj ∩ (X ′i) = X ′i, so X
′
i ⊆ Xj . The same argument shows

that there is k with Xj ⊆ X ′k, so we have X ′i ⊆ Xj ⊆ X ′k. Since the decomposition is irredundant,
X ′i = X ′k = Xk. This construct a bijection between {Xj} and {X ′i}, hence r = s and the decomposition
is unique up to permutation.

Note: This was a topological proof. A topological space with no in�nite descending chain of closed
set is called Noetherian (note how this is the �opposite� condition to Noetherian ring). Noetherian
topological spaces have irreducible decompositions.

Theorem 5.3. Let X ⊆ An be a variety. The following are equivalent:

1. X is irreducible

2. The coordinate ring k[X] is a domain

3. I(X) ⊆ k[x1, . . . , xn] is prime.
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Proof. 2 ⇐⇒ 3: Recall k[X] = k[x1, . . . , xn]/I(X). So if f, g ∈ k[X] satisfy fg = 0 then there are

lifts f̃ , g̃ ∈ k[x1, . . . , xn] such that f̃ , g̃ /∈ I(X) and f̃ g̃ ∈ I(X). Same argument works the
other way round.

1⇒ 3: Suppose I(X) is not prime, that is, there exists f, g /∈ I(X) with fg ∈ I(X). Let X1 =
V (f) ∩X and X2 = V (g) ∩X. Since f, g /∈ I(X) then X1, X2 ( X. However X1 ∪X2 =
(V (f) ∩X) ∪ (V (g) ∩X) = ((V (f) ∪ V (g)) ∩X = V (fg) ∩X = X since fg ∈ I(X). So X
is reducible.

3⇒ 1: Suppose X = X1 ∪X2 with X1 and X2 proper subvarieties. Then I(X) ( I(X1), I(X) (
I(X2) (To see this take V (_) of both side then V (I(Xi)) = Xi). So we may choose f ∈
I(X1)\I(X) and g ∈ I(X2)\I(X). Now fg ∈ I(X1)∩I(X2), so V (I(X1)∩I(X2)) ⊆ V (fg).
But V (I(X1) ∩ I(X2)) = V (I(X1)) ∪ V (I(X2)) = X1 ∪X2 = X. So fg ∈ I(X) so I(X) is
not prime.

Remark. Some text reserve the word �variety� for irreducible varieties and call what we call varieties
�algebraic sets�.

Warning: If X = V (I) is irreducible, this does not imply that I is prime, just that I(X) is. This
about I =

〈
x2, xy2

〉
⊆ k[x, y].

Theorem 5.4. Let k = k (this condition is unnecessary as there exists a commutative algebra proof
which show this theorem holds for k 6= k. See Commutative Algebra notes, this is the whole theory of
Primary Decomposition). Let I =

√
I (a radical ideal) in k[x1, . . . , xn], then I = P1 ∩ · · · ∩ Pr where

each Pi is prime. This decomposition is unique up to order if irredundant.

Proof. Let X = V (I) and let X = X1 ∪ · · · ∪ Xr be an irredundant irreducible decomposition. Let
Pi = I(Xi) which is prime by the previous theorem and let P = ∩Pi. Then V (P ) = ∪V (Pi) = ∪Xi =
X. So

√
P = I(X) = I. If fm ∈ P for some m > 0 then fm ∈ Pi for all i, so f ∈ Pi for all i. Hence

f ∈ ∩Pi = P and thus
√
P = P . So I = ∩Pi

Uniqueness follows from the uniqueness of primary decomposition.

The next question to come up is how can we determine the Pi, that is the prime decomposition of
radical ideals.

De�nition 5.5. Let I, J be ideals. Then the colon (or quotient) ideal is (I : J) = {f ∈ k[x1, . . . , xn] :
fg = I ∀g ∈ J} ⊆ I.

Example. Let I =
〈
x2, xy2

〉
and J = 〈x〉. Then (I : J) = {f : fg ∈

〈
x2, xy2

〉
∀g ∈ 〈x〉} = {f : fx ∈〈

x2, xy2
〉
} =

〈
x, y2

〉
Theorem 5.6. Let I =

√
I and let I = ∩Pi be an irredundant primary decomposition. Then the Pi

are precisely the prime ideals of the form (I : f) for f ∈ k[x1, . . . , xn].

Proof. Notice: (I : f) = (∩Pi : f) = ∩(Pi : f). Now for any prime P we have (P : f) =

{
〈1〉 f ∈ P
P f /∈ P

.

So (I : f) = ∩f /∈PiPi. Fix Pi, since Pj * Pi for any j 6= i, we can �nd fj ∈ Pj\Pi. Let f =
∏
i 6=j fj

then f ∈ ∩j 6=iPj\Pi. So (I : f) = Pi.
Conversely if (I : f) = P is prime for some f , then P = ∩f /∈PiPi (as ∩Pi =

∏
Pi so P = Pi for some

i. In more details P ⊆ Pi for all i. If P ( Pifor all i then we can �nd fi ∈ Pi\P , so f =
∏
fi ∈ ∩Pi\P

which is a contradiction. So P = Pifor some i)

Example. Let I = 〈xy, xz, yx〉, then V (I) = union of x, y, z axes = V (x, y) ∪ V (x, z) ∪ V (y, z). So
I = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, x〉. We want to see the theorem in action, so notice that (I : z) = 〈x, y〉 ,(I :
y) = 〈x, z〉 and (I : x) = 〈y, z〉. Warning: (I : x+ y) = 〈z, xy〉 (not as obvious.)

Let I =
〈
x3 − xy2 − x

〉
. Then (I : x2 + y2 − 1) = 〈x〉 and (I : x) =

〈
x2 + y2 − 1

〉
.

Note. If X,Y are varieties in An then (I(X) : I(Y )) = I(X\Y ). To see this: �x x ∈ X\Y , since x /∈ Y
there is g ∈ I(Y ) with g(x) 6= 0. So if f ∈ (I(X) : I(Y )) then f(x)g(x) = 0, so f(x) = 0 and thus
f ∈ I(X\Y) . Conversely if f ∈ I(X\Y ) and g ∈ I(Y ) then fg ∈ I(X) so f ∈ (I(X) : I(Y )). Hence
(X\Y ) = V (I(X) : I(Y )).
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5.1 Rational maps

How can we decide if X is irreducible? This is hard in general! We use the following trick. If φ : Y → X
is surjective and X = X1 ∪X2 then Y = φ−1(X1)∪ φ−1(X2). Now both sides are closed and proper if
both X1 and X2 are. So if X is reducible then so is Y . Or if Y is irreducible then so is X.

De�nition 5.7. A morphism φ : X → Y of a�ne varieties is dominant if φ(X) = Y

Example. Take φ : V (xy − 1)→ A1 de�ned by (x, y) 7→ x. This is not surjective but it is dominant.

Proposition 5.8. A morphism φ : X → Y is dominant if and only if φ∗ : k[Y ]→ k[X] is injective.

Example. k[x]→ k[x, y]/ 〈xy − 1〉 , x 7→ x (linked to the previous exampled) is injective.

Proof. A morphism φ : X → Y induces a homomorphism φ∗ : k[Y ] → k[X]. Now φ(X) ⊆ Z ( Y (Z
a variety) if and only if there exists g ∈ I(X)\I(Y ) with g(φ(x)) = 0∀x ∈ X, so φ∗(g(x)) = 0∀x ∈ X.
Hence φ∗g ∈ I(X) and thus the image of g in k[Y ] is non-zero but is mapped to zero by φ∗ so φ∗ is
not injective.

Proposition 5.9. If φ : X → Y is dominant and X is irreducible then so is Y .

Proof. Since φ is dominant, the map φ∗ : k[Y ] → k[X] is injective. Since X is irreducible, we have
k[X] is a domain, and thus so is k[Y ]. Hence Y is also irreducible.

De�nition 5.10. A rational map φ : An 99K Am is de�ned by φ(x1, . . . , xn) = (φ1(x1, . . . , xn), . . . , φm(x1, . . . xn))
with φi ∈ k(x1, . . . , xn) (the �eld of rational functions)

Example. φ : A1 99K A1 de�ned by φ(x) = 1
x .

Warning: φ is not necessarily a function de�ned on all of An. Write φi =
fi
gi
for fi, gi ∈ k[x1, . . . , xn]

and let U = {x ∈ An : gi(x) 6=}. Then φ : U → Am is well de�ned. Notice that U is an open set
(U = An\V (

∏
gi)). In the above example φ is de�ned on U = {x ∈ A1 : x 6= 0}.

Note. A rational map induces a k-algebra homomorphism φ∗ : k[z1, . . . , zm] → k(x1, . . . , xn) de�ned
by zi 7→ φi. Conversely any such k-algebra homomorphism determines a rational map.

Example. Let φ : A1 → A2 be the inverse stereographic projection, that is, de�ned by φ(t) =

( t
2−1
t2+1 ,

2t
t2+1 ). It is a rational map from A1 to V (x2 + y2 − 1). It is de�ned on A1 \ ±i and the image

V (x2 + y2 − 1)\{(1, 0)}.

De�nition 5.11. Let Y ⊆ Am, a rational map φ : A 99K Y is a rational map φ : An → Am with
φ∗(I(Y )) = 0, so φ∗ : k[Y ]→ k(x1, . . . , xn).

Example. Let φ : A1 → V (x2 + y2 − 1) be the inverse stereographic projection. Then φ∗(x) =
t2−1
t2+1 , φ

∗(y) = 2t
t2+1 . Hence φ

∗(x2 + y2 − 1) = ( t
4−2t2+1+4t2

t4+2t2+1 − 1) = 0, so φ is indeed a rational map.

What about rational maps φ : X 99K Am? We recall that a morphism X → Am was an equivalence
class of morphism An → Am. But we have some problems: consider X = V (x) ⊆ A2 and φ : A2 99K A3

de�ned by φ(x, y) = (x2, 1
xy , y

3). Then φ is de�ne on U = {(x, y) : x, y 6= 0}, φ is not de�ned at (x, y)

for any (x, y) ∈ X. The solution to this is to allow rational maps that are de�ned on enough of X.

De�nition 5.12. Let R be a commutative ring with identity. An element f ∈ R is a zero-divisor if
there exists g ∈ R with g 6= 0 such that fg = 0.

De�nition 5.13. Let φ : An 99K Am be a rational map with φi =
fi
gi

where fi and gi have no common

factors. Then φ is admissible on X if the image of each gi in k[X] is a non-zero divisor.

Example. φ : A2 99K A3, φ(x, y) = (x2, 1
xy , y

3) is not admissible on V (x).

Let X = V (x2 − y2) ⊆ A2 and φ : A2 99K A1 de�ned by (x, y) 7→ 1
x+y . Then φ is not admissible

on X as x + y is a zero divisor in k[x, y]/(x2 − y2). On the other hand ψ : A2 99K A2 de�ned by
ψ(x, y) = ( 1x ,

1
y ) is.
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De�nition 5.14. Let U be the set of non-zero divisor on a ring R. Note U 6= 0 since 1 ∈ U . The
total quotient ring (ring under �obvious� multiplication and addition) is as follow

Q(R) = R[U−1] =
{ rs : r ∈ R, s ∈ U}

r1
s1

= r2
s2

if r1s2 = r2s1

(This like the localization in Commutative Algebra)

Example. R = Z, U = Z \ {0} then Q(R) = Q.
R = k[x1, . . . , xn] then Q(R) = k(x1, . . . , xn).

De�nition 5.15. If X is a variety, the total quotient ring of k[X] is written k(X) and is called the
ring of rational functions of X.

Note. If R is a domain, U = R\{0}, so Q(R) is the �eld of fractions of R. So if X is irreducible, k(X)
is the �eld of fractions of k[X].

Proposition 5.16. Let φ : An 99K Am be a rational map admissible on a a�ne variety X ⊆ An. Then
φ∗ induces a k-algebra homomorphism φ∗ : k[z1, . . . , zn]→ k(X). Conversely each such homomorphism
arise from a rational map.

Proof. Write φi = fi = gi with fi and gi not sharing any irreducible factors. By hypothesis each gi is
a non-zero divisor on k[X]. So fi

gi
is a well de�ned element of k(X). Thus φ∗ : k[z1, . . . , zm] → k(X)

given by φ∗(zi) =
fi
gi

is well de�ned.

Conversely given φ∗ : k[z1, . . . , zm] → k(X) write φ∗(zi) =
fi
gi

for some fi, gi ∈ k[x1, . . . , xn] with
gi a non-zero divisor on k[X]. Then φ : An 99K Am de�ned by φi(x) = fi(x)/gi(x) is admissible on
X.

De�nition 5.17. Let X ⊆ An be an a�ne variety. Two rational maps φ, ψ : An 99K Am admissible
on X are said to be equivalent on X if the induced homomorphism φ∗, ψ∗ : k[z1, . . . , zm]→ k(X) are
equal.

Example. Let X = V (x + y) ⊆ A2. Let φ : A2 99K A2 be de�ned by φ(x, y) = ( 3x
2y2 ,

2x
3x+5y ). This is

de�ned on Uφ = {(x, y) : y2 6= 0, 3x + 5y 6= 0}. Let ψ : A2 99K A2 be de�ned by ψ(x, y) = ( 3
2x ,−1).

This is de�ned on Uψ = {(x, y) : x 6= 0}. These are clearly not the same rational maps but we will
show that they are equivalent on X.

φ∗ : k[z1, z2]→ k(x, y) is de�ned by φ∗(z1) =
3x
2y2 and φ∗(z2) =

2x
3x+5y . And ψ

∗ : k[z1, z2]→ k(x, y)

is de�ned by ψ∗(z1) =
3
2x and ψ∗(z2) = −1. Now in k(X) = k[x, y]/(x+ y) we have

3x

2y2
=

3x

2x2
=

3

2x
2x

3x+ 5y
=

2x

2y
= −1

So φ∗, ψ∗ : k[z1, z2]→ k(X) are equal so φ, ψ are equivalent on X.
(Check φ = ψ on Uψ ∩ Uφ ∩X)

De�nition. LetX ⊆ An and Y ⊆ Am be a�ne varieties. A rational map φ : X 99K Y is an equivalence
class of rational maps φ : An 99K Y admissible on X.

Corollary 5.18. Let X ⊆ An and Y ⊆ Am be a�ne varieties. Then there is a one to one correspond-
ence between rational maps X 99K Y and k-algebra homomorphism k[Y ]→ k(X).

De�nition 5.19. A rational map φ : X 99K Y is dominant if φ∗ : k[Y ]→ k(X) is injective.

Example. Let φ : A1 99K V (x2 + y2 − 1) de�ned by φ(t) = ( t
2−1
t2+1 ,

2t
t2+1 ). Then φ is dominant.

Lemma 5.20. If φ : X 99K Y is dominant and X is irreducible, then so is Y

Proof. Since φ is dominant we have by de�nition φ∗ : k[Y ]→ k(X) is injective. Since X is irreducible,
k[X] is a domain, so k(X) is a �eld. Hence k[Y ] is also a domain and thus Y is irreducible.
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Corollary 5.21. V (x2 + y2 − 1) is irreducible.

De�nition 5.22. Let Y ⊆ An be an a�ne variety. A rational parametrisation of Y is a rational map
φ : An 99K Y such that Y = im(φ), i.e., a dominant rational map φ : An 99K Y . Such Y are called
unirational.

Note. Unirational varieties are irreducible, by the lemma, and we have k(Y ) ↪→ k(x1, . . . , xn).

De�nition 5.23. A variety X is rational if it admits a rational parametrisation φ : An 99K X such
that the induced �eld extension φ∗ : k(X) ↪→ k(x1, . . . , xn) is an isomorphism.

Corollary 5.24. X is rational if and only if k(X) ∼= k(x1, . . . , xn)

Proof. If X is rational then k(X) ∼= k(x1, . . . , xn) by de�nition, so we just need to show the converse.
Suppose we have φ∗ : k(X)→ k(x1, . . . , xn). Then φ

∗|k[X] is injective, so de�nes a dominant rational
map φ : An 99K X. Hence X is rational.

De�nition. Let X,Y be irreducible varieties. We say X,Y are birational if k(X) ∼= k(Y ) as k-algbera.

Proposition 5.25. If X,Y are irreducible varieties and k(X) ∼= k(Y ) then there exists dominant
rational maps X 99K Y and Y 99K X that are inverses.

Proof. If φ∗ : k(X)
∼=→ k(Y ), then φ∗|k[X]is injective, so the corresponding rational map φ : Y 99K X

is dominant. Similarly φ∗−1 induces a dominant rational map φ−1 : X 99K Y . By construction
φ∗ ◦ φ∗−1 = id |Y .
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6 Projective Varieties.

De�nition 6.1. Projective Space Pn over a �eld k is (kn+1\{0})/ ∼ where v ∼ λv for λ ∈ k∗ = k\{0}.
A point in Pn correspond to a line through the origin in kn+1.

Notation. [x0 : x1 : · · · : xn] is the equivalence class of (x0, x1, . . . , xn) ∈ kn+1.

Recall: A polynomial f =
∑
cux

u is homogeneous if |u| = d for all u with cu 6= 0 for some d.

De�nition 6.2. An ideal I ⊆ k[x0, x1, . . . , xn] is homogeneous if I = 〈f1, . . . , fs〉, where each fi is
homogeneous.

Example.
〈
7x20 + 8x1x2 + 9x21, 3x

3
1 + x32

〉
is,
〈
x+ y2, y2

〉
=
〈
x, y2

〉
is.

De�nition 6.3. Let f ∈ k[x0, . . . , xn]. Then f =
∑
fi where each fi is a homogeneous polynomial of

degree i. The fi are called the homogeneous components of f .

Example. Let I be a homogeneous ideal and let f ∈ I. Then each homogeneous component of f is in
I. Idea: we choose g1, . . . , gs homogeneous with I = 〈g1, . . . , gs〉. Then we can write f =

∑
cuix

uifi,
where the ficould be repeated. Then fi =

∑
j:deg(xuj )+deg(gi)=i

cuix
uigi ∈ I.

De�nition 6.4. Let I be a homogeneous ideal in k[x0, x1, . . . , xn]. The projective variety de�ned by
I is V(I) = {[x] ∈ Pn : f(x) = 0 for all homogenous f ∈ I}

Example. • Let I = 〈2x0 − x1, 3x0 − x2〉. Then V(I) = {[1 : 2 : 3]} ⊆ P3.

• I =
〈
x0x2 − x21

〉
. Then V(I) = {[1 : t : t2] : t ∈ k} ∪ {[0 : 0 : 1]}

• I = 〈x0, x1, x2〉 ⊆ k[x0, x1, x2]. V(I) = ∅. Note that the weak Nullstellenzatz does not apply
here.

• I =
〈
x0x3 − x1x2, x0x2 − x21, x1x3 − x22

〉
⊆ k[x0, x1, x2, x3]. Then V(I) = ([1, t, t2, t3] : t ∈

k ∪ {[0 : 0 : 0 : 1]}. �The twisted cubic�

Note. Points in V(I) correspond to lines through 0 in V (I) ⊆ An+1. V (I) is called the a�ne cover
over I.

De�nition 6.5. The Zariski topology on Pn has closed sets V(I) for I ⊆ k[x0, . . . , xn].

6.1 A�ne Charts

De�nition 6.6. Let Ui = {[u] ∈ Pn : xi 6= 0}. We can write x ∈ Ui uniquely as [x0 : · · · : 1 : · · · : xn]
(1 in ith position). Ui bijection with An. Pn = ∪ni=1Ui �a�ne cover of Pn�. We can think of Pn =
U0 ∪ {[x] : x0 = 0}. See that U0 is a kind of like An while the set is Pn−1 sometime called �hyperplane
at in�nity�. Fix I homogeneous in k[x0, . . . , xn] and let X = V(I) ⊆ Pn. Let X ∩ Ui = {[x] ∈ Pn :
f(x) = 0∀f ∈ I} = {[x0 : · · · : 1 : . . . , xn] ∈ Pn : f(x0, . . . , 1, . . . , xn) = 0∀f ∈ I} = V (Ii) ⊆ An where
Ii = 〈f(x0, . . . , 1, . . . , xn) : f ∈ I〉 = 1|x1=1.

X =

n⋃
i=0

X ∩ Ui.

Is a union of a�ne varieties. This is called an a�ne cover, let X ∪ Ui are called a�ne charts.

Example. X = V(x0x2 − x21) ⊆ Pn. Then:

• X ∩ U0 = V (x2 − x21) = {(t, t2) : t ∈ k}.

• X ∩ U1 = V (x0x2 − 1) = {(t, 1t ) : t ∈ k}.

• X ∩ U2 = V (x0 − x21) = {(t2, t) : t ∈ k}
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Actually X = (X ∩ U0) ∪ (X ∩ U2) in this case. We can think of X as created by �gluing together�
three a�ne varieties X ∩ U0, X ∩ U1, X ∩ U2. This is how abstract varieties are de�ned (not covered
in this module).

Given an a�ne variety X ⊆ An, we can embed it into Pn by identifying An with Ui for some i
(normally i = 0).

De�nition 6.7. The projective closure of X ⊆ An in Pn is the Zariski closure of X ⊆ Ui ⊆ Pn in Pn
(Assume by default U0)

Example. X = V (x2 − x21) = {(t, t2) : t ∈ k} ⊆ A2 . The projective closure is the Zariski closure of
{[1 : t : t2] : t ∈ k}. This adds [0 : 0 : 1]

Question: Given X how can we compute the projective closure in Pn?

De�nition 6.8. Let f =
∑
cux

u ∈ k[x1, . . . , xn]. The homogenization of f is f̃ =
∑
u x

ux
d−|u|
0 where

d = max |u|
Let I ⊆ k[x1, . . . , xn] be an ideal. Its homogenization is Ĩ =

〈
f̃ : f ∈ I

〉
Warning: If I = 〈f1, . . . , fs〉 then we do not always have Ĩ =

〈
f̃1, . . . , f̃s

〉
. For example, consider

I = 〈x1 − 1, x1〉 ⊆ k[x1]. We have I = 〈1〉, Ĩ = 〈1〉 6= 〈x1 − x0, x1〉 = 〈x1, x0〉

Proposition 6.9. Let k = k, I =
√
I ⊆ k[x1, . . . , xn]. The projective closure of V (I) ⊆ An via the

identi�cation An = U0 is V(Ĩ) ⊆ P

Proof. If x ∈ V (I), f(x) = 0∀f ∈ I then f̃(I, x) = 0∀f̃ ∈ Ĩ. So [1 : x] ∈ V(Ĩ). So the projective

closure of V(I) is contained in V(Ĩ)
Conversely, suppose that f ∈ k[x0, . . . , xn] is homogeneous with f([1 : x]) = 0∀x ∈ V (I). Then

g = f(1, x) ∈ I(V (I)) =
√
I = I. Then f = xk0 g̃ for some k ≥ 0 so since g ∈ I,f ∈ Ĩ and thus V(Ĩ) is

contained in the projective closure of V (I).

Question: How can we compute Ĩ? Answer: Let < be any term order with deg(Xu) > deg(Xv)⇒
Xu > Xv (for example we can revlex). Let G = {g1, . . . , gs} be a Grobner basis for I with respect to

<. We claim that Ĩ = 〈g̃1, . . . , g̃s〉.

Proof of above claim. Extend< to a term order <̃ on k[x0, . . . , xn] by setting x
a
0x
u<̃xb0x

v if

{
xu < xv xu 6= xv

a < b xu = xv
.

Note that in<̃(f̃) = in<(f). Let F ∈ Ĩ be a homogeneous polynomial in k[x0, . . . , xn]. Then

f =
∑
Aif̃i for some fi ∈ I, Ai ∈ l[x0, . . . , xn]. Write f(x1, . . . , xn) = F (1, x1, . . . , xn) ∈ k[x1, . . . , xn].

Then f =
∑
Ai(1, x1, . . . , xn)fi so f ∈ I. We know that F = xk0 f̃ for some k ≥ 0 so in<̃(f̃) =

xk0 in<̃(f̃) = xk0 in<(f). SinceG is a Grobner basis for I with respect to<, we have that in<(fj)|xk0 in<(f)
for some g. Hence in<̃(f) ∈

〈
in<̃(g̃1), . . . , in<̃(g̃s)

〉
. So {g̃1, . . . , g̃s} is a Grobner basis for Ĩ, hence it

generates Ĩ.

Proposition 6.10. Let k = k. V(I) = ∅ if and only if 〈x0, . . . , xn〉 ⊆
√
I.

Proof. Let X = V (I) ⊆ An+1. Then V (I) = ∅, implies either X = ∅ so 1 ∈ I or X = {0} so
〈x0, . . . , xn〉 ⊆

√
I.

Conversely if 〈x0, . . . , xn〉 ⊆
√
I then V (I) ⊆ {0}, so V(I) = ∅.

De�nition 6.11. The ideal 〈x0, . . . , xn〉 is called the irrelevant ideal.
Let X ⊆ Pn. The ideal I(X) is I(X) = 〈homogeneous f ∈ k[x0, . . . , xn] : f([x]) = 0∀x ∈ X〉
Homogeneous coordinate ring of X ⊆ Pn is k[x0, . . . , xn]/I(X).

Theorem 6.12 (Projective Nullstellensatz). Let k = k. Let I be a homogeneous ideal in [x0, . . . , xn]
with 〈x0, . . . , xn〉 *

√
I. Then I(V(I)) =

√
I.

Proof. LetX = V(I) and let Y = V (I) ⊆ An+1 be a�ne cover ofX. Then I(V(I)) = {f homogeneous :f([x]) =
0 ∀[x] ∈ X} = {f : f(x) = 0∀x ∈ Y } = I(Y ) =

√
I
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De�nition 6.13. A projective variety X is reducible if X = X1 ∪X2 with X1, X2 ( X and X1, X2

are subvarietes of X.

Exercise: If X is a non-empty irreducible variety then I(X) is prime.

6.2 Morphisms of projective varieties.

A rational map of degree d, φ : Pn 99K Pm is given by φ([x0 : · · · : xn]) = [φ0(x0, . . . , xn) : · · · :
φm(x0, . . . , xn)] where φi are homogeneous polynomials of degree d in k[x0, . . . , xn].

Example. φ([s : t]) = [s2 : st : t2] a rational map P1 99K P2 of degree 2. (actually a morphism)
φ([s : t]) = [s3 : s2 : st2] a rational map P1 99K P2 of degree 3. This is not de�ned at [s : t] = [0 : 1]

(not a morphism)

A rational map φ : Pn 99K Pm is a morphism if φ is de�ned for all [x] ∈ Pn.
Note. We don't need to use rational functions as we can clear denominators. The polynomials need to
be homogeneous of the same degree to make the map well de�ned, i.e., independent of representative
of [x] ∈ Pn.

φ is a morphism if and only if V (φ0, . . . , φm) ⊆ Pn is empty if and only if 〈x0, . . . , xn〉 ⊆√
〈φ0, . . . , φm〉

De�nition 6.14. A rational map φi : Pn 99K Pm is linear if degree φi = 1∀i.

In that case φ is determined by a m + 1 × n + 1 matrix A = (aij). Then φ is a morphism when
rankA = n+1 (or ker(A) = 0). In the case n = m, then φ is a morphism if and only if A is invertible.

The set {φ : φ([x]) = [Ax] for an invertible (n + 1) × (n + 1)matrixA} = Aut(Pn) forms a group

under composition. Note that A1 =

[
1 0
0 1

]
and A2 =

[
2 0
0 2

]
de�ne the same morphism. If fact

Aut(Pn) = GLn+1 /k
∗ =: PGLn+1 where k∗ = {λI}

6.2.1 Veronese Embedding

De�nition 6.15. The morphism φ : P1 99K Pd given by φ([x0 : x1]) = [xd0 : xd−10 x1 : · · · : xd1] is called
the dth Veronese embedding.

Y = im(φ) = V(y1yj+1 − yi+1yj : 0 ≤ i, j ≤ n− 1). Y is called the rational normal curve of degree
d.

Example. There are
(
n+d
d

)
monomials of degree d. To see this, notice that any string of d ∗ and n |

correspond uniquely to a monomial of degree d, for example, ∗ ∗ ∗| ∗ | ∗ ∗∗ correspond to x30x1x
3
2 while

|| ∗ ∗|∗ correspond to x32x3. So the number of the monomials is the number of such strings.

The dth Veronese embedding of Pn is Pn 99K P(
n+d
d )−1 de�ned by [x0 : · · · : xn] 7→ [xd0 : xd−10 x1 :

· · · : xdn] (all monomial of degree d). The image of φ is V(zαzβ − zγzδ : α + β = γ + δ) where z are
coordinates on k[zα : α ∈ Nn+1,

∑
αi = d]. This is a generalization of yi ↔ zd−i,i. We prove all of this

in the following proposition

Proposition 6.16. im(φ) is closed and equals V(zαzβ− zγzδ : α+β = δ+γ), where z are coordinates
k[zα : α ∈ Nn :

∑
αi = d].

Proof. Let Z = V(zαzβ − zγzδ : α+ β = δ + γ). If z = φ(x) then zαzβ − zγzδ = xαxβ − xδxγ = 0, so
if α+ β = γ + δ we have im(φ) ⊆ Z.

Conversely we want to consider z ∈ Z and want to �nd [x] ∈ Pn with φ([x]) = [z]. We �rst show
there is i with zdei 6= 0. To see this, suppose zα 6= 0 for some α (there must be some such α). Without
loss of generality α0 > 0. If α0 <

d
2 we write 2α = (2αe0 + α̃) + α′′ where α̃0, α

′′
0 = 0 and

∑
α′′i = d

(For example if d = 5, α = (2, 2, 1) then (4, 4, 2) = (4, 1, 0) + (0, 3, 2))
Then z2α = z2α0e0+α̃zα′′ (here we have α = β = α, γ = 2α0e0 + α̃, δ = α′′). So zα 6= 0 implies

that z2α0e0+α̃ 6= 0. So after repeated applications, we may assume α0 >
d
2 . Then we write 2α =

de0 + (2α − de0), then zα2 = zde0z2α−de0 , so zde0 6= 0. Now set xi =
z(d−1)e0+ei

zde0
for 1 ≤ i ≤ n and

x0 = 1. Set [z′] = φ([x]).

23



We now show that [z′] = [z] to show this we show z′αzde0 = zα. We do this by a proof on
induction on

∑n
i=1 αi. The base case is by de�nition/construction. The general case follows from

zαzde0 = zα−ei+e0z(d−1)e0+ei for αi > 0. Note that this is also true for z′. Hence zde0z
′
α = zde0z

′
de0
z′α =

zde0z
′
α−e1+e0z

′
(d−1)e0+ei = zα−ei+e0z

′
(d−1)e0+ei =

zα−e1+e0z(d−1)e0+ep

zde0
= zα.

6.2.2 Segre Embedding

The Segre embedding realizer Pn×Pm as a subvarieties of P(n+1)(m+1)−1. We map ([x], [y]) ∈ Pn×Pm
to φ([x], [y]) = ([xiyj ] : 0 ≤ i ≤ n, 0 ≤ j ≤ m).

Proposition 6.17. im(φ) = V(zijzkl − zilzkj : 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m) where the z are coordinates
on k[zij : 0 ≤ i ≤ n, 0 ≤ j ≤ m]. (Notice that they are the 2 by 2 minors of a generic (n+1)× (m+1)
matrix (zij)

Proof. Let Y = V(zijzkl − zilzkj : 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m). If z = φ([x], [y]) then zijzkl − zilzkj =
xiyjxkyl − xiylxkyj = 0 so im(φ) ⊆ Y .

Conversely, given [z] ∈ Y , without loss of generality, we may assume z00 6= 0. Set xi = zi0/z00 and
yj = z0j/z00, x0 = y0 = 1, and let z′ = φ([x], [y]). Then the equation on zijz00 − zi0z0j implies that
[z′] = [z].

6.2.3 Grassmannian

The Grassmannian G(d, n) parametrizes all d-dimensial subspace of kn

Example. G(1, n) = Pn−1 (a one dimensional subspace is a line through 0)
G(n− 1, n) = Pn−1

We'll describe G(d, n) as a projective variety by the Pucker G(d, n) ↪→ P(
n
d)−1. Let V ⊆ kn be a

d-dimensial subspace. Choose a basis v1, . . . , vd for V and write Av =

v1...
vd

 for the d×n matrix with

rows the vi. Map V to the vector of d×d of AV in P(
n
d)−1, for example φ : V 7→ (1 : 3 : 4 : −1 : −2 : −2).

We name the coordinates on P(
n
d)−1, xI where I ⊆ {1, . . . , n} and |I| = d. I indexes the columns of

the d× d submatrix of Av whose determinant is φ(V )I

Note. 1. φ(V ) is not the zero vectors, since rank AV = d, so Av has a non-vanishing minor of size
d

2. If we choose a di�erent basis v′1, . . . , v
′
d for V , then A′v = UAV where U is a d × d invertible

matrix (in fact the change of basis matrix). So the Ith minor of A′v is det(U). So AV , A
′
V gives

the same point in P(
n
d)−1. This means the map φ : V 7→ φ(V ) ∈ P(

n
d)−1is well de�ned

3. We can recover V from φ(V ).

Example. If φ(V ) = [1 : 0 : 0 : 0 : 0 : 0] then V = span



1
0
0
0

 ,


0
1
0
0


. Since φ(V )12 = 1 we can

assume AV =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
.

Let I be an index with φ(V )I 6= 0 (this exists by 1). Let B be the d× d submatrix of AV indexed
by I. Then det(B) 6= 0. So A′V = B−1AV has an identity matrix in the column indexed by I. But
then for j /∈ I, (A′V )ji = ±φ(V )I\{1}∪{j}.

Question: What does im(φ) look like?

Example. G(2, 4) assume that φ(V )12 6= 0 so that we can take AV =

(
1 0 a b
0 1 c d

)
, φ(V ) = [1 : c :

d : −a : −b : ad−bc]. Note φ(V ) ⊆ V(x12x34−x13x24+x14x23). The equation x12x34−x13x24+x14x23
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is invariant (up to sign) under the S4 action on the labels, where we set x21 = −x12. This says that
φ(V ) ⊆ V(x12x34−x13x24+x14x23) any V . Alternatively, we could check the other row reduced forms.

Conversely, if [z] ∈ V(x12x34−x13x24+x14x23) with z12 6= 0, then [z] = φ(V ) for V = row

(
1 0 − z23z12 − z23z12
0 1 z13

z12
z14
z12

)
The formula x12x34 − x13x24 + x14x23 is called a Plucker relation.

For the embedding G(d, n) ↪→ P(
n
d)−1 we get a Plucker relation PJ1J2 for all J1, J2 ⊆ {1, . . . , n}

with |J1| = d− 1, |J2| = d+ 1.

PJ1J2 =
∑
j∈J2

(−1)sgn(j,J1)XJ1∪jXJ2\j

where XJ1∪j = 0 if j ∈ J1 and sgn(j, J1) = #(i ∈ Ji : i > j) + #(i ∈ J2 : i < j)

Example. n = 4, d = 2, J1 = {1} and J2 = {2, 3, 4}. Then PJ1J2 = x12x34 − x13x24 + x14x23

De�nition 6.18. Let Id,n = 〈PJ1J2 : J1, J2 ⊆ {1, . . . , n}, |J1| = d− 1, |J2| = d+ 1〉 ⊆ k[X1 : |I| = d]

Theorem 6.19. G(d, n) = im(φ) = V(Id,n)

Proof. Assignment sheet.

Question; What are the a�ne charts for G(d, n)?

Answer: G(d, n) ∩ UI is V which look like AV = (Id|Ã) (where Id are the columns of I and Ã the

other columns, not that Ã is an arbitary d× (n− d) matrix). So G(d, n) ∩ UI ∼= Ad(n−d).
Check: G(2, 4) ∩ U1,2 = V (x12x34 − x13x24 + x14x23) ⊆ A5. This is isomorphic to A4 since

k[x13, x14, x23, x24, x34]/(x12x34 − x13x24 + x14x23) ∼= k[x13, x14, x23, x24] ∼= k[A4]
We can think of G(d, n) as

(
n
d

)
copies of Ad(n−d) �glue together�. This worked for any �eld, e.g.,

the real Grassmannian is the manifold of dimension d(n− d). Similarly for C.
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7 Dimension and Hilbert Polynomial

De�nition 7.1. A ring R is Z-graded if there is a decomposition (as groups) R ∼= ⊕i∈ZRi with
RiRj ⊆ Ri+j . The Ri are called the graded pieces and f ∈ Ri is homogeneous of degree i.

A graded k-algebra is a k-algebra R with cf ∈ Ri ∀f ∈ Ri (so each Ri is a k-vector space). Then
k ⊆ R0 (normally for our examples R0 = k)

Example. R = k[x0, . . . , xn], Ri are polynomials of degree i.
S = k[x0, . . . , xn], I homegenous ideal. R = S/I then Ri = Si/Ii.
X ⊆ Pn a projective variety, R(X) := k[x0, . . . , xn]/I(X) is the projective coordinate ring of X.

De�nition 7.2. Let R be a graded k-algbera with dimk(Ri) < ∞ for all i. The Hilbert Function of
R is HR(d) = dimk Rd (note HR : Z→ N).

Example. Let R = k[x0, . . . , xn]. Then HR(d) =
(
n+d
d

)
=
(
n+d
n

)
since a basis for Rd is the set of

monomials of degree d.
S = k[x0, x1, x2] and f homogeneous of degree 3. Let R = S/ 〈f〉.
i dimk(S/ 〈f〉)i = dimk(S)− dimk 〈f〉i
< 0 0
0 1
1 3
2 6

3
(
2+3
2

)
− 1 = 9

4
(
2+4
2

)
− 3 = 12

In general we have the following graded short exact sequence:

0 // S // S // S/ 〈f〉 // 0

g � // gf g � // g

So dimk(S/ 〈f〉)d = dimk Sd − dimk Sd−3 (assuming d ≥ 1)

How can we compute HR?

Proposition 7.3. Let I ⊆ S = k[x1, . . . , xn] and let < be a term order. The (image of the)
monomials in S not in the initial ideal of I form a k-basis for S/I. Thus if I is homogeneous
HS/I(d) = HS/ in<(I)(d)

Proof. Let f be polynomial in S. Then the remainder of dividing f be a Grobner basis for I with
respect to < is a polynomial g with f − g ∈ I and g =

∑
cux

u where cu 6= 0 implies cu /∈ in<(I).
So f = g in S/I and g ∈ span{xU : xU /∈ in<(I)}, so this set spans S/I. If I is homogeneous and f
has degree d, then so does g, so the set of monomials not in in<(I) of degree d spans (S/I)d. To see
that these sets are linearly independent, note that if f =

∑
cux

u is a linear dependence, then f 6= 0
but f ≡ 0 in S/I, hence f ∈ I and cu 6= 0 ⇒ xu /∈ in<(I). Then in<(f) /∈ in<(I) which contradicts
f ∈ I. So we conclude that {xu : xu /∈ in<(I)} is linearly independent so is a basis for S/I. If I
is homogeneous then {xu : deg(xu) = d, xu /∈ in<(I)} is a basis for (S/I)d, as well as a basis for
(S/ in<(I))d. So the Hilbert functions are equal.

This reduces the question to �how can we compute HS/mfor m a monomial ideal?� The key point
is the following short exact sequence. Let I be a homogeneous ideal and f homogeneous of degree d.
Then we have the following s.e.s

0→ S/(I : f)
φ→ S/I

ψ→ S/(I, f)→ 0

where (I : f) = {g ∈ S : fg ∈ I} and (I, f) = I + 〈f〉. The map φ is de�ned by g 7→ fg while the map
ψ is de�ned by g 7→ g. We check that this sequence is exact.

1. φ is injective: If fg ∈ I then g ∈ (I : f)
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2. im(φ) = ker(ψ):

�⊆�: g ∈ S, fg ∈ I + 〈f〉 so im(φ) ⊆ ker(ψ).
�⊇�: Suppose g ∈ ker(ψ) then g = i+ hf for i ∈ I. Hence g − hf = i ∈ I, so g ≡ hf in S/I, so
g = φ(h) ∈ im(φ).

3. ψ is surjective since I + 〈f〉 ⊇ I.

This short exact sequence is graded, i.e., 0 → (S/(I : f))m → (S/I)m+d → (S/(I, f))m+d → 0.
Recall: given an exact sequence 0 → U → V → W → 0 of vector space we have V ∼= U ⊕W . So
dimV = dimU +dimW . In our case dimk(S/I)m+d = dimk(S/(I : f))m+dimk(S/(I, f))m+d. Apply
this when I is a monomial ideal and f a variable. Then (I : f), (I, f) ⊇ I. If f is chosen carefully we
have strict containment, so eventually (I : f), (I, f) are monomial prime ideals, which we know the
Hilbert function of.

Lemma 7.4. Let I = 〈xi1 , . . . , xis〉 ⊆ S = k[x0, . . . , xn] be prime. Then HS/I(m) =
(
m+n−s
m−s

)
=(

m+n−s
n

)
Proof. S/I ∼= k[xj : j 6= ik for any k]. This has Hilbert function

(
n−s+m
m

)
=
(
n−s+m
n−s

)
. This is a

polynomial in m ≥ −(n− s)

Example. Let I = 〈x0x3, x0x2, x1x3〉 ⊆ S = k[x0, x1, x2, x3]. Let us choose f = x0. Then (I : f) =
〈x2, x3〉 and (I, f) = 〈x0, x1x3〉. So HS/I(d) = HS/〈x2,x3〉(d − 1) + HS/〈x0,x1x3〉(d). Take f = x1.
Then (〈x0, x1x3〉 : x1) = 〈x0, x3〉and (〈x0, x1x3〉 , x1) = 〈x0, x1〉. So HS/I(d) = HS/〈x1,x3〉(d − 1) +
HS/〈x0,x3〉(d− 1) +HS/〈x0,x1〉(d) = d+ d+ d+ 1 = 3d+ 1. This is valid for d ≥ 0.

Theorem 7.5. Let I be a homogeneous ideal in S = k[x0, . . . , xn]. Then there exists a polynomial
P ∈ Q[t] such that HS/I(d) = P (d) for d� 0.

Proof. Since HS/I = HS/ in<(I), we may assume that I is a monomial ideal. The case I is a monomial
prime was the lemma. The proof is by Noetherian induction.

Given a monomial ideal I that is not prime, we may assume that the theorem is true for all
monomial ideals containing I. Choose a variable xi properly dividing a generator of I. This must
exists since I is not prime. Then (I : xi), (I, xi) ) I. By induction there exists P1, P2 ∈ Q[t] with
HS/(I:xi)(d) = P1(d) for d� 0 and HS/(I,xi)(d) = P2(d) for d� 0. Then HS/I(d) = P1(d− 1)+P2(d)
for d� 0 and this is a polynomial in d.

De�nition 7.6. Let X ⊆ Pn be a projective variety. The polynomial P := Px of the theorem for
I = I(X) is called the Hilbert Polynomial.

Let X ⊆ Pn be a projective variety. Then the dimension of X is the degree of the Hilbert
Polynomial.

Example. 1. If V ⊆ kn+1 is a subspace of dim(d+1) then P(V ) ⊆ Pn is a subsvariety of dimension
d

2. X = twisted cubic =image of φ : P1 → P3 de�ned by [t0, t1] 7→ [t30, t
2
0t1, t0t

2
1, t

3
1] = V(x0x3 −

x1x2, x0x2 − x21, x1x3 − x22) = V(I). in<(I) = 〈x0x3, x0x2, x1x3〉 (where x0 > x1 > x2 > x3).
Then from the previous work we have Hk[x0, . . . , x3]/ in<(I) = 3d+ 1 for d ≥ 1, so dim(X) = 1

There are many di�erent (equivalent) de�nition of dimension. Proving they are equivalent is non-
trivial. For example, for X ⊆ An we can de�ne dim(X) to be the dimension of the projective closure
of X (See Eisenbud Commutative Algebra, Chapters 8-13)

7.1 Singularities

How close is a variety to a manifold?
Let X = V (f) ⊆ An. Fix a ∈ X. What is the tangent plane to X at a?

Example. • n = 2

� X = V (y−f(x)), for exampleX = V (y−x2). The tangent line at a is (y−a2) = df
dx |a(x−a1)

27



� X = V (f(x, y)), for example X = V (y2 + x2 − 1). The slope is dy
dx = −

df
dx
df
dy

. Tangent line is

y − a2 = dy
dx |a(x− a1). So

df
dy (y − a2) = −

df
dx (x− a1)⇒

df
dy (y − a2) +

df
dx (x− a1) = 0.

• n = 3. X = V (x2 + y2 + z2 − 1), a = (1, 0, 0), the tangent plane to X at a is spanned by

(0, 1, 0), (0, 0, 1), i.e., {x = 1}. Of(a) =

2x
2y
2z

 |1,0,0 =

2
0
0

⇒ 2x− x = 0.

The tangent space to the variety of f at a is Ta(X) = {(y1, . . . , yn) :
∑ df

dxi
|a(yi − ai) = 0}. This

is a hyperplane with normal vector Of(a) unless Of(a) = 0

Example. X = V (x3 − y2), a = (0, 0). Then Of(a) =

(
3x2

−2y

)
|a =

(
0
0

)
. So T0,0(X) = {(y1, y2) :

0y1 + 0y2 = 0} = A2. If a = (1, 1) then Of(a) =

(
3
−2

)
. so T(1,1)(X) = {(y1, y2) : 3y1 − 2y2 = 0} =

{y2 = 2
3y1}

De�nition 7.7. X = V (f) is singular at a point a ∈ X if the tangent space to X at a is not a
hyperplane.

LetX ⊆ An, �x a ∈ X. The tangent space toX at a is Ta(X) = a+{(y1, . . . , yn) :
∑ df

dxi
|a(yi−ai) =

0 ∀f ∈ I(X)}, i.e., Ta(X) = ∩f :X⊆V (〈f〉)Ta(V (f)).

Example. • X = V (x2 − y, x3 − 2) and a = (1, 1, 1). Then Ta(X) = {(y1, y2, y3) : 2y1 − y2, 3y1 −
y3 = 0}+ (1, 1, 1) = (1, 1, 1)+ span of (1, 2, 3)

• X = V (x2 − y2, xz, yz) = V (x− y, z) ∪ V (x+ y, z) ∪ V (x, y).

� a = (1, 1, 0) then Ta = {(y1, y2, y3) : 2y1 − 2y2 = 0, y3 = 0}+ (1, 1, 0) = span(1, 1, 0)

� a = (1,−1, 0) then Ta(X) = {(y1, y2, y3) : 2y1+2y2 = 0, y3 = 0}+{1,−1, 0} = span(1,−1, 0)
� a = (0, 0, 1) then Ta(X) = span(0, 0, 1)

� a = (0, 0, 0) then Ta(X) = A3.
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