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1 Introduction and Motivations

Most of the ideas in this section will be made more formal and clearer in later sections.

1.1 Motivations

De�nition 1.1. An element α of C is an algebraic number if it is a root of a non-zero polynomial with rational
coe�cients

A number �eld is a sub�eld K of C that has �nite degree (as a vector space) over Q. We denote the degree by
[K : Q].

Example. • Q

• Q(
√

2) =
{
a+ b

√
2 : a, b ∈ Q

}
• Q(i) = {a+ bi : a, b ∈ Q}

• Q( 3
√

2) = Q[x]/(x3 − 2)

Note that every element of a number �eld is an algebraic number and every algebraic number is an element of
some number �eld. The following is a brief explanation of this.

Let K be a number �eld, α ∈ K. Then Q(α) ⊆ Kand we will late see that [Q(α) : Q]|[K : Q] < ∞. So there
exists a relation between 1, α, . . . , αn for some n. If α is algebraic then there exists a minimal polynomial f for
which α is a root. Q(α) ∼= Q[x]/(f) has degree deg(f) over Q.

Consider Z[i] ⊂ Q[i], also called the Gaussian integers. A question we may ask, is what prime number p can be
written as the sum of 2 squares? That is p = x2 + y2 = (x+ iy)(x− iy), we �guess� that an odd prime p is x2 + y2

if and only if p ≡ 2 mod 4. A square is always 0 or 1 mod 4, so the sum of two squares is either 0, 1 or 2 mod 4.
Hence no number that is 3 mod 4 is the sum of two squares. Therefore not all numbers that are 1 mod 4 can be
written as the sum of two squares.

Notice that there exist complex conjugation in Z[i], that is the map a+bi 7→ a−bi = a+ bi is a ring automorph-
ism. We can de�ne the norm map N : Z[i]→ Z by α 7→ αα, more explicitly, (a+ bi) 7→ (a+ bi)(a− bi) = a2 + b2.
We will later see that N(αβ) = N(α)N(β).

De�nition 1.2. Let K be a number �eld, a element α ∈ K is called a unit if it is invertible. That is there exists
β ∈ K such that αβ = 1.

Proposition 1.3. The units of Z[i] are 1,−1, i,−i

Proof. Let α ∈ Z[i] be a unit. Then N(α) is a unit in Z, (since there exists β ∈ Z[i] such that αβ = 1, hence
1 = N(αβ) = N(α)N(β)) Now let α = a + bi, then N(α) = a2 + b2 = ±1. Now −1 is not the sum of two squares
hence α ∈ {±1,±i}

De�nition 1.4. Let K be a number �eld, an element α ∈ K is irreducible if α is not a unit, and for all β, γ ∈ Z[i]
with α = βγ, we have either β or γ is a unit.

Fact. Z[i] is a unique factorization domain, that is every non-zero elements α ∈ Z[i] can be written as a product
of irreducible elements in a way that is unique up to ordering and multiplication of irreducible elements by units.

Theorem 1.5. If p ≡ 1 mod 4 is a prime then there exists x, y ∈ Z such that p = x2 + y2 = (x + iy)(x − iy) =
N(x+ iy)

Proof. First we show that there exists a ∈ Z such that p|a2 + 1. Since p ≡ 1 mod 4 we have
(
−1
p

)
= 1 (see Topics

in Number Theory). Let a = p−1
2 !, then a2 =

(
p−1

2

)
!
(
p−1

2

)
! = 1 · · · · ·

(
p−1

2

)
·
(
p−1

2

)
· · · · · 1 ≡ −1 mod p. Hence

p|a2 + 1 = (a+ i)(a− i).
Is p irreducible in Z[i]? If p were indeed irreducible, then p|(a + i) or p|(a − i). Not possible since a + i =

p(c + di) = pc + pdi means pd = 1. So p must be reducible in Z[i]. Let p = αβ, α, β /∈ (Z[i])
∗
and N(p) = p2 =

N(α)N(β)⇒ N(α) 6= ±1 6= N(β). So N(α) = p = N(β). Write α = x+ iy, then N(α) = p = x2 + y2
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1.2 Finding Integer Solutions

Problem 1.6. Determine all integer solution of x2 + 1 = y3

Answer. First note x2 + 1 = (x+ i)(x− i) = y3, we'll use this to show that if x+ i and x− i are coprime then x+ i
and x− i are cubes in Z[i].

Suppose that they have a common factor, say δ. Then δ|(x+ i)− (x− i) = 2i = (1 + i)2. So if x+ i and x− i
are not coprime, then (1 + i)|(x + i), i.e.,(x + i) = (1 + i)(a + bi) = (a − b) + (a + b)i. Now a + b and a − b are
either both even or both odd. We also know that a + b = 1, so they must be both odd, hence x is odd. Now an
odd square is always 1 mod 8 . Hence x2 + 1 ≡ 2 mod 8, so x2 + 1 is even but not divisible by 8, contradicting
the fact that is is a cube.

Hence x + i and x − i are coprime in Z[i]. So let x + i = επe11 . . . πenn where πi are distinct up to units. Now

x − i = x+ i = επ1
e1 . . . πn

en . So (x + i)(x − i) = εεπe11 . . . πenn π1
e1 . . . πn

en = y3. Let y = ε′qf11 . . . qfnn ⇒ y3 =

ε′3q3f1
1 . . . q3fn

n . The qi are some rearrangement of πi, πi up to units. Hence we have ei = 3fj , so x+ i =unit times
a cube, (Note in Z[i], ±1 = (±1)3 and ±i = (∓i)3). Hence x+ i is a cube in Z[i].

So let x + i = (a + ib)3 for some a, b ∈ Z. Then x + i = a3 + 3a2bi − 3ab2 − b3i = a3 − 3ab2 + (3a2b − b3)i.
Solving the imaginary part we have 1 = 3a2b − b3 = b(3a2 − b2). So b = ±1 and 3a2 − b2 = 3a2 − 1 = ±1. Now
3a2 = 2 is impossible, so we must have 3a2 = 0, i.e., a = 0 and b = −1. This gives x = a3 − 3ab2 = 0.

Hence y = 1, x = 0 is the only integer solution to x2 + 1 = y3

Theorem 1.7 (This is False). The equation x2 + 19 = y3 has no solutions in Z (Not true as x = 18, y = 17 is a
solution since 182 + 19 = 324 + 19 = 343 = 172)

Proof of False Theorem. This proof is �awed as we will explain later on. (Try to �nd out where it is �awed)

Consider Z[
√
−19] = {a + b

√
−19 : a, b ∈ Z]. Then we de�ne the conjugation this time to be a+ b

√
−19 =

a−b
√
−19, and similarly we de�ne a norm function N : Z[

√
−19]→ Z by α 7→ αα. Hence N(a+b

√
−19) = a2+19b2.

So we have x2 + 19 = (x+
√
−19)(x−

√
−19).

Suppose that these two factors have a common divisor, say δ. Then δ|2
√
−19. Now

√
−19 is irreducible since

N(
√
−19) = 19 which is a prime. If 2 = αβ with α, β /∈

(
Z[
√
−19

)∗
, then N(α)N(β) = N(2) = 22, so N(α) = 2

which is impossible. So 2 is also irreducible. Hence we just need to check where 2|x+
√
−19 or

√
−19|x+

√
−19 is

possible.
Suppose

√
−19|x +

√
−19, then x +

√
−19 =

√
−19(a + b

√
−19) = −19b + a

√
−19, so a = 1 and 19|x. Hence

x2 + 19 ≡ 19 mod 192, i.e., x2 + 19 is divisible by 19 but not by 192 so it can't be a cube. Suppose 2|x +
√
−19,

then x+
√
−19 = 2a+ 2b

√
−19, which is impossible.

Hence we have x +
√
−19 and x −

√
−19 are coprime, and let x +

√
−19 = επe11 . . . πenn . Then x − 19 =

x+
√
−19 = επ1

e1 . . . πn
en , so (x+

√
−19)(x−

√
−19) = εεπe11 . . . πenn π1

e1 . . . πn
en = y3. If we let y = ε′qf11 . . . qfnn ,

then y3 = ε′3q3f1
1 . . . q3fn

n , so the qi are some rearrangements of πi, πi up to units. Hence corresponding ei = 3fi
and so x+

√
−19 =unit times a cube. Now units of Z[

√
−19] = {±1}.

So x+
√
−19 = (a+ b

√
−19)3 = (a3− 19ab2) + (3a2b− 19b3)

√
−19. Again comparing

√
−19 coe�cients we have

b(3a2 − 19b2) = 1, so b = ±1 and 3a2 − 19 = ±1. But 3a2 = 20 is impossible since 3 - 20, and 3a2 = 18 = 3 · 6 is
impossible since 6 is not a square. So no solution exists.

This proof relied on the fact that Z[
√
−19] is a UFD, which it is not. We can see this by considering 343 = 73 =

(18 +
√
−19)(18 −

√
−19). Now N(7) = 72. Suppose 7 = αβ with α, β /∈

(
Z[
√
−19]

)∗
. Then N(α)N(β) = 72, so

N(α) = 7, but N(a+b
√
−19) = a2 +19b2 6= 7. So 7 is irreducible in Z[

√
−19]. On the other hand N(18+

√
19) = 73,

and suppose that N(α)N(β) = 73, then without loss of generality N(α) = 7 and N(β) = 72. But we have just seen
no elements have N(α) = 7, so 18 +

√
−19 is irreducible in Z[

√
−19]. The same argument shows that 18 =

√
−19

is also irreducible in Z[
√
−19]

1.3 Pell's Equations

Fix d ∈ Z>0 with d 6= a2 for any a ∈ Z. Then Pell's equation is x2 − dy2 = 1, with x, y ∈ Z.
Now Z[

√
d] = {a + b

√
d : a, b ∈ Z}. This has an automorphism a + b

√
d 7→ a − b

√
d = a+ b

√
d. (Note that

is just notation, and it does not mean complex conjugation). Again we can de�ne a function called the norm,
N : Z[

√
d] → Z de�ned by α 7→ αα, and explicitly (a + b

√
d) 7→ a2 − db2. Hence Pell's equation comes down to

solving N(x+ y
√
d) = 1.
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Now recall that α ∈
(
Z[
√
d]
)∗
, then there exists β such that αβ = 1. So N(α)N(β) = 1, so N(α) = ±1. On

the other hand if N(α) = ±1, then αα = ±1, so ±α = α−1 , hence α is a unit.

Example. d = 3. Then x2 − 3y2 = 1⇒ 3y2 + 1 = x2

y = 0 3y2 + 1 = 1. This is ok, it leads to (1, 0) which correspond to 1 ∈ Z[
√

3]

y = 1 3y2 + 1 = 4. This is ok, it leads to (2, 1) which gives 2 +
√

3 ∈ Z[
√

3]

y = 2 3y2 + 1 = 13

y = 3 3y2 + 1 = 28

y = 4 3y2 + 1 = 49. This is ok, it leads to (7,4) which gives 7 + 4
√

3 ∈ Z[
√

3]

Note that if ε is a unit in Z[
√
d], then ±εn is a unit for all n ∈ Z. (For example (2+

√
3)2 = 22 +2·2

√
3+3 = 7+4

√
3.

If x, y is a solution, then of course (−x,−y) is a solution as well. Hence there are in�nitely many solutions

Theorem 1.8. Let d ∈ Z>0 with d 6= a2. Then there exists εd ∈ Z[
√
d], εd 6= ±1 such that every unit can be written

as ±εnd , n ∈ Z. Such an εd is called a Fundamental Unit of Z[
√
d]. If εd is a fundamental unit, then so is ±ε−1

d .

Proof. This is a consequence of Dirichlet's Unit Theorem, which we will prove at the end of the course.

Example. We will show that ε3 = 2 +
√

3 ∈ Z[
√

3]
Let x1 + y1

√
3 ∈ Z[

√
d] be a fundamental unit. Without any lost of generality we can assume that x1 ≥ 0. Now

(x1 + y1

√
3)−1 = x1−y1

√
3

(x1+y1
√

3)(x1−y1
√

3)
= ±(x1 − y1

√
3). So without loss of generality we can also assume y1 ≥ 0.

Put xn + yn
√

3 = (x1 + y1

√
3)2 = xn1 + nxn−1

1 y
√

3 + . . . . So xn = xn1 + · · · ≥ xn1 and yn = nxn−1
1 y1. If x1 = 0

then 3y2
1 = ±1 which is not possible. Similarly if y1 = 0 then x2

1 = 1⇒ x1 = ±1 and ε3 = ±1 which is impossible
by de�nition. So x1 ≥ 1, y1 ≥ 1. For n ≥ 2 : xn ≥ xn1 ≥ x1 and yn = nxn−1

1 y1 >≥ ny1 > y1

Conclusion: A solution (x, y) of x2 − 3y2 = ±1 with y ≥ 1 minimal is a Fundamental unit for Z[
√

3]. Hence
2 +
√

3 is a fundamental unit for Z[
√

3], so all solution for x2 + 3y2 = ±1 are obtained by (x, y) = (±xn,±yn) where
xn + yn

√
3 = (2 +

√
3)n .
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2 Fields, Rings and Modules

2.1 Fields

De�nition 2.1. If K is a �eld then by a �eld extension of K, we mean a �eld L that contains K. We will denote
this by L/K.

If L/K is a �eld extension, then multiplication of K on L de�nes a K-vector space structure on L. The degree
[L : K] of L/K is the dimension dimK(L)

Example. • [K : K] = 1

• [C : R] = 2

• [R : Q] =∞ (uncountably in�nite)

The Tower Law. If L/K and M/K are �elds extensions with L ⊆M , then [M : K] = [M : L][L : K]

Proof. Let {xα : α ∈ I} be a basis for L/K and let {yβ : β : J} be a basis for M/L. De�ne zαβ = xαyβ ∈ M . We
claim that {zαβ} is a basis for M/K.

We show that they are linearly independent. If
∑
α,β aαβzαβ = 0 with �nitely many aαβ ∈ K non-zero. Then∑

β(
∑
α aαβxα)yβ = 0, since the yβ are linearly independent over L we have

∑
α aαβxα = 0 for all β. Since the xα

are linearly independent over K we have aαβ = 0 for all α, β.
We show spanning. If z ∈M , then z =

∑
λβyβ for λβ ∈ L. For each λβ =

∑
aαβxα. So x =

∑
β(
∑
α aαβxα)yβ =∑

α,β aαβxαyβ =
∑
aαβxαβ .

So {zαβ} is a basis for M over K, so [M : K] = [M : L][L : K]

Corollary 2.2. If K ⊂ L ⊂M are �elds with [M : K] <∞ then [L : K]|[M : K].

De�nition. L/K is called �nite if [L : K] <∞
If K is a �eld and x is an indeterminate variable, then K(x) denotes the �eld of rational functions in x with

coe�cients in K. That is

K(x) =

{
f(x)

g(x)
: f, g ∈ K[x], g 6= 0

}
If L/K is a �eld extension, α ∈ L. Then K(α) is the sub�eld of L generated by K and α.

K(α) =

{
f(α)

g(α)
: f, g ∈ K[x], g(α) 6= 0

}
=

⋂
K⊂M⊂L,α∈M

M

Let L/K be a �eld extension, α ∈ L. We say that α is algebraic over K if there exists a non-zero polynomial
f ∈ K[x] with f(α) = 0

Theorem 2.3. Let L/K be a �eld extension and α ∈ L. Then α is algebraic over K if and only if K(α)/K is a
�nite extension.

Proof. ⇐) Let n = [K(α) : K] and consider 1, α, . . . , αn ∈ K(α). Notice that there are n + 1 of them, so
they must be linearly dependent since the dimension of the vector space is n. So there exists ai ∈ K such that
a0 + a1α+ · · ·+ anα

n = 0 with ai not all zero. Hence by de�nition α is algebraic.
⇒) Assume that there exists f 6= 0 ∈ K[x] such that f(α) = 0, and assume that f has minimal degree n. We

claim that f ∈ K[x] is irreducible.
Suppose that f = gh, with g, h non-constant. Then 0 = f(α) = g(α)h(α), so without loss of generality

g(α) = 0, but deg(g) < deg(f). This is a contradiction. Let f = anx
n + · · · + a0 with an 6= 0. Then f(α) = 0 ⇒

anα
n + · · ·+a0 = 0⇒ αn = − 1

an
(an−1α

n−1 + · · ·+a0). So we can reduce any polynomial expression in α of degree
≥ n to one of degree ≤ n− 1.

Hence K(α) =
{
b0+···+bn−1α

n−1

c0+···+cn−1αn−1 : bi, ci ∈ K
}
. Pick b(α)

c(α) ∈ K(α), now deg(c) ≤ n − 1 < deg f and c(α) 6= 0.

Hence gcd(c, f) = 1, so there exists λ, µ ∈ K[x] with λ(x)c(x) + µ(x)f(x) = 1. In particular 1 = λ(α)c(α) +
µ(α)f(α) = λ(α)c(α), hence λ(α) = 1

c(α) ∈ K[α]

Any elements of K(α) is a polynomial in α of degree ≤ n− 1. So if α is algebraic over K, we have just shown
that K(α) = K[α] and 1, α, . . . , αn−1 is a basis for K[α]/K, hence [K(α) : K] = n
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Theorem 2.4. Let L/K be a �eld extension, then the set M of all α ∈ L that are algebraic over K is a sub�eld of
L containing K.

Proof. First K ⊆M , as α ∈ K is a root of x− α ∈ K[x]
So take α, β ∈ M , we need to show that α − β ∈ M and α

β ∈ M if β 6= 0. Consider the sub�eld K(α, β) ⊆ L.

Now [K(α)(β) : K] = [K(α, β) : K(α)][K(α) : K]. We have [K(α)(β) : K(α)] ≤ [K(β) : K] since the �rst one is
the degree of the minimal polynomial of β over K(α), and β is algebraic, so there is f ∈ K[x] ⊂ K[α] such that
f(β) = 0. Now α− β ∈ K(α)(β) and if β 6= 0, αβ ∈ K(α)(β). This implies that K(α− β) ⊆ K(α, β)⇒ [K(α− β) :

K]|[K(α, β) : K] <∞ and K
(
α
β

)
⊆ K(α, β)⇒ [K

(
α
β

)
: K]|[K(α, β) : K] <∞. Hence α− β and α

β are algebraic

over K

Corollary 2.5. The set of algebraic number is a �eld. We denote this with Q

For any sub�eld K ⊂ C, we let K denote the algebraic closure of K in C, i.e., the set of α ∈ C that are algebraic
over K.

For example R = C = R(i).
We also conclude that Q = ∪K number fieldK. Also [Q : Q] =∞ so Q itself is not a number �eld.

2.2 Rings and Modules

In this course we use the following convention for rings. Every ring R is assumed to be commutative and has 1. We
also allow 1 to be 0, in which case R = 0 = {0}. A ring homomorphism φ : R→ S is assumed to send 1R to 1S . A
subring R of a ring S is assumed to satisfy 1R = 1S

Example. Let R1 and R2 be two non-zero rings. Then we have a ring R = R1 × R2 with 1R = (1R1 , 1R2). Note
that R′1 = R1 × {0} ⊂ R is a ring, but 1′R1

= (1, 0) 6= 1R so R′1 is not a subring of R. Finally φ : R1 → R de�ned
by r 7→ (r, 0) is not a ring homomorphism.

De�nition 2.6. Let R be a ring then a module over R is an abelian group M with scalar multiplication by R,
satisfying

• 1 ·m = m

• (r + s)m = rm+ sm

• r(m+ n) = rm+ rn

• (rs)m = r(sm)

For all r, s ∈ R,m, n ∈M
An homomorphism of R-modules is a homomorphism of abelian group that satis�es φ(rm) = rφ(m) for all

r ∈ R,m ∈M

Example. If R is a �eld, then modules are the same as vector spaces.
Any ideal I of R is an R-module
Any quotient R/I is an R-module
If R ⊆ S are both rings, then S is an R-module
Let R = Z. Then any abelian group is a Z-module

De�nition 2.7. A module is free of rank n if it is isomorphism to Rn.

Theorem 2.8. If R 6= 0, the rank of a free module over R is uniquely determined, i.e., Rm ∼= Rn ⇒ m = n

Proof. This is not proven in this module

De�nition 2.9. If R is a ring then an R-module M is �nite if it can be generated by �nitely many elements.

Example. R = Z,M = Z[i] is �nite with generators 1 and i
R = Z[2i], M = Z[i]. This is also �nite with generators 1 and i, but it is not free.
R = Z, M = Z

[
1
2

]
=
{
n

2m : x ∈ Z,m ≥ 0
}
⊆ Q. This is not �nite as any �nite set has a maximum power of 2

occurring in the denominator.
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2.3 Ring Extensions

De�nition 2.10. Let R be a ring, then a ring extension of R is a ring S that has R as a subring.
A ring extension R ⊂ S is �nite if S is �nite as an R-module
Let R ⊂ S be a ring extension, s ∈ S. Then s is said to be integral over R if there exists a monic polynomial

f = xn + an−1x
n−1 + · · ·+ a0 ∈ R[x] with f(s) = 0

Theorem 2.11. Let R ⊂ S be a ring extension, s ∈ S. Then the following are equivalent:

1. s is integral over R

2. R[s] is a �nite extension of R

3. There exists a ring S′ such that R ⊂ S′ ⊂ S, S′ is �nite over R and s ∈ S′

Proof. Not proven in this modules. Some of these are obvious. (See Commutative Algebra Theorem 4.2)

Theorem 2.12. If R ⊂ S is a ring extension, then the set S′ of s ∈ S that are integral over R is a ring extension
of R inside S.

Proof. Note that R ⊆ S′ since r ∈ R is a root of x− r ∈ R[x].
Given s1, s2 ∈ S′ we want to prove that s1 − s2, s1s2 ∈ S′. We have R ⊂ R[s1] ⊂ R[s1, s2] ⊂ S, now the �rst

ring extension is �nite since s1 is integral over R. We also have s2 is integral over R so in particular it is integral
over R[s1]. Take the generators for R[s1] as an R-module: 1, . . . , sn1 and take the generators for R[s1, s2] as an

R[s1]-module: 1, . . . , sm2 . Then
{
si1s

j
2 : 1 ≤ j ≤ m, 1 ≤ i ≤ n

}
is a set of generators for R[s1, s2] as an R-module.

Hence we conclude that R[s1, s2] is a �nite extension of R. Now s1−s2, s1s2 ∈ R[s1, s2]. So if we apply the previous
theorem, we have s1 − s2, s1s2 are integral over R.

De�nition 2.13. Let R ⊂ S be an extension of rings, then the ring of R integral elements of S is called the integral
closure of R in S

Given an extension of rings R ⊂ S then we say that R is integrally closed in S if the integral closure of R in S
is R itself

Theorem 2.14. Let R ⊂ S be a ring extension and let R′ ⊂ S be the integral closure of R in S. Then R′ is
integrally closed in S.

Proof. Take s ∈ S integral over R′. We want to show that s is integral over R. Take f = xn+an−1x
n−1 + · · ·+a0 ∈

R′[x] with f(s) = 0. Consider a subring of R ⊂ R[a0, a1, . . . , an−1] ⊂ R′. Now R ⊂ R[a0] ⊂ R[a0, a1] ⊂ · · · ⊂
R[a0, . . . , an−1]. Now f ∈ R[a0, . . . , an−1][x]. So s is integral over R[a0, . . . , an−1], hence R[a0, . . . , an−1][s] is �nite
over R[a0, . . . , an−1] and hence �nite over R. So by Theorem 2.12, we have that s is integral over R.

De�nition 2.15. An element α ∈ C is an algebraic integer if it is integral over Z.
The ring of algebraic integers is denoted by Z
If K is a number �eld, then the ring of integers in K is denoted OK = Z ∩K = integral closure of Z in K.

Example. Let K = Q. Take p/q ∈ Q integral over Z (assume that gcd(p, q) = 1), then there exists f(x) ∈ Z[x]
such that f(p/q) = 0. So x−p/q is a factor of f in Q[x], but Gauss' Lemma states �if f ∈ Z[x] is monic and f = g ·h
with g, h ∈ Q[x] then g, h ∈ Z[x]�. So x− p/q ∈ Z[x], that is p/q ∈ Z. So OQ = Z.

Consider K = Q(
√
d), with d 6= 1 and d is square free. Consider α ∈ K, α = a + b

√
d, a, b ∈ Q and suppose

that α is an algebraic integer. Assume that deg(α) = 2, that is the minimum monic polynomial f of α in Q[x] has
degree 2. Then by Gauss, we know f ∈ Z[z], furthermore f = (x− (a+ b

√
d))(x− (a− b

√
d)) = x2− 2ax+ a2− db.

So we want 2a ∈ Z and a2 − db ∈ Z.
So 2a ∈ Z⇒ a = a′

2 with a′ ∈ Z. Then a2 − b2d =
(
a′

2

)2

− b2d = (a′)2 − d(2b)2 ∈ 4Z. So (using the fact that d

is square-free) d(2b)2 ∈ Z⇒ 2b ∈ Z and (a′)2 ≡ d(b′)2 mod 4. So we conclude:

• If a′ is even, then a ∈ Z, so b′ is even and thus b ∈ Z

• If a′ is odd, then (a′)2 ≡ 1 mod 4, so b′ is odd as well and d ≡ 1 mod 4

We have just proven the following:
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Theorem 2.16. Let d ∈ Z, with d 6= 1 and square free. Then OQ(
√
d) =

{
Z[
√
d] d 6≡ 1 mod 4

Z
[

1+
√
d

2

]
d ≡ 1 mod 4

Theorem 2.17. Let R be a UFD. Then R is integrally closed in its fraction �eld (the converse does not hold)

Proof. Take s = r1
r2

integral over R, and assume that r1, r2 are coprime (well de�ned since R is a UFD), we have to
show that r2 ∈ R∗.

If r2 /∈ R∗, then let π ∈ R be any factor of r2. Now s is integral, so there exists ai and n such that sn +
an−1s

n−1 + · · ·+ a0 = 0. Multiplying through by rn2 we have rn1 + an−1r
n−1
1 r2 + · · ·+ a0r

n
2 = 0. Now since r2 ≡ 0

mod π, if we take mod both side we have rn1 ≡ 0 mod π. Hence π|rn1 ⇒ π|r1. This is a contradiction.

The converse of this theorem is not true, as an example OQ(
√
−5) = Z[

√
−5] is integrally closed but not a UFD

since 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)
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3 Norms, Discriminants and Lattices

3.1 Conjugates, Norms and Traces

The Theorem of Primitive Elements. Any number �eld K can be generated by a single elements θ ∈ K. That
is K = Q(θ)

Proof. See any courses in Galois Theory

Consider a number �eld K = Q(θ). This θ has a monic minimal polynomial, say fθ ∈ Q[x]. We can factor fθ
over C, say fθ = (x − θ1)(x − θ2) . . . (x − θn), where θ1 = θ and all the θi are distinct. For each i we have a �eld
embedding, which we denote σi : K ↪→ C de�ned by θ 7→ θi. These are all possible embedding of K ↪→ C

Example. K = Q[
√
d], then fθ = x2 − d = (x−

√
d)(x+

√
d). So we have σ1 = id and σ2 = a+ b

√
d 7→ a− b

√
d

K = Q[ 3
√

2], then fθ = x3 − 2 = (x − 3
√

2)(x − ζ3 3
√

2)(x − ζ2
3

3
√

2) where ζ3 = e
2πi
3 a third root of unity. So we

have:

• σ1 : 3
√

2 7→ 3
√

2 (i.e., the identity map),

• σ2 : 3
√

2 7→ ζ3
3
√

2

• σ3 : 3
√

2 7→ ζ2
3

3
√

2

De�nition 3.1. Let K be a number �eld and σ1, . . . , σn all the embeddings K ↪→ C. Let α ∈ K. Then the
elements σi(α) are called the conjugates of α.

Theorem 3.2. Let K be a number �eld, n = [K : Q]. Take α ∈ K, consider the multiplication by α as a linear map
from the Q-vector space K to itself. That is α : K → K is de�ned by β 7→ αβ. Then the characteristic polynomial
of this map is equal to Pα(x) =

∏n
i=1(x− σi(α))

Proof. Let K = Q(θ) and consider the basis: 1, θ, θ2, . . . , θn−1. Let Mα be the matrix that describes the linear map
α relative to this basis.

First consider α = θ. Let fθ = xn + an−1x
n−1 + · · ·+ a0. Then we have

Mθ =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...
0 0 · · · 0 −an−1


We now calculated the characteristic polynomial of Mθ:

det(X · In −Mθ) = det


x 0 · · · 0 a0

−1 x · · · 0 a1

0 −1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 0 x+ an−1

 =
∑

akx
k

Hence the characteristic polynomial ofMθ = fθ =
∏n
i=1(x−σi(θ)) as required. Hence we know from Linear Algebra

that there exists an invertible matrix A such that:

Mθ = A


σ1(θ) 0 · · · 0

0 σ2(θ) · · · 0
...

...
. . .

...
0 0 · · · σn(θ)

A−1
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Now note thatMα±β = Mα±Mβ andMαβ = MαMβ (basic linear algebra). So if we have a polynomial g ∈ Q[x],
then Mgα = g(Mα). Now we can write any α ∈ K as g(θ) for some g ∈ Q[X]. Hence we have

Mα = g(Mθ) = A


g(σ1(θ)) 0 · · · 0

0 g(σ2(θ)) · · · 0
...

...
. . .

...
0 0 · · · g(σn(θ))

A−1

= A


σ1(g(θ)) 0 · · · 0

0 σ2(g(θ)) · · · 0
...

...
. . .

...
0 0 · · · σn(g(θ))

A−1

= A


σ1(α) 0 · · · 0

0 σ2(α) · · · 0
...

...
. . .

...
0 0 · · · σn(α)

A−1

Hence, the characteristic polynomial of Mα is
∏n
i=1(x− σi(α)) as required.

Corollary 3.3. For α ∈ K, the coe�cients of
∏n
i=1(x− σi(α)) are in Q.

De�nition 3.4. Let K be a number �eld, α ∈ K. We de�ne the norm of α as N(α) = NK/Q(α) =
∏n
i=1 σi(α) ∈ Q.

Corollary 3.5. N(α) = det(·α) = det(Mα)

We can see that the norm is a multiplicative function, i.e., N(αβ) = N(α)N(β).

De�nition 3.6. LetK be a number �eld and α ∈ K. We de�ne the trace of α as Tr(α) = TrK/Q(α) =
∑n
i=1 σi(α) ∈

Q.

Corollary 3.7. Tr(α) = Tr(·α) = Tr(Mα)

We can see that the trace is an additive function, i.e, Tr(α+ β) = Tr(α) + Tr(β).

Example. Let K = Q(
√
d). Then we have:

• Tr(a+ b
√
d) = (a+ b

√
d) + (a− b

√
d) = 2a

• N(a+ b
√
d) = (a+ b

√
d)(a− b

√
d) = a2 − db2

Let K = Q( 3
√

2) and recall that x3 − 2 = (x − 3
√

2)(x − ζ3 3
√

2)(x − ζ2
3

3
√

2) where ζ3 = e
2πi
3 a third root of unity.

Then we have:

• Tr(a+ b 3
√

2 + c 3
√

4) = 3a+ b 3
√

2(1 + ζ3 + ζ2
3 ) + c 3

√
4(1 + ζ3 + ζ2

3 ) = 3a

• N(a+ b 3
√

2 + c 3
√

4) = (a+ b 3
√

2 + c 3
√

4)(a+ bζ3
3
√

2 + cζ2
3

3
√

4)(a+ bζ2
3

3
√

2 + cζ3
3
√

4) = a3 + 2b2 + 4c3 + 6abc

3.2 Discriminant

De�nition 3.8. Let K be a number �eld and α1, . . . , αn be a basis for K. Let σ1, . . . , σn : K → C be all the
embeddings. The discriminant of (α1, . . . , αn) is de�ned asdet


σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) · · · σn(αn)




2

We denote this by ∆(α1, . . . , αn) or by disc(α1, . . . , αn)
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Theorem 3.9. We have

∆(α1, . . . , αn) = det


Tr(α1α1) Tr(α1α2) · · · Tr(α1αn)
Tr(α2α1) Tr(α2α2) · · · Tr(α2αn)

...
...

. . .
...

Tr(αnα1) Tr(αnα2) · · · Tr(αnαn)


Proof. Let M = (σi(αj))ij . Then we have ∆(α1, . . . , αn) = det(M)2 = det(M2) = det(MTM). But note that the

entries of MTM at (i, j) is
∑n
k=1 σk(αi) · σk(αj) =

∑n
k=1 σk(αiαj) = Tr(αiαj).

Corollary 3.10. We have ∆(α1, . . . , αn) ∈ Q

Theorem 3.11. We have ∆(α1, . . . , αn) 6= 0

Proof. Suppose that ∆(α1, . . . , αn) = 0. Then there exists not all zero c1, . . . , cn ∈ Q with c1

Tr(α1α1)
...

Tr(αnα1)

+ · · ·+

cn

Tr(αnα1)
...

Tr(αnαn)

 = 0. Hence

Tr(α1

∑
cjαj)

...
Tr(αn

∑
cjαj)

 = 0. Put α =
∑
cjαj , we have just shown that Tr(αiα) = 0 ∀i.

But we have that αi forms a basis for K over Q, hence Tr(βα) = 0 ∀β ∈ K. We have α 6= 0, so let β = α−1, then
Tr(βα) = Tr(1) = n = [K : Q] which is a contradiction.

De�nition 3.12. The map K × K → Q de�ned by (α, β) 7→ Tr(αβ) is know as the trace pairing on K. It is
bilinear.

Let K = Q(θ), this has basis 1, . . . , θn−1. In general det

1 x1 x2
1 · · · xn−1

1
...

...
...

...
1 xn x2

n · · · xn−1
n

 is called a Vandemonde

determinant and it is equal to
∏

1≤i<j≤n(xj − xi). (See Linear Algebra or Algebra I for a proof by induction). So

in our case, ∆(1, θ, . . . , θn−1) =
∏

1≤i<j≤n(σi(θ) − σj(θ))2. Also note that ∆(fθ) := ∆(1, θ, . . . , θn−1). (Generally,

if f = (x − α1) . . . (x − αn) then ∆(f) :=
∏

1≤i<j≤n(αi − αj)2, check with the de�nition of a discriminant of a
quadratic)

Example. Let K = Q(
√
d). Consider the basis 1,

√
d. We calculate the discriminant in two ways:

• ∆(1,
√
d) = det

(
1
√
d

1 −
√
d

)2

= (−2
√
d)2 = 4d

• ∆(1,
√
d) = det

(
Tr(1) Tr(

√
d)

Tr(
√
d) Tr(d)

)
= det

(
2 0
0 2d

)
= 4d

Now consider the basis 1, 1+
√
d

2 . Then ∆(1, 1+
√
d

2 ) = (−
√
d)2 = d

Let K = Q( 3
√
d), with basis 1, 3

√
d,

3
√
d2.Then we have

∆(1,
3
√
d,

3
√
d2) = det

 Tr(1) Tr( 3
√
d) Tr(

3
√
d2)

Tr( 3
√
d) Tr(

3
√
d2) Tr(d)

Tr(
3
√
d2) Tr(d) Tr( 3

√
d)


= det

3 0 0
0 0 3d
0 3d 0


= −27d2
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3.3 Lattices

De�nition 3.13. Let K be a number �eld. A lattice Λ in K is a subgroup generated by Q-linearly independent
elements of K. That is Λ = {n1α1 + · · ·+ nrαr|ni ∈ Z} where αi are linearly independent over Q. We always have
r ≤ [K : Q]. The number r is called the rank of the lattice, this is sometimes denoted rk(Λ).

Example. Z[i] is a lattice in Q(i)

Theorem 3.14. Any �nitely generated subgroup of a number �eld K is a latice.

Proof. Let Λ be a �nitely generated subgroup of K. By the Fundamental Theorem of Finitely Generated Abelian
Group, we have Λ ∼= T ⊕ Zr, where T is the torsion. As K is a Q-vector space, we have T = 0, so Λ ∼= Zr. Let
φ : Zr → Λ be an isomorphism.

Claim: αi = φ(ei) is a basis (i.e., linearly independent generating set) for Λ, where ei is the standard basis for
Zr. Now φ(c1, . . . , cr) =

∑n
i=1 ciαi. Since φ is surjective, all elements of Λ are reached. If

∑
ciαi = 0 for ci ∈ Q

multiply ci by the common denominator, then without loss of generality, we can assume ci ∈ Z. But we know that
φ is injective, so for all i, ci = 0.

De�nition 3.15. A lattice of K is said to be full rank if its rank r = [K : Q]

Theorem 3.16. Let Λ ⊆ K be a full rank lattice. Then ∆(α1, . . . , αr) is the same for every basis α1, . . . , αr of Λ

Proof. Suppose (αi)i and (βi)i are basis for Λ. Then each βi can be written as a linear combination of αj with

coe�cients in Z, i.e.

β1

...
βr

 = A

α1

...
αr

 with A an r× r matrix with coe�cients in Z. Similarly

α1

...
αr

 = B

β1

...
βr

.

Hence we have AB = Ir, so A ∈ GLr(Z), so det(A) = ±1. Put S =

Tr(α1α1) · · · Tr(α1αr)
...

. . .
...

Tr(αrα1) · · · Tr(αrαr)

. Then

Tr(β1β1) · · · Tr(β1βr)
...

. . .
...

Tr(βrβ1) · · · Tr(βrβr)

 = ATSA. (Base change for matrices describing symmetric bilinear forms, see Algebra

I)
So we have ∆(β1, . . . , βr) = det(ATSA) = det(A2) det(S) = det(S) = ∆(α1, . . . , αr)

De�nition 3.17. Let Λ ⊂ K be a full rank lattice, then we de�ne ∆(Λ) to be the discriminant of any basis of Λ.

Theorem 3.18. Let K be a number �eld and Λ ⊂ K be a full rank lattice with Λ ⊂ OK . Then ∆(Λ) ∈ Z.

Proof. We have ∆(Λ) = det((Tr(αiαj)ij) with αi ∈ OK . If α ∈ OK , then Tr(α) =
∑n
i=1 σi(α) ∈ Z ∩Q = Z. Hence

∆(Λ) ∈ Z.

Theorem 3.19. Let K be a number �eld and Λ ⊂ Λ′ be two full rank lattices. Then the index (Λ′ : Λ) is �nite and
∆(Λ) = (Λ′ : Λ)2∆(Λ′)

Proof. All the elements of Λ can be written as an integral linear combination of some chosen basis of Λ′. So there
exists A ∈ Mn(Z) with Λ = AΛ′. Consider Λ′/Λ ∼= Zn/AZn, this is a �nitely generated abelian group so by
FTFGAG Λ′/Λ ∼= Z/d1Z⊕ · · · ⊕Z/dmZ⊕Zr with d1|d2| . . . |dm. So (by Smith Normal Form from Algebra I) there

exists B,B′ ∈ GLn(Z) with BAB′ =


d1 0 · · · 0
0 d2

...
. . .

0 dn

. As we have rk(Λ′) = rk(Λ), we have that r = 0, and

thus det(A) = d1 . . . dm = |Zn/AZn| = (Λ′ : Λ).
Furthermore ∆(Λ) = ∆(AΛ′) = (detA)2∆(Λ′).

Theorem 3.20. Let K be a number �eld with n = [K : Q]. Then there exists a basis ω1, . . . , ωn of K/Q such that
OK = Zω1 + · · ·+ Zωn = {

∑
aiωi|ai ∈ Z}. (That is OK is a full rank lattice in K)
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Proof. We consider all Λ ⊂ OK that are full rank lattices in K.
The �rst question is: do such Λ exists? Write K = Q(θ), θ ∈ K and fθ = xn + an−1x

n−1 + · · ·+ a0 with ai ∈ Q.
Now let d be a common denominator of the ai, then dθ ∈ OK . Also note that Q(θ) = Q(dθ), so without loss of
generality we can assume θ ∈ OK . Then Z[θ] ⊆ OK , furthermore 1, θ, . . . , θn−1 are linearly independent over Z,
hence Z[θ] is a full rank lattice.

Of all such Λ, we have that ∆(Λ) ∈ Z (by Theorem 3.18). So consider Λ with |∆(Λ)| minimal. Claim: Λ = OK .
Suppose Λ 6= OK . We do have Λ ⊂ OK , so take α ∈ OK \ Λ. Then Λ′ := Λ + Zα is �nitely generated as an

abelian group of K and thus Λ′ is a lattice of full rank. Also Λ′ ⊂ OK . But we have |∆(Λ)| = (Λ′ : Λ)2|∆(Λ)|, and
since Λ 6= Λ′, we �nd |∆(Λ)| > |∆(Λ′)|, which is a contradiction.

De�nition 3.21. The discriminant of a number �eld K/Q is de�ned as ∆(K/Q) = ∆(OK)

Example. Let K = Q(
√
d) with d 6= 1 and square free. Then ∆(K/Q) = ∆(OK) =

{
4d d 6≡ 1 mod 4

d d ≡ 1 mod 4

Note that if Λ ⊂ OK is a full rank sublattice, then ∆(Λ) = (OK : Λ)2∆(OK) by Theorem 3.19

Corollary 3.22. If Λ ⊂ OK and ∆(Λ) is square free then Λ = OK .
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4 Cyclotomic Fields

De�nition 4.1. Let n be a positive integer. Then the n-cyclotomic �eld is Q(ζn) where ζn = e
2πi
n

For simplicity we are going to assume that n = pr with p being a prime.

Theorem 4.2. The minimal polynomial of ζpr is

Φpr =

pr∏
k=1,p-k

(x− ζkpr )

Proof. Firs note that Φpr (ζpr ) = 0
In general,

∏n
k=1(x− ζkn) = xn− 1. We see this by noticing that every zero of the LHS is a zero of the RHS, the

degree of both sides are the same and they both have the same leading coe�cients. Consider

Φpr =

pr∏
k=1,p-k

(x− ζkpr ) =

∏pr

k=1(x− ζkpr )∏pr−1

k=1 (x− ζpkpr )

and notice that ζppr = ζpr−1 . This means we can rewrite

Φpr =

∏pr

k=1(x− ζkpr )∏pr−1

k=1 (x− ζkpr−1)
=

xp
r − 1

xpr−1 − 1
= x(p−1)pr−1

+ x(p−2)pr−1

+ · · ·+ 1

Hence we have Φpr ∈ Z[x].
We �nally show that Φpr is irreducible. Suppose that Φpr = fg with f, g ∈ Z[x], f, g are both monic and non

constant. Consider this mod p, we have

Φpr =
xp

r − 1

xpr−1 − 1
≡ (x− 1)p

r

(x− 1)pr−1 ≡ (x− 1)(p−1)(pr−1) mod p

(using Fermat's Little Theorem). Let f, g denoted the reduction of f, g mod p, hence we have fg = (x−1)(p−1)pr−1

mod p. Now Fp is a UFD, so we have f = (x−1)m and g = (x−1)k such thatm+k = (p−1)pr−1. Hence we have f =
(x−1)m+pF and g = (x−1)k+pG for some F,G ∈ Z[x], that is, fg = (x−1)m+k+p(x−1)kF+p(x−1)mG+p2FG.

Now consider x = 1, we get f(1)g(1) = p2F (1)G(1) on one hand and Φpr (1) = 1(p−1)pr−1

+ · · · + 1 = p on the
other hand. But p2 - p, so we have a contradiction and Φpr is irreducible.

Note that Z[ζpr ] ⊂ OQ(ζpr ).

Problem. What is ∆(Z[ζpr ])?
Let us denote ζpr by ζ. By de�nition we have

|∆(Z[ζ])| =

∣∣∣∣∣∣
pr∏

k=1,p-k

pr∏
m=1,p-m,m 6=k

(ζk − ζm)

∣∣∣∣∣∣
Let us �x k, we want to compute

∏pr

m=1,p-m,m 6=k(ζk − ζm). We do this by considering

Fk =

pr∏
m=1,p-m,m 6=k

(x− ζm) =
Φpr (x)

x− ζk
=

xp
r − 1

(xpr−1 − 1)(x− ζk)

Now Fk(ζk) = 0
0 , so we need to use l'Hospital's rule. We calculate

Φ′pr (x) =
prxp

r−1(xp
r−1 − 1)− pr−1xp

r−1−1(xp
r − 1)

(xpr−1 − 1)2

Now the roots of xp
r−1 − 1 are powers of ζpr−1 = ζp, so ζk is not a root of (xp

r−1 − 1). Hence

Fk(ζk) = Φ′pr (ζ
k) =

prζk(pr−1)

ζkpr−1 − 1

14



Hence |Φ′pr (ζk)| = pr

|ζkpr−1−1|
, so we have

|∆(Z[ζ]) =

pr∏
k=1,p-k

pr

|ζkpr−1 − 1|
=

pr(p
r−pr−1)∏

|ζkpr−1 − 1|

Hence we �nally compute

pr∏
k=1,p-k

(x− ζkp
r−1

) =

pr∏
k=1,p-k

(x− ζkp ) =

(
p−1∏
k=1

(x− ζkp )

)pr−1

= (Φp(x))
pr−1

Plucking in x = 1, we get Φp(x)p
r−1

= pp
r−1

. Hence we conclude |∆(Z[ζ])| = prp
r−rpr−1−pr−1

= pp
r−1(rp−r−1)

Now it is not important to remember what exactly it is, the key idea is that it is a power of p, the exact exponent
does not matter.

In particular if r = 1 we get |∆(Z[ζp])| = pp−2

Theorem 4.3. For any n we have OQ(ζn) = Z[ζn].

Proof. We will only prove this for n = p, with p prime.

We already know that Z[ζp] ⊂ OQ(ζp). We also know that pp−2 = ∆(Z[ζp]) =
(
OQ(ζp) : Z[ζp]

)2
∆(OQ(ζp)) (by

Theorem 3.19).
Suppose that Z[ζp] 6= OQ(ζp) then (OQ(ζp) : Z[ζp]) = p∗, where ∗ is an unknown exponent. Then OQ(ζp)/Z[ζp]

is an abelian group of order divisible by p. Hence there exists α ∈ OQ(ζp)/Z[ζp] with order p, i.e., there exists
α ∈ OQ(ζp) with pα ∈ Z[ζp]. We want to show that for any α ∈ OQ(ζp) such that pα ∈ Z[ζp] then we already have
α ∈ Z[ζp].

Note that Z[ζp] = Z[1− ζp]. Now N(1− ζp) =
∏p−1
i=1 σi(1− ζp) =

∏p−1
i=1 (1− ζip) = Φp(1) = p. Hence we have that

p factors as
∏p−1
i=1 (1− ζip). Now for all i, we have N(1− ζip) =

∏p−1
j=1(1− σj(ζip)) =

∏p−1
j=1(1− ζijp ) = N(1− ζp) = p,

hence in particular we have N
(

1−ζip
1−ζp

)
= 1, so

1−ζip
1−ζp is a unit for all i. Putting all of this together we have

p =
∏

(1−ζip)

(1−ζp)p−1 (1− ζp)p−1 = unit · (1− ζp)p−1.

We can write pα as a0 + a1(1− ζp) + · · ·+ ap−2(1− ζp)p−2 (∗) with ai ∈ Z. We want to show that p|ai for all i.
For a ∈ Z we have p|a if and only if (1− ζp)|a in OQ(ζp). One direction follows from the fact that 1− ζp|p. For the
other implication, suppose (1 − ζp)|a, then N(1 − ζp)|N(a) ⇒ p|ap−1, hence p|a. (Note for any number �eld and
a ∈ Q, we have N(a) = a[K:Q]). We have now the tools to do a prove by induction to show that an is divisible by p.

Let n = 0 and consider (∗) module 1− ζp. We have pα ≡ 0 mod (1− ζp), also for i ≥ 1 we have ai(1− ζp) ≡ 0
mod (1− ζp). Hence we �nd that a0 ≡ 0 mod (1− ζp), so (1− ζp)|a0 and hence p|a0

Now suppose that p|a0, a1, . . . , an−1 and that n ≤ p − 2. We have that pα is divisible by (1 − ζp)n+1, but so
is a0, (1 − ζp)a1, . . . , (1 − ζp)n−1an−1 and ai(1 − ζp)i for i > n. Hence we have (1 − ζp)nai ≡ 0 mod (1 − ζp)n+1.
Hence there exists β ∈ OQ(ζp) with β(1− ζp)n+1 = (1− ζp)nan ⇒ β(1− ζp) = an, so we have (1− ζp)|an.

Hence we have shown by induction that p|ai ∀i. Hence pα ∈ pZ[ζp]⇒ α ∈ Z[ζp]. So to recap, we have shown if
Z[ζp] 6= OQ(ζp), then we must have α ∈ OQ(ζp) \ Z[ζp] such that pα ∈ Z[ζp]. But we also shown that if α ∈ OQ(ζp)

with pα ∈ Z[ζp] then α ∈ Z[ζp], hence we have a contradiction.

Example (Of the proof in action). . What is OQ( 3√2)? We know that Z[ 3
√

2] ⊂ OQ( 3√2), we also know that

∆(Z[ 3
√

2]) = −27(22) = −22 · 33 = (OQ( 3√2) : Z[ 3
√

2])2 ·∆(OQ( 3√2)). Hence if Z[ 3
√

2] 6= OQ( 3√2), then either 2 divides
the index or 3 divides the index.

Suppose that 2 divides the index. Then there exists α ∈ OQ( 3√2) \Z[ 3
√

2] with 2α ∈ Z[ 3
√

2]. Note that in OQ( 3√2)

we have 2 = 3
√

2
3
. For a ∈ Z we have 2|a if and only if 3

√
2|a in OQ( 3√2). Let 2α = a0 + a1

3
√

2 + a2
3
√

4. Consider this

modulo 3
√

2, we have 0 ≡ a0 mod 3
√

2. Hence 2|a0. Now considering this modulo 3
√

4, we have 0 ≡ a1
3
√

2 mod 3
√

4,
again implying that 3

√
2|a1, hence 2|a1. So �nally considering this modulo 2, we see that 2|a2. Hence 2α ∈ 2Z[ 3

√
2],

i.e., α ∈ Z[ 3
√

2]. So 2 does not divide the index
Now suppose that 3 divides the index. We claim that 3 = (1+ 3

√
2)3·unit. Now (1+ 3

√
2)3 = 1+2 3

√
2+3 3

√
4+2 =

3(1 + 3
√

2 + 3
√

4). Now N(1 + 3
√

2) = 12 + 2 · 12 = 3, so N((1 + 3
√

2)3) = 33 = N(3) and hence (1 + 3
√

2 + 3
√

4) is
a unit, proving our claim. Hence we have that for α ∈ Z, 3|α if and only if (1 + 3

√
2)|α in OQ( 3√2). So consider

α ∈ OQ( 3√2) \Z[ 3
√

2] such that 3α ∈ Z[ 3
√

2] and write 3α = a0 + a1(1 + 3
√

2) + a2(1 + 3
√

2)2 (by changing the basis of
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Z[ 3
√

2] to Z[1 + 3
√

2]). Then if we consider the equation modulo successive powers of (1 + 3
√

2), we �nd that each ai
is divisible by (1 + 3

√
2) and thus by 3. Again this leads to a contradiction.

Hence we have that Z[ 3
√

2] = OQ( 3√2)
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5 Dedekind Domains

5.1 Euclidean domains

De�nition 5.1. Let R be a domain (that is 0 6= 1 and there are no non-trivial solutions to ab = 0). An Euclidean
function on R is a function φ : R \ {0} → Z≥0 such that for all a, b ∈ R with b 6= 0, there exists q, r ∈ R with
a = qb+ r and either r = 0 or φ(r) < φ(b)

Example. R = Z, and φ(n) = |n|.
R = k[x] where k is any �eld and φ(f(x)) = deg(f)
R = Z[i] and φ(α) = N(α)

De�nition 5.2. A domain on which there is an Euclidean function is called an Euclidean domain.

Theorem 5.3. If R is an Euclidean domain then R is a principal ideal domain (PID), i.e., every ideal of R can
be generated by one element

Proof. Let I 6= 0 be a non-zero ideal of R. Take 0 6= b ∈ I to be an element for which φ(b) is minimal. We claim
that I = (b)

Let a ∈ I \ {0} be another element. Then there exists q ∈ R with a− qb either 0 or φ(a− qb) < φ(b). As b is an
element with φ(b) minimal, we have that a− qb is 0, hence a = qb, i.e., a ∈ (b)

Lemma 5.4. If R is a PID and π ∈ R an irreducible element, then for a, b ∈ R we have π|ab⇒ π|a or π|b

Proof. Suppose that π - a, we want to show that π|b. Consider the ideal I = (π, a). Let δ ∈ R be a generator for
I, i.e., (π, a) = (δ). There exists x, y ∈ R with xπ + ya = δ. Also π ∈ (δ) so δ|π. This means that either δ ∼ 1 or
δ ∼ π. But the case δ ∼ π can not occur since π - a but δ|a. So without loss of generality, assume that δ = 1. Thus
xπ + ya = 1, hence xπb+ yab = b, but since π|ab, we have π|b.

Theorem 5.5. A PID is a UFD

Proof. Take a ∈ R \ {0}, such that a is not a unit. Assume that a = επ1 . . . πn = ε′π′1 . . . π
′
m are two distinct

factorisation of a into irreducible. Without loss of generality we may assume that n is minimal amongst all elements
a with non-unique factorisation. We have π1|π′1 . . . π′m so by the lemma π1|π′i for some i. Without loss of generality
we can assume that i = 1, so π1|π′1 but both are irreducible, hence π1 ∼ π′1. Without loss of generality we can
assume that π1 = π′1. But then π2 . . . πn = επ′2 . . . π

′
m and π2 . . . πn has n− 1 irreducible factors, so by minimality

of n, this factorisation into irreducible is unique.

We show that OQ(
√
−3) = Z

[
1+
√
−3

2

]
is Euclidean. We claim that the Euclidean function is the Norm. N(a +

b 1+
√
−3

2 ) = (a + b 1+
√
−3

2 )(a + b 1−
√
−3

2 ) = a2 + ab + b2 (Note that we had over Q(
√
−3) N(c + d

√
−3) = c2 + 3d2)

and this �ts we the previous line as N(a+ b 1+
√
−3

2 ) = N(a+ b
2 + b

2

√
−3) = (a+ b

2 )2 + 3 b
2

4 = a2 + ab+ b2). Suppose

we are given α = a+ b 1+
√
−3

2 and β = c+ d 1+
√
−3

2 with β 6= 0. Then

α

β
=
a+ b 1+

√
−3

2

c+ d 1+
√
−3

2

=
(a+ b 1+

√
−3

2 )(c− d 1+
√
−3

2 )

N(β)
= e+ f

1 +
√
−3

2
∈ Q[

1 +
√
−3

2
]

(so note e, f ∈ Q). Then pick g, h ∈ Z such that |g − e|, |h− f | ≤ 1
2 and set

q = g + h
1 +
√
−3

2

r = α− βq
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Then we have α = βq + r and furthermore if r 6= 0.

N(r) = N(α− β(g + h
1 +
√
−3

2
))

= N(β(e+ f
1 +
√
−3

2
− g − h1 +

√
−3

2
))

= N(β)N((e− g) + (f − h)
1 +
√
−3

2
)

= N(β)[(e− g)2 + (e− g)(f − h) + (f − h)2]

≤ 3

4
N(β)

< N(β)

Similar arguments works for OQ(
√
d) with d ∈ {−1,−2,−3,−7,−11} (you might need to change the bound)

Theorem 5.6. If d < −11 then OQ(
√
d) is not a Euclidean domain (but for d ∈ {−19,−43,−67,−163} it is a PID)

Proof. Assume that φ : R→ Z≥0 is Euclidean, where R = OQ(
√
d). Now R∗ = {±1}. Take an element b ∈ R\{0,±1}

with φ(b) as small as possible. For all a ∈ R there exists q, r ∈ R with r = a − qb and φ(r) < φ(b) or r = 0. Now
since φ(b) is as small as possible, we have that r ∈ {0, 1,−1}, for all a ∈ R. We also have that a ≡ r mod b, hence
R/(b) has at most 3 elements.

On the other hand the number of elements of (R/(b)) = (R : (b))∆((b)) = (R : (b))2∆(R) (by Theorem

3.19 since (b) ⊂ R). Let R = Z + Zθ where θ =

{√
d d 6≡ 1 mod 4

1+
√
d

2 d ≡ 1 mod 4
. Then we have (b) = Zb + Zbθ. Now

∆((b)) = det

(
b θb

b θb

)2

= (bbθ − bbθ)2 = (bb)2(θ − θ)2 = N(b)2∆(R). Hence we have (R : (b))2 = N(b)2, that is

(R : (b)) = N(b) (since the norm is positive). So if we show that ∀b ∈ R \ {0,±1} we have N(b) > 3 then R/(b) has
more than three elements, contradicting the �rst paragraph. Now we always have N(a+ b

√
d) = a2 + |d|b2

Suppose d 6≡ 1 mod 4, then for a+ b
√
d to be in R we need a, b ∈ Z. Suppose that a2 + |d|b2 ≤ 3 then |a| ≤ 1

and |d| > 11, so b = 0, but a+ b
√
d ∈ {0,±1}

If d ≡ 1 mod 4 we can also have a = a′

2 , b = b′

2 where a′, b′ ∈ Z and a′ ≡ b′ mod 2. Then N(a + b
√
d) =

N
(
a′+b′

√
d

2

)
= 1

2 (a′2 + |d|b′2). Suppose N(a + b
√
d) ≤ 3 then a′2 + |d|b′2 ≤ 12. But |d| ≥ 13, so again b′ = 0 and

a′2 ≤ 12 so |a′| ≤ 3. Hence a′ ∈ {−2, 0, 2}, implying a+ b
√
d ∈ {0,±1}.

Conjecture. Let K be a number �eld that is not Q(
√
d) for some d < 0 then if OK is a UFD, then it is Euclidean.

Remark. In general φ = N does not work, then φ is very di�cult to �nd.

5.2 Dedekind Domain

De�nition 5.7. A prime ideal is an ideal P ⊂ R satisfying P 6= R and ∀a, b ∈ R with ab ∈ P then either a ∈ P or
b ∈ P .

Fact. P ⊂ R is prime if and only if R/I is a domain

De�nition 5.8. A maximal ideal is an ideal M ⊂ R satisfying M 6= R and there are no ideals I 6= R with
M ⊂ I ⊂ R.

Fact. M ⊂ R is a maximal ideal if and only if R/M is a �eld.
Every proper ideal I ⊂ R is contained in a maximal ideal. (See commutative Algebra Theorem 1.4 and its

Corollaries)

Example. Let R = Z. Then its prime ideals are (0) and (p) where p is prime. Its maximal ideals are (p) (as
Z/(p) = Fp is a �eld)

De�nition 5.9. A ring R is Noetherian if one and thus both of the following equivalent conditions holds.

1. Every ideal of R is �nitely generated
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2. Every ascending chains of ideals I0 ⊂ I1 ⊂ . . . is stationary, i.e., there exists r > 0 such that Ii = Ij for all
i, j > r.

De�nition 5.10. Let R be a domain. Then R is a Dedekind Domain if:

1. R is Noetherian

2. R is integrally closed in its �eld of fractions

3. Every non-zero prime ideal is a maximal ideal

Example. Every �eld is a Dedekind domain (the only ideals are: (0), (1))

Lemma 5.11. Every �nite domain is a �eld.

Proof. Let R be a �nite domain. Take 0 6= a ∈ R, we need to show there exists x ∈ R with ax = 1. Consider the
map R

·a→ R de�ned by x 7→ ax. We note that ·a is injective, if ab = ac then a(b− c) = 0, hence b− c = 0 since R
is a domain. As R is �nite, ·a is also surjective. Hence there exists x with ax = 1.

Theorem 5.12. If K is a number �eld, then OK is a Dedekind domain.

Proof. Let I ⊂ OK be an ideal. If I = (0) then it is �nitely generated, so assume I is non-zero. Hence there exists
0 6= a ∈ I, so aOK is a full rank lattice in OK . We have aOK ⊂ I ⊂ OK , so I is a full rank lattice as well. It
has [K : Q] < ∞ generators as a free abelian group and the same elements generates it as an ideal. So OK is
Noetherian.

We know that OK = Z ∩K. Furthermore the integral closure of a ring R in an extension S is in fact integrally
closed in S. So OK is integrally closed in K.

Let P ∈ OK be a non-zero prime ideal. P is a full rank lattice so (OK : P ) < ∞. Hence OK/P is a �nite
domain. So by the above lemma, OK/P is a �eld and hence P is maximal.

De�nition 5.13. Let R be a domain. Then a fractional ideal I of R is a R-submodule of the �elds of fractions of
R, such that there exists 0 6= a ∈ R with aI ⊂ R

Example. Let us work out the fractional ideals of Z. The ideals of Z are (n) with n ∈ Z. So fractional ideals are
I ⊂ Q such that ∃a ∈ Z with aI = (n) for some n ∈ Z. That is I = n

aZ ∈ Q.
Note that Q is not a fractional ideal, as elements of Q have arbitrary large denominators.

If R is a ring, I, J ⊂ R are ideals, then IJ is the ideal generated by {ij : i ∈ I, j ∈ J}.
If R is a domain, I, J fractional ideals of R and K the �eld of fraction of R, then IJ is a K-submodule generated

by {ij : i ∈ I, j ∈ J}. It is a fractional ideal as abIJ ⊂ R (where a, b are such that aI, bJ ⊂ R)

Example. Let R = Z and consider I = (a), J = (b) with a, b ∈ Q. Then IJ = (ab)

De�nition 5.14. Let R be a domain, K its �eld of fraction, I ⊂ K a fractional ideal. Then I is called invertible
if there exists a fractional ideal J ⊂ K such that IJ = R = (1)

Example. Every non-zero fractional ideal of Z is invertible.
Every principal non-zero fractional ideal (a) of R is invertible, consider (a)(a−1) = (1)

Theorem 5.15. The invertible ideals of a domain R forms a group with respect to fractional ideal multiplication,
with unit element R = (1) and inverse I−1 = {a ∈ K|aI ⊂ R}. (K is the �eld of fractions of R)

Proof. Let I ⊂ K be invertible, then there exists J with IJ = R. We want to show: if a ∈ J then aI ⊂ R and
if aI ⊂ R then a ∈ J . The �rst one follows directly. Consider aIJ = aR and aIJ ⊂ J , so aR ⊂ J means a ∈ J .
Hence J = I−1.

If I1, I2, I3 are fractional ideals then I1(I2I3) = (I1I2)I3
Finally we show that if I, J are invertible then so is IJ−1. We claim (IJ−1)−1 = JI−1. To see this consider

(IJ−1)(JI−1) = IRI−1 = II−1 = R.

Theorem 5.16. Let R be a domain. Then the following conditions on R are equivalent

1. R is Dedekind

2. Every non-zero fractional ideals of R is invertible
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3. Every non-zero ideals of R is the product of prime ideals.

4. Every non-zero ideal of R is the product of prime ideals uniquely.

We will prove this after some examples.

Example. OQ(
√
−5) = Z[

√
−5] is not a UFD, we have 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). But since Z[

√
−5] is

Dedekind (by Theorem 5.12), we can write (6) as the product of prime ideal uniquely. In fact (6) = (2) · (3) =
(1+
√
−5)(1−

√
−5) = (2, 1+

√
−5)(2, 1−

√
−5)(3, 1+

√
−5)(3, 1−

√
−5). We check that (2, 1+

√
−5) is prime. Now

Z[
√
−5]/(2, 1+

√
−5) ∼= Z[x]/(x2 +5, 2, 1+x). Now (2, x+1, x2 +5) = (2, x+1, x2 +5−x(x+1) = (2, x+1,−x+5) =

(2, x+ 1). Hence Z[
√
−5]/(2, 1 +

√
−5) ∼= Z[x]/(2, x+ 1) ∼= F2[x]/(x+ 1) ∼= F2, which is a �eld. Thus (2, 1 +

√
−5)

is maximal.

De�nition 5.17. If R is a domain and K its �eld of fraction. Let I be a non-zero fractional ideal then R : I =
{a ∈ K : aI ⊂ R}

Note that from Theorem 5.15, we see that I is invertible if and only if (R : I) · I = R

Example 5.18. R = Z[
√
−3] is not Dedekind. (As it is not algebraically closed)

We show that the ideal I = (2, 1 +
√
−3) is not invertible. R : I = {a + b

√
−3 ∈ Q(

√
−3) : 2(a + b

√
−3) ∈

Z[
√
−3], (1 +

√
−3)(a + b

√
−3) ∈ Z[

√
−3]). From the �rst condition, we can rewrite a = a′

2 , b = b′

2 with a′, b′ ∈ Z.
So consider the second condition

(1 +
√
−3)(

a′

2
+
b′

2

√
−3) =

a′

2
+
a′ + b′

2

√
−3− 3

b′

2

So a′ ≡ b′ mod 2, i.e.,

Z[
√
−3] : (2, 1 +

√
−3) =

{
a′ + b′

√
−3

2
: a′, b′ ∈ Z, a′ ≡ b′ mod 2

}
= Z

[
1 +
√
−3

2

]
Now

Z
[

1 +
√
−3

2

]
· (2, 1 +

√
−3) =

(
1,

1 +
√
−3

2

)
(2, 1 +

√
−3)

=

(
2, 1 +

√
−3,

1 +
√
−3

2
(1 +

√
−3)

)
= (2, 1 +

√
−3,
√
−3− 1)

= (2, 1 +
√
−3)

= I

6= R

Hence I is not invertible.
We now show that I = (2) can not be written as the product of prime ideals. Suppose I = P1P2 . . . Pn, then

I ⊂ Pi for all i. Now {ideals of R containing I} ↔{ideals of R/I}. The bijection is de�ned by J 7→ J/I ⊂ R/I and
{x : x ∈ J} J�oo

In our case

R/I = Z[
√
−3]/(2)

∼= Z[x]/(x2+3,2)

∼= F2[x]/(x2+1)

∼= F2/(x+1)2

∼= F2[x]/(x)2

= {a+ bε : a.b ∈ F2, ε
2 = 0}

The ideals in R/I are (0), (1) = (1 + ε) and (ε). Which of these ideal is prime? (1) is never prime, and (0) is not
prime as it is not a domain. So (ε) is the only maximal ideal and hence must be the only prime R/I has. Clearly
(2) ⊂ (2, 1 +

√
−3), which we saw maximal and so must be the only prime ideal which contains (2).
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So all Pi are equal to (2, 1 +
√
−3). Thus (2) = (2, 1 +

√
−3)m for some m. Now (2) 6= (1), hence m 6= 0 and

(2) 6= (2, 1 +
√
−3) as the �rst is invertible but not the second so m 6= 1.

(2, 1 +
√
−3)2 = (4, 2 + 2

√
−3, 1− 3 + 2

√
−3)

= (4, 2 + 2
√
−3)

= (2)(2, 1 +
√
−3)

⊂ (2)

So if (2)(2, 1 +
√
−3) = (2), then (2, 1 +

√
−3) = (2−1)(2) = (1) which is a contradiction. And for all m ≥ 2 we

have (2, 1 +
√
−3)m ⊂ (2, 1 +

√
−3)2 ⊂ (2). Hence there is no m with (2, 1 +

√
−3)m = (2).

The proof of Theorem 5.16 requires proofs by Noetherian induction. Here is a quick layout of how such a proof
works. To prove a statement about ideals in a Noetherian ring R:

• First prove it for all maximal ideals.

• Then induction step: assume it holds for all I ) J . Prove it hold for J

Why does this proves the statement for all ideal? Suppose the statement is false for a certain set S 6= ∅ of ideals:
Pick any I0 ∈ S. By induction step, there exists I1 ) I0, for which the statement is false. Repeat and we get an
in�nite ascending chain, which is impossible in a Noetherian ring.

Proof of Theorem 5.16. [NB: This proof is rather long and was spread over several lectures. The lecturer got a big
confuse at some point and so it also incomplete, it only proves some implications, including the most important for
this course, Dedekind implies everything else. I have tried to reorganise this proof so that it makes more sense. I
do know that he managed to prove it in one lecture successfully the following year (2011-2012) but I did not get a
copy of it]

Note: If R is a �eld, the only ideals are (0) and (1) so there is nothing to prove. Hence assume that R is not a
�eld.

2.⇒ 3. Assume 2. We want to show that every ideal is the product of prime ideals. We �rst show that every
invertible ideal is �nitely generated. Let I be a fractional ideal of R, then there exists J with IJ = (1),
hence 1 ∈ IJ . Now elements of IJ are sums of the form r1x1y1 + · · · + rnxnyn with ri ∈ R, xi ∈ I
and yi ∈ J . Hence 1 =

∑
rixiyi for some ri, xi, yi. We claim that I = (x1, . . . , xn), to prove our claim

we just need to show that (x1, . . . , xn)J = (1) (since inverses in groups are unique). It is obvious that
(1) ⊂ (x1, . . . , xn)J . On the other hand (x1, . . . , xn) ⊂ I so (x1, . . . , xn)J ⊂ IJ ⊂ (1).

Hence R is Noetherian, since every invertible ideal is �nitely generated.

Lemma 5.19. Assuming 2., we have for non-zero ideals I, J : I ⊂ J if and only if J |I (that is there is
a J ′ with JJ ′ = 1)

Proof. ⇐) Obvious

⇒) Put J ′ = IJ−1, this is a fractional ideal. We need to show that IJ−1 ⊂ R (i.e., that it is an ideal
and not just a fractional ideal). We have I ⊂ J , so IJ−1 ⊂ JJ−1 = R

We now proceed by a proof by Noetherian induction.

If I is a maximal ideal, then I is itself a factorisation into prime ideals. Now let an ideal I not prime be
given and assume that for all J ) I, J has a factorization into primes. There exists is a prime P ) I,
so P |I and hence I = PJ for some J ⊂ R. We want to show that J ) I. We know that I = PJ ⊂ J .
Suppose that I = J , then PJ = J , so multiply by J−1, then P = R which is a contradiction.

Hence we have just shown by Noetherian induction that every fractional ideal is a product of primes.

1., 2.&3.⇒ 4. Assume there is an ideal I that has two distinct factorisation into primes. That is I = P1 . . . Pm =
Q1 . . . Qn and without loss of generality suppose that m is minimal. We have that no Qi is equal to some
Pj as otherwise if Qi = Pj then P1 . . . Pj−1Pj+1 . . . Pm = IP−1

j = Q1 . . . Qi−1Qi+1 . . . Qn contradicting
minimality of m.
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We have Q1 . . . Qn = P1 . . . Pm ⊂ P1, so P1|Q1 . . . Qm. Let I ′ = IP−1
1 = P2 . . . Pm = Q1 . . . QnP

−1
1 .

Now I ′ is an ideal of R but it has a factorisation into n− 1 factors, so this factorisation is unique. We
want to show that there exists i with Qi|I ′, equivalently there exists i with I ′ ⊂ Qi. Assume that there is
no such i, then ∀i I ′ * Qi. Consider P1 and Q1 which are distinct. We have P1, Q1 ⊂ P1 +Q1. We claim
that P1 +Q1 = R. Since P1 and Q1 are maximal (assuming 1.) we have P1 ⊂ P1 +Q1 ⇒ P1 +Q1 = P1

or R, similarly, we concluder P1 +Q1 = Q1 or R. Hence P1 +Q1 = R.

So there exists p ∈ P1, q ∈ Q1 with p + q = 1. So I = (p + q)I = pI + qI ⊂ pQ1 + qP1 ⊂ P1Q1. So
P1Q1|I ⇒ Q1|IP−1

1 = I ′. Hence we get a contradiction.

1.⇒ 2. We use Noetherian induction.

Let P be a maximal ideal, then we want to show that P is invertible. Pick 0 6= a ∈ P . Then the ideal
(a) is invertible ((a)(a−1) = (a)) and (a) ⊂ P .

Lemma 5.20. Let R be a Dedekind domain and let I 6= 0 be an ideal. There exists P1, . . . , Pn maximal
ideals with P1 . . . Pn ⊂ I

Proof. We'll use Noetherian induction. If I is maximal then I ⊂ I. Assume for all J ) I, we have prime
ideals Qi with Q1 . . . Qn ⊆ I. We have to show that there exists Pi prime ideals with P1 . . . Pn ⊂ I. I
itself is not prime because all non-zero primes are maximal.

This means there exists a, b ∈ R such that a, b /∈ I but ab ∈ I. Consider the ideals I + (a) and I + (b).
By induction hypothesis there exists Pi such that P1, . . . , Pn ⊂ I+(a) and Pn+1 . . . Pm ⊂ 1+(b). Hence
P1 . . . Pm ⊂ (I + (a))(I + (b)) ⊂ I.

Hence by the lemma, there exists P1, . . . , Pn with P1 . . . Pn ⊂ (a) and without loss of generality we have
n is minimal.

We will use the following lemma later in the proof.

Lemma 5.21. Let R be a Dedekind domain and let I ⊂ R be a �nitely generated ideal. Let φ : I → I
be a map such that φ(I) ⊂ I, then there exists a0, . . . , an−1 ∈ J such that φn + an−1φ

n−1 + · · ·+ a0 = 0

A special case: Let α ∈ K, the �eld of fraction of R, be such that αI ⊂ I. Then there exists a relation
αn + an−1α

n−1 + · · ·+ a0 = 0 with ai ∈ R

Proof. Choose a matrix that A = (aij)ij , that describes φ in terms of xi, the generators of I, and that
satis�es aij ∈ I. By Cayley-Hamilton, if PA is the characteristic polynomial of A, then PA(A) = 0. Now
PA = det(XIn −A) := Xn + an−1X

n−1 + · · ·+ a0 for some ai which clearly are in R.

Corollary 5.22. If R is Dedekind and K its �eld of fraction. Let I ⊂ R be an ideal and α ∈ K with
αI ⊂ I, then α ∈ R.

As a recap, we have P 6= 0 is prime (and hence maximal). Take 0 6= a ∈ P , then there exists
P1, . . . , Pnwith P1 . . . Pn ⊂ (a) ⊂ P . We claim that one of the Pi is P . In general for prime ideals we
have IJ ⊂ P ⇒ I ⊂ P or J ⊂ P . (Otherwise, assume I * P ,J * P , then there exists a ∈ I, b ∈ J with
a /∈ P, b /∈ P , but then ab /∈ P ). So without loss of generality assume P1 ⊂ P , but P1 is maximal so
P1 = P

Let J = P2 . . . Pn, i.e., PJ ⊂ (a) ⊂ P . Since we assumed n was minimal, we have J * (a). So PJ ⊂ (a),
hence PJ(a)−1 ⊂ R, but a−1J * R.

Consider R : P = {α ∈ K|αP ⊂ R}, we need to show that (R : P )P = R. Now ∀α ∈ R : P , we
have αP ⊂ P , so by the corollary R : P ⊂ R. We have P ⊂ (R : P )P ⊂ P , but P is maximal, so if
(R : P )P 6= R then (R : P )P = P . Hence if P is not invertible then R : P = R. Take α ∈ a−1J \ R.
Then αP ⊂ R, so α ∈ R : P but α /∈ R. Contradicting R : P = R, hence P is invertible.

So we have proven that every non-zero prime ideals (i.e., every maximal ideal) is invertible. We �nish
o� the Noetherian induction.

Assume for all J ) I we have that J is invertible. We will show I is invertible. Choose a prime P ⊃ I.
We know that P is invertible. Consider I ⊂ P−1I ⊂ R. (Since P−1I ⊂ PP−1 = R) If P−1I 6= I then
P−1I ) I, so P−1I is invertible. Then I = RI = P (P−1P ) is invertible as well. So assume P−1I = I.
For all α ∈ P−1 we have αI ⊂ I, thus α ∈ R. Hence P−1 ⊂ R ⇒ PP−1 = R ⊂ RP = P which is a
contradiction.
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De�nition 5.23. Let K be a number �eld. Then the ideal group of K is the group IK consisting of all fractional
ideals of OK

The principal ideal group of K, PK , is the group of all principal ideals.
We have PK C IK . The quotient ClK = IK/PK is called the calls group of K.
An ideal class is a set {αI : α ∈ K∗} of ideals.

Theorem 5.24. For all number �eld K, the class group is �nite. The class number of K is hK := |ClK |

We will prove this later in the course.

Remark. If OK is a PID, then hK = 1 (in fact this is a if and only if statement.)

PK is the trivial ideal class. De�ne a map K∗ → PK by α 7→ (α). Then PK ∼= K∗/O∗K , so the kernel is OK

Lemma 5.25. If R is a UFD then for an irreducible elements, π, the ideal (π) is prime.

Proof. Take a, b ∈ R with ab ∈ (π). This means π|ab hence π|a or π|b. So a ∈ (π) or b ∈ (π)

Theorem 5.26. Let R be a Dedekind domain. Then R is a UFD if and only if R is a PID.

Proof. ⇐) Every PID is a UFD
⇒) Let I 6= 0 be any ideal that is not principal. We can write I = P1P2 . . . Pn, without loss of generality say P1 is

not principal. Now take any 0 6= a ∈ P1 and write a = επ1 . . . πm with πi irreducible. Then (a) = (π1)(π2) . . . (πm).
But P1|(a), so we get P1 is not principal while (a) is, hence contradiction.

So OK is a UFD if and only if hK = 1. We can say �hK measures the non-uniqueness of factorisation on OK�

Example. Find all integer solutions to x2 + 20 = y3

We can factorise this over Z[
√
−5] = OQ(

√
−5) into (x+ 2

√
−5)(x− 2

√
−5) = y3. Fact: hQ(

√
−5) = 2.

As ideals we have (x+ 2
√
−5) · (x− 2

√
−5) = (y)3. As usual, let us �nd the common factors of (x+ 2

√
−5) and

(x− 2
√
−5)

Suppose P is a prime ideal such that P |(x+ 2
√
−5) and P |(x− 2

√
−5), then (x+ 2

√
−5, x− 2

√
−5) ⊆ P . Now

we have (4
√
−5) ⊂ (x+ 2

√
−5, x− 2

√
−5). Note that (2, 1 +

√
−5)(2, 1−

√
−5) = (4, 2 + 2

√
−5, 2− 2

√
−5, 6) = (2),

hence (2) = (2, 1 +
√
−5)2 (and we know from a previous exercise that (2, 1 +

√
−5) is prime). Furthermore (

√
−5)

is prime:

Z[
√
−5]/(

√
−5) ∼= Z[x]/(x2+5,x)

∼= Z[x]/(5,x)

∼= F5

So (4
√
−5) = (2, 1 +

√
−5)4(

√
−5)⇒ P = (2, 1 +

√
−5) or P = (

√
−5).

Write (x + 2
√
−5) = (2, 1 +

√
−5)e1(

√
−5)e2

∏
P eii . Apply the automorphism α 7→ α, to get (x − 2

√
−5) =

(2, 1+
√
−5)e1(

√
−5)e2

∏
Pi
ei
(since (

√
−5) = (−

√
−5) and as noted before (2, 1+

√
−5) = (2, 1−

√
−5)). Note that

the products Pi must be distinct. So we get (x+2
√
−5)(x−2

√
−5) = (2, 1+

√
−5)2e1(

√
−5)2e2

∏
P eii

∏
Pi
ei

= (y)3.
Since factorization into prime ideal is unique, we have 3|ei for all i. Hence (x+ 2

√
−5) = I3 for some ideal I.

Let Ĩ be the class of I. Then in ClOQ(
√
−5)

, we have Ĩ3 = 1 (since (x+ 2
√
−5) is principal). Now the class group

has order 2, hence Ĩ = 1 since gcd(2, 3) = 1. Hence I is principal, so write I = (a + b
√
−5). So (x + 2

√
−5) =

((a+ b
√
−5)3)⇒ x+ 2

√
−5 = unit · (a+ b

√
−5)3. Now units in Z[

√
−5] are ±1, which are both cubes, so without

loss of generality, x+ 2
√
−5 = (x+ b

√
−5).

Hence x + 2
√

05 = a3 + 3a2b
√
−5 − 15ab2 − 5b3

√
−5 = (a3 − 15ab2) +

√
−5(3a2b − 5b3). So we need to solve

2 = b(3a2 − 5b2), but 2 is prime, so b = ±1,±2.
If b = ±1, then 3a2 − 5 = ±2, either 3a2 = 7 which is impossible, or 3a2 = 3 ⇒ a = ±1. In that case we have

x = a3 − 15ab2 = ±(1− 15) = ±14. Then 142 + 20 = 196 + 20 = 216 = 63 ⇒ (±14, 16) are solutions.
If b = ±2, then 3a2 − 20 = ±1, so 3a2 = 21 or 19, but both cases are impossible.
Hence (±14, 16) are the only integer solutions to x2 + 20 = y3.
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5.3 Kummer-Dedekind Theorem

Let K be a number �eld, and I ⊂ OK a non-zero ideal. Note that I contains aOK for any a ∈ I, hence we have
that (OK : I) is �nite. This leads us to the following de�nition:

De�nition 5.27. The norm of an ideal I ⊂ OK is de�ned as N(I) =

{
(OK : I) I 6= 0

0 I = 0

Theorem 5.28. For any principal ideal (a) ⊂ OK , we have N((a)) = |N(a)|

Proof. If ω1, . . . , ωn is a basis for OK , then aω1, . . . , aωn is a basis for (a). Now multiplication by a can be seen as
a matrix A in terms of ω1, . . . , ωn. So (OK : aOK) = |detA| = |N(a)|

Theorem 5.29. The norm of ideals in OK is multiplicative. That is N(IJ) = N(I)N(J)

Proof. First note N(OK) = 1.
We can write every non-zero ideal as a product of prime ideals (as OK is Dedekind and using Theorem 5.16)

So it su�ces to prove that N(IP ) = N(I)N(P ) where P is a non-zero prime. We have N(IP ) = (OK : IP ) and
IP ⊂ I ⊂ OK , hence N(IP ) = (I : IP )(OK : I) = (I : IP )N(I).

We must show that (I : IP ) = N(P ) = (OK : P ). Now P is maximal, so OK/P is a �eld. We have I/IP is a
vector space over OK/P . We want to show that d = dimOK/P I/IP = 1.

IP 6= I as OK is Dedekind, so I/IP 6= 0, hence d ≥ 1
Suppose that d ≥ 2, then there exists a, b ∈ I/IP that are linearly independent over OK/P . Take lifts a, b ∈ I.

For all x, y ∈ OK with ax+by ∈ P , we have x ∈ P and y ∈ P . Write I = P eI ′, then (a) ⊂ I, so P e|I|(a), also a /∈ IP ,
so IP - (a). Hence P e+1 - (a). Similarly we �nd P e+1 - (b). So we can rewrite this as (a) = P eI ′J1, (b) = P eI ′J2

with P - I ′J1, P - I ′J2. We have (a)J2 = (b)J1. Since J2 * P , there exists c ∈ J2 \ P . So av ∈ (b)J1 ⇒ ac = be for
some e ∈ J1. Now ac− be = 0 ∈ P ⇒ c ∈ P . This is a contradiction. Hence the dimension is 1 as required.

Corollary 5.30. If N(I) is prime, then I is prime

Proof. If I is not prime, then I = PI ′ with P a non-zero prime and I ′ 6= (1). Then N(I) = N(P )N(I ′) cannot be
prime.

Theorem 5.31. If I ⊂ OK is a non-zero prime, then N(I) = pf for some prime p and f ∈ Z>0

Proof. OK/I is a �eld (I is maximal) of N(I) elements. Any �nite �eld has pf elements for some prime p and
f ∈ Z>0

Theorem 5.32. If I is a non-zero ideal, we have N(I) ∈ I

Proof. N(I) = |OK/I| by de�nition. Then Lagrange theorem implies N(I) · OK/I = OK , so N(I)OK ⊂ I.

Theorem 5.33. If P is a non-zero prime with N(P ) = pf then p ∈ P

Proof. By the previous theorem we have pf ∈ P . But since P is prime, p ∈ P .

Kummer - Dedekind Theorem. Let f ∈ Z[x] be monic and irreducible. Let α ∈ Q be such that f(α) = 0. Let
p ∈ Z be prime. Choose gi(x) ∈ Z[x] monic and ei ∈ Z>0 such that f ≡

∏
gi(x)ei mod p is the factorization of

f ∈ Fp[x] into irreducible (with gi 6= gj for i 6= j). Then:

1. The prime ideals of Z[α] containing p are precisely the ideals (p, gi(α)) =: Pi

2.
∏
P eii ⊂ (p)

3. If all Pi are invertible then
∏
P eii = (p). Furthermore N(Pi) = pfi where fi = deg gi

4. For each i, let ri ∈ Z[x] be the remainder of f upon division by gi. Then Pi is not invertible if and only if
ei > 1 and p2|ri

Proof. 1. We have Z[α] ∼= Z[x]/(f) (Galois Theory). Primes of Z[α] containing p have a one to one correspondence
to primes of Z[α]/(p) ∼= Z[x]/(p)(f). But Z[x]/(p, f) ∼= Fp[x]/(f), so primes of Fp[x]/(f) have a one to one
correspondence to primes of Fp[x] containing f . We know Fp[x] is a PID. So theses primes corresponds to
irreducible g ∈ Fp[x] such that g|f ⇐⇒ f ∈ (g).

Working backward from this set of correspondence we get what we want
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2. Let I =
∏

(p, gi(α))ei .We want to show that I ⊂ (p), i.e., all elements of I are divisible by p. Now I is
generated by expression of the form pd

∏s
i=1 gi(α)mi ,mi ≤ ei. So the only non-trivial case is when d = 0, i.e.,∏

gi(α)ei . We have
∏
gi(x)ei ≡ f mod p. Substituting α we get

∏
gi(α)ei ≡ f(α) ≡ 0 mod p

3. Assume Z[α] = OQ(α). We have
∏
P eii ⊂ (p) ⇒ (p)|

∏
P eii . Now N((p)) = |N(p)| = pn where n = deg f . So

N(
∏
P eii ) =

∏
N(P eii ) = p

∑
ei·deg(gi) = pn

4. Left out as it requires too much commutative algebra.

Example. Consider Q(
√
−5), then OQ(

√
−5) = Z[

√
−5]. So take f = x2 + 5.

• p = 2, then f = x2 + 1 = (x + 1)2 ∈ F2[x]. So g1 = x + 1 and e1 = 2. Now (2) = P 2
1 = (2, 1 +

√
−5)2 and

N(P1) = 2. If P1 principle? If P1 = (α) then N(P1) = |N(α)|. Now N(a+ b
√
−5) = a2 + 5b2 which is never

2. Hence P1 is not principal.

• p = 3, then f = x2 − 1 = (x + 1)(x − 1) ∈ F3[x]. So we have (3) = P1P2 where P1 = (3,−1 +
√
−5) and

P2 = (3, 1 +
√
−5). Again we have N(P1) = N(P2) = 3, so neither are principal as 3 6= a2 + 5b2.

• p = 5, then f = x2 ∈ F5[x]. So we get (5) = (5,
√
−5)2 = (

√
−5)2 (since 5 = −

√
−5
√
−5).

Consider Q( 3
√

2), then OQ( 3√2) = Z[ 3
√

2]. So take f = x3 − 2.

• p = 2, then f = x3 ∈ F2[x]. So (2) = (2, 3
√

2)3 = ( 3
√

2)3 (since 2 = 3
√

2 3
√

2 3
√

2)

• p = 3, then f = x3 − 2 is a cubic. Cubic polynomials are reducible if and only if they have a root. If this
case, i.e., in F3, we have 2 is a root. So x3 − 2 = (x − 2)(x2 + 2x + 1) = (x − 2)(x + 1)2 = (x + 1)3. Hence
(3) = (3, 1 + 3

√
2)3 and N(3, 1 + 3

√
2) = 3. Now (3, 1 + 3

√
2) is principal if there exist α ∈ (3, 1 + 3

√
2) with

|N(α)| = 3. Notice that N(1 + 3
√

2) = 13 + 2 · 13 = 3, so (3, 1 + 3
√

2) = (1 + 3
√

2)
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6 The Geometry of Numbers

6.1 Minkowski's Theorem

Let K be a number �eld of degree n. Let σ1, . . . , σn : K ↪→ C be its complex embedding. We see that if σ : K ↪→ C
is an embedding then σ : K ↪→ C de�ned by α 7→ σ(α) is also an embedding. We have σ = σ so is an involution
on {σ1, . . . , σn}, with �xed points being those σ with σ(k) ⊆ R for all k ∈ K.

De�nition 6.1. Let K be a number �eld of degree n and σ1, . . . , σn : K ↪→ C be its complex embeddings. Say
there are r real embeddings (σ(k) ⊂ R) and s pairs of complex embedding. So we have r + 2s = n. Then (r, s) is
called the signature of K

We can use σ1, . . . , σn to embed K into Cn by α 7→ (σ1, (α), . . . , σn(α)). We view Cn as R2n with the usual
inner product, that is ||z1, . . . , zn||2 = |z1|2 + · · ·+ |zn|2.

Let v1, . . . , vm ∈ R2n be given, denote Pv1,...,vm := {λ1v1 + · · ·+ λmvm : λi ∈ [0, 1]}. We have (see Algebra I)

Vol(Pv1,...,vm) =

det

 〈v1, v1〉 · · · 〈v1, vm〉
...

. . .
...

〈vm, v1〉 · · · 〈vm, vm〉




1/2

Theorem 6.2. (σ1, . . . , σn) embeds K as a subset of KR := {z1, . . . , zn ∈ Cn : zi = zj when σi = σj}

Proof. For each α ∈ K we have (σ1(α), . . . , σn(α)) = (z1, . . . , zn) satis�ed for i, j with σi = σj . So zi = σi(α) =

σj(α) = zj

Theorem 6.3. KR has dimension n.

Proof. Without loss of generality let σ1, . . . , σr be the real embedding of K ↪→ R and let σr+i = σr+s+i for
i ∈ {1, . . . , s}. Identifying Cn ∼= R2n, we have (x1, y1, x2, y2, . . . , xn, yn) is in KR if an only if:

• yi = 0 for i ∈ {1, . . . , r}

• xr+i = xr+i+s for i ∈ {1, . . . , s}

• yr+i = −yr+i+s for i ∈ {1, . . . , s}

The number of independent linear equation is r + 2s = n. Hence the dimension of KR = 2n− n = n.

De�nition 6.4. Let V be a �nite dimensional vector space over R, with inner product 〈 , 〉 (that is a positive
de�nite symmetric bilinear form). Then V is called a Euclidean space.

Example. V = Rn with 〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + · · · + xnyn. Or V a subspace of Rn (with the same
inner product)

Fact. Any Euclidean space has an orthonormal basis.

De�nition 6.5. Let V be an Euclidean space. A lattice Λ in V is a subgroup generated by R-linearly independent
vectors, v1, . . . , vm.

The rank of the lattice is m.
The covolume of Λ is Vol(Pv1,...,vm)

Theorem 6.6. OK embeds as a full rank lattice in KR of covolume
√
|∆(OK)|

Proof. Let ω1, . . . , ωn be a basis for OK . Put σ(α) = (σ1(α), . . . , σn(α)) ∈ KR ⊂ Cn for all α ∈ K. We have the
vectors σ(ω1), . . . , σ(ωn) ∈ KR.
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So we need to show that Vol(Pσ(ω1),...,σ(ωn)) =
√

∆(OK) 6= 0. We have

Vol(Pσ(ω1),...,σ(ωn))
2 = det

(
(〈σ(ωi), σ(ωj)〉)ij

)
= det

( n∑
k=1

σk(ωi)σk(ωj)

)
ij


= det

( n∑
k=1

σk(ωiωj

)
ij


= det

(
(Tr(ωiωj)ij

)
= ∆(OK)

Corollary 6.7. For any non-zero ideal I ⊂ OK , we have σ(I) ⊂ KR is a full rank lattice of covolume
√
|∆(OK)| ·

N(I)

Proof. Obvious

Minkowski's Theorem. Let Λ be a full rank lattice in a Euclidean space V of dimension n. Let X ⊂ V be a
bounded convex symmetric subset, satisfying Vol(X) > 2n · covolume(Λ). Then X contains a non-zero point of Λ.

Proof. See Topics in Number Theory course

A small re�nement to the theorem can be made: If X is closed then Vol(X) ≥ 2n · covolume(Λ) su�ces.

6.2 Class Number

Theorem 6.8. Let K be a number �eld of signature (r, s). Then every non-zero ideal I of OK contains a non-zero
element α with

|N(α)| ≤
(

2

π

)s
N(I)

√
|∆(OK)|

Proof. Let n = r+ 2s = [K : Q]. Consider for t ∈ R>0, the closed set Xt = {(z1, . . . , zn) ∈ KR : |zi| ≤ t}. We claim
that Vol(Xt) = 2r+sπstn

In terms of the orthogonal basis, Xt is isomorphic to [−t, t]r×B(0,
√

2t)s (where B(a, r) is the standard notation
for a ball of radius r centred at a, there is some bit of work need to see that the radius is indeed

√
2t). So

Vol(Xt) = (2t)2((π(
√

2t)2)s

= 2rtrπs2st2s

= 2r+sπstr+2s

Now choose t such that Vol(Xt) = 2ncovolume(I in KR) = 2nN(I)
√
|∆(OK)|. Then by Minkwoski's there is an

0 6= α ∈ I with σ(α) ∈ Xt. So |N(α)| =
∏
|σi(α)| ≤ tn, but since sr+sπstn = 2nN(I)

√
|∆(OK)|, we have

|N(α)| ≤ tn = 2s

πsN(I)
√
|∆(OK)|

A better set for the above proof is X ′t = {(z1, . . . , zn) ∈ KR : |z1|+ · · ·+ |zn| ≤ t}. In that case we have
Vol(X ′t) = 2rπstn

n! . This can be proven using integral calculus.

Theorem 6.9. Every ideal I ⊂ OK has an element α 6= 0 with |N(α)| ≤ µKN(I) with

µK =

(
4

π

)s
n!

nn

√
|∆(OK)|
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Proof. Choose t with Vol(X ′t) = 2nN(I)
√
|∆(OK)|, that is 2rπstn

n! = 2nN(I)
√
|∆(OK)|. Then there exists 0 6= α ∈ I

with σ(α) ∈ X ′t. Hence

|N(α)| =
∏
|σi(α)|

≤
(∑

|σi(α)|
n

)n
≤

(
t

n

)n
=

1

nn
n!2n−rπ−sN(I)

√
|∆(OK)|

=
4s

πs
n!

nn
N(I)

√
|∆(OK)|

where the �rst inequality follows form the well know theorem that Geometric Mean ≤ Arithmetic Mean. (If
x1, . . . , xn ∈ R>0, then the Geometric mean is (x1, . . . , xn)1/n, while the arithmetic mean is 1

n (x1 + · · ·+ xn))

Remark. The number µK is sometimes called Minkowski's constant.

Theorem 6.10. For any number �eld K we have

|∆(OK)| ≤
(π

4

)2s
(
nn

n!

)2

Proof. Apply the above with I = OK . Then there exists α ∈ OK with |N(α)| ≤ µK . Also N(α) ∈ Z and non-zero
if α 6= 0. So |N(α)| ≥ 1. Hence

µK =

(
4

π

)s
n!

nn

√
|∆(OK)| ≥ 1⇒ |∆(OK)| ≤

(π
4

)2s
(
nn

n!

)2

Corollary 6.11. If K 6= Q, then |∆(OK)| 6= 1

Proof. We have n ≥ 2. We need to show that
(
π
4

)2s (nn
n!

)2
> 1. Now

(
π
4

)2s ≥ (
π
4

)n
, so we need to show(

π
4

)n (nn
n!

)2
> 1. This can easily be done by induction.

Corollary 6.12. Let K be a number �eld and let C be an ideal class of K. Then there exists I ∈ C with N(I) ≤ µK
Proof. Apply Theorem 6.9 to an ideal J ∈ C−1. (Note: if J ∈ C−1 is any fractional ideal there is an a ∈ OK with
aJ ⊂ OK , since aJ ∈ C−1 we may suppose without lose of generality that J is an ideal).

So there exists α ∈ J with |N(α)| ≤ µkN(J). Consider (α)J−1, we have J |(α) so I := (α)J−1 is an ideal of
OK . Furthermore N(I) = N((α))N(J−1) ≤ µkN(J)N(J−1) = µk

Corollary 6.13. The class group of any number �eld is �nite.

Proof. Every class is represented by an ideal of bounded norm and norms are in Z>0. So it su�ces to show that
for any n ∈ Z>0 we have#{I ⊂ OK : N(I) = n} <∞

Let n ∈ Z>0 be given and I ⊂ OK be an ideal with N(I) = n. Factor n into primes, n = pe11 p
e2
2 . . . perr , and

factor I into prime ideals I = P f11 P f22 . . . P fss . Then we have N(I) = N(P1)f1N(P2)f2 . . . N(Ps)
fs = pe11 . . . perr . By

Kummer - Dedekind, for any p there exists �nitely many prime ideals whose norms is a power of p. So there are
�nitely many prime ideals P whose norm is a power of one of the pi. Furthermore if N(Pi) = p

ej
j , then fi ≤ ej , so

there are �nitely many possibilities.

Example. • Let K = Q(
√
−5), note that it has signature (0, 1). Then we have

µK =

(
4

π

)s
n!

nn

√
|∆(OK)| = 4

π

2

4

√
4 · 5 =

1

π

√
80 <

1

3

√
81 = 3

So every ideal class is represented by an ideal of norm at most 2. Let us work out the ideals of norm 2. By
Kummer - Dedekind, we know (2) = (2, 1 +

√
−5)2, and N((2, 1 +

√
−5)) = 2.

We have seen before that (2, 1 +
√
−5) is not principal. So there are two ideal class in OK . They are

[(1)], [(2, 1 +
√
−5)], so hk = 2⇒ ClK ∼= Z/2Z
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• Let K = Q(
√
−19), note that is has signature (0, 1). Then we have

µK =

(
4

π

)s
n!

nn

√
|∆(OK)| = 4

π

2

4

√
19 =

1

π

√
76 <

1

3

√
81 = 3

Also here, every ideal class is represented by an ideal of norm 1 or 2. Apply Kummer - Dedekind to factor

(2). OK = Z
[

1+
√
−19

2

]
, hence fα =

(
x− 1+

√
−19

2

)(
x− 1−

√
−19

2

)
= x2 − x + 5. So f ≡ x2 + x + 1 ∈ F2[x],

but this is an irreducible polynomial. So (2) = (2, 0) = (2) is a prime ideal, of norm 4. Hence there are no
ideals of norm 2.

So hK = 1, hence OK is a PID.

• Let K = Q(
√
−14), this has signature (0, 1). Then we have

µK =

(
4

π

)s
n!

nn

√
|∆(OK)| = 4

π

2

4

√
4 · 14 =

1

π

√
16 · 14 ≤ 1

3

√
152 = 5

So only ideals of norms at most 4 are of concern. Every ideal can be factored into prime ideals. So the class
group is generated by classes represented by prime ideals of norm ≤ µK . Prime ideals of norm ≤ 4 are prime
ideals dividing (2) or (3). Hence we apply Kummer - Dedekind. We have f = x2 + 14

� p = 2: x2 + 14 ≡ x2 mod 2. So (2) = (2,
√
−14)2 := P 2. Note that N(P ) = 2

� p = 3: x2 + 14 ≡ x2 − 1 ≡ (x − 1)(x + 1) mod 3. So (3) = (3,
√
−14 − 1)(3,

√
−14 + 1) := QR. Note

that N(Q) = N(R) = 3

So ideals of norms less than 4 are (1), P,Q,R, P 2. Note that P 2 is principal as it is (2), so [P 2] = [(1)]. Since
N(a+ b

√
−14) = a2 + 14b2 but 2 and 3 are not of this form, we have that P,Q,R are not principal. Also note

that QR = (3) so [Q][R] = 1

We claim that [(1)], [P ], [Q], [R] are four distinct elements of the class group.

Suppose that [P ] = [Q]. Then [Q][Q] = [P ]2 = 1 = [Q][R]⇒ [Q] = [R]. Furthermore, since N(Q) = N(R) =
3, if [Q] = [R] then [QR] = 1 = [QQ]. Hence Q2 is principal, N(Q2) = N(Q)2 = 9, so we need to solve
a2 + 14b2 = 9 ⇒ a = 3, b = 0. Hence Q2 = (3) = QR⇒ Q = R. Which is a contradiction.

This argument also showed [Q] 6= [R]. A similar argument shows that [P ] 6= [R].

Hence we have that hK = 4. (With not too much work we can show that ClK ∼= Z/4Z)

6.3 Dirichlet's Unit Theorem

Dirichlet's Unit Theorem. Let K be a number �eld of signature (r, s). Let W be the group of roots of unity in
K. Then W is �nite, and O∗K ∼= W × Zr+s−1. That is, there exists η1, . . . , ηr+s−1 ∈ O∗K such that every units in

OK can be uniquely written as ω · ηk11 · · · · · η
kr+s−1

r+s−1 with ω ∈W and ki ∈ Z.

Example. Let K = Q(
√
d) with d > 0 and square free. Then it has signature (2, 0), so r + s − 1 = 1. Also

W = {±1}. Hence O∗K ∼= W × Z = {±1} × Z = ±εnd (where εd is as in section 1)

If K = Q(
√
d) with d < 0 square free, then it has signature (0, 1), so O∗K = W , which is �nite (see next lemma)

Fact. A subgroup Λ ⊂ Rn is a lattice if and only if for any M ∈ R>0 we have [−M,M ]n ∩ Λ is �nite.

Lemma 6.14. The group W is �nite.

Proof. If ω ∈ W , then for all σi : K ↪→ C we have σi(ω) is a root of unity (if ωn = 1 then σi(ω)n = 1). So
σ(ω) = (σ1(ω), . . . , σn(ω)) ∈ {(z1, . . . , zn) ∈ KR : |zi| = 1∀i}. This is a bounded subset of KR. Also ω ∈ OK as it
satis�es some monic polynomial xn − 1 ∈ Z[x]. Hence σ(W ) ⊂ σ(OK)∩ bounded set, but σ(OK) is a lattice, hence
by the fact, σ(W ) is �nite.

Proof of Dirichlet's Unit Theorem. Let K∗R = {(z1, . . . , zn) ∈ KR : zi 6= 0∀i}. We have O∗K ↪→ K∗ ↪→
K∗R. We will use logarithms: de�ne log : K∗R → Rn by (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|). This is a
group homomorphism. Also de�ne L : O∗K → Rn by α 7→ log(σ(α)) = (log |σ1(α)|, . . . , log |σn(α)|), this
is also a group homomorphism.
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Lemma 6.15. ker(L) = W

Proof. ⊃: For all ω ∈W and σi we have |σi(ω)| = 1, so log |σi(ω)| = 0

⊂: Take α ∈ ker(L). Then log |σi(α)| = 0∀i⇒ |σi(α)| = 1 for all i. So α is in some �nite set. For every
n, we have αn ∈ ker(L) which is a �nite set, so there are some n > m, with αn = αm and n 6= m. Then
αn−m = 1.

Lemma 6.16. im(L) is a lattice in Rn.

Proof. We must show that [−M,M ]n ∩ im(L) is �nite. Take L(α) = (x1, . . . , xn) ∈ [−M,M ]n ∩ im(L)
(where α ∈ O∗K ⊂ OK) . We have for all i, |log |σi(α)|| ≤ M , so |σi(α)| ≤ eM , hence σ(α) ∈bounded
set ∩σ(OK) =�nite. So there are �nitely many possibilities for α

Put Λ = L(O∗K) ⊂ Rn. Eventually, we have to show that rk(Λ) = r + s− 1.

Lemma 6.17. We have that rk(Λ) ≤ r + s− 1

Proof. Order σi such that σ1, . . . σr are real and σr+i = σr+s+ifor i ∈ {1, . . . , s}. Take α ∈ O∗K . Then
for i ∈ {1, . . . , s} we have σr+i(α) = σr+s+i(α). Hence log |σr+i(α)| = log |σr+s+i(α)| = log |σr+s+i(α)|.
So for (x1, . . . , xn) ∈ Λ, we have xr+i = xr+s+i for i ∈ {1, . . . , s}. Hence we have found s relations. So
Λ ⊂subspace of dimension n− r = r + 2s− s = r + s

So we need to �nd one extra relation. Now α is a unit, so |N(α)| = 1. So |N(α)| = |σ1(α) . . . σn(α)| =
|σ1(α)| . . . |σn(α)| = 1⇒ log |σ1(α)|+· · ·+log |σn(α)| = 0. So we have also the relation x1 +· · ·+xn = 0.
this shows Λ ⊂ V ⊂ Rn, where V is a subspace of dimension r + s− 1 de�ned by these relations.

So we are left to prove that rk(Λ) ≥ r + s− 1 or Λ is a full rank lattice in V .

Note that for α ∈ O∗K , we have σ1(α) . . . σn(α) = ±1. So σ(O∗K) ⊂ {(z1, . . . , zn) ∈ K∗R : z1 . . . zn =
±1} =: E. We have to construct lots of units:

The idea: if (α) = (β) then β/α is a unit. So we will construct lots of α ∈ OK by generating �nitely
many ideals. Consider Xt = {(z1, . . . , zn) ∈ KR : |zi| ≤ t}. Choose t such that Vol(Xt) = 2n

√
|∆(OK)|.

Then by Minkowski's theorem, there exists a non-zero element in σ(OK) ∩Xt.

For any e ∈ E, consider eXt = {(z1, . . . , zn) ∈ KR : |zi| < |ei|t}. Then Vol(eXt) = |e1 . . . en|Vol(Xt) =
Vol(Xt). So by Minkowski's there exists a non-zero element in σ(OK)∩eXt. Covering E with boxes eXt

means we get lots of elements ae ∈ σ(OK) ∩ eXt ∀e ∈ E. We have |N(ae)| =
∏
|σi(ae)| ≤

∏
|ei|t ≤ tn.

So the norms of ae are bounded, hence N((ae)) = |N(ae)| is bounded.
So the set of ideals {(ae) : e ∈ E} is �nite. Let b1, . . . , bm be such that {(ae) : e ∈ E} = {(b1), . . . , (bm)}.
For all e ∈ E there is some i ∈ {1, . . . ,m} such that (ae) = (bi). So Ue = ae/bi is a unit of OK .
Claim: S = {Ue : e ∈ E} generates a full rank lattice in V , after applying L. If 〈L(S)〉 is not of full
rank, then L(S) spans a subspace Z * V . Consider Y := ∪(b−1

i ·Xt) ⊂ KR, it is bounded and without
loss of generality we can choose it, such that σ(1) ∈ Y . Consider ∪e∈EU−1

e ·Y (all of these are bounded)
We want to show that e−1 ∈ U−1

e Y = bi
ae
· Y . By construction, bi · Y ⊃ Xt, so

bi
ae
· Y ⊃ 1

ae
·Xt. We have

ae ∈ eXt, so
1
e ∈

1
ae
Xt. Hence ∪e∈EU−1

e contains E. So V = ∪s∈S log(s) + log(Y ). We are assuming
log(s) ∈ Z and log(Y ) is bounded. If Z 6= V then V is at some bounded distance from Z. This proves
that 〈L(S)〉 is of full rank.
So L(O∗K) is a full rank lattice in V . Hence it has rank r + s− 1, i.e., L(O∗K) ∼= Zr+s−1

Lemma 6.18. Let A be an abelian group, let A′ ⊂ A be a subgroup and put A′′ = A/A′. If A′′ is free
(i.e., ∼= Zn for some n), then A ∼= A′ ×A′′

Proof. Omitted, but can be found in any algebra course.

In our case, we have A = O∗K and A′ = W . Then by the �rst isomorphism theorem A′′ ∼= L(O∗K) (as
W = ker(L)). So using the lemma, we have A ∼= W × L(O∗K) ∼= L× Zr+s−1 as required.
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