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1 Introduction and Motivations

Most of the ideas in this section will be made more formal and clearer in later sections.

1.1 Motivations

Definition 1.1. An element « of C is an algebraic number if it is a root of a non-zero polynomial with rational
coefficients

A number field is a subfield K of C that has finite degree (as a vector space) over Q. We denote the degree by
K : Q).

Example. o Q
e Q(v2)={a+bv2:a,bcQ}
e Q(i)={a+bi:a,beQ}
e Q(¥2) = Qlz]/(2* - 2)

Note that every element of a number field is an algebraic number and every algebraic number is an element of
some number field. The following is a brief explanation of this.

Let K be a number field, « € K. Then Q(a) C Kand we will late see that [Q(«) : Q]|[K : Q] < co. So there
exists a relation between 1,q,...,a"™ for some n. If « is algebraic then there exists a minimal polynomial f for
which « is a root. Q(a) = Q[z]/(f) has degree deg(f) over Q.

Consider Z[i] C QJi], also called the Gaussian integers. A question we may ask, is what prime number p can be
written as the sum of 2 squares? That is p = 22 + y? = (x + iy)(z — iy), we “guess” that an odd prime p is 22 + y?
if and only if p =2 mod 4. A square is always 0 or 1 mod 4, so the sum of two squares is either 0,1 or 2 mod 4.
Hence no number that is 3 mod 4 is the sum of two squares. Therefore not all numbers that are 1 mod 4 can be
written as the sum of two squares.

Notice that there exist complex conjugation in Z[i], that is the map a+bi — a—bi = a + bi is a ring automorph-
ism. We can define the norm map N : Z[i] — Z by a — aa, more explicitly, (a + bi) — (a + bi)(a — bi) = a® + b%.
We will later see that N(af) = N(a)N(B).

Definition 1.2. Let K be a number field, a element « € K is called a unit if it is invertible. That is there exists
B € K such that a8 = 1.

Proposition 1.3. The units of Z[i] are 1,—1,4, —i

Proof. Let « € Z[i] be a unit. Then N(«) is a unit in Z, (since there exists 8 € Z[i] such that of = 1, hence
1 = N(aB) = N(a)N(B)) Now let a = a + bi, then N(a) = a® + b*> = £1. Now —1 is not the sum of two squares
hence o € {£1, £i} O

Definition 1.4. Let K be a number field, an element « € K is irreducible if « is not a unit, and for all 3, € Z][]
with o = 8-, we have either  or «y is a unit.

Fact. Z[i] is a unique factorization domain, that is every non-zero elements o € Z[i] can be written as a product
of irreducible elements in a way that is unique up to ordering and multiplication of irreducible elements by units.

Theorem 1.5. If p =1 mod 4 is a prime then there exists x,y € Z such that p = 2% + y* = (v + iy)(z — iy) =
N(z +1iy)

Proof. First we show that there exists a € Z such that pla® + 1. Since p=1 mod 4 we have (_71) =1 (see Topics

in Number Theory). Let a = 251!, then a® = (Z55)1 (B2 ) =1+ (251) - (251) -+--- 1 = —1 mod p. Hence
pla® +1=(a+i)(a—1i).
Is p irreducible in Z[i]? If p were indeed irreducible, then p|(a + i) or p|(a — 7). Not possible since a + i =

p(c + di) = pc + pdi means pd = 1. So p must be reducible in Z[i]. Let p = af, a, 8 ¢ (Z[i])* and N(p) = p? =
N(a)N(B) = N(a) # +1 # N(B). So N(a) = p = N(B). Write a = x + iy, then N(a) = p = 22 + y? O



1.2 Finding Integer Solutions

Problem 1.6. Determine all integer solution of 2% + 1 = 33

Answer. First note 22 +1 = (x +1i)(z — i) = y>, we’ll use this to show that if x +4 and x — i are coprime then x +1
and x — ¢ are cubes in Z[i].

Suppose that they have a common factor, say 6. Then §|(z +i) — (x —i) =2i = (1 +4)%. Soif z +i and x — i
are not coprime, then (1 4+ 4)|(z 4 4), i.e.,(x +4) = (L +i)(a + bi) = (a — b) + (a + b)i. Now a+ b and a — b are
either both even or both odd. We also know that a + b = 1, so they must be both odd, hence = is odd. Now an
odd square is always 1 mod 8 . Hence 22 +1 =2 mod 8, so 22 + 1 is even but not divisible by 8, contradicting
the fact that is is a cube.

Hence x + ¢ and = — ¢ are coprime in Z[i]. So let x +i = en{'... 7

€En

¢n» where m; are distinct up to units. Now

T—i=T+i=em".. . T So (x4i)(x —i) = ent ... wT . T =3 Let y = dglt . gfn = 48 =
3 _ . ) o
e/3q1fl ...q3n. The ¢; are some rearrangement of 7;, 7; up to units. Hence we have e; = 3f;, so  + i =unit times

a cube, (Note in Z[i], £1 = (1)3 and +i = (F4)®). Hence x + i is a cube in Z][d].

So let  +i = (a + ib)® for some a,b € Z. Then z + i = a® + 3a%bi — 3ab® — b*i = a® — 3ab® + (3ab — b?)i.
Solving the imaginary part we have 1 = 3a%b — b® = b(3a® — b?). So b = £1 and 3a? — b> = 3a? — 1 = +1. Now
3a? = 2 is impossible, so we must have 3a% = 0, i.e., a = 0 and b = —1. This gives x = a® — 3ab? = 0.

Hence y = 1,2 = 0 is the only integer solution to 2% + 1 = 3> O

Theorem 1.7 (This is False). The equation x> + 19 = y3 has no solutions in Z (Not true as v = 18,y = 17 is a
solution since 182 + 19 = 324 + 19 = 343 = 17?)

Proof of False Theorem. This proof is flawed as we will explain later on. (Try to find out where it is flawed)

Consider Z[v/—19] = {a + bv/—19 : a,b € Z]. Then we define the conjugation this time to be a + by/—19 =
a—by/—19, and similarly we define a norm function N : Z[/—19] — Z by a — a@. Hence N (a+by/—19) = a®+19b°.
So we have 2% + 19 = (2 + v/—19)(z — /-19).

Suppose that these two factors have a common divisor, say §. Then §|2v/—19. Now /—19 is irreducible since
N(v/—19) = 19 which is a prime. If 2 = af with o, 3 ¢ (Z[\/—19)*, then N(a)N(B8) = N(2) = 2%, so N(a) = 2
which is impossible. So 2 is also irreducible. Hence we just need to check where 2|z + /=19 or v/—19|x + /—19 is
possible.

Suppose v—19|z + v/—19, then z + /=19 = v/—19(a + by/—19) = —19b + ay/—19, so a = 1 and 19|x. Hence
22 +19 =19 mod 192, i.e., 2% + 19 is divisible by 19 but not by 192 so it can’t be a cube. Suppose 2|x + /—19,
then x + v/—19 = 2a + 2by/—19, which is impossible.

Hence we have x + v/—19 and = — +/—19 are coprime, and let z + /—19 = enf*...w&. Then z — 19 =

T4+ V=19 =& ... 7T, s0 (z +v—19)(z — V/—19) = een{' ... 77wt .. .7, = 3. If we let y = e’q{l gl
then 33 = ¢3¢3 . g3/ so the ¢; are some rearrangements of ;,7; up to units. Hence corresponding e; = 3;
and so z + 1/—19 =unit times a cube. Now units of Z[/—19] = {£1}.

So z++v—=19 = (a+by/—19)3 = (a® — 19ab?) + (3a®b — 19b®)y/—19. Again comparing v/—19 coefficients we have
b(3a? — 19b%) = 1, so b = +1 and 3a® — 19 = £1. But 3a® = 20 is impossible since 3 { 20, and 3a® = 18 = 3 - 6 is
impossible since 6 is not a square. So no solution exists. O

This proof relied on the fact that Z[y/—19] is a UFD, which it is not. We can see this by considering 343 = 73 =
(18 + v/—=19)(18 — v/—=19). Now N(7) = 72. Suppose 7 = af3 with o, 8 ¢ (Z[v/=19])". Then N(a)N(B) = 72, so
N(a) =7, but N(a+by/—19) = a®+19b? # 7. So 7 is irreducible in Z[/—19]. On the other hand N (18++/19) = 73,
and suppose that N(a)N(8) = 73, then without loss of generality N(a) = 7 and N(3) = 72. But we have just seen
no elements have N(«a) =7, so 18 4+ 1/—19 is irreducible in Z[v/—19]. The same argument shows that 18 = /—19
is also irreducible in Z[v/—19]

1.3 Pell’s Equations

Fix d € Z~ with d # a? for any a € Z. Then Pell’s equation is 22 — dy? = 1, with z,y € Z.

Now Z[Vd] = {a +bVd : a,b € Z}. This has an automorphism a + bv/d +— a — bv/d = a + bv/d. (Note that
~ is just notation, and it does not mean complex conjugation). Again we can define a function called the norm,
N : Z[Vd] — Z defined by o — a@, and explicitly (a + bv/d) — a®> — db>. Hence Pell’s equation comes down to
solving N(z + yv/d) = 1.



Now recall that a € (Z[\/E]) , then there exists 8 such that a8 = 1. So N(a)N(5) =1, so N(a) = £1. On
the other hand if N(a) = +1, then a@ = +1, so +a = a~! , hence « is a unit.

Example. d = 3. Then 22 — 3y%? =1 = 3y% + 1 = 22

y=0 3y? +1 = 1. This is ok, it leads to (1,0) which correspond to 1 € Z[v/3]
y=1 3y? + 1 = 4. This is ok, it leads to (2,1) which gives 2 + /3 € Z[V/3]
y=2 3y +1=13

y=3 3y? +1=28

y=4 3y? +1 = 49. This is ok, it leads to (7,4) which gives 7 + 4v/3 € Z[/3]

Note that if € is a unit in Z[v/d], then 4¢" is a unit for all n € Z. (For example (2-+1/3)% = 224+2.-2¢/34+3 = 7+4/3.
If 2,y is a solution, then of course (—x, —y) is a solution as well. Hence there are infinitely many solutions

Theorem 1.8. Let d € Z~o with d # a®. Then there exists eq € Z[\/E], €q 7 +1 such that every unit can be written
as £e, n € Z. Such an eq is called a Fundamental Unit of Z[Vd]. If €4 is a fundamental unit, then so is :l:egl.

Proof. This is a consequence of Dirichlet’s Unit Theorem, which we will prove at the end of the course. O

Example. We will show that e3 = 2 + /3 € Z[/3]
Let 21 +y1V3 € Z[\/Zi] be a fundamental unit. Without any lost of generality we can assume that x; > 0. Now

(z1+nv3) 1 = (mﬁyil/g)y(lm\l/fyl\/g) = +(x; — y1V3). So without loss of generality we can also assume y; > 0.

Put z,, + y,V3 = (21 + y1V3)? = 27 +nx?_1y\/§+ oS0z, =2t +--- > 2t and y, = nx{‘_lyl. Ifz; =0
then 3y? = 41 which is not possible. Similarly if y; = 0 then 27 = 1 = 27 = &1 and €3 = £1 which is impossible
by definition. So 1 > 1,y; > 1. For n > 2: 2, >z} > 21 and y, = nx?*lyl >>ny >

Conclusion: A solution (z,y) of 22 — 3y? = +1 with y > 1 minimal is a Fundamental unit for Z[v/3]. Hence
24 +/3 is a fundamental unit for Z[v/3], so all solution for 22 + 3y? = 41 are obtained by (x,y) = (£x,, +¥,) where

Tn+ynV3=(2+V3)".




2 Fields, Rings and Modules

2.1 Fields

Definition 2.1. If K is a field then by a field extension of K, we mean a field L that contains K. We will denote
this by L/K.

If L/K is a field extension, then multiplication of K on L defines a K-vector space structure on L. The degree
[L: K] of L/K is the dimension dimg (L)

Example. e [K:K]=1
e [C:R]=2
¢ [R: Q] = oo (uncountably infinite)
The Tower Law. If L/K and M/K are fields extensions with L C M, then [M : K| = [M : L][L : K]

Proof. Let {zo : @ € I} be a basis for L/K and let {yg : 8 : J} be a basis for M/L. Define z,3 = z,ypg € M. We
claim that {z,s} is a basis for M/K.

We show that they are linearly independent. If Zaﬁ aapZapg = 0 with finitely many ans € K non-zero. Then
Zﬂ(za aap®a)yp = 0, since the yg are linearly independent over L we have ) aqpzq = 0 for all 5. Since the z,
are linearly independent over K we have ang = 0 for all a, 3.

We show spanning. If z € M, then z =} Agyg for A\g € L. Foreach \g = " aapZa- Sox =3 53, @apTa)ys =
> op GapTalp = Y GapTap-

So {zap} is a basis for M over K, so [M : K] =[M : L|[L : K] O

Corollary 2.2. If K C L C M are fields with [M : K] < oo then [L : K]|[M : K].

Definition. L/K is called finite if [L : K] < oo
If K is a field and z is an indeterminate variable, then K (z) denotes the field of rational functions in z with
coefficients in K. That is o)
x
K(z) = :f,gEKx,gyéO}
@={2 g

If L/K is a field extension, « € L. Then K(«) is the subfield of L generated by K and «.

K@= {5: pge kg +ol= )

9(a) KCMCL,aeM

Let L/K be a field extension, o € L. We say that « is algebraic over K if there exists a non-zero polynomial
f € K[z] with f(a) =0

Theorem 2.3. Let L/K be a field extension and o € L. Then « is algebraic over K if and only if K(a)/K is a
finite extension.

Proof. <) Let n = [K(«) : K] and consider 1,a,...,a"™ € K(a). Notice that there are n + 1 of them, so
they must be linearly dependent since the dimension of the vector space is n. So there exists a; € K such that
ag+ a1+ -+ + apa™ = 0 with a; not all zero. Hence by definition « is algebraic.

=) Assume that there exists f # 0 € K|[z] such that f(a) = 0, and assume that f has minimal degree n. We
claim that f € K|x] is irreducible.

Suppose that f = gh, with g,h non-constant. Then 0 = f(a) = g(a)h(a), so without loss of generality
g(a) = 0, but deg(g) < deg(f). This is a contradiction. Let f = a,a2™ + -+ + a¢ with a,, # 0. Then f(a) =0 =
ana™+---+ag=0=a" = —l%(an_loz”_l +:--4ag). So we can reduce any polynomial expression in a of degree
> n to one of degree <n — 1. !

Hence K(a) = {% 2bi, ¢ € K}. Pick ZEz% € K(a), now deg(c) < n—1 < degf and c¢(a) # 0.
Hence ged(c, f) = 1, so there exists A\, p € Klx] with A(z)e(x) + p(x)f(z) = 1. In particular 1 = AMa)c(a) +
w(a)f(a) = AMa)c(a), hence A(«a) = %a) € Kla]

Any elements of K(«) is a polynomial in « of degree < n — 1. So if « is algebraic over K, we have just shown
that K(a) = K[a] and 1,q,...,a" ! is a basis for K[a|/K, hence [K(a): K] =n O




Theorem 2.4. Let L/K be a field extension, then the set M of all o € L that are algebraic over K is a subfield of
L containing K.

Proof. First K C M, as a € K is aroot of x — a € K|[z]

So take a, 8 € M, we need to show that « — 3 € M and ¢ € M if 8 # 0. Consider the subfield K(«, ) C L.
Now [K(a)(f) : K] = [K(«, ) : K(o)][K(«) : K]. We have [K(a)(8) : K(a)] < [K(8) : K] since the first one is
the degree of the minimal polynomial of 3 over K(«), and § is algebraic, so there is f € K[z] C K[«a] such that
f(B)=0. Now aa— 8 € K(«)(8) and if 8 # 0, g€ K(a)(8). This implies that K(a — ) C K(a, 8) = [K(a— ) :

K]|[K(a,8) : K] < 00 and K (%) CK(a,p) = [K (9) : K]|[K(a, B) : K] < co. Hence o — 8 and § are algebraic

IR

B
over K O

Corollary 2.5. The set of algebraic number is a field. We denote this with Q

For any subfield K C C, we let K denote the algebraic closure of K in C, i.e., the set of & € C that are algebraic
over K.

For example R = C = R(4).

We also conclude that Q = Ug number ield K- Also [Q : Q] = oo so Q itself is not a number field.

2.2 Rings and Modules

In this course we use the following convention for rings. Every ring R is assumed to be commutative and has 1. We
also allow 1 to be 0, in which case R =0 = {0}. A ring homomorphism ¢ : R — S is assumed to send 1z to 1g. A
subring R of a ring S is assumed to satisfy 1z = 1g

Example. Let Ry and Ry be two non-zero rings. Then we have a ring R = Ry X Ry with 1z = (1g,,1g,). Note
that R} = Ry x {0} C R is aring, but 1% = (1,0) # 1g so Rj is not a subring of R. Finally ¢ : Ry — R defined
by r — (r,0) is not a ring homomorphism.

Definition 2.6. Let R be a ring then a module over R is an abelian group M with scalar multiplication by R,
satisfying

e l-m=m

o (r+s)m=rm-+sm
e r(m—+n)=rm+rn
o (rs)m =r(sm)

Forall r,s € R,m,ne M
An homomorphism of R-modules is a homomorphism of abelian group that satisfies ¢(rm) = r¢(m) for all
re RRmeM

Example. If R is a field, then modules are the same as vector spaces.
Any ideal I of R is an R-module
Any quotient R/I is an R-module
If R C S are both rings, then S is an R-module
Let R = Z. Then any abelian group is a Z-module

Definition 2.7. A module is free of rank n if it is isomorphism to R".

Theorem 2.8. If R # 0, the rank of a free module over R is uniquely determined, i.e., R 2 R" = m=mn
Proof. This is not proven in this module O
Definition 2.9. If R is a ring then an R-module M is finite if it can be generated by finitely many elements.

Example. R =Z, M = Z][i] is finite with generators 1 and 4

R = Z[2i], M = Z][i]. This is also finite with generators 1 and ¢, but it is not free.

R=7Z,M=17 [%} = {27,,‘” cx €L, m > 0} C Q. This is not finite as any finite set has a maximum power of 2
occurring in the denominator.




2.3 Ring Extensions

Definition 2.10. Let R be a ring, then a ring extension of R is a ring S that has R as a subring.

A ring extension R C S is finite if .S is finite as an R-module

Let R C S be a ring extension, s € S. Then s is said to be integral over R if there exists a monic polynomial
f=a"+an_12" '+ +ag € R[z] with f(s) =0

Theorem 2.11. Let R C S be a ring extension, s € S. Then the following are equivalent:
1. s s integral over R
2. R[s] is a finite extension of R
3. There exists a ring S" such that R C S’ C S, S’ is finite over R and s € S’
Proof. Not proven in this modules. Some of these are obvious. (See Commutative Algebra Theorem 4.2) O

Theorem 2.12. If R C S is a ring extension, then the set S’ of s € S that are integral over R is a ring extension
of R inside S.

Proof. Note that R C S’ since r € R is a root of x — r € R[z].

Given s1,s9 € S’ we want to prove that s; — s9,8182 € S’. We have R C R[s1] C R[s1, $2] C S, now the first
ring extension is finite since s; is integral over R. We also have ss is integral over R so in particular it is integral
over R[s1]. Take the generators for R[s1] as an R-module: 1,...,s} and take the generators for R[s1,s2] as an

R[s1]-module: 1,...,s5". Then {sllsg 1<j<m1<i< n} is a set of generators for R[s1, s2] as an R-module.

Hence we conclude that R[s1, s3] is a finite extension of R. Now $1 — s2, 5152 € R[s1, $2]. So if we apply the previous
theorem, we have s; — s9, $152 are integral over R. O

Definition 2.13. Let R C S be an extension of rings, then the ring of R integral elements of S is called the integral
closure of R in S

Given an extension of rings R C S then we say that R is integrally closed in S if the integral closure of R in .S
is R itself

Theorem 2.14. Let R C S be a ring extension and let R© C S be the integral closure of R in S. Then R is
integrally closed in S.

Proof. Take s € S integral over R’. We want to show that s is integral over R. Take f = 2" +a, 12" '+ --+ag €
R'[z] with f(s) = 0. Consider a subring of R C R[ag,a1,...,an—1] C R'. Now R C Rlag] C Rlag,a1] C --- C

Rlag, . ..,an—1]. Now f € Rlag,...,an—1][z]. So s is integral over R[ag,...,a,_1], hence Rao,...,a,—1][s] is finite
over Rlag,...,a,—1] and hence finite over R. So by Theorem [2.12] we have that s is integral over R. O

Definition 2.15. An element a € C is an algebraic integer if it is integral over Z.
The ring of algebraic integers is denoted by Z B
If K is a number field, then the ring of integers in K is denoted Ox = Z N K = integral closure of Z in K.

Example. Let K = Q. Take p/q € Q integral over Z (assume that ged(p,q) = 1), then there exists f(z) € Zx]
such that f(p/q) = 0. So x —p/q is a factor of f in Q[z], but Gauss’ Lemma states “if f € Z[z] is monic and f = g-h
with g, h € Q[z] then g, h € Z[z]”. So © — p/q € Z[z], that is p/q € Z. So Og = Z.

Consider K = Q(V/d), with d # 1 and d is square free. Consider o € K, o = a + bv/d,a,b € Q and suppose
that « is an algebraic integer. Assume that deg(«) = 2, that is the minimum monic polynomial f of « in Q[z] has
degree 2. Then by Gauss, we know f € Z[z], furthermore f = (z — (a +bVd))(z — (a — bVd)) = 2% — 2az + o — db.
So we want 2a € Z and a? — db € Z.

’ ’ 2
So2a € Z = a=% with ¢’ € Z. Then a® — b*d = (%) —b*d = (a/)? — d(2b)? € 47Z. So (using the fact that d
is square-free) d(2b)? € Z = 2b € Z and (a’)? = d(v’)*> mod 4. So we conclude:

e If ' is even, then a € Z, so V' is even and thus b € Z

e If ¢ is odd, then (a’)? =1 mod 4, so b’ is odd as well and d =1 mod 4

We have just proven the following;:



Z[V4d) d#1 mod 4
VA [1""/3] =1 mod 4

Theorem 2.16. Let d € Z, with d # 1 and square free. Then OQ(\/E) = {
2

Theorem 2.17. Let R be a UFD. Then R is integrally closed in its fraction field (the converse does not hold)

Proof. Take s = % integral over R, and assume that r1, 72 are coprime (well defined since R is a UFD), we have to
show that r, € R*.

If ro ¢ R*, then let m € R be any factor of ro. Now s is integral, so there exists a; and n such that s +
p_15" 1449 =0. Multiplying through by 75 we have r{ + an,lr?flrg + -4 apry = 0. Now since rp =0
mod m, if we take mod both side we have 7" =0 mod 7. Hence 7|r{" = m|r;. This is a contradiction. O

The converse of this theorem is not true, as an example Og /=5y = Z[+/—5] is integrally closed but not a UFD

since 6 =2-3 = (1++/=5)(1 —/=5)



3 Norms, Discriminants and Lattices

3.1 Conjugates, Norms and Traces

The Theorem of Primitive Elements. Any number field K can be generated by a single elements 6 € K. That
is K =Q(0)

Proof. See any courses in Galois Theory O

Consider a number field K = Q(6). This 6 has a monic minimal polynomial, say fp € Q[z]. We can factor fy
over C, say fo = (x — 61)(z — 02)...(x — 6,), where 61 = 6 and all the §; are distinct. For each i we have a field
embedding, which we denote o; : K — C defined by 6 — 6;. These are all possible embedding of K — C

Example. K = Q[/d], then fy = 2% —d = (z — v/d)(z 4+ V/d). So we have ¢, = id and oz = a + bWd — a—bVd
K = Q[¥/2], then fy = 23 — 2 = (z — ¥/2)(z — (3¥/2)(x — (2+/2) where (3 = 5" a third root of unity. So we
have:

e 01 : /2 V2 (ie., the identity map),
o 021 V2 (3V2
® 03! %H C??e/g

Definition 3.1. Let K be a number field and oy,...,0, all the embeddings K — C. Let o € K. Then the
elements o;(«) are called the conjugates of a.

Theorem 3.2. Let K be a number field, n = [K : Q|. Take o € K, consider the multiplication by o as a linear map
from the Q-vector space K to itself. That is o : K — K is defined by 3 — «fB. Then the characteristic polynomial
of this map is equal to Po(x) = [[i—,(z — 0i(a))

Proof. Let K = Q(f) and consider the basis: 1,6,6%,...,0"~!. Let M, be the matrix that describes the linear map
« relative to this basis.
First consider a« = 6. Let fs = 2™ + ap—12" " 4 --- + ag. Then we have

00 -+ 0 —ap
1 0 -- 0 —aq
My=[0 1 - 0 -—a
00 -+ 0 —ap-1

We now calculated the characteristic polynomial of Mjy:

T o --- 0 ao
—1 €T e 0 aq

det(X - I, — Mg) =det | O -1 - 0 a =3 aa*
0 0 -+ 0 z4+an,-1

Hence the characteristic polynomial of My = fg =[]}, (x —0;(0)) as required. Hence we know from Linear Algebra
that there exists an invertible matrix A such that:

0'1(9) 0 0
0 oo(0 0
My = A 2(0) s am
0 0 on(0)



Now note that Ma+pg = My+Mg and M,p = MMz (basic linear algebra). So if we have a polynomial g € Q[z],
then My, = g(M,). Now we can write any o € K as g(6) for some g € Q[X]. Hence we have

9(01(0)) 0 0
Mo=gtty) = 4| o Ol
0 9(ou(0))
o1(g(0)) 0 0
Y R o
0 0 7a(9(0)
o1(a) 0 0
= A ! 02@ ? ATt
0 0 oa(a)
Hence, the characteristic polynomial of M, is [}, (z — 0;(«)) as required. O

Corollary 3.3. For o € K, the coefficients of [, (z — oi(a)) are in Q.
Definition 3.4. Let K be a number field, « € K. We define the norm of a as N(a) = Nk g(e) =[]\, 0i(a) € Q.
Corollary 3.5. N(a) = det(-a) = det(M,)

We can see that the norm is a multiplicative function, i.e., N(af8) = N(a)N(B).

Definition 3.6. Let K be a number field and v € K. We define the trace of o as Tr(ar) = Trg g(ar) = > 0i() €
Q.

Corollary 3.7. Tr(a) = Tr(-a) = Tr(M,)
We can see that the trace is an additive function, i.e, Tr(a + 8) = Tr(a) + Tr(8).
Example. Let K = Q(v/d). Then we have:
e Tr(a+bVd) = (a+bVd) + (a — bV/d) = 2a
e N(a+b/d) = (a+bVd)(a—bVd) = a® — db?
2

Let K = Q(+/2) and recall that 2° — 2 = (v — V/2)(z — (3v/2)(x — (33/2) where (3 = e a third root of unity.
Then we have:

e Tr(a+ b2+ c¥/4) =3a+bV2(1+ 3+ C3) + VAl + G+ ¢3) = 3a
o N(a+bv2+cV4)=(a+bV2+cV4a)(a+b(3V2+ c3V4A)(a+b(EV2+ c(3V4) = a® + 2b* + 4c® + 6abe

3.2 Discriminant

Definition 3.8. Let K be a number field and aq,...,a, be a basis for K. Let o1,...,0, : K — C be all the

embeddings. The discriminant of (aq, ..., ay) is defined as
or(er) or(az) - o)\’
O'Q(Ozl) (72(0(2) O’Q(Otn)
det
on(ar) op(ag) -+ oplay)

We denote this by A(ayq,...,ay) or by disc(a, ..., ay)

10



Theorem 3.9. We have

Tr(agan) Tr(ogas) Tr(ayam,)
Al an) = det Tr(asay) TI‘(Oé'QOlQ) Tr(asay,)
Tr(a'nal) Tr(a'nag) e Tr(oz.nan)

Proof. Let M = (0;(;)),,. Then we have A(aq,...,ay) = det(M)? = det(M?) = det(MT M). But note that the
77744

%

entries of M7 M at (i,5) is > p_, ou(cs) - on(ay) = > e, ok(asa;) = Tr(a;a; ). O
Corollary 3.10. We have A(ay,...,a,) € Q
Theorem 3.11. We have A(aq,...,ap) #0

Tr(aiaq)
Proof. Suppose that A(aq,...,a,) =0. Then there exists not all zero ¢1, ..., ¢, € Q with ¢; : + ot
Tr(anaq)
Tr(apaq) Tr(on Y cjoy)
Cn : = 0. Hence : = 0. Put o = ) ¢;a;, we have just shown that Tr(o;o) = 0Vi.
Tr(apan) Tr(om Y cjoy)
But we have that «; forms a basis for K over Q, hence Tr(Ba) = 0VS3 € K. We have a # 0, so let 8 = o™, then
Tr(Ba) = Tr(1) = n = [K : Q] which is a contradiction. O

Definition 3.12. The map K x K — Q defined by («,3) — Tr(apB) is know as the trace pairing on K. It is
bilinear.

1z 22 - a:?_l
Let K = Q(#), this has basis 1,...,0" . In general det [ : : : is called a Vandemonde
1 oz, 22 ... antt

determinant and it is equal to [[,; <, (z; — ;). (See Linear Algebra or Algebra ffor a proof by induction). So
in our case, A(1,0,...,6"71) = [Ticicj<n(oi(8) — 0;(0))%. Also note that A(fg) := A(1,6,...,6" ). (Generally,
if f=(x—ai)...(z—ay) then A(f) = [],c;cjc, (i — a;)?, check with the definition of a discriminant of a
quadratic)

Example. Let K = Q(\/ﬁ) Consider the basis 1,v/d. We calculate the discriminant in two ways:

o A(1,Vd) = det G \/jg) = (—2Vd)? = 4d

o A(1,V/d) = det (Tﬁ%) T;EE@) — det (3 20d> — 4d

Now consider the basis 1, #. Then A(1, 1+—2\/E) = (=Vd)3?>=d
Let K = Q(V/d), with basis 1, v/d, v/d?.Then we have

Tr(1)  Tr(v/d) Tr(vd?)
r(Vd) Te(Vd?)  Tr(d)

A1, Vd, Vd?) = det| T
Tr(v/d?)  Tr(d) Tr(V/d)

3 0 0
= det{0 0 3d

0 3d 0
= —927d>

11



3.3 Lattices

Definition 3.13. Let K be a number field. A lattice A in K is a subgroup generated by Q-linearly independent
elements of K. That is A = {n1a1 + -+ + nra,|n; € Z} where «; are linearly independent over Q. We always have
r < [K : Q]. The number r is called the rank of the lattice, this is sometimes denoted rk(A).

Example. Z[i] is a lattice in Q(7)
Theorem 3.14. Any finitely generated subgroup of a number field K is a latice.

Proof. Let A be a finitely generated subgroup of K. By the Fundamental Theorem of Finitely Generated Abelian
Group, we have A =2 T @ Z", where T is the torsion. As K is a Q-vector space, we have T' =0, so A 2 Z". Let
¢ : Z" — A be an isomorphism.

Claim: «; = ¢(e;) is a basis (i.e., linearly independent generating set) for A, where e; is the standard basis for

Z". Now ¢(c1,...,¢;) = >y ;. Since ¢ is surjective, all elements of A are reached. If - ¢;a; = 0 for ¢; € Q
multiply ¢; by the common denominator, then without loss of generality, we can assume c¢; € Z. But we know that
¢ is injective, so for all 4, ¢; = 0. O

Definition 3.15. A lattice of K is said to be full rank if its rank r = [K : Q)
Theorem 3.16. Let A C K be a full rank lattice. Then A(ay,...,«,) is the same for every basis ay,...,a, of A

Proof. Suppose (a;); and (8;); are basis for A. Then each 8; can be written as a linear combination of «; with

B1 aq Qg B1
coefficients in Z, i.e. S| =Al | with Aan r x r matrix with coefficients in Z. Similarly | : [ =B | :
B Q. Q. B
Tr(aiay) -+ Tr(agay)
Hence we have AB = I, so A € GL.(Z), so det(A) = £1. Put S = : : . Then
Tr(ayaq) -+ Tr(arar)

Te(B181) - Te(Bafr)
: : = ATSA. (Base change for matrices describing symmetric bilinear forms, see Algebra
Te(Brf1) -+ Te(Brfr)
I) So we have A(B1,. .., 3,) = det(ATSA) = det(A?) det(S) = det(S) = A(ay, ..., o) O
Definition 3.17. Let A C K be a full rank lattice, then we define A(A) to be the discriminant of any basis of A.
Theorem 3.18. Let K be a number field and A C K be a full rank lattice with A C Ok. Then A(A) € Z.

Proof. We have A(A) = det((Tr(aia;)i;) with a; € Ok. If a € O, then Tr(a) = 37" | 0i(a) € ZNQ = Z. Hence
A(A) € Z. O

Theorem 3.19. Let K be a number field and A C A’ be two full rank lattices. Then the index (A’ : A) is finite and
A(A) = (A : A)2A(N)

Proof. All the elements of A can be written as an integral linear combination of some chosen basis of A’. So there
exists A € M, (Z) with A = AA’. Consider A’/A = Z™/AZ", this is a finitely generated abelian group so by
FTFGAG N /A2 Z/d\Z & - - B ZL)dpZ & Z" with dy|ds]. .. |dn. So (by Smith Normal Form from Algebra I) there

d 0 - 0
0 do
exists B, B’ € GL,(Z) with BAB' = | . ) . As we have rk(A’) = rk(A), we have that » = 0, and
0 dn,
thus det(A) =dy ...d,, = |Z"/AZ™| = (A’ : A).
Furthermore A(A) = A(AN’) = (det A)2A(N). O

Theorem 3.20. Let K be a number field with n = [K : Q]. Then there exists a basis wy,...,w, of K/Q such that
Ok =Zwy + - + Zw, = {>_ awila; € Z}. (That is Ok is a full rank lattice in K)

12



Proof. We consider all A C O that are full rank lattices in K.

The first question is: do such A exists? Write K = Q(0), 0 € K and fp = 2" +a,_12" '+ +ag with a; € Q.
Now let d be a common denominator of the a;, then df € Ok. Also note that Q(6) = Q(df), so without loss of
generality we can assume 6 € Ok. Then Z[f] C O, furthermore 1,0,...,0"! are linearly independent over Z,
hence Z[f] is a full rank lattice.

Of all such A, we have that A(A) € Z (by Theorem [3.18). So consider A with |[A(A)| minimal. Claim: A = Ok.

Suppose A # Og. We do have A C Ok, so take a € Og \ A. Then A’ := A + Za is finitely generated as an
abelian group of K and thus A’ is a lattice of full rank. Also A’ C O. But we have |A(A)] = (A’ : A)?|A(A)], and
since A # A, we find |A(A)| > |A(A')|, which is a contradiction. O

Definition 3.21. The discriminant of a number field K/Q is defined as A(K/Q) = A(Ok)

4d d#1 mod4

Example. Let K = Q(v/d) with d # 1 and square free. Then A(K/Q) = A(Ok) = {d d=1 14
=1 mo

Note that if A C O is a full rank sublattice, then A(A) = (Ok : A)2A(Ok) by Theorem
Corollary 3.22. If A C Ok and A(A) is square free then A = O.

13



4 Cyclotomic Fields

27

Definition 4.1. Let n be a positive integer. Then the n-cyclotomic field is Q((,,) where ¢, = e™

For simplicity we are going to assume that n = p” with p being a prime.

Theorem 4.2. The minimal polynomial of (pr is

r

P

O, = H (x — CZ}-)

k=1,ptk

Proof. Firs note that ®,-(,r) =0
In general, [[_, (z — ¢¥) = 2™ — 1. We see this by noticing that every zero of the LHS is a zero of the RHS, the
degree of both sides are the same and they both have the same leading coefficients. Consider

r

d ARG e)
Py = (z—Ch)== P
' k—I:[mk ' R4

and notice that (;’ = (pr—1. This means we can rewrite

r—1

T s
e —¢G) -1
pr pr—1

— — p=Dp
ik :I:pr—l 1
=1 (T = ()

420"

Hence we have @, € Z[z].

We finally show that ®,- is irreducible. Suppose that ®,» = fg with f, g € Z[z], f, g are both monic and non
constant. Consider this mod p, we have
P —1 (x— 1)

— = = . (p_l)(pril)
P g CE (x—1) mod p

)

r—1

(using Fermat’s Little Theorem). Let f,§ denoted the reduction of f,¢ mod p, hence we have fg = (z—1)P~1P
mod p. Now F,, is a UFD, so we have f = (z—1)" and g = (x—1)* such that m+k = (p—1)p"~!. Hence we have f =
(x—1)"+pF and g = (x—1)*+pG for some F,G € Z[x], that is, fg = (x—1)" * +p(x—1)*F+p(z—1)"G+p*FG.

Now consider x = 1, we get f(1)g(1) = p>F(1)G(1) on one hand and ®,-(1) = 1=D7""" ... 41 = pon the
other hand. But p?{ p, so we have a contradiction and ®,- is irreducible. O

Note that Z[Cpr] C OQ(qpr)-

Problem. What is A(Z[(,])?
Let us denote ,» by ¢. By definition we have

p" p"
A= 1T II -
k=1,ptk m=1,ptm,m+#k
Let us fix k, we want to compute HZ;':Lp,fm)m#(Ck — (™). We do this by considering
p" r
_ my __ (I)Pr(x) _ z? —1
LY | SR el e [Pt

m=1,ptm,m#k

Now Fj,(¢*) = 3, so we need to use I’'Hospital’s rule. We calculate

B prmpr—l(xp"’l —1)— pr—lxp’"’l—l(mﬂ' —-1)

/
¢p“" (‘r) (xpr—l . 1)2
Now the roots of 27 — 1 are powers of Cpr—1 = ¢P, so ¢¥ is not a root of (2P —1). Hence
pré-k(prl)
Fip(¢h) = @, (¢%) = I
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Hence |®},-(Cx)| =

p"
T so we have

INCEIIES ) (A
P S TR V [

Hence we finally compute

p” p” p—1 p
M@= 1] «-¢= (Hu—c@) = (By(2))"

k=1,ptk k=1,ptk k=1

Plucking in = = 1, we get ®,(z)?"  =p?" . Hence we conclude |A(Z[¢])| = pm® —#" ' =¢"" = pp' ' (rp=r=1)
Now it is not important to remember what exactly it is, the key idea is that it is a power of p, the exact exponent
does not matter.

In particular if 7 = 1 we get |A(Z[(])| = pP—2
Theorem 4.3. For any n we have Og(c,) = L[]

Proof. We will only prove this for n = p, with p prime.
We already know that Z[(,] C Ogc,)- We also know that pP~2 = A(Z[(,]) = (Ogc,) : [Cp]) A(Ogc,)) (by
Theorem [3.19)).

Suppose that Z[(,] # Oq(,) then (Og(c,) : Z[(p]) = p*, where x is an unknown exponent. Then Ogc,)/Z[Cp]
is an abelian group of order divisible by p. Hence there exists @ € Og,)/Z[(p] with order p, i.e., there exists
a € Og,) with pa € Z[(,]. We want to show that for any a € Og(c,) such that pa € Z[(,] then we already have
a € Z[Gy)

Note that Z[¢,] = Z[1 - (). Now N(1-¢,) = [T72, 0s(1—¢p) = HP 1(1—¢}) = ®,(1) = p. Hence we have that
p factors as Hf;ll(l—cl) Now for all 4, we have N(1 - ¢;) = []}Z (1 —04(¢ ) =11- 1(1—Cij)=N(1—(p)=p

hence in particular we have N (1:?") =1, so 1:2” is a unit for all 7. Putting all of this together we have
[1(1-¢;) . -
— (0=¢)r ooyt (1—G)P 7t = unit - (1 — )P~

We can write pa as ag + a1 (1 — ) + -+ ap—2(1 — ()P~ 2 (x) with a; € Z. We want to show that p|a; for all i.
For a € Z we have pla if and only if (1 —(,)|a in Og(c,). One direction follows from the fact that 1 — ([p. For the
other implication, suppose (1 — (,)|a, then N(1 — ¢,)|N(a) = p|a?~!, hence p|a. (Note for any number field and
a € Q, we have N(a) = al®*¥). We have now the tools to do a prove by induction to show that a,, is divisible by p.

Let n = 0 and consider (x) module 1 — ¢,. We have pa =0 mod (1 — (), also for ¢ > 1 we have a,(1 —(,) =0
mod (1 — (). Hence we find that a9 =0 mod (1 — (p), so (1 — (p)|ap and hence p|ag

Now suppose that plag, ai,...,a,—1 and that n < p — 2. We have that pa is divisible by (1 — (,)""!, but so
is ag, (1 —¢p)ar,..., (1 —¢p)" tan—1 and a;(1 — ¢,)* for i > n. Hence we have (1 — (,)"a; =0 mod (1 — ()"
Hence there exists 8 € Og(¢,) with B(1 — )"t = (1 — )" an = B(1 — () = an, so we have (1 —(,)|an.

Hence we have shown by induction that p|a; Vi. Hence pa € pZ[(,] = a € Z[(,]. So to recap, we have shown if
Z[¢p) # Oqyc,), then we must have o € Ogc,) \ Z[(p] such that pa € Z[(,]. But we also shown that if o € Og,)
with pa € Z[(,] then a € Z[(,], hence we have a contradiction.

Example (Of the proof in action). . What is Og(¢z)? We know that Z[V?] C Og(¢/z), we also know that

A(Z[2]) = —27(2%) = —22 .33 = (Oq(#r3) Z[V2))? - A(Og ¢/3))- Hence if Z[V?2] # Og(¢/2) then either 2 divides
the index or 3 divides the index.
Suppose that 2 divides the index. Then there exists o € Og 5, \ Z[v/2] with 2a € Z[/2]. Note that in Og g5

we have 2 = \3/53. For a € Z we have 2|a if and only if ¥/2|a in Og(¢)- Let 2a =ao+a V/2 4+ ay /4. Consider this

modulo /2, we have 0 = ap mod /2. Hence 2]ag. Now considering this modulo /4, we have 0 = a1 /2 mod V/4,
again implying that +/2|a;, hence 2|a;. So finally considering this modulo 2, we see that 2|as. Hence 2o € 2Z[{/2],
i.e., a € Z[V/2]. So 2 does not divide the index

Now suppose that 3 divides the index. We claim that 3 = (1+ \3/§)3~unit. Now (1+ \3/5)3 =142V24+34+2 =
3(1+ V2 + V4). Now N(1+/2) =12 +2-12 = 3, s0 N((1 + V/2)%) = 3% = N(3) and hence (1 + /2 + V/4) is
a unit, proving our claim. Hence we have that for a € Z, 3|« if and only if (1 + ¥/2)|a in Og(#z)- So consider
a € Oy \Z[\f] such that 3a € Z[¥/2] and write 3o = ag + a1 (1 + V/2) + az(1 + v/2)? (by changing the basis of
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Z[¥/2] to Z[1 + ¥/2]). Then if we consider the equation modulo successive powers of (1 + v/2), we find that each a;
is divisible by (1 + v/2) and thus by 3. Again this leads to a contradiction.
Hence we have that Z[{/2] = Oq(#3)
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5 Dedekind Domains

5.1 FEuclidean domains

Definition 5.1. Let R be a domain (that is 0 # 1 and there are no non-trivial solutions to ab = 0). An Euclidean
function on R is a function ¢ : R\ {0} — Z>( such that for all a,b € R with b # 0, there exists ¢,r € R with
a = qb+ r and either r = 0 or ¢(r) < ¢(b)

Example. R =7, and ¢(n) = |n|.
R = k[z] where k is any field and ¢(f(z)) = deg(f)
R = Z]i] and ¢(a)) = N(«)

Definition 5.2. A domain on which there is an Euclidean function is called an Fuclidean domain.

Theorem 5.3. If R is an Euclidean domain then R is a principal ideal domain (PID), i.e., every ideal of R can
be generated by one element

Proof. Let I # 0 be a non-zero ideal of R. Take 0 # b € I to be an element for which ¢(b) is minimal. We claim

that I = (b)
Let a € I\ {0} be another element. Then there exists ¢ € R with a — gb either 0 or ¢(a — gb) < ¢(b). As bis an
element with ¢(b) minimal, we have that a — ¢b is 0, hence a = ¢b, i.e., a € (b) O

Lemma 5.4. If R is a PID and m € R an irreducible element, then for a,b € R we have 7|ab = 7|a or 7|b

Proof. Suppose that 7 { a, we want to show that 7|b. Consider the ideal I = (7, a). Let § € R be a generator for
I,1ie., (m,a) = (0). There exists z,y € R with a7 + ya = §. Also 7 € (§) so d|w. This means that either § ~ 1 or
d ~ m. But the case § ~ 7 can not occur since 7 t a but d|a. So without loss of generality, assume that § = 1. Thus
zm + ya = 1, hence xmwb + yab = b, but since 7|ab, we have |b. O

Theorem 5.5. A PID is a UFD

Proof. Take a € R\ {0}, such that a is not a unit. Assume that a = emy...m, = €n}... 7, are two distinct
factorisation of a into irreducible. Without loss of generality we may assume that n is minimal amongst all elements
a with non-unique factorisation. We have 7|7} ... 7}, so by the lemma |7 for some i. Without loss of generality
we can assume that ¢ = 1, so m|7] but both are irreducible, hence m ~ 7]. Without loss of generality we can
assume that m = 7}. But then my... 7, = en}... 7w}, and 7 ...m, has n — 1 irreducible factors, so by minimality
of n, this factorisation into irreducible is unique. O

We show that Og,/=3) = Z [H‘Q/jﬂ is Euclidean. We claim that the Euclidean function is the Norm. N(a +

szﬁ) = (a+ b@)(a + bl_T\/j’) = a® + ab + b? (Note that we had over Q(v/—=3) N(c + dv/—3) = ¢ + 3d?)
and this fits we the previous line as N(a+b1+2£) =N(a+3+5/-3)=(a+%)? +3§ = a? +ab+ b?). Suppose
we are given a = a + b% and = c—i—d@ with 8 # 0. Then

a  a+b B (a+pEE) (- dHE) P Ve et k)
B ocpdty3 N(B) B 2 2

(so note e, f € Q). Then pick g,h € Z such that [g — e|, |h — f| < 3 and set
14++v-3

r=a—[q
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Then we have a = fq + r and furthermore if r # 0.

Nw) = Na-plg+ i)
- N(ﬁ(e+fl+2j—g—h£))
= NON(e—g)+ (-0
— N9+ (- g)(f — 1)+ (f — B2
< %N(ﬁ)
< N(B)

Similar arguments works for OQ(\/@ with d € {—1,-2,—-3,—7,—11} (you might need to change the bound)
Theorem 5.6. If d < —11 then Og ) is not a Buclidean domain (but for d € {—19,—43, —67,—163} it is a PID)

Proof. Assume that ¢ : R — Z> is Euclidean, where R = Oy 3. Now R* = {£1}. Take an element b € R\{0, £1}
with ¢(b) as small as possible. For all a € R there exists ¢, € R with r = a — ¢b and ¢(r) < ¢(b) or r = 0. Now
since ¢(b) is as small as possible, we have that r € {0,1,—1}, for all a € R. We also have that a = r mod b, hence
R/(b) has at most 3 elements.

On the other hand the number of elements of (R/(b)) = (R : (b))A((b)) = (R : (b))?A(R) (by Theorem
Vd d# 1 mod 4

# d=1 mod 4’

Then we have (b) = Zb + Zbf. Now

3.19| since (b) C R). Let R = Z + Z6 where 0 = {

b 00N (0~ D) — (BP0~ 0 = N(PA(R). Hence we have (R (5)* = N(B), that i

(R: (b)) = N(b) (since the norm is positive). So if we show that Vb € R\ {0, £1} we have N(b) > 3 then R/(b) has
more than three elements, contradicting the first paragraph. Now we always have N(a + b\[ d) = a® + |d|v?
Suppose d # 1 mod 4, then for a 4+ bv/d to be in R we need a,b € Z. Suppose that a + |d|b?> < 3 then |a] < 1
and |d| > 11, s0 b = 0, but a + bv/d € {0,+1}
If d =1 mod 4 we can also have a = %/,b = % where a’,b' € Z and @’ = b’ mod 2. Then N(a + bVd) =

N (a +b' ‘[) = 1(a’ 4 |d|b'?). Suppose N(a +bvd) < 3 then a’? + |d[b® < 12. But |d| > 13, so again b’ = 0 and
a’? <1250 |a/| < 3. Hence o’ € {—2,0,2}, implying a + bv/d € {0,+1}. O

A®) = det 5

Conjecture. Let K be a number field that is not (@(\/&) for some d < 0 then if Ok is a UFD, then it is Euclidean.

Remark. In general ¢ = N does not work, then ¢ is very difficult to find.

5.2 Dedekind Domain

Definition 5.7. A prime ideal is an ideal P C R satisfying P # R and Va,b € R with ab € P then either a € P or
beP.

Fact. P C R is prime if and only if R/ is a domain

Definition 5.8. A maximal ideal is an ideal M C R satisfying M # R and there are no ideals I # R with
M cCICR.

Fact. M C R is a mazimal ideal if and only if R/M is a field.
Every proper ideal I C R is contained in a mazimal ideal. (See commutative Algebra Theorem 1.4 and its
Corollaries)

Example. Let R = Z. Then its prime ideals are (0) and (p) where p is prime. Its maximal ideals are (p) (as
Z/(p) =T, is a field)

Definition 5.9. A ring R is Noetherian if one and thus both of the following equivalent conditions holds.

1. Every ideal of R is finitely generated
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2. Every ascending chains of ideals Iy C Iy C ... is stationary, i.e., there exists r > 0 such that I; = I; for all
1,5 > 1.

Definition 5.10. Let R be a domain. Then R is a Dedekind Domain if:
1. R is Noetherian
2. R is integrally closed in its field of fractions
3. Every non-zero prime ideal is a maximal ideal
Example. Every field is a Dedekind domain (the only ideals are: (0), (1))
Lemma 5.11. FEvery finite domain is a field.

Proof. Let R be a finite domain. Take 0 # a € R, we need to show there exists x € R with ax = 1. Consider the
map R % R defined by x — ax. We note that -a is injective, if ab = ac then a(b — ¢) = 0, hence b — ¢ = 0 since R
is a domain. As R is finite, -a is also surjective. Hence there exists x with ax = 1. O

Theorem 5.12. If K is a number field, then O is a Dedekind domain.

Proof. Let I C Ok be an ideal. If I = (0) then it is finitely generated, so assume I is non-zero. Hence there exists
0 # a € I, so a0k is a full rank lattice in Ox. We have aOx C I C Ok, so I is a full rank lattice as well. It
has [K : Q] < oo generators as a free abelian group and the same elements generates it as an ideal. So Ok is
Noetherian.

We know that Ox = Z N K. Furthermore the integral closure of a ring R in an extension S is in fact integrally
closed in S. So Ok is integrally closed in K.

Let P € Ok be a non-zero prime ideal. P is a full rank lattice so (Ok : P) < co. Hence Ok /P is a finite
domain. So by the above lemma, Ok /P is a field and hence P is maximal. O

Definition 5.13. Let R be a domain. Then a fractional ideal I of R is a R-submodule of the fields of fractions of
R, such that there exists 0 # ¢ € R with af C R

Example. Let us work out the fractional ideals of Z. The ideals of Z are (n) with n € Z. So fractional ideals are
I C Q such that Ja € Z with al = (n) for some n € Z. That is [ = 27 € Q.
Note that Q is not a fractional ideal, as elements of Q have arbitrary large denominators.

If Ris aring, I,J C R are ideals, then I.J is the ideal generated by {ij:i € I,j € J}.
If R is a domain, I, J fractional ideals of R and K the field of fraction of R, then I.J is a K-submodule generated
by {ij:i€1,j € J}. It is a fractional ideal as ablJ C R (where a,b are such that al,bJ C R)

Example. Let R =7 and consider I = (a),J = (b) with a,b € Q. Then I.J = (ab)

Definition 5.14. Let R be a domain, K its field of fraction, I C K a fractional ideal. Then I is called invertible
if there exists a fractional ideal J C K such that IJ = R = (1)

Example. Every non-zero fractional ideal of Z is invertible.
Every principal non-zero fractional ideal (a) of R is invertible, consider (a)(a™!) = (1)

Theorem 5.15. The invertible ideals of a domain R forms a group with respect to fractional ideal multiplication,
with unit element R = (1) and inverse [ ' = {a € K|al C R}. (K is the field of fractions of R)

Proof. Let I C K be invertible, then there exists J with IJ = R. We want to show: if a € J then al C R and
if al C R then a € J. The first one follows directly. Consider alJ = aR and alJ C J, so aR C J means a € J.
Hence J = I1.

If I, I, I are fractional ideals then Iy (I215) = (I1 1)1

Finally we show that if I, .J are invertible then so is IJ~!. We claim (IJ~!)~! = JI~!. To see this consider
(IJYJIYY=IRI"'=1I"'=R. O

Theorem 5.16. Let R be a domain. Then the following conditions on R are equivalent
1. R is Dedekind

2. Every non-zero fractional ideals of R is invertible
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3. Every non-zero ideals of R is the product of prime ideals.
4. Every non-zero ideal of R is the product of prime ideals uniquely.
We will prove this after some examples.

Example. Oy /—5 = Z[V/—=5] is not a UFD, we have 6 = 2-3 = (1 +v/=5)(1 — v=5). But since Z[V/—5] is
Dedekind (by Theorem [5.12)), we can write (6) as the product of prime ideal uniquely. In fact (6) = (2) - (3) =
(14+v=5)(1—v=5) = (2,1+v/-5)(2,1 —v/=5)(3,1++/=5)(3,1 —/—=5). We check that (2,1++/—5) is prime. Now
Z[V=5]/(2,1++/=5) 2 Z[z]/(2®+5,2,14+2). Now (2,z+1,22+5) = (2,z+ 1,22 +5—z(x+1) = (2,2+1,—2+5) =
(2,2 4+ 1). Hence Z[v/=5]/(2,1 +v/=5) = Z[z]/(2,z + 1) = Fa[x]/(z + 1) = Fy, which is a field. Thus (2,1 + v/=5)

is maximal.

Definition 5.17. If R is a domain and K its field of fraction. Let I be a non-zero fractional ideal then R : I =
{a € K :al C R}

Note that from Theorem [5.15] we see that I is invertible if and only if (R: I)-I =R

Example 5.18. R = Z[/—3] is not Dedekind. (As it is not algebraically closed)
We show that the ideal T = (2,1 + v/—3) is not invertible. R : I = {a +bv/—-3 € Q(v/—-3) : 2(a + by/-3) €

Z[V=3],(1 ++v—=3)(a + bv/—3) € Z[\/—3]). From the first condition, we can rewrite a = %,b = % with o',V € Z.
So consider the second condition

/ b/ ! /+b/ bl
(1+\/73)(%+5\/73) :%+ 2 5 \/—3—35

Soa =b mod 2, i.e.,

ZV=3): (2,1+V=3) = {W:a/7blez’a/zb/ mod 2} - {13\/—73]

Now

Z[Hg/jg] S(2,14++-3) (1143/:,)) (2,1++=3)

= (2,1+\/T3,1+2‘/j3(1+¢fs)>

= (2,1+V-3,V/-3-1)
= (2,14+v-3)

I
% R
Hence I is not invertible.

We now show that I = (2) can not be written as the product of prime ideals. Suppose I = PP, ... P,, then
I C P, for all i. Now {ideals of R containing I'} «+»{ideals of R/I}. The bijection is defined by J — J/I C R/I and

{x:7eJt<=—AJ
In our case

R/r

Zlv=3l/(2)

Zlxl/ (22 +3,2)

Fale] /(22 41)

F2/(@+1)?

Fal2]/(2)?
{a+be:abeFy e =0}

1R 1R

1%

The ideals in R/T are (0),(1) = (1 + €) and (e). Which of these ideal is prime? (1) is never prime, and (0) is not
prime as it is not a domain. So (¢) is the only maximal ideal and hence must be the only prime R/I has. Clearly
(2) C (2,1 + +/—3), which we saw maximal and so must be the only prime ideal which contains (2).
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So all P; are equal to (2,14 +/—3). Thus (2) = (2,1 + v/—3)™ for some m. Now (2) # (1), hence m # 0 and
(2) # (2,1 + +/—3) as the first is invertible but not the second so m # 1.

(2,14+vV-3) = (4,2+2V-3,1-3+2V-3)
(4,2 +2v/=3)

= (2)(2,1+V=3)
(2

)

4
4

So if (2)(2,1 + \/7) = (2), then (2,1 ++/=3) = (271)(2) = (1) which is a contradiction. And for all m > 2 we
have (2,1 +/=3)™ C (2,1 ++/—3)? C (2). Hence there is no m with (2,1 + y/=3)™ = (2).

The proof of Theorem [5.16] requires proofs by Noetherian induction. Here is a quick layout of how such a proof
works. To prove a statement about ideals in a Noetherian ring R:

e First prove it for all maximal ideals.
e Then induction step: assume it holds for all I 2 J. Prove it hold for J

Why does this proves the statement for all ideal? Suppose the statement is false for a certain set S # () of ideals:
Pick any Iy € S. By induction step, there exists I; 2 Iy, for which the statement is false. Repeat and we get an
infinite ascending chain, which is impossible in a Noetherian ring.

Proof of Theorem[5.16] [NB: This proof is rather long and was spread over several lectures. The lecturer got a big
confuse at some point and so it also incomplete, it only proves some implications, including the most important for
this course, Dedekind implies everything else. I have tried to reorganise this proof so that it makes more sense. I
do know that he managed to prove it in one lecture successfully the following year (2011-2012) but I did not get a
copy of it]

Note: If R is a field, the only ideals are (0) and (1) so there is nothing to prove. Hence assume that R is not a
field.

2. = 3. Assume 2. We want to show that every ideal is the product of prime ideals. We first show that every
invertible ideal is finitely generated. Let I be a fractional ideal of R, then there exists J with IJ = (1),
hence 1 € IJ. Now elements of I.J are sums of the form rixiy; + -+ + rnTay, with r; € Ryx; € 1
and y; € J. Hence 1 = > r;x;y; for some r;, 2;,y;. We claim that I = (x1,...,2,), to prove our claim
we just need to show that (z1,...,2z,)J = (1) (since inverses in groups are unique). It is obvious that
(1) C (x1,...,2,)J. On the other hand (z1,...,z,) C I so (z1,...,2,)J CIJ C (1).

Hence R is Noetherian, since every invertible ideal is finitely generated.

Lemma 5.19. Assuming 2., we have for non-zero ideals I, J: I C J if and only if J|I (that is there is
aJ with JJ' =1)

Proof. <) Obvious

=) Put J' = IJ~!, this is a fractional ideal. We need to show that IJ~! C R (i.e., that it is an ideal
and not just a fractional ideal). We have I C J,so [J ' Cc JJ ! =R O

We now proceed by a proof by Noetherian induction.

If I is a maximal ideal, then I is itself a factorisation into prime ideals. Now let an ideal I not prime be
given and assume that for all J 2 I, J has a factorization into primes. There exists is a prime P 2 I,
so P|I and hence I = PJ for some J C R. We want to show that J 2 I. We know that I = PJ C J.
Suppose that I = .J, then PJ = .J, so multiply by J !, then P = R which is a contradiction.

Hence we have just shown by Noetherian induction that every fractional ideal is a product of primes.
1.,2.&3. = 4. Assume there is an ideal I that has two distinct factorisation into primes. That is I = P;... P, =
Q1 ... Q, and without loss of generality suppose that m is minimal. We have that no @Q); is equal to some

P; as otherwise if Q; = Pj then Py...Pj_1Pj11... Py, = IPj_1 =Q1...-Qi—1Qiy1 ...Q, contradicting
minimality of m.

21



1. = 2.

We have Q1...Q, = P,...P,, C P, 50 P1|Q1...Qp. Let I' = IP[' = P,... P, = Q1...QuP; "
Now I’ is an ideal of R but it has a factorisation into n — 1 factors, so this factorisation is unique. We
want to show that there exists ¢ with Q;|I’, equivalently there exists ¢ with I’ C Q;. Assume that there is
no such 4, then Vi I’ ;(_ Q;. Consider P, and ()1 which are distinct. We have P, Q1 C P; +@1. We claim
that P; + @1 = R. Since P; and ); are maximal (assuming 1.) we have P C P+ Q1 = P+ Q1 =P,
or R, similarly, we concluder P; + @1 = @1 or R. Hence P + Q1 = R.

So there exists p € Pj,q € Q1 withp+¢=1. So I = (p+ q)I = pl +qI C pQ1 + qP, C PiQ;. So
PiQ:|I = Q|IP;! = I'. Hence we get a contradiction.

We use Noetherian induction.

Let P be a maximal ideal, then we want to show that P is invertible. Pick 0 # a € P. Then the ideal
(a) is invertible ((a)(a=!) = (a)) and (a) C P.

Lemma 5.20. Let R be a Dedekind domain and let I # 0 be an ideal. There exists Py, ..., P, maximal
ideals with Py ... P, C I

Proof. We'll use Noetherian induction. If I is maximal then I C I. Assume for all J 2 I, we have prime
ideals Q; with @, ...Q,, C I. We have to show that there exists P; prime ideals with P, ... P, C I. I
itself is not prime because all non-zero primes are maximal.

This means there exists a,b € R such that a,b ¢ I but ab € I. Consider the ideals I + (a) and I + (b).
By induction hypothesis there exists P; such that Py,..., P, C I+ (a) and P,y; ... P, C 1+ (b). Hence
P ...Pp,C I+ (a)I+(b)CI. O

Hence by the lemma, there exists Py, ..., P, with P, ... P, C (a) and without loss of generality we have
n is minimal.

We will use the following lemma later in the proof.

Lemma 5.21. Let R be a Dedekind domain and let I C R be a finitely generated ideal. Let ¢ : I — I
be a map such that ¢(I) C I, then there exists aq,...,a,_1 € J such that ¢" +an 190" 1 +---+ap=0

A special case: Let o € K, the field of fraction of R, be such that ol C I. Then there exists a relation
a” +ap_1a™ '+ +ag=0 witha; € R

Proof. Choose a matrix that A = (a,;);;, that describes ¢ in terms of x;, the generators of I, and that
satisfies a;; € I. By Cayley-Hamilton, if P4 is the characteristic polynomial of A, then P4(A) = 0. Now
Py =det(XI, — A):= X" +a, 1 X" !+ +ag for some a; which clearly are in R. O

Corollary 5.22. If R is Dedekind and K its field of fraction. Let I C R be an ideal and oo € K with
al C I, then a € R.

As a recap, we have P # 0 is prime (and hence maximal). Take 0 # a € P, then there exists
Py,...,Pywith P, ... P, C (a) C P. We claim that one of the P, is P. In general for prime ideals we
have IJ C P =1 C P or J C P. (Otherwise, assume I ¢ P,J ¢ P, then there exists a € I,b € J with
a ¢ P,b ¢ P, but then ab ¢ P). So without loss of generality assume P; C P, but P; is maximal so
P=P

Let J =P,...P,, ie., PJ C (a) C P. Since we assumed n was minimal, we have J ¢ (a). So P.J C (a),
hence PJ(a)~! C R, but a™'J € R.

Consider R : P = {« € K|aP C R}, we need to show that (R : P)P = R. Now Va € R : P, we
have aP C P, so by the corollary R: P C R. We have P C (R: P)P C P, but P is maximal, so if
(R: P)P # R then (R : P)P = P. Hence if P is not invertible then R : P = R. Take o € a™1J \ R.
Then aP C R, so @« € R: P but a ¢ R. Contradicting R : P = R, hence P is invertible.

So we have proven that every non-zero prime ideals (i.e., every maximal ideal) is invertible. We finish
off the Noetherian induction.

Assume for all J 2 I we have that J is invertible. We will show I is invertible. Choose a prime P D I.
We know that P is invertible. Consider I C P~'I C R. (Since P~'I ¢ PP~' = R) If P~'I # I then
P71 21,50 P! is invertible. Then I = RI = P(P~!P) is invertible as well. So assume P~1I = I.
For all a € P~! we have of C I, thus o € R. Hence P! ¢ R= PP~! = R C RP = P which is a
contradiction.
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Definition 5.23. Let K be a number field. Then the ideal group of K is the group [k consisting of all fractional
ideals of Ok

The principal ideal group of K, Pk, is the group of all principal ideals.

We have Py < Ix. The quotient Clg = I'x/Pxk is called the calls group of K.

An ideal class is a set {al : « € K*} of ideals.

Theorem 5.24. For all number field K, the class group is finite. The class number of K is hx = |Clk]|

We will prove this later in the course.
Remark. If Ok is a PID, then hxg = 1 (in fact this is a if and only if statement.)
Py is the trivial ideal class. Define a map K* — Px by a — (a). Then Px = K*/O3,, so the kernel is Og

Lemma 5.25. If R is a UFD then for an irreducible elements, 7, the ideal (7) is prime.
Proof. Take a,b € R with ab € (). This means 7|ab hence w|a or 7|b. So a € (7) or b € () O
Theorem 5.26. Let R be a Dedekind domain. Then R is a UFD if and only if R is a PID.

Proof. <) Every PID is a UFD

=) Let I # 0 be any ideal that is not principal. We can write I = P, P; ... P,, without loss of generality say P is
not principal. Now take any 0 # a € P; and write a = emy ... 7, with 7; irreducible. Then (a) = (71)(m2) ... (7).
But Pi|(a), so we get P; is not principal while (a) is, hence contradiction. O

So Ok is a UFD if and only if hx = 1. We can say “hx measures the non-uniqueness of factorisation on Og”

Example. Find all integer solutions to 22 + 20 = y>

We can factorise this over Z[v/=5] = Og(/=5) into (z +2v/=5)(z — 2v/=5) = y*. Fact: hg( =5 = 2.

As ideals we have (x +2v/=5) - (x — 2v/=5) = (y)3. As usual, let us find the common factors of (x +2/=5) and
(z —2v=5)

Suppose P is a prime ideal such that P|(x + 2v/—5) and P|(z — 2v/—5), then (x + 2v/=5, 2 — 2/=5) C P. Now
we have (4v/=5) C (z +2v/—5,x —2y/=5). Note that (2,1++/=5)(2,1 —+/=5) = (4,2 +2/-5,2—2/=5,6) = (2),
hence (2) = (2,1++/-5)? (and we know from a previous exercise that (2,1 + +/=5) is prime). Furthermore (v/—5)
is prime:

I

ZIV=3)/(v=5) Z[z]/ (2 +5,)

Fs

So (4v/=5) = (2,1 + V/=B)*(V/=5) = P = (2,1 4+ v/=5) or P = (v/=5).

Write (z + 2¢/=5) = (2,1 + v/=5)°(v/=5)2 [[ P{*. Apply the automorphism a — @, to get (z — 2y/=5) =
(2,1+v=5) (vV=5) [ P (since (v=5) = (—v/—=5) and as noted before (2,1++/=5) = (2,1—+/=5)). Note that
the products P; must be distinct. So we get (z42v/—5)(z—2v/—5) = (2,14+v/=5)2 (vV=5)22 [[ PF [ P = (y)°.
Since factorization into prime ideal is unique, we have 3le; for all i. Hence (z + 2v/—5) = I® for some ideal I.

Let I be the class of I. Then in Clogy=s,» we have I3 =1 (since (z +2y/=5) is principal). Now the class group

has order 2, hence I = 1 since ged(2,3) = 1. Hence I is principal, so write I = (a 4+ by/=5). So (z + 2v/=5) =
((a+byv=5)3) = z + 2¢/=5 = unit - (a + by/—5)>. Now units in Z[\/—5] are &1, which are both cubes, so without
loss of generality, # + 2v/—5 = (z + by/—5).

Hence x 4 205 = a® + 3a?by/—5 — 15ab® — 5b°/—5 = (a® — 15ab?) + /=5(3a%b — 5b%). So we need to solve
2 = b(3a? — 5b?), but 2 is prime, so b = 1, £2.

If b = &1, then 3a? — 5 = £2, either 3a? = 7 which is impossible, or 3a®> = 3 = a = £1. In that case we have
x = a® — 15ab? = (1 — 15) = £14. Then 14? + 20 = 196 + 20 = 216 = 63 = (£14, 16) are solutions.

If b = £2, then 3a? — 20 = %1, so 3a% = 21 or 19, but both cases are impossible.

Hence (414, 16) are the only integer solutions to x? + 20 = y3.

J

1%
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5.3 Kummer-Dedekind Theorem

Let K be a number field, and I C Ok a non-zero ideal. Note that I contains aOg for any a € I, hence we have
that (O : I) is finite. This leads us to the following definition:

(Ok:I) 1#0

Definition 5.27. The norm of an ideal I C Ok is defined as N(I) = {O =0

Theorem 5.28. For any principal ideal (a) C Ok , we have N((a)) = |N(a)]

Proof. If wy,...,w, is a basis for Ok, then aws,...,aw, is a basis for (¢). Now multiplication by a can be seen as
a matrix A in terms of wy,...,w,. So (Ok : aOk) = |det A| = |N(a)| O

Theorem 5.29. The norm of ideals in O is multiplicative. That is N(I.J) = N(I)N(J)

Proof. First note N(Og) = 1.

We can write every non-zero ideal as a product of prime ideals (as Ok is Dedekind and using Theorem
So it suffices to prove that N(IP) = N(I)N(P) where P is a non-zero prime. We have N(IP) = (Ok : IP) and
IPC1ICOgk,hence NIP)=(I:IP)(Ok:I)=(I:IP)N(I).

We must show that (I : IP) = N(P) = (O : P). Now P is maximal, so Ok /P is a field. We have I/IP is a
vector space over Ok /P. We want to show that d = dime, /p [/IP = 1.

IP # I as Ok is Dedekind, so I/IP # 0, hence d > 1

Suppose that d > 2, then there exists @,b € I/IP that are linearly independent over O /P. Take lifts a,b € I.
For all z,y € Ok with ax+by € P, wehavex € Pandy € P. Write I = PI’ then (a) C I, so P¢|I|(a), alsoa ¢ IP,
so IP { (a). Hence P**! { (a). Similarly we find P*! ¢t (b). So we can rewrite this as (a) = P¢I'Jy, (b) = P¢I'J,
with P { I'Jy, P { I' J,. We have (a)Jo = (b).J;. Since Jo € P, there exists ¢ € J \ P. So av € (b).J1 = ac = be for
some e € J;. Now ac —be =0 € P = c € P. This is a contradiction. Hence the dimension is 1 as required. O

Corollary 5.30. If N(I) is prime, then I is prime

Proof. If I is not prime, then I = PI’ with P a non-zero prime and I’ # (1). Then N(I) = N(P)N(I') cannot be
prime. O

Theorem 5.31. If I C Ok is a non-zero prime, then N(I) = p’ for some prime p and f € Zq

Proof. O /I is a field (I is maximal) of N(I) elements. Any finite field has p/ elements for some prime p and
J €Zxo O

Theorem 5.32. If I is a non-zero ideal, we have N(I) € I

Proof. N(I) = |Ogk/I| by definition. Then Lagrange theorem implies N(I) - Ok /I = Ok, so N(I)Ox C I. O
Theorem 5.33. If P is a non-zero prime with N(P) = p/ thenp € P

Proof. By the previous theorem we have p/ € P. But since P is prime, p € P. O

Kummer - Dedekind Theorem. Let f € Z[x] be monic and irreducible. Let o € Q be such that f(a) = 0. Let
p € Z be prime. Choose g;(x) € Z[x] monic and e; € Zxo such that f = [[gi(x)® mod p is the factorization of
f € Fplx] into irreducible (with g; # g; for i # j). Then:

1. The prime ideals of Z[a] containing p are precisely the ideals (p, g;(a)) =: P;
[1F" C(p)
If all P; are invertible then [[ P{* = (p). Furthermore N(P;) = p/i where f; = deg g;

T

For each i, let r; € Z[z] be the remainder of f upon division by g;. Then P; is not invertible if and only if
e; > 1 and p?|r;

Proof. 1. Wehave Z[a] = Z[z]/(f) (Galois Theory). Primes of Z[«] containing p have a one to one correspondence

to primes of Z[a]/(p) = Z[z]/(p)(f). But Z[z]/(p, f) = F,[z]/(f), so primes of F,[z]/(f) have a one to one

correspondence to primes of I, [aﬂ containing f. We know F,[z] is a PID. So theses primes corresponds to
irreducible § € F,[z] such that g|f < f € ().

Working backward from this set of correspondence we get what we want

24



2. Let I = [[(p,9i(c))%.We want to show that I C (p), i.e., all elements of I are divisible by p. Now I is
generated by expression of the form p? [T, 9i()™,m; <e;. So the only non-trivial case is when d = 0, i.e.,
[Tg:i(a)%. We have []g:(x)% = f mod p. Substituting @ we get [[g:(@)® = f(a) =0 mod p

3. Assume Z[a] = Og(a)- We have [[ P7* C (p) = (p)|[] P;*- Now N((p)) = |[N(p)| = p" where n = deg f. So
N(H Piei) = H N(Piei) = pZ eirdeg(gi) = p"

4. Left out as it requires too much commutative algebra.

Example. Consider Q(v/=5), then Og(/—5) = Z[V—=5]. So take f = 2* + 5.

ep=2then f=22+1= (x+1)? € Fo[z]. So g1 = v+ 1 and e; = 2. Now (2) = P? = (2,1 + +/—5)? and
N(Py) = 2. If P, principle? If P, = («) then N(P;) = |[N(a)|. Now N(a + by/—5) = a? + 5b% which is never
2. Hence Py is not principal.

ep=3then f=22~-1=(z+1)(z—1) € F3[z]. So we have (3) = P, P, where P; = (3,—1 + v/=5) and
Py = (3,1 ++/=5). Again we have N(P;) = N(P,) = 3, so neither are principal as 3 # a? + 5b°.

e p =5, then f =22 € F5[z]. So we get (5) = (5,v/—5)% = (v/=5)? (since 5 = —/—5v/=5).
Consider Q(+/2), then Og () = Z[¥/2]. So take f = % — 2.
e p=2 then f =2%c Fyfx]. So (2) = (2, V/2)? = (V/2)? (since 2 = V/2¢/27/2)

e p =3, then f = 2% — 2 is a cubic. Cubic polynomials are reducible if and only if they have a root. If this
case, i.e., in F3, we have 2 is a root. So 23 — 2 = (z — 2)(2? + 22 + 1) = (z — 2)(x + 1)? = (z + 1)3. Hence
(3) = (3,1 + V/2)% and N(3,1+ V/2) = 3. Now (3,1 + ¥/2) is principal if there exist a € (3,1 + ¥/2) with
|N(a)| = 3. Notice that N(1+ v/2) =12 +2-13 =3,s0 (3,1 + V/2) = (1 + V/2)
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6 The Geometry of Numbers

6.1 Minkowski’s Theorem

Let K be a number field of degree n. Let o1,...,0, : K < C be its complex embedding. We see that if 0 : K — C
is an embedding then 7 : K < C defined by « + o(a) is also an embedding. We have @ = ¢ so ~ is an involution
on {o1,...,0,}, with fixed points being those o with o(k) C R for all k € K.

Definition 6.1. Let K be a number field of degree n and o1,...,0, : K < C be its complex embeddings. Say
there are r real embeddings (o(k) C R) and s pairs of complex embedding. So we have r + 2s = n. Then (r,s) is
called the signature of K

We can use o1,...,0, to embed K into C" by a +— (o1, (a),...,0,(a)). We view C* as R?" with the usual
inner product, that is ||21,...,2,||? = |21 + - + |za|%
Let vy, ..., v, € R*™ be given, denote Py, 4, = {\v1+ -+ Anvm : A € [0,1]}. We have (see Algebra I)
1/2
(o) o o)\ \ Y
Vol(Py,,....v,,) = | det :
<Umvvl> <Uma'Um>
Theorem 6.2. (01,...,0,) embeds K as a subset of K :={21,...,2, € C" : z; = Z; when o, =7, }
Proof. For each o € K we have (o1(),...,0n(a)) = (21,..., 2,) satisfied for i, j with 0; = 7;. So z; = 0;(a) =
o) =5 O
Theorem 6.3. Ky has dimension n.
Proof. Without loss of generality let oy,...,0, be the real embedding of K — R and let o,4; = T,154; for

i€{1,...,s}. Identifying C" = R?", we have (z1,y1,Z2,¥2,...,Tn,Yn) is in Kg if an only if:
oy, =0foriec{l,...,r}
® Ty =Xpyiys forie{l,... s}
® Yrii = —Yrtits fori € {1,..., s}
The number of independent linear equation is r + 2s = n. Hence the dimension of Kg = 2n —n = n. O

Definition 6.4. Let V be a finite dimensional vector space over R, with inner product (, ) (that is a positive
definite symmetric bilinear form). Then V is called a Euclidean space.

Example. V = R" with ((z1,...,2,), (Y1,-.-,Yn)) = T11 + - + TpyYn. Or V a subspace of R™ (with the same
inner product)

Fact. Any Euclidean space has an orthonormal basis.

Definition 6.5. Let V be an Euclidean space. A lattice A in V is a subgroup generated by R-linearly independent
vectors, vy, ..., Um.

The rank of the lattice is m.

The covolume of A is Vol(P,,,.. 4,.)

Theorem 6.6. Ok embeds as a full rank lattice in Kg of covolume \/|A(Ok)|

Proof. Let wy,...,w, be a basis for Og. Put o(a) = (o1(a),...,on(a)) € Kg C C" for all « € K. We have the
vectors o(w1), . ..,0(w,) € Kg.
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So we need to show that Vol(Py(.,),.. o(w,)) = VA(Ok) # 0. We have

VOU(Py o, oten))? = det (((r(wi) o)), )

. (zgk (o %>

(=)

— det ((Tr(wiwj)ij)

ij

= A(Ok)
O
Corollary 6.7. For any non-zero ideal I C Ok, we have o(I) C K is a full rank lattice of covolume +/|A(Ok)| -
N(I)
Proof. Obvious O

Minkowski’s Theorem. Let A be a full rank lattice in a Euclidean space V' of dimension n. Let X C V be a
bounded convex symmetric subset, satisfying Vol(X) > 2" - covolume(A). Then X contains a non-zero point of A.

Proof. See Topics in Number Theory course O

A small refinement to the theorem can be made: If X is closed then Vol(X) > 2™ - covolume(A) suffices.

6.2 Class Number

Theorem 6.8. Let K be a number field of signature (r,s). Then every non-zero ideal I of Ok contains a non-zero
element o with

IN(a)| < (z)st AOx)]

™

Proof. Let n =1+ 2s = [K : Q]. Consider for ¢ € Ry, the closed set X; = {(z1,...,2,) € Kr : |2;| < t}. We claim
that Vol(X;) = 2" tsrs¢"

In terms of the orthogonal basis, X is isomorphic to [, #]” x B(0,v/2t)* (where B(a,r) is the standard notation
for a ball of radius r centred at a, there is some bit of work need to see that the radius is indeed \/it) So

Vol(Xy) = (20)%((m(v21)*)*
T S 2st2s
2r+s7_rstr+2s

Now choose t such that Vol(X;) = 2"covolume(/ in Kg) = 2"N(I)+/|A(Ok)|. Then by Minkwoski’s there is an
0 # a € I with o(a) € X;. So |[N(a)|] = []|oi(a)] < t", but since s" 575" = 2"N(I)/|A(Ok)|, we have

IN(e)] < t" = ZZN(I)y/]A(Ok)| m

A better set for the above proof is X, = {(z1,...,2n) € Kr :|z1]+ -+ |2,| <¢}. In that case we have
Vol(X]) = =1~ This can be proven using integral calculus.

Theorem 6.9. Every ideal I C Ok has an element o # 0 with |N(a)| < pxN(I) with

e = (2) 2 VIB©

T nn
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Proof. Choose t with Vol(X[) = 2"N(I)+/|A(Ok)|, that is 27”%" =2"N(I)y/|A(Ok)|. Then there exists 0 # oo € I
with o(a) € X{. Hence

M@ = o)
< (Tt

t n
0
n
1 e
= ﬁnIQ" "NV |A(OK)|
4% n!
= ——-NU)VIAOK)|
Tn
where the first inequality follows form the well know theorem that Geometric Mean < Arithmetic Mean. (If
T1,...,2, € Ryg, then the Geometric mean is (x1,...,z,)"/™, while the arithmetic mean is %(xl +dx,)) O

Remark. The number pg is sometimes called Minkowski’s constant.

Theorem 6.10. For any number field K we have

ool < (5)” (2,)2

Proof. Apply the above with T = Of. Then there exists & € Ok with |[N(a)| < pg. Also N(a) € Z and non-zero
if « #20. So |[N(«)| > 1. Hence

Hic = (4> ™IRO > 1= |AOk)| < ()" (W)Q

T/ nv n!

Corollary 6.11. If K # Q, then |A(Ogk)| # 1

Proof. We have n > 2. We need to show that (%)2S (%7)2 > 1. Now (%)25 > (%)n, so we need to show

(E)n (ﬁ)2 > 1. This can easily be done by induction. O

4 n!

Corollary 6.12. Let K be a number field and let C be an ideal class of K. Then there exists I € C with N(I) < pg

Proof. Apply Theorem to an ideal J € C~1. (Note: if J € C~! is any fractional ideal there is an a € Ok with
aJ C O, since aJ € C~! we may suppose without lose of generality that .J is an ideal).

So there exists a € J with |[N(a)| < urN(J). Consider (a)J~!, we have J|(a) so I := (a)J ! is an ideal of
Ok . Furthermore N(I) = N((a))N(J™Y) < u N(J)N(J 1) = py, O

Corollary 6.13. The class group of any number field is finite.

Proof. Every class is represented by an ideal of bounded norm and norms are in Z~q. So it suffices to show that
for any n € Z>o we have#{I C Og : N(I) =n} < ¢

Let n € Zs be given and I C Ok be an ideal with N(I) = n. Factor n into primes, n = p{*ps?...pt", and
factor I into prime ideals I = Plflpgjc2 ... Pfs. Then we have N(I) = N(P,)"*N(Py)'2 ... N(Py)’s = p{* ...pS". By
Kummer - Dedekind, for any p there exists finitely many prime ideals whose norms is a power of p. So there are
finitely many prime ideals P whose norm is a power of one of the p;. Furthermore if N(P;) = p;j, then f; < ej, so
there are finitely many possibilities. O

Example. o Let K = Q(v/—5), note that it has signature (0,1). Then we have

MK(> B VIAOK) = S 2Va 5= LVl < L VRl =3

So every ideal class is represented by an ideal of norm at most 2. Let us work out the ideals of norm 2. By
Kummer - Dedekind, we know (2) = (2,1 ++/=5)2, and N((2,1++/-5)) =

We have seen before that (2,1 4+ +/—5) is not principal. So there are two ideal class in Ox. They are
(D], [(2,1+ V/=5)], 50 hy, = 2 = Clg = Z/27Z
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o Let K = Q(v/—19), note that is has signature (0,1). Then we have

4\* n! 42 1 1
i = (3) VAR = 2510 = 2V76 < 3B =3

™

Also here, every ideal class is represented by an ideal of norm 1 or 2. Apply Kummer - Dedekind to factor
(2). Ok =2 [Hi {19}, hence f, = (az — H{IQ) (x - 1,v2,19) =22 -2+5 Sof=a>+2+1¢cFa,
but this is an irreducible polynomial. So (2) = (2,0) = (2) is a prime ideal, of norm 4. Hence there are no
ideals of norm 2.

So hx =1, hence Ok is a PID.

e Let K = Q(v/—14), this has signature (0,1). Then we have

4\° n! 42 1 1
LK = <7r) " \/|A(OK)|:;Z\/4'14:;\/16'14§ g‘/152:5

nn

So only ideals of norms at most 4 are of concern. Every ideal can be factored into prime ideals. So the class
group is generated by classes represented by prime ideals of norm < py. Prime ideals of norm < 4 are prime
ideals dividing (2) or (3). Hence we apply Kummer - Dedekind. We have f = 22 + 14

— p=2: 22+ 14 =22 mod 2. So (2) = (2,/—14)% := P2. Note that N(P) =2
~p=32’+14=22-1=(x—-1)(z+1) mod3. So (3) =(3,v/—14 —1)(3,v/—14 + 1) := QR. Note
that N(Q) = N(R) =3

So ideals of norms less than 4 are (1), P, Q, R, P?. Note that P? is principal as it is (2), so [P?] = [(1)]. Since
N(a+by/—14) = a® + 14b% but 2 and 3 are not of this form, we have that P,Q, R are not principal. Also note
that QR = (3) so [Q][R] =1

We claim that [(1)], [P], [Q], [R] are four distinct elements of the class group.

Suppose that [P] = [Q]. Then [Q][Q] = [P]? =1 = [Q][R] = [Q] = [R]. Furthermore, since N(Q) = N(R) =
3, if [Q] = [R] then [QR] = 1 = [QQ]. Hence Q? is principal, N(Q?) = N(Q)? = 9, so we need to solve
a?+ 140> =9 = a = 3,b = 0. Hence Q? = (3) = QR = @Q = R. Which is a contradiction.

This argument also showed [Q] # [R]. A similar argument shows that [P] # [R].

Hence we have that hx = 4. (With not too much work we can show that Clyx =~ Z/47Z)

6.3 Dirichlet’s Unit Theorem

Dirichlet’s Unit Theorem. Let K be a number field of signature (r,s). Let W be the group of roots of unity in
K. Then W is finite, and O} = W x Z'+5~1. That is, there exists ny,...,N4s—1 € O% such that every units in

Ok can be uniquely written as w -7t - - - nfﬁs_’f withw € W and k; € Z.

Example. Let K = Q(v/d) with d > 0 and square free. Then it has signature (2,0), so 7 +s — 1 = 1. Also
W = {£1}. Hence Of =W x Z = {£1} x Z = +€/; (where ¢, is as in section 1)
If K = Q(vd) with d < 0 square free, then it has signature (0, 1), so O% = W, which is finite (see next lemma)

Fact. A subgroup A C R"™ is a lattice if and only if for any M € R-o we have [-M, M]™ N A is finite.
Lemma 6.14. The group W is finite.

Proof. If w € W, then for all ; : K — C we have o;(w) is a root of unity (if w™ = 1 then o;(w)” = 1). So
ow) = (o1(w),...,onw)) € {(21,...,2n) € Kgr : |z;| = 1Vi}. This is a bounded subset of K. Also w € Ok as it
satisfies some monic polynomial 2™ — 1 € Z[z]. Hence o(W) C o(Ok)N bounded set, but o(Ok) is a lattice, hence

by the fact, o(W) is finite. O
Proof of Dirichlet’s Unit Theorem. Let K = {(z1,...,2n) € Kg : z; # 0Vi}. We have O3 — K* —
Kf. We will use logarithms: define log : K — R™ by (21,...,2,) + (log|z1],...,log|z,|). Thisis a
group homomorphism. Also define L : O}, — R™ by a — log(c(a)) = (log|o1(a)],...,log|on(c)]), this

is also a group homomorphism.
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Lemma 6.15. ker(L) =W

Proof. D: For all w € W and o; we have |o;(w)| = 1, so log|o;(w)] =0

C: Take v € ker(L). Then log |o;(a)| = 0Vi = |o;(a)| = 1 for all 4. So « is in some finite set. For every
n, we have o™ € ker(L) which is a finite set, so there are some n > m, with ™ = o™ and n # m. Then
o™ =1. O

Lemma 6.16. im(L) is a lattice in R™.

Proof. We must show that [—M, M]™ Nim(L) is finite. Take L(a) = (x1,...,2,) € [-M, M]" Nim(L)
(where a € O} C Ok) . We have for all i, |log|o;(a)|| < M, so |o;(a)| < M, hence o(a) €bounded
set No (O ) =finite. So there are finitely many possibilities for « O

Put A = L(O3) C R". Eventually, we have to show that rk(A) =r+ s — 1.

Lemma 6.17. We have that tk(A) <r+s—1

Proof. Order o; such that oy, ...0, are real and o,4; = G,5s14t0r i € {1,...,s}. Take o € O}. Then
for i € {1,...,s} we have o,1;() = 0r4s+i(a). Hence log |o,4i(a)| = log|optsti(c)] = log|orysti(a)].
So for (z1,...,z,) € A, we have x,; = 2,454, for i € {1,...,s}. Hence we have found s relations. So

A Csubspace of dimension n —r=r+2s—s=r+s

So we need to find one extra relation. Now « is a unit, so |[N(a)| = 1. So |N(a)| = |o1(@) ...on(a)| =
lo1(a)]...|on(a)| =1 =log|oi(a)|+---+log|on(a)] = 0. So we have also the relation 1 +-- -+, = 0.
this shows A C V' C R"™, where V is a subspace of dimension r + s — 1 defined by these relations. O

So we are left to prove that rk(A) > r 4+ s —1 or A is a full rank lattice in V.

Note that for @ € O, we have o1(a)...0n(a) = £1. So 0(O%) C {(#1,.-.,2n) € K§ : 21... 2,
+1} =: E. We have to construct lots of units:

The idea: if (o) = (f) then S/« is a unit. So we will construct lots of a € Ok by generating finitely
many ideals. Consider X; = {(z1,...,2,) € Kgr : |2 < t}. Choose t such that Vol(X;) = 2"/|A(Ok)|.
Then by Minkowski’s theorem, there exists a non-zero element in o(Of) N X;.

For any e € E, consider eX; = {(z1,...,2n) € Kg : |2i| < |e;|t}. Then Vol(eX;) = |e1...en|Vol(X:) =
Vol(X}). So by Minkowski’s there exists a non-zero element in 0(O)NeX;. Covering E with boxes eX;
means we get lots of elements a. € 0(Ok) NeX;Ve € E. We have |[N(a.)| = [[loi(ae)| < I]leilt < t™.
So the norms of a. are bounded, hence N((a.)) = |N(a.)| is bounded.

So the set of ideals {(ac) : e € E'} is finite. Let by, ..., by, be such that {(a.) : e € E} = {(b1),..., (bm)}
For all e € E there is some i € {1,...,m} such that (a.) = (b;). So U = a./b; is a unit of Ok.

Claim: S = {U, : e € E} generates a full rank lattice in V, after applying L. If (L(S)) is not of full
rank, then L(S) spans a subspace Z ¢ V. Consider Y := U(b; ! - X;) C K, it is bounded and without
loss of generality we can choose it, such that o(1) € Y. Consider U.cgU; 1Y (all of these are bounded)
We want to show that e™! € U7 1Y = ab—” -Y. By construction, b;- Y O X;, so 2—1 YD a—le - X;. We have
a. € eXy, 80 % c {%Xt. Hence Uee Ut contains E. So V = Ugeg log(s) + log(Y). We are assuming
log(s) € Z and log(Y) is bounded. If Z # V then V is at some bounded distance from Z. This proves
that (L(S)) is of full rank.

So L(O%) is a full rank lattice in V. Hence it has rank r + s — 1, i.e., L(O}) = Z 51

Lemma 6.18. Let A be an abelian group, let A’ C A be a subgroup and put A” = AJA'. If A" is free
(i.e., 2 Z™ for some n), then A= A" x A"

Proof. Omitted, but can be found in any algebra course. O
In our case, we have A = O} and A’ = W. Then by the first isomorphism theorem A” = L(O%) (as

W = ker(L)). So using the lemma, we have A 2 W x L(O}) = L x Z""*~1 as required.
O
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