Algebraic Number Theory

Johan Bosman
Notes by Florian Bouyer

Copyright (C) Bouyer 2011.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction and Motivations 2
1.1 Motivations 2
1.2 Finding Integer Solutions 3
1.3 Pell's Equations 3
2 Fields, Rings and Modules 5
2.1 Fields 5
2.2 Rings and Modules 6
2.3 Ring Extensions 7
3 Norms, Discriminants and Lattices 9
3.1 Conjugates, Norms and Traces 9
3.2 Discriminant 10
3.3 Lattices 12
4 Cyclotomic Fields 14
5 Dedekind Domains 17
5.1 Euclidean domains 17
5.2 Dedekind Domain 18
5.3 Kummer-Dedekind Theorem 24
6 The Geometry of Numbers 26
6.1 Minkowski's Theorem 26
6.2 Class Number 27
6.3 Dirichlet's Unit Theorem 29

1 Introduction and Motivations

Most of the ideas in this section will be made more formal and clearer in later sections.

1.1 Motivations

Definition 1.1. An element α of \mathbb{C} is an algebraic number if it is a root of a non-zero polynomial with rational coefficients

A number field is a subfield K of \mathbb{C} that has finite degree (as a vector space) over \mathbb{Q}. We denote the degree by $[K: \mathbb{Q}]$.

Example. - \mathbb{Q}

- $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$
- $\mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\}$
- $\mathbb{Q}(\sqrt[3]{2})=\mathbb{Q}[x] /\left(x^{3}-2\right)$

Note that every element of a number field is an algebraic number and every algebraic number is an element of some number field. The following is a brief explanation of this.

Let K be a number field, $\alpha \in K$. Then $\mathbb{Q}(\alpha) \subseteq K$ and we will late see that $[\mathbb{Q}(\alpha): \mathbb{Q}] \mid[K: \mathbb{Q}]<\infty$. So there exists a relation between $1, \alpha, \ldots, \alpha^{n}$ for some n. If α is algebraic then there exists a minimal polynomial f for which α is a root. $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$ has degree $\operatorname{deg}(f)$ over \mathbb{Q}.

Consider $\mathbb{Z}[i] \subset \mathbb{Q}[i]$, also called the Gaussian integers. A question we may ask, is what prime number p can be written as the sum of 2 squares? That is $p=x^{2}+y^{2}=(x+i y)(x-i y)$, we "guess" that an odd prime p is $x^{2}+y^{2}$ if and only if $p \equiv 2 \bmod 4$. A square is always 0 or $1 \bmod 4$, so the sum of two squares is either 0,1 or $2 \bmod 4$. Hence no number that is $3 \bmod 4$ is the sum of two squares. Therefore not all numbers that are $1 \bmod 4$ can be written as the sum of two squares.

Notice that there exist complex conjugation in $\mathbb{Z}[i]$, that is the map $a+b i \mapsto a-b i=\overline{a+b i}$ is a ring automorphism. We can define the norm map $N: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ by $\alpha \mapsto \alpha \bar{\alpha}$, more explicitly, $(a+b i) \mapsto(a+b i)(a-b i)=a^{2}+b^{2}$. We will later see that $N(\alpha \beta)=N(\alpha) N(\beta)$.

Definition 1.2. Let K be a number field, a element $\alpha \in K$ is called a unit if it is invertible. That is there exists $\beta \in K$ such that $\alpha \beta=1$.

Proposition 1.3. The units of $\mathbb{Z}[i]$ are $1,-1, i,-i$
Proof. Let $\alpha \in \mathbb{Z}[i]$ be a unit. Then $N(\alpha)$ is a unit in \mathbb{Z}, (since there exists $\beta \in \mathbb{Z}[i]$ such that $\alpha \beta=1$, hence $1=N(\alpha \beta)=N(\alpha) N(\beta))$ Now let $\alpha=a+b i$, then $N(\alpha)=a^{2}+b^{2}= \pm 1$. Now -1 is not the sum of two squares hence $\alpha \in\{ \pm 1, \pm i\}$

Definition 1.4. Let K be a number field, an element $\alpha \in K$ is irreducible if α is not a unit, and for all $\beta, \gamma \in \mathbb{Z}[i]$ with $\alpha=\beta \gamma$, we have either β or γ is a unit.

Fact. $\mathbb{Z}[i]$ is a unique factorization domain, that is every non-zero elements $\alpha \in \mathbb{Z}[i]$ can be written as a product of irreducible elements in a way that is unique up to ordering and multiplication of irreducible elements by units.

Theorem 1.5. If $p \equiv 1 \bmod 4$ is a prime then there exists $x, y \in \mathbb{Z}$ such that $p=x^{2}+y^{2}=(x+i y)(x-i y)=$ $N(x+i y)$

Proof. First we show that there exists $a \in \mathbb{Z}$ such that $p \mid a^{2}+1$. Since $p \equiv 1 \bmod 4$ we have $\left(\frac{-1}{p}\right)=1$ (see Topics in Number Theory). Let $a=\frac{p-1}{2}!$, then $a^{2}=\left(\frac{p-1}{2}\right)!\left(\frac{p-1}{2}\right)!=1 \cdots\left(\frac{p-1}{2}\right) \cdot\left(\frac{p-1}{2}\right) \cdots \cdots 1 \equiv-1 \bmod p$. Hence $p \mid a^{2}+1=(a+i)(a-i)$.

Is p irreducible in $\mathbb{Z}[i]$? If p were indeed irreducible, then $p \mid(a+i)$ or $p \mid(a-i)$. Not possible since $a+i=$ $p(c+d i)=p c+p d i$ means $p d=1$. So p must be reducible in $\mathbb{Z}[i]$. Let $p=\alpha \beta, \alpha, \beta \notin(\mathbb{Z}[i])^{*}$ and $N(p)=p^{2}=$ $N(\alpha) N(\beta) \Rightarrow N(\alpha) \neq \pm 1 \neq N(\beta)$. So $N(\alpha)=p=N(\beta)$. Write $\alpha=x+i y$, then $N(\alpha)=p=x^{2}+y^{2}$

1.2 Finding Integer Solutions

Problem 1.6. Determine all integer solution of $x^{2}+1=y^{3}$
Answer. First note $x^{2}+1=(x+i)(x-i)=y^{3}$, we'll use this to show that if $x+i$ and $x-i$ are coprime then $x+i$ and $x-i$ are cubes in $\mathbb{Z}[i]$.

Suppose that they have a common factor, say δ. Then $\delta \mid(x+i)-(x-i)=2 i=(1+i)^{2}$. So if $x+i$ and $x-i$ are not coprime, then $(1+i) \mid(x+i)$, i.e., $(x+i)=(1+i)(a+b i)=(a-b)+(a+b) i$. Now $a+b$ and $a-b$ are either both even or both odd. We also know that $a+b=1$, so they must be both odd, hence x is odd. Now an odd square is always $1 \bmod 8$. Hence $x^{2}+1 \equiv 2 \bmod 8$, so $x^{2}+1$ is even but not divisible by 8 , contradicting the fact that is is a cube.

Hence $x+i$ and $x-i$ are coprime in $\mathbb{Z}[i]$. So let $x+i=\epsilon \pi_{1}^{e_{1}} \ldots \pi_{n}^{e_{n}}$ where π_{i} are distinct up to units. Now $x-i=\overline{x+i}=\overline{\epsilon \pi_{1}}{ }^{e_{1}} \ldots \bar{\pi}_{n}^{e_{n}}$. So $(x+i)(x-i)=\epsilon \bar{\epsilon} \pi_{1}^{e_{1}} \ldots \pi_{n}^{e_{n}} \bar{\pi}_{1} e_{1} \ldots \bar{\pi}_{n}^{e_{n}}=y^{3}$. Let $y=\epsilon^{\prime} q_{1}^{f_{1}} \ldots q_{n}^{f_{n}} \Rightarrow y^{3}=$ $\epsilon^{\prime 3} q_{1}^{3 f_{1}} \ldots q_{n}^{3 f_{n}}$. The q_{i} are some rearrangement of $\pi_{i}, \bar{\pi}_{i}$ up to units. Hence we have $e_{i}=3 f_{j}$, so $x+i=$ unit times a cube, (Note in $\mathbb{Z}[i], \pm 1=(\pm 1)^{3}$ and $\left.\pm i=(\mp i)^{3}\right)$. Hence $x+i$ is a cube in $\mathbb{Z}[i]$.

So let $x+i=(a+i b)^{3}$ for some $a, b \in \mathbb{Z}$. Then $x+i=a^{3}+3 a^{2} b i-3 a b^{2}-b^{3} i=a^{3}-3 a b^{2}+\left(3 a^{2} b-b^{3}\right) i$. Solving the imaginary part we have $1=3 a^{2} b-b^{3}=b\left(3 a^{2}-b^{2}\right)$. So $b= \pm 1$ and $3 a^{2}-b^{2}=3 a^{2}-1= \pm 1$. Now $3 a^{2}=2$ is impossible, so we must have $3 a^{2}=0$, i.e., $a=0$ and $b=-1$. This gives $x=a^{3}-3 a b^{2}=0$.

Hence $y=1, x=0$ is the only integer solution to $x^{2}+1=y^{3}$
Theorem 1.7 (This is False). The equation $x^{2}+19=y^{3}$ has no solutions in \mathbb{Z} (Not true as $x=18, y=17$ is a solution since $18^{2}+19=324+19=343=17^{2}$)

Proof of False Theorem. This proof is flawed as we will explain later on. (Try to find out where it is flawed)
Consider $\mathbb{Z}[\sqrt{-19}]=\{a+b \sqrt{-19}: a, b \in \mathbb{Z}]$. Then we define the conjugation this time to be $\overline{a+b \sqrt{-19}}=$ $a-b \sqrt{-19}$, and similarly we define a norm function $N: \mathbb{Z}[\sqrt{-19}] \rightarrow \mathbb{Z}$ by $\alpha \mapsto \alpha \bar{\alpha}$. Hence $N(a+b \sqrt{-19})=a^{2}+19 b^{2}$. So we have $x^{2}+19=(x+\sqrt{-19})(x-\sqrt{-19})$.

Suppose that these two factors have a common divisor, say δ. Then $\delta \mid 2 \sqrt{-19}$. Now $\sqrt{-19}$ is irreducible since $N(\sqrt{-19})=19$ which is a prime. If $2=\alpha \beta$ with $\alpha, \beta \notin\left(\mathbb{Z}[\sqrt{-19})^{*}\right.$, then $N(\alpha) N(\beta)=N(2)=2^{2}$, so $N(\alpha)=2$ which is impossible. So 2 is also irreducible. Hence we just need to check where $2 \mid x+\sqrt{-19}$ or $\sqrt{-19} \mid x+\sqrt{-19}$ is possible.

Suppose $\sqrt{-19} \mid x+\sqrt{-19}$, then $x+\sqrt{-19}=\sqrt{-19}(a+b \sqrt{-19})=-19 b+a \sqrt{-19}$, so $a=1$ and $19 \mid x$. Hence $x^{2}+19 \equiv 19 \bmod 19^{2}$, i.e., $x^{2}+19$ is divisible by 19 but not by 19^{2} so it can't be a cube. Suppose $2 \mid x+\sqrt{-19}$, then $x+\sqrt{-19}=2 a+2 b \sqrt{-19}$, which is impossible.

Hence we have $x+\sqrt{-19}$ and $x-\sqrt{-19}$ are coprime, and let $x+\sqrt{-19}=\epsilon \pi_{1}^{e_{1}} \ldots \pi_{n}^{e_{n}}$. Then $x-19=$ $\overline{x+\sqrt{-19}}=\overline{\epsilon \pi_{1}} e_{1} \ldots \bar{\pi}_{n}^{e_{n}}$, so $(x+\sqrt{-19})(x-\sqrt{-19})=\epsilon \bar{\epsilon} \pi_{1}^{e_{1}} \ldots \pi_{n}^{e_{n}}{\overline{\pi_{1}}}^{e_{1}} \ldots \bar{\pi}_{n} e_{n}=y^{3}$. If we let $y=\epsilon^{\prime} q_{1}^{f_{1}} \ldots q_{n}^{f_{n}}$, then $y^{3}=\epsilon^{\prime 3} q_{1}^{3 f_{1}} \ldots q_{n}^{3 f_{n}}$, so the q_{i} are some rearrangements of $\pi_{i}, \overline{\pi_{i}}$ up to units. Hence corresponding $e_{i}=3 f_{i}$ and so $x+\sqrt{-19}=$ unit times a cube. Now units of $\mathbb{Z}[\sqrt{-19}]=\{ \pm 1\}$.

So $x+\sqrt{-19}=(a+b \sqrt{-19})^{3}=\left(a^{3}-19 a b^{2}\right)+\left(3 a^{2} b-19 b^{3}\right) \sqrt{-19}$. Again comparing $\sqrt{-19}$ coefficients we have $b\left(3 a^{2}-19 b^{2}\right)=1$, so $b= \pm 1$ and $3 a^{2}-19= \pm 1$. But $3 a^{2}=20$ is impossible since $3 \nmid 20$, and $3 a^{2}=18=3 \cdot 6$ is impossible since 6 is not a square. So no solution exists.

This proof relied on the fact that $\mathbb{Z}[\sqrt{-19}]$ is a UFD, which it is not. We can see this by considering $343=7^{3}=$ $(18+\sqrt{-19})(18-\sqrt{-19})$. Now $N(7)=7^{2}$. Suppose $7=\alpha \beta$ with $\alpha, \beta \notin(\mathbb{Z}[\sqrt{-19}])^{*}$. Then $N(\alpha) N(\beta)=7^{2}$, so $N(\alpha)=7$, but $N(a+b \sqrt{-19})=a^{2}+19 b^{2} \neq 7$. So 7 is irreducible in $\mathbb{Z}[\sqrt{-19}]$. On the other hand $N(18+\sqrt{19})=7^{3}$, and suppose that $N(\alpha) N(\beta)=7^{3}$, then without loss of generality $N(\alpha)=7$ and $N(\beta)=7^{2}$. But we have just seen no elements have $N(\alpha)=7$, so $18+\sqrt{-19}$ is irreducible in $\mathbb{Z}[\sqrt{-19}]$. The same argument shows that $18=\sqrt{-19}$ is also irreducible in $\mathbb{Z}[\sqrt{-19}]$

1.3 Pell's Equations

Fix $d \in \mathbb{Z}_{>0}$ with $d \neq a^{2}$ for any $a \in \mathbb{Z}$. Then Pell's equation is $x^{2}-d y^{2}=1$, with $x, y \in \mathbb{Z}$.
Now $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$. This has an automorphism $a+b \sqrt{d} \mapsto a-b \sqrt{d}=\overline{a+b \sqrt{d}}$. (Note that - is just notation, and it does not mean complex conjugation). Again we can define a function called the norm, $N: \mathbb{Z}[\sqrt{d}] \rightarrow \mathbb{Z}$ defined by $\alpha \mapsto \alpha \bar{\alpha}$, and explicitly $(a+b \sqrt{d}) \mapsto a^{2}-d b^{2}$. Hence Pell's equation comes down to solving $N(x+y \sqrt{d})=1$.

Now recall that $\alpha \in(\mathbb{Z}[\sqrt{d}])^{*}$, then there exists β such that $\alpha \beta=1$. So $N(\alpha) N(\beta)=1$, so $N(\alpha)= \pm 1$. On the other hand if $N(\alpha)= \pm 1$, then $\alpha \bar{\alpha}= \pm 1$, so $\pm \bar{\alpha}=\alpha^{-1}$, hence α is a unit.

Example. $d=3$. Then $x^{2}-3 y^{2}=1 \Rightarrow 3 y^{2}+1=x^{2}$
$y=0 \quad 3 y^{2}+1=1$. This is ok, it leads to $(1,0)$ which correspond to $1 \in \mathbb{Z}[\sqrt{3}]$
$y=1 \quad 3 y^{2}+1=4$. This is ok, it leads to $(2,1)$ which gives $2+\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$
$y=2 \quad 3 y^{2}+1=13$
$y=3 \quad 3 y^{2}+1=28$
$y=4 \quad 3 y^{2}+1=49$. This is ok, it leads to $(7,4)$ which gives $7+4 \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$
Note that if ϵ is a unit in $\mathbb{Z}[\sqrt{d}]$, then $\pm \epsilon^{n}$ is a unit for all $n \in \mathbb{Z}$. (For example $(2+\sqrt{3})^{2}=2^{2}+2 \cdot 2 \sqrt{3}+3=7+4 \sqrt{3}$. If x, y is a solution, then of course $(-x,-y)$ is a solution as well. Hence there are infinitely many solutions

Theorem 1.8. Let $d \in \mathbb{Z}_{>0}$ with $d \neq a^{2}$. Then there exists $\epsilon_{d} \in \mathbb{Z}[\sqrt{d}]$, $\epsilon_{d} \neq \pm 1$ such that every unit can be written as $\pm \epsilon_{d}^{n}, n \in \mathbb{Z}$. Such an ϵ_{d} is called a Fundamental Unit of $\mathbb{Z}[\sqrt{d}]$. If ϵ_{d} is a fundamental unit, then so is $\pm \epsilon_{d}^{-1}$.

Proof. This is a consequence of Dirichlet's Unit Theorem, which we will prove at the end of the course.
Example. We will show that $\epsilon_{3}=2+\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$
Let $x_{1}+y_{1} \sqrt{3} \in \mathbb{Z}[\sqrt{d}]$ be a fundamental unit. Without any lost of generality we can assume that $x_{1} \geq 0$. Now $\left(x_{1}+y_{1} \sqrt{3}\right)^{-1}=\frac{x_{1}-y_{1} \sqrt{3}}{\left(x_{1}+y_{1} \sqrt{3}\right)\left(x_{1}-y_{1} \sqrt{3}\right)}= \pm\left(x_{1}-y_{1} \sqrt{3}\right)$. So without loss of generality we can also assume $y_{1} \geq 0$.

Put $x_{n}+y_{n} \sqrt{3}=\left(x_{1}+y_{1} \sqrt{3}\right)^{2}=x_{1}^{n}+n x_{1}^{n-1} y \sqrt{3}+\ldots$ So $x_{n}=x_{1}^{n}+\cdots \geq x_{1}^{n}$ and $y_{n}=n x_{1}^{n-1} y_{1}$. If $x_{1}=0$ then $3 y_{1}^{2}= \pm 1$ which is not possible. Similarly if $y_{1}=0$ then $x_{1}^{2}=1 \Rightarrow x_{1}= \pm 1$ and $\epsilon_{3}= \pm 1$ which is impossible by definition. So $x_{1} \geq 1, y_{1} \geq 1$. For $n \geq 2: x_{n} \geq x_{1}^{n} \geq x_{1}$ and $y_{n}=n x_{1}^{n-1} y_{1}>\geq n y_{1}>y_{1}$

Conclusion: A solution (x, y) of $x^{2}-3 y^{2}= \pm 1$ with $y \geq 1$ minimal is a Fundamental unit for $\mathbb{Z}[\sqrt{3}]$. Hence $2+\sqrt{3}$ is a fundamental unit for $\mathbb{Z}[\sqrt{3}]$, so all solution for $x^{2}+3 y^{2}= \pm 1$ are obtained by $(x, y)=\left(\pm x_{n}, \pm y_{n}\right)$ where $x_{n}+y_{n} \sqrt{3}=(2+\sqrt{3})^{n}$.

2 Fields, Rings and Modules

2.1 Fields

Definition 2.1. If K is a field then by a field extension of K, we mean a field L that contains K. We will denote this by L / K.

If L / K is a field extension, then multiplication of K on L defines a K-vector space structure on L. The degree [$L: K]$ of L / K is the dimension $\operatorname{dim}_{K}(L)$

Example. \quad - $[K: K]=1$

- $[\mathbb{C}: \mathbb{R}]=2$
- $[\mathbb{R}: \mathbb{Q}]=\infty($ uncountably infinite)

The Tower Law. If L / K and M / K are fields extensions with $L \subseteq M$, then $[M: K]=[M: L][L: K]$
Proof. Let $\left\{x_{\alpha}: \alpha \in I\right\}$ be a basis for L / K and let $\left\{y_{\beta}: \beta: J\right\}$ be a basis for M / L. Define $z_{\alpha \beta}=x_{\alpha} y_{\beta} \in M$. We claim that $\left\{z_{\alpha \beta}\right\}$ is a basis for M / K.

We show that they are linearly independent. If $\sum_{\alpha, \beta} a_{\alpha \beta} z_{\alpha \beta}=0$ with finitely many $a_{\alpha \beta} \in K$ non-zero. Then $\sum_{\beta}\left(\sum_{\alpha} a_{\alpha \beta} x_{\alpha}\right) y_{\beta}=0$, since the y_{β} are linearly independent over L we have $\sum_{\alpha} a_{\alpha \beta} x_{\alpha}=0$ for all β. Since the x_{α} are linearly independent over K we have $a_{\alpha \beta}=0$ for all α, β.

We show spanning. If $z \in M$, then $z=\sum \lambda_{\beta} y_{\beta}$ for $\lambda_{\beta} \in L$. For each $\lambda_{\beta}=\sum a_{\alpha \beta} x_{\alpha}$. So $x=\sum_{\beta}\left(\sum_{\alpha} a_{\alpha \beta} x_{\alpha}\right) y_{\beta}=$ $\sum_{\alpha, \beta} a_{\alpha \beta} x_{\alpha} y_{\beta}=\sum a_{\alpha \beta} x_{\alpha \beta}$.

So $\left\{z_{\alpha \beta}\right\}$ is a basis for M over K, so $[M: K]=[M: L][L: K]$
Corollary 2.2. If $K \subset L \subset M$ are fields with $[M: K]<\infty$ then $[L: K] \mid[M: K]$.
Definition. L / K is called finite if $[L: K]<\infty$
If K is a field and x is an indeterminate variable, then $K(x)$ denotes the field of rational functions in x with coefficients in K. That is

$$
K(x)=\left\{\frac{f(x)}{g(x)}: f, g \in K[x], g \neq 0\right\}
$$

If L / K is a field extension, $\alpha \in L$. Then $K(\alpha)$ is the subfield of L generated by K and α.

$$
K(\alpha)=\left\{\frac{f(\alpha)}{g(\alpha)}: f, g \in K[x], g(\alpha) \neq 0\right\}=\bigcap_{K \subset M \subset L, \alpha \in M} M
$$

Let L / K be a field extension, $\alpha \in L$. We say that α is algebraic over K if there exists a non-zero polynomial $f \in K[x]$ with $f(\alpha)=0$

Theorem 2.3. Let L / K be a field extension and $\alpha \in L$. Then α is algebraic over K if and only if $K(\alpha) / K$ is a finite extension.

Proof. $\Leftarrow)$ Let $n=[K(\alpha): K]$ and consider $1, \alpha, \ldots, \alpha^{n} \in K(\alpha)$. Notice that there are $n+1$ of them, so they must be linearly dependent since the dimension of the vector space is n. So there exists $a_{i} \in K$ such that $a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0$ with a_{i} not all zero. Hence by definition α is algebraic.
$\Rightarrow)$ Assume that there exists $f \neq 0 \in K[x]$ such that $f(\alpha)=0$, and assume that f has minimal degree n. We claim that $f \in K[x]$ is irreducible.

Suppose that $f=g h$, with g, h non-constant. Then $0=f(\alpha)=g(\alpha) h(\alpha)$, so without loss of generality $g(\alpha)=0$, but $\operatorname{deg}(g)<\operatorname{deg}(f)$. This is a contradiction. Let $f=a_{n} x^{n}+\cdots+a_{0}$ with $a_{n} \neq 0$. Then $f(\alpha)=0 \Rightarrow$ $a_{n} \alpha^{n}+\cdots+a_{0}=0 \Rightarrow \alpha^{n}=-\frac{1}{a_{n}}\left(a_{n-1} \alpha^{n-1}+\cdots+a_{0}\right)$. So we can reduce any polynomial expression in α of degree $\geq n$ to one of degree $\leq n-1$.

Hence $K(\alpha)=\left\{\frac{b_{0}+\cdots+b_{n-1} \alpha^{n-1}}{c_{0}+\cdots+c_{n-1} \alpha^{n-1}}: b_{i}, c_{i} \in K\right\}$. Pick $\frac{b(\alpha)}{c(\alpha)} \in K(\alpha)$, now $\operatorname{deg}(c) \leq n-1<\operatorname{deg} f$ and $c(\alpha) \neq 0$. Hence $\operatorname{gcd}(c, f)=1$, so there exists $\lambda, \mu \in K[x]$ with $\lambda(x) c(x)+\mu(x) f(x)=1$. In particular $1=\lambda(\alpha) c(\alpha)+$ $\mu(\alpha) f(\alpha)=\lambda(\alpha) c(\alpha)$, hence $\lambda(\alpha)=\frac{1}{c(\alpha)} \in K[\alpha]$

Any elements of $K(\alpha)$ is a polynomial in α of degree $\leq n-1$. So if α is algebraic over K, we have just shown that $K(\alpha)=K[\alpha]$ and $1, \alpha, \ldots, \alpha^{n-1}$ is a basis for $K[\alpha] / K$, hence $[K(\alpha): K]=n$

Theorem 2.4. Let L / K be a field extension, then the set M of all $\alpha \in L$ that are algebraic over K is a subfield of L containing K.

Proof. First $K \subseteq M$, as $\alpha \in K$ is a root of $x-\alpha \in K[x]$
So take $\alpha, \beta \in M$, we need to show that $\alpha-\beta \in M$ and $\frac{\alpha}{\beta} \in M$ if $\beta \neq 0$. Consider the subfield $K(\alpha, \beta) \subseteq L$. Now $[K(\alpha)(\beta): K]=[K(\alpha, \beta): K(\alpha)][K(\alpha): K]$. We have $[K(\alpha)(\beta): K(\alpha)] \leq[K(\beta): K]$ since the first one is the degree of the minimal polynomial of β over $K(\alpha)$, and β is algebraic, so there is $f \in K[x] \subset K[\alpha]$ such that $f(\beta)=0$. Now $\alpha-\beta \in K(\alpha)(\beta)$ and if $\beta \neq 0, \frac{\alpha}{\beta} \in K(\alpha)(\beta)$. This implies that $K(\alpha-\beta) \subseteq K(\alpha, \beta) \Rightarrow[K(\alpha-\beta)$: $K] \mid[K(\alpha, \beta): K]<\infty$ and $\left.K\left(\frac{\alpha}{\beta}\right) \subseteq K(\alpha, \beta) \Rightarrow\left[K\left(\frac{\alpha}{\beta}\right): K\right] \right\rvert\,[K(\alpha, \beta): K]<\infty$. Hence $\alpha-\beta$ and $\frac{\alpha}{\beta}$ are algebraic over K

Corollary 2.5. The set of algebraic number is a field. We denote this with $\overline{\mathbb{Q}}$
For any subfield $K \subset \mathbb{C}$, we let \bar{K} denote the algebraic closure of K in \mathbb{C}, i.e., the set of $\alpha \in \mathbb{C}$ that are algebraic over K.

For example $\overline{\mathbb{R}}=\mathbb{C}=\mathbb{R}(i)$.
We also conclude that $\overline{\mathbb{Q}}=\cup_{K \text { number field }} K$. Also $[\overline{\mathbb{Q}}: \mathbb{Q}]=\infty$ so $\overline{\mathbb{Q}}$ itself is not a number field.

2.2 Rings and Modules

In this course we use the following convention for rings. Every ring R is assumed to be commutative and has 1 . We also allow 1 to be 0 , in which case $R=0=\{0\}$. A ring homomorphism $\phi: R \rightarrow S$ is assumed to send 1_{R} to 1_{S}. A subring R of a ring S is assumed to satisfy $1_{R}=1_{S}$
Example. Let R_{1} and R_{2} be two non-zero rings. Then we have a ring $R=R_{1} \times R_{2}$ with $1_{R}=\left(1_{R_{1}}, 1_{R_{2}}\right)$. Note that $R_{1}^{\prime}=R_{1} \times\{0\} \subset R$ is a ring, but $1_{R_{1}}^{\prime}=(1,0) \neq 1_{R}$ so R_{1}^{\prime} is not a subring of R. Finally $\phi: R_{1} \rightarrow R$ defined by $r \mapsto(r, 0)$ is not a ring homomorphism.

Definition 2.6. Let R be a ring then a module over R is an abelian group M with scalar multiplication by R, satisfying

- $1 \cdot m=m$
- $(r+s) m=r m+s m$
- $r(m+n)=r m+r n$
- $(r s) m=r(s m)$

For all $r, s \in R, m, n \in M$
An homomorphism of R-modules is a homomorphism of abelian group that satisfies $\phi(r m)=r \phi(m)$ for all $r \in R, m \in M$

Example. If R is a field, then modules are the same as vector spaces.
Any ideal I of R is an R-module
Any quotient R / I is an R-module
If $R \subseteq S$ are both rings, then S is an R-module
Let $R=\mathbb{Z}$. Then any abelian group is a \mathbb{Z}-module
Definition 2.7. A module is free of rank n if it is isomorphism to R^{n}.
Theorem 2.8. If $R \neq 0$, the rank of a free module over R is uniquely determined, i.e., $R^{m} \cong R^{n} \Rightarrow m=n$
Proof. This is not proven in this module
Definition 2.9. If R is a ring then an R-module M is finite if it can be generated by finitely many elements.
Example. $R=\mathbb{Z}, M=\mathbb{Z}[i]$ is finite with generators 1 and i $R=\mathbb{Z}[2 i], M=\mathbb{Z}[i]$. This is also finite with generators 1 and i, but it is not free.
$R=\mathbb{Z}, M=\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{n}{2^{m}}: x \in \mathbb{Z}, m \geq 0\right\} \subseteq \mathbb{Q}$. This is not finite as any finite set has a maximum power of 2 occurring in the denominator.

2.3 Ring Extensions

Definition 2.10. Let R be a ring, then a ring extension of R is a ring S that has R as a subring.
A ring extension $R \subset S$ is finite if S is finite as an R-module
Let $R \subset S$ be a ring extension, $s \in S$. Then s is said to be integral over R if there exists a monic polynomial $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in R[x]$ with $f(s)=0$

Theorem 2.11. Let $R \subset S$ be a ring extension, $s \in S$. Then the following are equivalent:

1. s is integral over R
2. $R[s]$ is a finite extension of R
3. There exists a ring S^{\prime} such that $R \subset S^{\prime} \subset S, S^{\prime}$ is finite over R and $s \in S^{\prime}$

Proof. Not proven in this modules. Some of these are obvious. (See Commutative Algebra Theorem 4.2)
Theorem 2.12. If $R \subset S$ is a ring extension, then the set S^{\prime} of $s \in S$ that are integral over R is a ring extension of R inside S.

Proof. Note that $R \subseteq S^{\prime}$ since $r \in R$ is a root of $x-r \in R[x]$.
Given $s_{1}, s_{2} \in S^{\prime}$ we want to prove that $s_{1}-s_{2}, s_{1} s_{2} \in S^{\prime}$. We have $R \subset R\left[s_{1}\right] \subset R\left[s_{1}, s_{2}\right] \subset S$, now the first ring extension is finite since s_{1} is integral over R. We also have s_{2} is integral over R so in particular it is integral over $R\left[s_{1}\right]$. Take the generators for $R\left[s_{1}\right]$ as an R-module: $1, \ldots, s_{1}^{n}$ and take the generators for $R\left[s_{1}, s_{2}\right]$ as an $R\left[s_{1}\right]$-module: $1, \ldots, s_{2}^{m}$. Then $\left\{s_{1}^{i} s_{2}^{j}: 1 \leq j \leq m, 1 \leq i \leq n\right\}$ is a set of generators for $R\left[s_{1}, s_{2}\right]$ as an R-module. Hence we conclude that $R\left[s_{1}, s_{2}\right]$ is a finite extension of R. Now $s_{1}-s_{2}, s_{1} s_{2} \in R\left[s_{1}, s_{2}\right]$. So if we apply the previous theorem, we have $s_{1}-s_{2}, s_{1} s_{2}$ are integral over R.

Definition 2.13. Let $R \subset S$ be an extension of rings, then the ring of R integral elements of S is called the integral closure of R in S

Given an extension of rings $R \subset S$ then we say that R is integrally closed in S if the integral closure of R in S is R itself

Theorem 2.14. Let $R \subset S$ be a ring extension and let $R^{\prime} \subset S$ be the integral closure of R in S. Then R^{\prime} is integrally closed in S.

Proof. Take $s \in S$ integral over R^{\prime}. We want to show that s is integral over R. Take $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in$ $R^{\prime}[x]$ with $f(s)=0$. Consider a subring of $R \subset R\left[a_{0}, a_{1}, \ldots, a_{n-1}\right] \subset R^{\prime}$. Now $R \subset R\left[a_{0}\right] \subset R\left[a_{0}, a_{1}\right] \subset \cdots \subset$ $R\left[a_{0}, \ldots, a_{n-1}\right]$. Now $f \in R\left[a_{0}, \ldots, a_{n-1}\right][x]$. So s is integral over $R\left[a_{0}, \ldots, a_{n-1}\right]$, hence $R\left[a_{0}, \ldots, a_{n-1}\right][s]$ is finite over $R\left[a_{0}, \ldots, a_{n-1}\right]$ and hence finite over R. So by Theorem 2.12 we have that s is integral over R.

Definition 2.15. An element $\alpha \in \mathbb{C}$ is an algebraic integer if it is integral over \mathbb{Z}.
The ring of algebraic integers is denoted by $\overline{\mathbb{Z}}$
If K is a number field, then the ring of integers in K is denoted $\mathcal{O}_{K}=\overline{\mathbb{Z}} \cap K=$ integral closure of \mathbb{Z} in K.
Example. Let $K=\mathbb{Q}$. Take $p / q \in \mathbb{Q}$ integral over \mathbb{Z} (assume that $\operatorname{gcd}(p, q)=1$), then there exists $f(x) \in \mathbb{Z}[x]$ such that $f(p / q)=0$. So $x-p / q$ is a factor of f in $\mathbb{Q}[x]$, but Gauss' Lemma states "if $f \in \mathbb{Z}[x]$ is monic and $f=g \cdot h$ with $g, h \in \mathbb{Q}[x]$ then $g, h \in \mathbb{Z}[x]$ ". So $x-p / q \in \mathbb{Z}[x]$, that is $p / q \in \mathbb{Z}$. So $\mathcal{O}_{\mathbb{Q}}=\mathbb{Z}$.

Consider $K=\mathbb{Q}(\sqrt{d})$, with $d \neq 1$ and d is square free. Consider $\alpha \in K, \alpha=a+b \sqrt{d}, a, b \in \mathbb{Q}$ and suppose that α is an algebraic integer. Assume that $\operatorname{deg}(\alpha)=2$, that is the minimum monic polynomial f of α in $\mathbb{Q}[x]$ has degree 2. Then by Gauss, we know $f \in \mathbb{Z}[z]$, furthermore $f=(x-(a+b \sqrt{d}))(x-(a-b \sqrt{d}))=x^{2}-2 a x+a^{2}-d b$. So we want $2 a \in \mathbb{Z}$ and $a^{2}-d b \in \mathbb{Z}$.

So $2 a \in \mathbb{Z} \Rightarrow a=\frac{a^{\prime}}{2}$ with $a^{\prime} \in \mathbb{Z}$. Then $a^{2}-b^{2} d=\left(\frac{a^{\prime}}{2}\right)^{2}-b^{2} d=\left(a^{\prime}\right)^{2}-d(2 b)^{2} \in 4 \mathbb{Z}$. So (using the fact that d is square-free) $d(2 b)^{2} \in \mathbb{Z} \Rightarrow 2 b \in \mathbb{Z}$ and $\left(a^{\prime}\right)^{2} \equiv d\left(b^{\prime}\right)^{2} \bmod 4$. So we conclude:

- If a^{\prime} is even, then $a \in \mathbb{Z}$, so b^{\prime} is even and thus $b \in \mathbb{Z}$
- If a^{\prime} is odd, then $\left(a^{\prime}\right)^{2} \equiv 1 \bmod 4$, so b^{\prime} is odd as well and $d \equiv 1 \bmod 4$

We have just proven the following:

Theorem 2.16. Let $d \in \mathbb{Z}$, with $d \neq 1$ and square free. Then $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}= \begin{cases}\mathbb{Z}[\sqrt{d}] & d \not \equiv 1 \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & d \equiv 1 \bmod 4\end{cases}$
Theorem 2.17. Let R be a UFD. Then R is integrally closed in its fraction field (the converse does not hold)
Proof. Take $s=\frac{r_{1}}{r_{2}}$ integral over R, and assume that r_{1}, r_{2} are coprime (well defined since R is a UFD), we have to show that $r_{2} \in R^{*}$.

If $r_{2} \notin R^{*}$, then let $\pi \in R$ be any factor of r_{2}. Now s is integral, so there exists a_{i} and n such that $s^{n}+$ $a_{n-1} s^{n-1}+\cdots+a_{0}=0$. Multiplying through by r_{2}^{n} we have $r_{1}^{n}+a_{n-1} r_{1}^{n-1} r_{2}+\cdots+a_{0} r_{2}^{n}=0$. Now since $r_{2} \equiv 0$ $\bmod \pi$, if we take \bmod both side we have $r_{1}^{n} \equiv 0 \bmod \pi$. Hence $\pi\left|r_{1}^{n} \Rightarrow \pi\right| r_{1}$. This is a contradiction.

The converse of this theorem is not true, as an example $\mathcal{O}_{\mathbb{Q}(\sqrt{-5)}}=\mathbb{Z}[\sqrt{-5}]$ is integrally closed but not a UFD since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$

3 Norms, Discriminants and Lattices

3.1 Conjugates, Norms and Traces

The Theorem of Primitive Elements. Any number field K can be generated by a single elements $\theta \in K$. That is $K=\mathbb{Q}(\theta)$

Proof. See any courses in Galois Theory
Consider a number field $K=\mathbb{Q}(\theta)$. This θ has a monic minimal polynomial, say $f_{\theta} \in \mathbb{Q}[x]$. We can factor f_{θ} over \mathbb{C}, say $f_{\theta}=\left(x-\theta_{1}\right)\left(x-\theta_{2}\right) \ldots\left(x-\theta_{n}\right)$, where $\theta_{1}=\theta$ and all the θ_{i} are distinct. For each i we have a field embedding, which we denote $\sigma_{i}: K \hookrightarrow \mathbb{C}$ defined by $\theta \mapsto \theta_{i}$. These are all possible embedding of $K \hookrightarrow \mathbb{C}$

Example. $K=\mathbb{Q}[\sqrt{d}]$, then $f_{\theta}=x^{2}-d=(x-\sqrt{d})(x+\sqrt{d})$. So we have $\sigma_{1}=$ id and $\sigma_{2}=a+b \sqrt{d} \mapsto a-b \sqrt{d}$ $K=\mathbb{Q}[\sqrt[3]{2}]$, then $f_{\theta}=x^{3}-2=(x-\sqrt[3]{2})\left(x-\zeta_{3} \sqrt[3]{2}\right)\left(x-\zeta_{3}^{2} \sqrt[3]{2}\right)$ where $\zeta_{3}=e^{\frac{2 \pi i}{3}}$ a third root of unity. So we have:

- $\sigma_{1}: \sqrt[3]{2} \mapsto \sqrt[3]{2}$ (i.e., the identity map),
- $\sigma_{2}: \sqrt[3]{2} \mapsto \zeta_{3} \sqrt[3]{2}$
- $\sigma_{3}: \sqrt[3]{2} \mapsto \zeta_{3}^{2} \sqrt[3]{2}$

Definition 3.1. Let K be a number field and $\sigma_{1}, \ldots, \sigma_{n}$ all the embeddings $K \hookrightarrow \mathbb{C}$. Let $\alpha \in K$. Then the elements $\sigma_{i}(\alpha)$ are called the conjugates of α.

Theorem 3.2. Let K be a number field, $n=[K: \mathbb{Q}]$. Take $\alpha \in K$, consider the multiplication by α as a linear map from the \mathbb{Q}-vector space K to itself. That is $\alpha: K \rightarrow K$ is defined by $\beta \mapsto \alpha \beta$. Then the characteristic polynomial of this map is equal to $P_{\alpha}(x)=\prod_{i=1}^{n}\left(x-\sigma_{i}(\alpha)\right)$

Proof. Let $K=\mathbb{Q}(\theta)$ and consider the basis: $1, \theta, \theta^{2}, \ldots, \theta^{n-1}$. Let M_{α} be the matrix that describes the linear map α relative to this basis.

First consider $\alpha=\theta$. Let $f_{\theta}=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Then we have

$$
M_{\theta}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -a_{n-1}
\end{array}\right)
$$

We now calculated the characteristic polynomial of M_{θ} :

$$
\operatorname{det}\left(X \cdot I_{n}-M_{\theta}\right)=\operatorname{det}\left(\begin{array}{ccccc}
x & 0 & \cdots & 0 & a_{0} \\
-1 & x & \cdots & 0 & a_{1} \\
0 & -1 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & x+a_{n-1}
\end{array}\right)=\sum a_{k} x^{k}
$$

Hence the characteristic polynomial of $M_{\theta}=f_{\theta}=\prod_{i=1}^{n}\left(x-\sigma_{i}(\theta)\right)$ as required. Hence we know from Linear Algebra that there exists an invertible matrix A such that:

$$
M_{\theta}=A\left(\begin{array}{cccc}
\sigma_{1}(\theta) & 0 & \cdots & 0 \\
0 & \sigma_{2}(\theta) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}(\theta)
\end{array}\right) A^{-1}
$$

Now note that $M_{\alpha \pm \beta}=M_{\alpha} \pm M_{\beta}$ and $M_{\alpha \beta}=M_{\alpha} M_{\beta}$ (basic linear algebra). So if we have a polynomial $g \in \mathbb{Q}[x]$, then $M_{g \alpha}=g\left(M_{\alpha}\right)$. Now we can write any $\alpha \in K$ as $g(\theta)$ for some $g \in \mathbb{Q}[X]$. Hence we have

$$
\begin{aligned}
M_{\alpha}=g\left(M_{\theta}\right) & =A\left(\begin{array}{cccc}
g\left(\sigma_{1}(\theta)\right) & 0 & \cdots & 0 \\
0 & g\left(\sigma_{2}(\theta)\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & g\left(\sigma_{n}(\theta)\right)
\end{array}\right) A^{-1} \\
& =A\left(\begin{array}{cccc}
\sigma_{1}(g(\theta)) & 0 & \cdots & 0 \\
0 & \sigma_{2}(g(\theta)) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & & 0 & \cdots \\
\sigma_{n}(g(\theta))
\end{array}\right) A^{-1} \\
& =A\left(\begin{array}{cccc}
\sigma_{1}(\alpha) & 0 & \cdots & 0 \\
0 & \sigma_{2}(\alpha) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}(\alpha)
\end{array}\right) A^{-1}
\end{aligned}
$$

Hence, the characteristic polynomial of M_{α} is $\prod_{i=1}^{n}\left(x-\sigma_{i}(\alpha)\right)$ as required.
Corollary 3.3. For $\alpha \in K$, the coefficients of $\prod_{i=1}^{n}\left(x-\sigma_{i}(\alpha)\right)$ are in \mathbb{Q}.
Definition 3.4. Let K be a number field, $\alpha \in K$. We define the norm of α as $N(\alpha)=N_{K / \mathbb{Q}}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha) \in \mathbb{Q}$.
Corollary 3.5. $N(\alpha)=\operatorname{det}(\cdot \alpha)=\operatorname{det}\left(M_{\alpha}\right)$
We can see that the norm is a multiplicative function, i.e., $N(\alpha \beta)=N(\alpha) N(\beta)$.
Definition 3.6. Let K be a number field and $\alpha \in K$. We define the trace of α as $\operatorname{Tr}(\alpha)=\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=\sum_{i=1}^{n} \sigma_{i}(\alpha) \in$ Q.

Corollary 3.7. $\operatorname{Tr}(\alpha)=\operatorname{Tr}(\cdot \alpha)=\operatorname{Tr}\left(M_{\alpha}\right)$
We can see that the trace is an additive function, i.e, $\operatorname{Tr}(\alpha+\beta)=\operatorname{Tr}(\alpha)+\operatorname{Tr}(\beta)$.
Example. Let $K=\mathbb{Q}(\sqrt{d})$. Then we have:

- $\operatorname{Tr}(a+b \sqrt{d})=(a+b \sqrt{d})+(a-b \sqrt{d})=2 a$
- $N(a+b \sqrt{d})=(a+b \sqrt{d})(a-b \sqrt{d})=a^{2}-d b^{2}$

Let $K=\mathbb{Q}(\sqrt[3]{2})$ and recall that $x^{3}-2=(x-\sqrt[3]{2})\left(x-\zeta_{3} \sqrt[3]{2}\right)\left(x-\zeta_{3}^{2} \sqrt[3]{2}\right)$ where $\zeta_{3}=e^{\frac{2 \pi i}{3}}$ a third root of unity. Then we have:

- $\operatorname{Tr}(a+b \sqrt[3]{2}+c \sqrt[3]{4})=3 a+b \sqrt[3]{2}\left(1+\zeta_{3}+\zeta_{3}^{2}\right)+c \sqrt[3]{4}\left(1+\zeta_{3}+\zeta_{3}^{2}\right)=3 a$
- $N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=(a+b \sqrt[3]{2}+c \sqrt[3]{4})\left(a+b \zeta_{3} \sqrt[3]{2}+c \zeta_{3}^{2} \sqrt[3]{4}\right)\left(a+b \zeta_{3}^{2} \sqrt[3]{2}+c \zeta_{3} \sqrt[3]{4}\right)=a^{3}+2 b^{2}+4 c^{3}+6 a b c$

3.2 Discriminant

Definition 3.8. Let K be a number field and $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for K. Let $\sigma_{1}, \ldots, \sigma_{n}: K \rightarrow \mathbb{C}$ be all the embeddings. The discriminant of $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is defined as

$$
\left(\operatorname{det}\left(\begin{array}{cccc}
\sigma_{1}\left(\alpha_{1}\right) & \sigma_{1}\left(\alpha_{2}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\
\sigma_{2}\left(\alpha_{1}\right) & \sigma_{2}\left(\alpha_{2}\right) & \cdots & \sigma_{2}\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n}\left(\alpha_{1}\right) & \sigma_{n}\left(\alpha_{2}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)\right)^{2}
$$

We denote this by $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ or by $\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

Theorem 3.9. We have

$$
\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
\operatorname{Tr}\left(\alpha_{1} \alpha_{1}\right) & \operatorname{Tr}\left(\alpha_{1} \alpha_{2}\right) & \cdots & \operatorname{Tr}\left(\alpha_{1} \alpha_{n}\right) \\
\operatorname{Tr}\left(\alpha_{2} \alpha_{1}\right) & \operatorname{Tr}\left(\alpha_{2} \alpha_{2}\right) & \cdots & \operatorname{Tr}\left(\alpha_{2} \alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Tr}\left(\alpha_{n} \alpha_{1}\right) & \operatorname{Tr}\left(\alpha_{n} \alpha_{2}\right) & \cdots & \operatorname{Tr}\left(\alpha_{n} \alpha_{n}\right)
\end{array}\right)
$$

Proof. Let $M=\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{i j}$. Then we have $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\operatorname{det}(M)^{2}=\operatorname{det}\left(M^{2}\right)=\operatorname{det}\left(M^{T} M\right)$. But note that the entries of $M^{T} M$ at (i, j) is $\sum_{k=1}^{n} \sigma_{k}\left(\alpha_{i}\right) \cdot \sigma_{k}\left(\alpha_{j}\right)=\sum_{k=1}^{n} \sigma_{k}\left(\alpha_{i} \alpha_{j}\right)=\operatorname{Tr}\left(\alpha_{i} \alpha_{j}\right)$.

Corollary 3.10. We have $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Q}$
Theorem 3.11. We have $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$
Proof. Suppose that $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$. Then there exists not all zero $c_{1}, \ldots, c_{n} \in \mathbb{Q}$ with $c_{1}\left(\begin{array}{c}\operatorname{Tr}\left(\alpha_{1} \alpha_{1}\right) \\ \vdots \\ \operatorname{Tr}\left(\alpha_{n} \alpha_{1}\right)\end{array}\right)+\cdots+$
$c_{n}\left(\begin{array}{c}\operatorname{Tr}\left(\alpha_{n} \alpha_{1}\right) \\ \vdots \\ \operatorname{Tr}\left(\alpha_{n} \alpha_{n}\right)\end{array}\right)=0$. Hence $\left(\begin{array}{c}\operatorname{Tr}\left(\alpha_{1} \sum c_{j} \alpha_{j}\right) \\ \vdots \\ \operatorname{Tr}\left(\alpha_{n} \sum c_{j} \alpha_{j}\right)\end{array}\right)=0$. Put $\alpha=\sum c_{j} \alpha_{j}$, we have just shown that $\operatorname{Tr}\left(\alpha_{i} \alpha\right)=0 \forall i$.
But we have that α_{i} forms a basis for K over \mathbb{Q}, hence $\operatorname{Tr}(\beta \alpha)=0 \forall \beta \in K$. We have $\alpha \neq 0$, so let $\beta=\alpha^{-1}$, then $\operatorname{Tr}(\beta \alpha)=\operatorname{Tr}(1)=n=[K: \mathbb{Q}]$ which is a contradiction.

Definition 3.12. The map $K \times K \rightarrow \mathbb{Q}$ defined by $(\alpha, \beta) \mapsto \operatorname{Tr}(\alpha \beta)$ is know as the trace pairing on K. It is bilinear.

Let $K=\mathbb{Q}(\theta)$, this has basis $1, \ldots, \theta^{n-1}$. In general det $\left(\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}\end{array}\right)$ is called a Vandemonde
determinant and it is equal to $\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. (See Linear Algebra or Algebra I for a proof by induction). So in our case, $\Delta\left(1, \theta, \ldots, \theta^{n-1}\right)=\prod_{1 \leq i<j \leq n}\left(\sigma_{i}(\theta)-\sigma_{j}(\theta)\right)^{2}$. Also note that $\Delta\left(f_{\theta}\right):=\Delta\left(1, \theta, \ldots, \theta^{n-1}\right)$. (Generally, if $f=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$ then $\Delta(f):=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$, check with the definition of a discriminant of a quadratic)
Example. Let $K=\mathbb{Q}(\sqrt{d})$. Consider the basis $1, \sqrt{d}$. We calculate the discriminant in two ways:

- $\Delta(1, \sqrt{d})=\operatorname{det}\left(\begin{array}{cc}1 & \sqrt{d} \\ 1 & -\sqrt{d}\end{array}\right)^{2}=(-2 \sqrt{d})^{2}=4 d$
- $\Delta(1, \sqrt{d})=\operatorname{det}\left(\begin{array}{cc}\operatorname{Tr}(1) & \operatorname{Tr}(\sqrt{d}) \\ \operatorname{Tr}(\sqrt{d}) & \operatorname{Tr}(d)\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}2 & 0 \\ 0 & 2 d\end{array}\right)=4 d$

Now consider the basis $1, \frac{1+\sqrt{d}}{2}$. Then $\Delta\left(1, \frac{1+\sqrt{d}}{2}\right)=(-\sqrt{d})^{2}=d$
Let $K=\mathbb{Q}(\sqrt[3]{d})$, with basis $1, \sqrt[3]{d}, \sqrt[3]{d^{2}}$. Then we have

$$
\begin{aligned}
\Delta\left(1, \sqrt[3]{d}, \sqrt[3]{d^{2}}\right) & =\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}(1) & \operatorname{Tr}(\sqrt[3]{d}) & \operatorname{Tr}\left(\sqrt[3]{d^{2}}\right) \\
\operatorname{Tr}(\sqrt[3]{d}) & \operatorname{Tr}\left(\sqrt[3]{d^{2}}\right) & \operatorname{Tr}(d) \\
\operatorname{Tr}\left(\sqrt[3]{d^{2}}\right) & \operatorname{Tr}(d) & \operatorname{Tr}(\sqrt[3]{d})
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 3 d \\
0 & 3 d & 0
\end{array}\right) \\
& =-27 d^{2}
\end{aligned}
$$

3.3 Lattices

Definition 3.13. Let K be a number field. A lattice Λ in K is a subgroup generated by \mathbb{Q}-linearly independent elements of K. That is $\Lambda=\left\{n_{1} \alpha_{1}+\cdots+n_{r} \alpha_{r} \mid n_{i} \in \mathbb{Z}\right\}$ where α_{i} are linearly independent over \mathbb{Q}. We always have $r \leq[K: \mathbb{Q}]$. The number r is called the rank of the lattice, this is sometimes denoted $\operatorname{rk}(\Lambda)$.

Example. $\mathbb{Z}[i]$ is a lattice in $\mathbb{Q}(i)$
Theorem 3.14. Any finitely generated subgroup of a number field K is a latice.
Proof. Let Λ be a finitely generated subgroup of K. By the Fundamental Theorem of Finitely Generated Abelian Group, we have $\Lambda \cong T \oplus \mathbb{Z}^{r}$, where T is the torsion. As K is a \mathbb{Q}-vector space, we have $T=0$, so $\Lambda \cong \mathbb{Z}^{r}$. Let $\phi: \mathbb{Z}^{r} \rightarrow \Lambda$ be an isomorphism.

Claim: $\alpha_{i}=\phi\left(e_{i}\right)$ is a basis (i.e., linearly independent generating set) for Λ, where e_{i} is the standard basis for \mathbb{Z}^{r}. Now $\phi\left(c_{1}, \ldots, c_{r}\right)=\sum_{i=1}^{n} c_{i} \alpha_{i}$. Since ϕ is surjective, all elements of Λ are reached. If $\sum c_{i} \alpha_{i}=0$ for $c_{i} \in \mathbb{Q}$ multiply c_{i} by the common denominator, then without loss of generality, we can assume $c_{i} \in \mathbb{Z}$. But we know that ϕ is injective, so for all $i, c_{i}=0$.

Definition 3.15. A lattice of K is said to be full rank if its rank $r=[K: \mathbb{Q}]$
Theorem 3.16. Let $\Lambda \subseteq K$ be a full rank lattice. Then $\Delta\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is the same for every basis $\alpha_{1}, \ldots, \alpha_{r}$ of Λ Proof. Suppose $\left(\alpha_{i}\right)_{i}$ and $\left(\beta_{i}\right)_{i}$ are basis for Λ. Then each β_{i} can be written as a linear combination of α_{j} with coefficients in \mathbb{Z}, i.e. $\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{r}\end{array}\right)=A\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{r}\end{array}\right)$ with A an $r \times r$ matrix with coefficients in \mathbb{Z}. Similarly $\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{r}\end{array}\right)=B\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{r}\end{array}\right)$. Hence we have $A B=I_{r}$, so $A \in \mathrm{GL}_{r}(\mathbb{Z})$, so $\operatorname{det}(A)= \pm 1$. Put $S=\left(\begin{array}{ccc}\operatorname{Tr}\left(\alpha_{1} \alpha_{1}\right) & \cdots & \operatorname{Tr}\left(\alpha_{1} \alpha_{r}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{Tr}\left(\alpha_{r} \alpha_{1}\right) & \cdots & \operatorname{Tr}\left(\alpha_{r} \alpha_{r}\right)\end{array}\right)$. Then $\left(\begin{array}{ccc}\operatorname{Tr}\left(\beta_{1} \beta_{1}\right) & \cdots & \operatorname{Tr}\left(\beta_{1} \beta_{r}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{Tr}\left(\beta_{r} \beta_{1}\right) & \cdots & \operatorname{Tr}\left(\beta_{r} \beta_{r}\right)\end{array}\right)=A^{T} S A$. (Base change for matrices describing symmetric bilinear forms, see Algebra
I)

So we have $\Delta\left(\beta_{1}, \ldots, \beta_{r}\right)=\operatorname{det}\left(A^{T} S A\right)=\operatorname{det}\left(A^{2}\right) \operatorname{det}(S)=\operatorname{det}(S)=\Delta\left(\alpha_{1}, \ldots, \alpha_{r}\right)$
Definition 3.17. Let $\Lambda \subset K$ be a full rank lattice, then we define $\Delta(\Lambda)$ to be the discriminant of any basis of Λ.
Theorem 3.18. Let K be a number field and $\Lambda \subset K$ be a full rank lattice with $\Lambda \subset \mathcal{O}_{K}$. Then $\Delta(\Lambda) \in \mathbb{Z}$.
Proof. We have $\Delta(\Lambda)=\operatorname{det}\left(\left(\operatorname{Tr}\left(\alpha_{i} \alpha_{j}\right)_{i j}\right)\right.$ with $\alpha_{i} \in \mathcal{O}_{K}$. If $\alpha \in \mathcal{O}_{K}$, then $\operatorname{Tr}(\alpha)=\sum_{i=1}^{n} \sigma_{i}(\alpha) \in \overline{\mathbb{Z}} \cap \mathbb{Q}=\mathbb{Z}$. Hence $\Delta(\Lambda) \in \mathbb{Z}$.

Theorem 3.19. Let K be a number field and $\Lambda \subset \Lambda^{\prime}$ be two full rank lattices. Then the index $\left(\Lambda^{\prime}: \Lambda\right)$ is finite and $\Delta(\Lambda)=\left(\Lambda^{\prime}: \Lambda\right)^{2} \Delta\left(\Lambda^{\prime}\right)$

Proof. All the elements of Λ can be written as an integral linear combination of some chosen basis of Λ^{\prime}. So there exists $A \in M_{n}(\mathbb{Z})$ with $\Lambda=A \Lambda^{\prime}$. Consider $\Lambda^{\prime} / \Lambda \cong \mathbb{Z}^{n} / A \mathbb{Z}^{n}$, this is a finitely generated abelian group so by FTFGAG $\Lambda^{\prime} / \Lambda \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{m} \mathbb{Z} \oplus \mathbb{Z}^{r}$ with $d_{1}\left|d_{2}\right| \ldots \mid d_{m}$. So (by Smith Normal Form from Algebra I) there exists $B, B^{\prime} \in \mathrm{GL}_{n}(\mathbb{Z})$ with $B A B^{\prime}=\left(\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & & \\ \vdots & & \ddots & \\ 0 & & & d_{n}\end{array}\right)$. As we have $\mathrm{rk}\left(\Lambda^{\prime}\right)=\operatorname{rk}(\Lambda)$, we have that $r=0$, and thus $\operatorname{det}(A)=d_{1} \ldots d_{m}=\left|\mathbb{Z}^{n} / A \mathbb{Z}^{n}\right|=\left(\Lambda^{\prime}: \Lambda\right)$.

Furthermore $\Delta(\Lambda)=\Delta\left(A \Lambda^{\prime}\right)=(\operatorname{det} A)^{2} \Delta\left(\Lambda^{\prime}\right)$.
Theorem 3.20. Let K be a number field with $n=[K: \mathbb{Q}]$. Then there exists a basis $\omega_{1}, \ldots, \omega_{n}$ of K / \mathbb{Q} such that $\mathcal{O}_{K}=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}=\left\{\sum a_{i} \omega_{i} \mid a_{i} \in \mathbb{Z}\right\}$. (That is \mathcal{O}_{K} is a full rank lattice in K)

Proof. We consider all $\Lambda \subset \mathcal{O}_{K}$ that are full rank lattices in K.
The first question is: do such Λ exists? Write $K=\mathbb{Q}(\theta), \theta \in K$ and $f_{\theta}=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with $a_{i} \in \mathbb{Q}$. Now let d be a common denominator of the a_{i}, then $d \theta \in \mathcal{O}_{K}$. Also note that $\mathbb{Q}(\theta)=\mathbb{Q}(d \theta)$, so without loss of generality we can assume $\theta \in \mathcal{O}_{K}$. Then $\mathbb{Z}[\theta] \subseteq \mathcal{O}_{K}$, furthermore $1, \theta, \ldots, \theta^{n-1}$ are linearly independent over \mathbb{Z}, hence $\mathbb{Z}[\theta]$ is a full rank lattice.

Of all such Λ, we have that $\Delta(\Lambda) \in \mathbb{Z}$ (by Theorem 3.18). So consider Λ with $|\Delta(\Lambda)|$ minimal. Claim: $\Lambda=\mathcal{O}_{K}$.
Suppose $\Lambda \neq \mathcal{O}_{K}$. We do have $\Lambda \subset \mathcal{O}_{K}$, so take $\alpha \in \mathcal{O}_{K} \backslash \Lambda$. Then $\Lambda^{\prime}:=\Lambda+\mathbb{Z} \alpha$ is finitely generated as an abelian group of K and thus Λ^{\prime} is a lattice of full rank. Also $\Lambda^{\prime} \subset \mathcal{O}_{K}$. But we have $|\Delta(\Lambda)|=\left(\Lambda^{\prime}: \Lambda\right)^{2}|\Delta(\Lambda)|$, and since $\Lambda \neq \Lambda^{\prime}$, we find $|\Delta(\Lambda)|>\left|\Delta\left(\Lambda^{\prime}\right)\right|$, which is a contradiction.

Definition 3.21. The discriminant of a number field K / \mathbb{Q} is defined as $\Delta(K / \mathbb{Q})=\Delta\left(\mathcal{O}_{K}\right)$
Example. Let $K=\mathbb{Q}(\sqrt{d})$ with $d \neq 1$ and square free. Then $\Delta(K / \mathbb{Q})=\Delta\left(\mathcal{O}_{K}\right)=\left\{\begin{array}{lll}4 d & d \neq 1 \bmod 4 \\ d & d \equiv 1 \bmod 4\end{array}\right.$
Note that if $\Lambda \subset \mathcal{O}_{K}$ is a full rank sublattice, then $\Delta(\Lambda)=\left(\mathcal{O}_{K}: \Lambda\right)^{2} \Delta\left(\mathcal{O}_{K}\right)$ by Theorem 3.19
Corollary 3.22. If $\Lambda \subset \mathcal{O}_{K}$ and $\Delta(\Lambda)$ is square free then $\Lambda=\mathcal{O}_{K}$.

4 Cyclotomic Fields

Definition 4.1. Let n be a positive integer. Then the n-cyclotomic field is $\mathbb{Q}\left(\zeta_{n}\right)$ where $\zeta_{n}=e^{\frac{2 \pi i}{n}}$
For simplicity we are going to assume that $n=p^{r}$ with p being a prime.
Theorem 4.2. The minimal polynomial of $\zeta_{p^{r}}$ is

$$
\Phi_{p^{r}}=\prod_{k=1, p \nmid k}^{p^{r}}\left(x-\zeta_{p^{r}}^{k}\right)
$$

Proof. Firs note that $\Phi_{p^{r}}\left(\zeta_{p^{r}}\right)=0$
In general, $\prod_{k=1}^{n}\left(x-\zeta_{n}^{k}\right)=x^{n}-1$. We see this by noticing that every zero of the LHS is a zero of the RHS, the degree of both sides are the same and they both have the same leading coefficients. Consider

$$
\Phi_{p^{r}}=\prod_{k=1, p \nmid k}^{p^{r}}\left(x-\zeta_{p^{r}}^{k}\right)=\frac{\prod_{k=1}^{p^{r}}\left(x-\zeta_{p^{r}}^{k}\right)}{\prod_{k=1}^{p^{r-1}}\left(x-\zeta_{p^{r}}^{p k}\right)}
$$

and notice that $\zeta_{p^{r}}^{p}=\zeta_{p^{r-1}}$. This means we can rewrite

$$
\Phi_{p^{r}}=\frac{\prod_{k=1}^{p^{r}}\left(x-\zeta_{p^{r}}^{k}\right)}{\prod_{k=1}^{p^{r-1}}\left(x-\zeta_{p^{r-1}}^{k}\right)}=\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1}=x^{(p-1) p^{r-1}}+x^{(p-2) p^{r-1}}+\cdots+1
$$

Hence we have $\Phi_{p^{r}} \in \mathbb{Z}[x]$.
We finally show that $\Phi_{p^{r}}$ is irreducible. Suppose that $\Phi_{p^{r}}=f g$ with $f, g \in \mathbb{Z}[x], f, g$ are both monic and non constant. Consider this $\bmod p$, we have

$$
\Phi_{p^{r}}=\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1} \equiv \frac{(x-1)^{p^{r}}}{(x-1)^{p^{r-1}}} \equiv(x-1)^{(p-1)\left(p^{r-1}\right)} \quad \bmod p
$$

(using Fermat's Little Theorem). Let \bar{f}, \bar{g} denoted the reduction of $f, g \bmod p$, hence we have $\bar{f} \bar{g}=(x-1)^{(p-1) p^{r-1}}$ $\bmod p$. Now \mathbb{F}_{p} is a UFD, so we have $\bar{f}=(x-1)^{m}$ and $\bar{g}=(x-1)^{k}$ such that $m+k=(p-1) p^{r-1}$. Hence we have $f=$ $(x-1)^{m}+p F$ and $g=(x-1)^{k}+p G$ for some $F, G \in \mathbb{Z}[x]$, that is, $f g=(x-1)^{m+k}+p(x-1)^{k} F+p(x-1)^{m} G+p^{2} F G$.

Now consider $x=1$, we get $f(1) g(1)=p^{2} F(1) G(1)$ on one hand and $\Phi_{p^{r}}(1)=1^{(p-1) p^{r-1}}+\cdots+1=p$ on the other hand. But $p^{2} \nmid p$, so we have a contradiction and $\Phi_{p^{r}}$ is irreducible.

Note that $\mathbb{Z}\left[\zeta_{p^{r}}\right] \subset \mathcal{O}_{\mathbb{Q}\left(\zeta_{\left.p^{r}\right)}\right)}$.
Problem. What is $\Delta\left(\mathbb{Z}\left[\zeta_{p^{r}}\right]\right)$?
Let us denote $\zeta_{p^{r}}$ by ζ. By definition we have

$$
|\Delta(\mathbb{Z}[\zeta])|=\left|\prod_{k=1, p \nmid k}^{p^{r}} \prod_{m=1, p \nmid m, m \neq k}^{p^{r}}\left(\zeta^{k}-\zeta^{m}\right)\right|
$$

Let us fix k, we want to compute $\prod_{m=1, p \nmid m, m \neq k}^{p^{r}}\left(\zeta^{k}-\zeta^{m}\right)$. We do this by considering

$$
F_{k}=\prod_{m=1, p \nmid m, m \neq k}^{p^{r}}\left(x-\zeta^{m}\right)=\frac{\Phi_{p^{r}}(x)}{x-\zeta^{k}}=\frac{x^{p^{r}}-1}{\left(x^{p^{r-1}}-1\right)\left(x-\zeta^{k}\right)}
$$

Now $F_{k}\left(\zeta^{k}\right)=\frac{0}{0}$, so we need to use l'Hospital's rule. We calculate

$$
\Phi_{p^{r}}^{\prime}(x)=\frac{p^{r} x^{p^{r}-1}\left(x^{p^{r-1}}-1\right)-p^{r-1} x^{p^{r-1}-1}\left(x^{p^{r}}-1\right)}{\left(x^{p^{r-1}}-1\right)^{2}}
$$

Now the roots of $x^{p^{r-1}}-1$ are powers of $\zeta_{p^{r-1}}=\zeta^{p}$, so ζ^{k} is not a root of $\left(x^{p^{r-1}}-1\right)$. Hence

$$
F_{k}\left(\zeta^{k}\right)=\Phi_{p^{r}}^{\prime}\left(\zeta^{k}\right)=\frac{p^{r} \zeta^{k\left(p^{r}-1\right)}}{\zeta^{k p^{r-1}}-1}
$$

Hence $\left|\Phi_{p^{r}}^{\prime}\left(\zeta_{k}\right)\right|=\frac{p^{r}}{\left|\zeta^{k p^{r-1}}-1\right|}$, so we have

$$
\left\lvert\, \Delta(\mathbb{Z}[\zeta])=\prod_{k=1, p \nmid k}^{p^{r}} \frac{p^{r}}{\left|\zeta^{k p^{r-1}}-1\right|}=\frac{p^{r\left(p^{r}-p^{r-1}\right)}}{\prod\left|\zeta^{k p^{r-1}}-1\right|}\right.
$$

Hence we finally compute

$$
\prod_{k=1, p \nmid k}^{p^{r}}\left(x-\zeta^{k p^{r-1}}\right)=\prod_{k=1, p \nmid k}^{p^{r}}\left(x-\zeta_{p}^{k}\right)=\left(\prod_{k=1}^{p-1}\left(x-\zeta_{p}^{k}\right)\right)^{p^{r-1}}=\left(\Phi_{p}(x)\right)^{p^{r-1}}
$$

Plucking in $x=1$, we get $\Phi_{p}(x)^{p^{r-1}}=p^{p^{r-1}}$. Hence we conclude $|\Delta(\mathbb{Z}[\zeta])|=p^{r p^{r}-r p^{r-1}-p^{r-1}}=p^{p^{r-1}(r p-r-1)}$
Now it is not important to remember what exactly it is, the key idea is that it is a power of p, the exact exponent does not matter.

In particular if $r=1$ we get $\left|\Delta\left(\mathbb{Z}\left[\zeta_{p}\right]\right)\right|=p^{p-2}$
Theorem 4.3. For any n we have $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$.
Proof. We will only prove this for $n=p$, with p prime.
We already know that $\mathbb{Z}\left[\zeta_{p}\right] \subset \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$. We also know that $p^{p-2}=\Delta\left(\mathbb{Z}\left[\zeta_{p}\right]\right)=\left(\mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}: \mathbb{Z}\left[\zeta_{p}\right]\right)^{2} \Delta\left(\mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}\right)$ (by Theorem 3.19).

Suppose that $\mathbb{Z}\left[\zeta_{p}\right] \neq \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$ then $\left(\mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}: \mathbb{Z}\left[\zeta_{p}\right]\right)=p^{*}$, where $*$ is an unknown exponent. Then $\mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)} / \mathbb{Z}\left[\zeta_{p}\right]$ is an abelian group of order divisible by p. Hence there exists $\bar{\alpha} \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)} / \mathbb{Z}\left[\zeta_{p}\right]$ with order p, i.e., there exists $\alpha \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$ with $p \alpha \in \mathbb{Z}\left[\zeta_{p}\right]$. We want to show that for any $\alpha \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$ such that $p \alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ then we already have $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$.

Note that $\mathbb{Z}\left[\zeta_{p}\right]=\mathbb{Z}\left[1-\zeta_{p}\right]$. Now $N\left(1-\zeta_{p}\right)=\prod_{i=1}^{p-1} \sigma_{i}\left(1-\zeta_{p}\right)=\prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)=\Phi_{p}(1)=p$. Hence we have that p factors as $\prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)$. Now for all i, we have $N\left(1-\zeta_{p}^{i}\right)=\prod_{j=1}^{p-1}\left(1-\sigma_{j}\left(\zeta_{p}^{i}\right)\right)=\prod_{j=1}^{p-1}\left(1-\zeta_{p}^{i j}\right)=N\left(1-\zeta_{p}\right)=p$, hence in particular we have $N\left(\frac{1-\zeta_{p}^{i}}{1-\zeta_{p}}\right)=1$, so $\frac{1-\zeta_{p}^{i}}{1-\zeta_{p}}$ is a unit for all i. Putting all of this together we have $p=\frac{\Pi\left(1-\zeta_{p}^{i}\right)}{\left(1-\zeta_{p}\right)^{p-1}}\left(1-\zeta_{p}\right)^{p-1}=$ unit $\cdot\left(1-\zeta_{p}\right)^{p-1}$.

We can write $p \alpha$ as $a_{0}+a_{1}\left(1-\zeta_{p}\right)+\cdots+a_{p-2}\left(1-\zeta_{p}\right)^{p-2}(*)$ with $a_{i} \in \mathbb{Z}$. We want to show that $p \mid a_{i}$ for all i. For $a \in \mathbb{Z}$ we have $p \mid a$ if and only if $\left(1-\zeta_{p}\right) \mid a$ in $\mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$. One direction follows from the fact that $1-\zeta_{p} \mid p$. For the other implication, suppose $\left(1-\zeta_{p}\right) \mid a$, then $N\left(1-\zeta_{p}\right)|N(a) \Rightarrow p| a^{p-1}$, hence $p \mid a$. (Note for any number field and $a \in \mathbb{Q}$, we have $\left.N(a)=a^{[K: \mathbb{Q}]}\right)$. We have now the tools to do a prove by induction to show that a_{n} is divisible by p.

Let $n=0$ and consider (*) module $1-\zeta_{p}$. We have $p \alpha \equiv 0 \bmod \left(1-\zeta_{p}\right)$, also for $i \geq 1$ we have $a_{i}\left(1-\zeta_{p}\right) \equiv 0$ $\bmod \left(1-\zeta_{p}\right)$. Hence we find that $a_{0} \equiv 0 \bmod \left(1-\zeta_{p}\right)$, so $\left(1-\zeta_{p}\right) \mid a_{0}$ and hence $p \mid a_{0}$

Now suppose that $p \mid a_{0}, a_{1}, \ldots, a_{n-1}$ and that $n \leq p-2$. We have that $p \alpha$ is divisible by $\left(1-\zeta_{p}\right)^{n+1}$, but so is $a_{0},\left(1-\zeta_{p}\right) a_{1}, \ldots,\left(1-\zeta_{p}\right)^{n-1} a_{n-1}$ and $a_{i}\left(1-\zeta_{p}\right)^{i}$ for $i>n$. Hence we have $\left(1-\zeta_{p}\right)^{n} a_{i} \equiv 0 \bmod \left(1-\zeta_{p}\right)^{n+1}$. Hence there exists $\beta \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$ with $\beta\left(1-\zeta_{p}\right)^{n+1}=\left(1-\zeta_{p}\right)^{n} a_{n} \Rightarrow \beta\left(1-\zeta_{p}\right)=a_{n}$, so we have $\left(1-\zeta_{p}\right) \mid a_{n}$.

Hence we have shown by induction that $p \mid a_{i} \forall i$. Hence $p \alpha \in p \mathbb{Z}\left[\zeta_{p}\right] \Rightarrow \alpha \in \mathbb{Z}\left[\zeta_{p}\right]$. So to recap, we have shown if $\mathbb{Z}\left[\zeta_{p}\right] \neq \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$, then we must have $\alpha \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)} \backslash \mathbb{Z}\left[\zeta_{p}\right]$ such that $p \alpha \in \mathbb{Z}\left[\zeta_{p}\right]$. But we also shown that if $\alpha \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p}\right)}$ with $p \alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ then $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$, hence we have a contradiction.

Example (Of the proof in action). . What is $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$? We know that $\mathbb{Z}[\sqrt[3]{2}] \subset \mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$, we also know that $\Delta(\mathbb{Z}[\sqrt[3]{2}])=-27\left(2^{2}\right)=-2^{2} \cdot 3^{3}=\left(\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}: \mathbb{Z}[\sqrt[3]{2}]\right)^{2} \cdot \Delta\left(\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}\right)$. Hence if $\mathbb{Z}[\sqrt[3]{2}] \neq \mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$, then either 2 divides the index or 3 divides the index.

Suppose that 2 divides the index. Then there exists $\alpha \in \mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})} \backslash \mathbb{Z}[\sqrt[3]{2}]$ with $2 \alpha \in \mathbb{Z}[\sqrt[3]{2}]$. Note that in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$ we have $2=\sqrt[3]{2}^{3}$. For $a \in \mathbb{Z}$ we have $2 \mid a$ if and only if $\sqrt[3]{2} \mid a$ in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$. Let $2 \alpha=a_{0}+a_{1} \sqrt[3]{2}+a_{2} \sqrt[3]{4}$. Consider this modulo $\sqrt[3]{2}$, we have $0 \equiv a_{0} \bmod \sqrt[3]{2}$. Hence $2 \mid a_{0}$. Now considering this modulo $\sqrt[3]{4}$, we have $0 \equiv a_{1} \sqrt[3]{2} \bmod \sqrt[3]{4}$, again implying that $\sqrt[3]{2} \mid a_{1}$, hence $2 \mid a_{1}$. So finally considering this modulo 2 , we see that $2 \mid a_{2}$. Hence $2 \alpha \in 2 \mathbb{Z}[\sqrt[3]{2}]$, i.e., $\alpha \in \mathbb{Z}[\sqrt[3]{2}]$. So 2 does not divide the index

Now suppose that 3 divides the index. We claim that $3=(1+\sqrt[3]{2})^{3}$.unit. Now $(1+\sqrt[3]{2})^{3}=1+2 \sqrt[3]{2}+3 \sqrt[3]{4}+2=$ $3(1+\sqrt[3]{2}+\sqrt[3]{4})$. Now $N(1+\sqrt[3]{2})=1^{2}+2 \cdot 1^{2}=3$, so $N\left((1+\sqrt[3]{2})^{3}\right)=3^{3}=N(3)$ and hence $(1+\sqrt[3]{2}+\sqrt[3]{4})$ is a unit, proving our claim. Hence we have that for $\alpha \in \mathbb{Z}, 3 \mid \alpha$ if and only if $(1+\sqrt[3]{2}) \mid \alpha$ in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$. So consider $\alpha \in \mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})} \backslash \mathbb{Z}[\sqrt[3]{2}]$ such that $3 \alpha \in \mathbb{Z}[\sqrt[3]{2}]$ and write $3 \alpha=a_{0}+a_{1}(1+\sqrt[3]{2})+a_{2}(1+\sqrt[3]{2})^{2}$ (by changing the basis of
$\mathbb{Z}[\sqrt[3]{2}]$ to $\mathbb{Z}[1+\sqrt[3]{2}])$. Then if we consider the equation modulo successive powers of $(1+\sqrt[3]{2})$, we find that each a_{i} is divisible by $(1+\sqrt[3]{2})$ and thus by 3 . Again this leads to a contradiction.

Hence we have that $\mathbb{Z}[\sqrt[3]{2}]=\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}$

5 Dedekind Domains

5.1 Euclidean domains

Definition 5.1. Let R be a domain (that is $0 \neq 1$ and there are no non-trivial solutions to $a b=0$). An Euclidean function on R is a function $\phi: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ such that for all $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ with $a=q b+r$ and either $r=0$ or $\phi(r)<\phi(b)$

Example. $R=\mathbb{Z}$, and $\phi(n)=|n|$.
$R=k[x]$ where k is any field and $\phi(f(x))=\operatorname{deg}(f)$
$R=\mathbb{Z}[i]$ and $\phi(\alpha)=N(\alpha)$
Definition 5.2. A domain on which there is an Euclidean function is called an Euclidean domain.
Theorem 5.3. If R is an Euclidean domain then R is a principal ideal domain (PID), i.e., every ideal of R can be generated by one element

Proof. Let $I \neq 0$ be a non-zero ideal of R. Take $0 \neq b \in I$ to be an element for which $\phi(b)$ is minimal. We claim that $I=(b)$

Let $a \in I \backslash\{0\}$ be another element. Then there exists $q \in R$ with $a-q b$ either 0 or $\phi(a-q b)<\phi(b)$. As b is an element with $\phi(b)$ minimal, we have that $a-q b$ is 0 , hence $a=q b$, i.e., $a \in(b)$

Lemma 5.4. If R is a PID and $\pi \in R$ an irreducible element, then for $a, b \in R$ we have $\pi|a b \Rightarrow \pi| a$ or $\pi \mid b$
Proof. Suppose that $\pi \nmid a$, we want to show that $\pi \mid b$. Consider the ideal $I=(\pi, a)$. Let $\delta \in R$ be a generator for I, i.e., $(\pi, a)=(\delta)$. There exists $x, y \in R$ with $x \pi+y a=\delta$. Also $\pi \in(\delta)$ so $\delta \mid \pi$. This means that either $\delta \sim 1$ or $\delta \sim \pi$. But the case $\delta \sim \pi$ can not occur since $\pi \nmid a$ but $\delta \mid a$. So without loss of generality, assume that $\delta=1$. Thus $x \pi+y a=1$, hence $x \pi b+y a b=b$, but since $\pi \mid a b$, we have $\pi \mid b$.

Theorem 5.5. $A P I D$ is a $U F D$
Proof. Take $a \in R \backslash\{0\}$, such that a is not a unit. Assume that $a=\epsilon \pi_{1} \ldots \pi_{n}=\epsilon^{\prime} \pi_{1}^{\prime} \ldots \pi_{m}^{\prime}$ are two distinct factorisation of a into irreducible. Without loss of generality we may assume that n is minimal amongst all elements a with non-unique factorisation. We have $\pi_{1} \mid \pi_{1}^{\prime} \ldots \pi_{m}^{\prime}$ so by the lemma $\pi_{1} \mid \pi_{i}^{\prime}$ for some i. Without loss of generality we can assume that $i=1$, so $\pi_{1} \mid \pi_{1}^{\prime}$ but both are irreducible, hence $\pi_{1} \sim \pi_{1}^{\prime}$. Without loss of generality we can assume that $\pi_{1}=\pi_{1}^{\prime}$. But then $\pi_{2} \ldots \pi_{n}=\epsilon \pi_{2}^{\prime} \ldots \pi_{m}^{\prime}$ and $\pi_{2} \ldots \pi_{n}$ has $n-1$ irreducible factors, so by minimality of n, this factorisation into irreducible is unique.

We show that $\mathcal{O}_{\mathbb{Q}(\sqrt{-3})}=\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is Euclidean. We claim that the Euclidean function is the Norm. $N(a+$ $\left.b \frac{1+\sqrt{-3}}{2}\right)=\left(a+b \frac{1+\sqrt{-3}}{2}\right)\left(a+b \frac{1-\sqrt{-3}}{2}\right)=a^{2}+a b+b^{2}\left(\right.$ Note that we had over $\left.\mathbb{Q}(\sqrt{-3}) N(c+d \sqrt{-3})=c^{2}+3 d^{2}\right)$ and this fits we the previous line as $\left.N\left(a+b \frac{1+\sqrt{-3}}{2}\right)=N\left(a+\frac{b}{2}+\frac{b}{2} \sqrt{-3}\right)=\left(a+\frac{b}{2}\right)^{2}+3 \frac{b^{2}}{4}=a^{2}+a b+b^{2}\right)$. Suppose we are given $\alpha=a+b \frac{1+\sqrt{-3}}{2}$ and $\beta=c+d \frac{1+\sqrt{-3}}{2}$ with $\beta \neq 0$. Then

$$
\frac{\alpha}{\beta}=\frac{a+b \frac{1+\sqrt{-3}}{2}}{c+d \frac{1+\sqrt{-3}}{2}}=\frac{\left(a+b \frac{1+\sqrt{-3}}{2}\right)\left(c-d \frac{1+\sqrt{-3}}{2}\right)}{N(\beta)}=e+f \frac{1+\sqrt{-3}}{2} \in \mathbb{Q}\left[\frac{1+\sqrt{-3}}{2}\right]
$$

(so note $e, f \in \mathbb{Q}$). Then pick $g, h \in \mathbb{Z}$ such that $|g-e|,|h-f| \leq \frac{1}{2}$ and set

$$
\begin{gathered}
q=g+h \frac{1+\sqrt{-3}}{2} \\
r=\alpha-\beta q
\end{gathered}
$$

Then we have $\alpha=\beta q+r$ and furthermore if $r \neq 0$.

$$
\begin{aligned}
N(r) & =N\left(\alpha-\beta\left(g+h \frac{1+\sqrt{-3}}{2}\right)\right) \\
& =N\left(\beta\left(e+f \frac{1+\sqrt{-3}}{2}-g-h \frac{1+\sqrt{-3}}{2}\right)\right) \\
& =N(\beta) N\left((e-g)+(f-h) \frac{1+\sqrt{-3}}{2}\right) \\
& =N(\beta)\left[(e-g)^{2}+(e-g)(f-h)+(f-h)^{2}\right] \\
& \leq \frac{3}{4} N(\beta) \\
& <N(\beta)
\end{aligned}
$$

Similar arguments works for $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ with $d \in\{-1,-2,-3,-7,-11\}$ (you might need to change the bound)
Theorem 5.6. If $d<-11$ then $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is not a Euclidean domain (but for $d \in\{-19,-43,-67,-163\}$ it is a PID)
Proof. Assume that $\phi: R \rightarrow \mathbb{Z}_{\geq 0}$ is Euclidean, where $R=\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$. Now $R^{*}=\{ \pm 1\}$. Take an element $b \in R \backslash\{0, \pm 1\}$ with $\phi(b)$ as small as possible. For all $a \in R$ there exists $q, r \in R$ with $r=a-q b$ and $\phi(r)<\phi(b)$ or $r=0$. Now since $\phi(b)$ is as small as possible, we have that $r \in\{0,1,-1\}$, for all $a \in R$. We also have that $a \equiv r$ mod b, hence $R /(b)$ has at most 3 elements.

On the other hand the number of elements of $(R /(b))=(R:(b)) \Delta((b))=(R:(b))^{2} \Delta(R)$ (by Theorem 3.19 since $(b) \subset R)$. Let $R=\mathbb{Z}+\mathbb{Z} \theta$ where $\theta=\left\{\begin{array}{lll}\sqrt{d} & d \not \equiv 1 & \bmod 4 \\ \frac{1+\sqrt{d}}{2} & d \equiv 1 & \bmod 4\end{array}\right.$. Then we have $(b)=\mathbb{Z} b+\mathbb{Z} b \theta$. Now $\Delta((b))=\operatorname{det}\left(\begin{array}{ll}\frac{b}{b} & \frac{\theta b}{\theta b}\end{array}\right)^{2}=(b \overline{b \theta}-\bar{b} b \theta)^{2}=(b \bar{b})^{2}(\bar{\theta}-\theta)^{2}=N(b)^{2} \Delta(R)$. Hence we have $(R:(b))^{2}=N(b)^{2}$, that is $(R:(b))=N(b)$ (since the norm is positive). So if we show that $\forall b \in R \backslash\{0, \pm 1\}$ we have $N(b)>3$ then $R /(b)$ has more than three elements, contradicting the first paragraph. Now we always have $N(a+b \sqrt{d})=a^{2}+|d| b^{2}$

Suppose $d \not \equiv 1 \bmod 4$, then for $a+b \sqrt{d}$ to be in R we need $a, b \in \mathbb{Z}$. Suppose that $a^{2}+|d| b^{2} \leq 3$ then $|a| \leq 1$ and $|d|>11$, so $b=0$, but $a+b \sqrt{d} \in\{0, \pm 1\}$,

If $d \equiv 1 \bmod 4$ we can also have $a=\frac{a^{\prime}}{2}, b=\frac{b^{\prime}}{2}$ where $a^{\prime}, b^{\prime} \in \mathbb{Z}$ and $a^{\prime} \equiv b^{\prime} \bmod 2$. Then $N(a+b \sqrt{d})=$ $N\left(\frac{a^{\prime}+b^{\prime} \sqrt{d}}{2}\right)=\frac{1}{2}\left(a^{\prime 2}+|d| b^{\prime 2}\right)$. Suppose $N(a+b \sqrt{d}) \leq 3$ then $a^{\prime 2}+|d| b^{\prime 2} \leq 12$. But $|d| \geq 13$, so again $b^{\prime}=0$ and $a^{\prime 2} \leq 12$ so $\left|a^{\prime}\right| \leq 3$. Hence $a^{\prime} \in\{-2,0,2\}$, implying $a+b \sqrt{d} \in\{0, \pm 1\}$.

Conjecture. Let K be a number field that is not $\mathbb{Q}(\sqrt{d})$ for some $d<0$ then if \mathcal{O}_{K} is a UFD, then it is Euclidean.
Remark. In general $\phi=N$ does not work, then ϕ is very difficult to find.

5.2 Dedekind Domain

Definition 5.7. A prime ideal is an ideal $P \subset R$ satisfying $P \neq R$ and $\forall a, b \in R$ with $a b \in P$ then either $a \in P$ or $b \in P$.

Fact. $P \subset R$ is prime if and only if R / I is a domain
Definition 5.8. A maximal ideal is an ideal $M \subset R$ satisfying $M \neq R$ and there are no ideals $I \neq R$ with $M \subset I \subset R$.

Fact. $M \subset R$ is a maximal ideal if and only if R / M is a field.
Every proper ideal $I \subset R$ is contained in a maximal ideal. (See commutative Algebra Theorem 1.4 and its Corollaries)

Example. Let $R=\mathbb{Z}$. Then its prime ideals are (0) and (p) where p is prime. Its maximal ideals are (p) (as $\mathbb{Z} /(p)=\mathbb{F}_{p}$ is a field)

Definition 5.9. A ring R is Noetherian if one and thus both of the following equivalent conditions holds.

1. Every ideal of R is finitely generated
2. Every ascending chains of ideals $I_{0} \subset I_{1} \subset \ldots$ is stationary, i.e., there exists $r>0$ such that $I_{i}=I_{j}$ for all $i, j>r$.

Definition 5.10. Let R be a domain. Then R is a Dedekind Domain if:

1. R is Noetherian
2. R is integrally closed in its field of fractions
3. Every non-zero prime ideal is a maximal ideal

Example. Every field is a Dedekind domain (the only ideals are: (0), (1))
Lemma 5.11. Every finite domain is a field.
Proof. Let R be a finite domain. Take $0 \neq a \in R$, we need to show there exists $x \in R$ with $a x=1$. Consider the $\operatorname{map} R \xrightarrow{\cdot a} R$ defined by $x \mapsto a x$. We note that $\cdot a$ is injective, if $a b=a c$ then $a(b-c)=0$, hence $b-c=0$ since R is a domain. As R is finite, $\cdot a$ is also surjective. Hence there exists x with $a x=1$.

Theorem 5.12. If K is a number field, then \mathcal{O}_{K} is a Dedekind domain.
Proof. Let $I \subset \mathcal{O}_{K}$ be an ideal. If $I=(0)$ then it is finitely generated, so assume I is non-zero. Hence there exists $0 \neq a \in I$, so $a \mathcal{O}_{K}$ is a full rank lattice in \mathcal{O}_{K}. We have $a \mathcal{O}_{K} \subset I \subset \mathcal{O}_{K}$, so I is a full rank lattice as well. It has $[K: \mathbb{Q}]<\infty$ generators as a free abelian group and the same elements generates it as an ideal. So \mathcal{O}_{K} is Noetherian.

We know that $\mathcal{O}_{K}=\overline{\mathbb{Z}} \cap K$. Furthermore the integral closure of a ring R in an extension S is in fact integrally closed in S. So \mathcal{O}_{K} is integrally closed in K.

Let $P \in \mathcal{O}_{K}$ be a non-zero prime ideal. P is a full rank lattice so $\left(\mathcal{O}_{K}: P\right)<\infty$. Hence \mathcal{O}_{K} / P is a finite domain. So by the above lemma, \mathcal{O}_{K} / P is a field and hence P is maximal.

Definition 5.13. Let R be a domain. Then a fractional ideal I of R is a R-submodule of the fields of fractions of R, such that there exists $0 \neq a \in R$ with $a I \subset R$

Example. Let us work out the fractional ideals of \mathbb{Z}. The ideals of \mathbb{Z} are (n) with $n \in \mathbb{Z}$. So fractional ideals are $I \subset \mathbb{Q}$ such that $\exists a \in \mathbb{Z}$ with $a I=(n)$ for some $n \in \mathbb{Z}$. That is $I=\frac{n}{a} \mathbb{Z} \in \mathbb{Q}$.

Note that \mathbb{Q} is not a fractional ideal, as elements of \mathbb{Q} have arbitrary large denominators.
If R is a ring, $I, J \subset R$ are ideals, then $I J$ is the ideal generated by $\{i j: i \in I, j \in J\}$.
If R is a domain, I, J fractional ideals of R and K the field of fraction of R, then $I J$ is a K-submodule generated by $\{i j: i \in I, j \in J\}$. It is a fractional ideal as $a b I J \subset R$ (where a, b are such that $a I, b J \subset R$)

Example. Let $R=\mathbb{Z}$ and consider $I=(a), J=(b)$ with $a, b \in \mathbb{Q}$. Then $I J=(a b)$
Definition 5.14. Let R be a domain, K its field of fraction, $I \subset K$ a fractional ideal. Then I is called invertible if there exists a fractional ideal $J \subset K$ such that $I J=R=(1)$

Example. Every non-zero fractional ideal of \mathbb{Z} is invertible.
Every principal non-zero fractional ideal (a) of R is invertible, consider $(a)\left(a^{-1}\right)=(1)$
Theorem 5.15. The invertible ideals of a domain R forms a group with respect to fractional ideal multiplication, with unit element $R=(1)$ and inverse $I^{-1}=\{a \in K \mid a I \subset R\}$. (K is the field of fractions of R)

Proof. Let $I \subset K$ be invertible, then there exists J with $I J=R$. We want to show: if $a \in J$ then $a I \subset R$ and if $a I \subset R$ then $a \in J$. The first one follows directly. Consider $a I J=a R$ and $a I J \subset J$, so $a R \subset J$ means $a \in J$. Hence $J=I^{-1}$.

If I_{1}, I_{2}, I_{3} are fractional ideals then $I_{1}\left(I_{2} I_{3}\right)=\left(I_{1} I_{2}\right) I_{3}$
Finally we show that if I, J are invertible then so is $I J^{-1}$. We claim $\left(I J^{-1}\right)^{-1}=J I^{-1}$. To see this consider $\left(I J^{-1}\right)\left(J I^{-1}\right)=I R I^{-1}=I I^{-1}=R$.

Theorem 5.16. Let R be a domain. Then the following conditions on R are equivalent

1. R is Dedekind
2. Every non-zero fractional ideals of R is invertible
3. Every non-zero ideals of R is the product of prime ideals.
4. Every non-zero ideal of R is the product of prime ideals uniquely.

We will prove this after some examples.
Example. $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}=\mathbb{Z}[\sqrt{-5}]$ is not a UFD, we have $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. But since $\mathbb{Z}[\sqrt{-5}]$ is Dedekind (by Theorem 5.12), we can write (6) as the product of prime ideal uniquely. In fact (6) $=(2) \cdot(3)=$ $(1+\sqrt{-5})(1-\sqrt{-5})=(2,1+\sqrt{-5})(2,1-\sqrt{-5})(3,1+\sqrt{-5})(3,1-\sqrt{-5})$. We check that $(2,1+\sqrt{-5})$ is prime. Now $\mathbb{Z}[\sqrt{-5}] /(2,1+\sqrt{-5}) \cong \mathbb{Z}[x] /\left(x^{2}+5,2,1+x\right)$. Now $\left(2, x+1, x^{2}+5\right)=\left(2, x+1, x^{2}+5-x(x+1)=(2, x+1,-x+5)=\right.$ $(2, x+1)$. Hence $\mathbb{Z}[\sqrt{-5}] /(2,1+\sqrt{-5}) \cong \mathbb{Z}[x] /(2, x+1) \cong \mathbb{F}_{2}[x] /(x+1) \cong \mathbb{F}_{2}$, which is a field. Thus $(2,1+\sqrt{-5})$ is maximal.

Definition 5.17. If R is a domain and K its field of fraction. Let I be a non-zero fractional ideal then $R: I=$ $\{a \in K: a I \subset R\}$

Note that from Theorem 5.15 we see that I is invertible if and only if $(R: I) \cdot I=R$
Example 5.18. $R=\mathbb{Z}[\sqrt{-3}]$ is not Dedekind. (As it is not algebraically closed)
We show that the ideal $I=(2,1+\sqrt{-3})$ is not invertible. $R: I=\{a+b \sqrt{-3} \in \mathbb{Q}(\sqrt{-3}): 2(a+b \sqrt{-3}) \in$ $\mathbb{Z}[\sqrt{-3}],(1+\sqrt{-3})(a+b \sqrt{-3}) \in \mathbb{Z}[\sqrt{-3}])$. From the first condition, we can rewrite $a=\frac{a^{\prime}}{2}, b=\frac{b^{\prime}}{2}$ with $a^{\prime}, b^{\prime} \in \mathbb{Z}$. So consider the second condition

$$
(1+\sqrt{-3})\left(\frac{a^{\prime}}{2}+\frac{b^{\prime}}{2} \sqrt{-3}\right)=\frac{a^{\prime}}{2}+\frac{a^{\prime}+b^{\prime}}{2} \sqrt{-3}-3 \frac{b^{\prime}}{2}
$$

So $a^{\prime} \equiv b^{\prime} \bmod 2$, i.e.,

$$
\mathbb{Z}[\sqrt{-3}]:(2,1+\sqrt{-3})=\left\{\frac{a^{\prime}+b^{\prime} \sqrt{-3}}{2}: a^{\prime}, b^{\prime} \in \mathbb{Z}, a^{\prime} \equiv b^{\prime} \quad \bmod 2\right\}=\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]
$$

Now

$$
\begin{aligned}
\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right] \cdot(2,1+\sqrt{-3}) & =\left(1, \frac{1+\sqrt{-3}}{2}\right)(2,1+\sqrt{-3}) \\
& =\left(2,1+\sqrt{-3}, \frac{1+\sqrt{-3}}{2}(1+\sqrt{-3})\right) \\
& =(2,1+\sqrt{-3}, \sqrt{-3}-1) \\
& =(2,1+\sqrt{-3}) \\
& =I \\
& \neq R
\end{aligned}
$$

Hence I is not invertible.
We now show that $I=(2)$ can not be written as the product of prime ideals. Suppose $I=P_{1} P_{2} \ldots P_{n}$, then $I \subset P_{i}$ for all i. Now \{ideals of R containing $\left.I\right\} \leftrightarrow\{$ ideals of $R / I\}$. The bijection is defined by $J \mapsto J / I \subset R / I$ and $\{x: \bar{x} \in J\} \longleftrightarrow \bar{J}$

In our case

$$
\begin{aligned}
R / I & =\mathbb{Z}[\sqrt{-3]} /(2) \\
& \cong \mathbb{Z}[x] /\left(x^{2}+3,2\right) \\
& \cong \mathbb{F}_{2}[x] /\left(x^{2}+1\right) \\
& \cong \mathbb{F}_{2} /(x+1)^{2} \\
& \cong \mathbb{F}_{2}[x] /(x)^{2} \\
& =\left\{a+b \epsilon: a \cdot b \in \mathbb{F}_{2}, \epsilon^{2}=0\right\}
\end{aligned}
$$

The ideals in R / I are $(0),(1)=(1+\epsilon)$ and (ϵ). Which of these ideal is prime? (1) is never prime, and (0) is not prime as it is not a domain. So (ϵ) is the only maximal ideal and hence must be the only prime R / I has. Clearly $(2) \subset(2,1+\sqrt{-3})$, which we saw maximal and so must be the only prime ideal which contains (2).

So all P_{i} are equal to $(2,1+\sqrt{-3})$. Thus $(2)=(2,1+\sqrt{-3})^{m}$ for some m. Now $(2) \neq(1)$, hence $m \neq 0$ and $(2) \neq(2,1+\sqrt{-3})$ as the first is invertible but not the second so $m \neq 1$.

$$
\begin{aligned}
(2,1+\sqrt{-3})^{2} & =(4,2+2 \sqrt{-3}, 1-3+2 \sqrt{-3}) \\
& =(4,2+2 \sqrt{-3}) \\
& =(2)(2,1+\sqrt{-3}) \\
& \subset(2)
\end{aligned}
$$

So if $(2)(2,1+\sqrt{-3})=(2)$, then $(2,1+\sqrt{-3})=\left(2^{-1}\right)(2)=(1)$ which is a contradiction. And for all $m \geq 2$ we have $(2,1+\sqrt{-3})^{m} \subset(2,1+\sqrt{-3})^{2} \subset(2)$. Hence there is no m with $(2,1+\sqrt{-3})^{m}=(2)$.

The proof of Theorem 5.16 requires proofs by Noetherian induction. Here is a quick layout of how such a proof works. To prove a statement about ideals in a Noetherian ring R :

- First prove it for all maximal ideals.
- Then induction step: assume it holds for all $I \supsetneq J$. Prove it hold for J

Why does this proves the statement for all ideal? Suppose the statement is false for a certain set $S \neq \emptyset$ of ideals: Pick any $I_{0} \in S$. By induction step, there exists $I_{1} \supsetneq I_{0}$, for which the statement is false. Repeat and we get an infinite ascending chain, which is impossible in a Noetherian ring.

Proof of Theorem 5.16. [NB: This proof is rather long and was spread over several lectures. The lecturer got a big confuse at some point and so it also incomplete, it only proves some implications, including the most important for this course, Dedekind implies everything else. I have tried to reorganise this proof so that it makes more sense. I do know that he managed to prove it in one lecture successfully the following year (2011-2012) but I did not get a copy of it]

Note: If R is a field, the only ideals are (0) and (1) so there is nothing to prove. Hence assume that R is not a field.
2. $\Rightarrow 3$. Assume 2. We want to show that every ideal is the product of prime ideals. We first show that every invertible ideal is finitely generated. Let I be a fractional ideal of R, then there exists J with $I J=(1)$, hence $1 \in I J$. Now elements of $I J$ are sums of the form $r_{1} x_{1} y_{1}+\cdots+r_{n} x_{n} y_{n}$ with $r_{i} \in R, x_{i} \in I$ and $y_{i} \in J$. Hence $1=\sum r_{i} x_{i} y_{i}$ for some r_{i}, x_{i}, y_{i}. We claim that $I=\left(x_{1}, \ldots, x_{n}\right)$, to prove our claim we just need to show that $\left(x_{1}, \ldots, x_{n}\right) J=(1)$ (since inverses in groups are unique). It is obvious that $(1) \subset\left(x_{1}, \ldots, x_{n}\right) J$. On the other hand $\left(x_{1}, \ldots, x_{n}\right) \subset I$ so $\left(x_{1}, \ldots, x_{n}\right) J \subset I J \subset(1)$.
Hence R is Noetherian, since every invertible ideal is finitely generated.
Lemma 5.19. Assuming 2., we have for non-zero ideals $I, J: I \subset J$ if and only if $J \mid I$ (that is there is a J^{\prime} with $J J^{\prime}=1$)

Proof. $\Leftarrow)$ Obvious
\Rightarrow) Put $J^{\prime}=I J^{-1}$, this is a fractional ideal. We need to show that $I J^{-1} \subset R$ (i.e., that it is an ideal and not just a fractional ideal). We have $I \subset J$, so $I J^{-1} \subset J J^{-1}=R$

We now proceed by a proof by Noetherian induction.
If I is a maximal ideal, then I is itself a factorisation into prime ideals. Now let an ideal I not prime be given and assume that for all $J \supsetneq I, J$ has a factorization into primes. There exists is a prime $P \supsetneq I$, so $P \mid I$ and hence $I=P J$ for some $J \subset R$. We want to show that $J \supsetneq I$. We know that $I=P J \subset J$. Suppose that $I=J$, then $P J=J$, so multiply by J^{-1}, then $P=R$ which is a contradiction.

Hence we have just shown by Noetherian induction that every fractional ideal is a product of primes.
$1 ., 2 . \& 3 . \Rightarrow 4$. Assume there is an ideal I that has two distinct factorisation into primes. That is $I=P_{1} \ldots P_{m}=$
$Q_{1} \ldots Q_{n}$ and without loss of generality suppose that m is minimal. We have that no Q_{i} is equal to some
P_{j} as otherwise if $Q_{i}=P_{j}$ then $P_{1} \ldots P_{j-1} P_{j+1} \ldots P_{m}=I P_{j}^{-1}=Q_{1} \ldots Q_{i-1} Q_{i+1} \ldots Q_{n}$ contradicting minimality of m.

We have $Q_{1} \ldots Q_{n}=P_{1} \ldots P_{m} \subset P_{1}$, so $P_{1} \mid Q_{1} \ldots Q_{m}$. Let $I^{\prime}=I P_{1}^{-1}=P_{2} \ldots P_{m}=Q_{1} \ldots Q_{n} P_{1}^{-1}$. Now I^{\prime} is an ideal of R but it has a factorisation into $n-1$ factors, so this factorisation is unique. We want to show that there exists i with $Q_{i} \mid I^{\prime}$, equivalently there exists i with $I^{\prime} \subset Q_{i}$. Assume that there is no such i, then $\forall i I^{\prime} \nsubseteq Q_{i}$. Consider P_{1} and Q_{1} which are distinct. We have $P_{1}, Q_{1} \subset P_{1}+Q_{1}$. We claim that $P_{1}+Q_{1}=R$. Since P_{1} and Q_{1} are maximal (assuming 1.) we have $P_{1} \subset P_{1}+Q_{1} \Rightarrow P_{1}+Q_{1}=P_{1}$ or R, similarly, we concluder $P_{1}+Q_{1}=Q_{1}$ or R. Hence $P_{1}+Q_{1}=R$.
So there exists $p \in P_{1}, q \in Q_{1}$ with $p+q=1$. So $I=(p+q) I=p I+q I \subset p Q_{1}+q P_{1} \subset P_{1} Q_{1}$. So $P_{1} Q_{1}\left|I \Rightarrow Q_{1}\right| I P_{1}^{-1}=I^{\prime}$. Hence we get a contradiction.
$1 . \Rightarrow 2$. We use Noetherian induction.
Let P be a maximal ideal, then we want to show that P is invertible. Pick $0 \neq a \in P$. Then the ideal (a) is invertible $\left((a)\left(a^{-1}\right)=(a)\right)$ and $(a) \subset P$.
Lemma 5.20. Let R be a Dedekind domain and let $I \neq 0$ be an ideal. There exists P_{1}, \ldots, P_{n} maximal ideals with $P_{1} \ldots P_{n} \subset I$

Proof. We'll use Noetherian induction. If I is maximal then $I \subset I$. Assume for all $J \supsetneq I$, we have prime ideals Q_{i} with $Q_{1} \ldots Q_{n} \subseteq I$. We have to show that there exists P_{i} prime ideals with $P_{1} \ldots P_{n} \subset I$. I itself is not prime because all non-zero primes are maximal.
This means there exists $a, b \in R$ such that $a, b \notin I$ but $a b \in I$. Consider the ideals $I+(a)$ and $I+(b)$. By induction hypothesis there exists P_{i} such that $P_{1}, \ldots, P_{n} \subset I+(a)$ and $P_{n+1} \ldots P_{m} \subset 1+(b)$. Hence $P_{1} \ldots P_{m} \subset(I+(a))(I+(b)) \subset I$.

Hence by the lemma, there exists P_{1}, \ldots, P_{n} with $P_{1} \ldots P_{n} \subset(a)$ and without loss of generality we have n is minimal.
We will use the following lemma later in the proof.
Lemma 5.21. Let R be a Dedekind domain and let $I \subset R$ be a finitely generated ideal. Let $\phi: I \rightarrow I$ be a map such that $\phi(I) \subset I$, then there exists $a_{0}, \ldots, a_{n-1} \in J$ such that $\phi^{n}+a_{n-1} \phi^{n-1}+\cdots+a_{0}=0$ A special case: Let $\alpha \in K$, the field of fraction of R, be such that $\alpha I \subset I$. Then there exists a relation $\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{0}=0$ with $a_{i} \in R$

Proof. Choose a matrix that $A=\left(a_{i j}\right)_{i j}$, that describes ϕ in terms of x_{i}, the generators of I, and that satisfies $a_{i j} \in I$. By Cayley-Hamilton, if P_{A} is the characteristic polynomial of A, then $P_{A}(A)=0$. Now $P_{A}=\operatorname{det}\left(X I_{n}-A\right):=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$ for some a_{i} which clearly are in R.

Corollary 5.22. If R is Dedekind and K its field of fraction. Let $I \subset R$ be an ideal and $\alpha \in K$ with $\alpha I \subset I$, then $\alpha \in R$.

As a recap, we have $P \neq 0$ is prime (and hence maximal). Take $0 \neq a \in P$, then there exists P_{1}, \ldots, P_{n} with $P_{1} \ldots P_{n} \subset(a) \subset P$. We claim that one of the P_{i} is P. In general for prime ideals we have $I J \subset P \Rightarrow I \subset P$ or $J \subset P$. (Otherwise, assume $I \nsubseteq P, J \nsubseteq P$, then there exists $a \in I, b \in J$ with $a \notin P, b \notin P$, but then $a b \notin P)$. So without loss of generality assume $P_{1} \subset P$, but P_{1} is maximal so $P_{1}=P$
Let $J=P_{2} \ldots P_{n}$, i.e., $P J \subset(a) \subset P$. Since we assumed n was minimal, we have $J \nsubseteq(a)$. So $P J \subset(a)$, hence $P J(a)^{-1} \subset R$, but $a^{-1} J \nsubseteq R$.
Consider $R: P=\{\alpha \in K \mid \alpha P \subset R\}$, we need to show that $(R: P) P=R$. Now $\forall \alpha \in R: P$, we have $\alpha P \subset P$, so by the corollary $R: P \subset R$. We have $P \subset(R: P) P \subset P$, but P is maximal, so if $(R: P) P \neq R$ then $(R: P) P=P$. Hence if P is not invertible then $R: P=R$. Take $\alpha \in a^{-1} J \backslash R$. Then $\alpha P \subset R$, so $\alpha \in R: P$ but $\alpha \notin R$. Contradicting $R: P=R$, hence P is invertible.
So we have proven that every non-zero prime ideals (i.e., every maximal ideal) is invertible. We finish off the Noetherian induction.

Assume for all $J \supsetneq I$ we have that J is invertible. We will show I is invertible. Choose a prime $P \supset I$. We know that P is invertible. Consider $I \subset P^{-1} I \subset R$. (Since $P^{-1} I \subset P P^{-1}=R$) If $P^{-1} I \neq I$ then $P^{-1} I \supsetneq I$, so $P^{-1} I$ is invertible. Then $I=R I=P\left(P^{-1} P\right)$ is invertible as well. So assume $P^{-1} I=I$. For all $\alpha \in P^{-1}$ we have $\alpha I \subset I$, thus $\alpha \in R$. Hence $P^{-1} \subset R \Rightarrow P P^{-1}=R \subset R P=P$ which is a contradiction.

Definition 5.23. Let K be a number field. Then the ideal group of K is the group I_{K} consisting of all fractional ideals of \mathcal{O}_{K}

The principal ideal group of K, P_{K}, is the group of all principal ideals.
We have $P_{K} \triangleleft I_{K}$. The quotient $\mathrm{Cl}_{K}=I_{K} / P_{K}$ is called the calls group of K.
An ideal class is a set $\left\{\alpha I: \alpha \in K^{*}\right\}$ of ideals.
Theorem 5.24. For all number field K, the class group is finite. The class number of K is $h_{K}:=\left|C l_{K}\right|$
We will prove this later in the course.
Remark. If \mathcal{O}_{K} is a PID, then $h_{K}=1$ (in fact this is a if and only if statement.)
P_{K} is the trivial ideal class. Define a map $K^{*} \rightarrow P_{K}$ by $\alpha \mapsto(\alpha)$. Then $P_{K} \cong K^{*} / \mathcal{O}_{K}^{*}$, so the kernel is \mathcal{O}_{K}
Lemma 5.25. If R is a UFD then for an irreducible elements, π, the ideal (π) is prime.
Proof. Take $a, b \in R$ with $a b \in(\pi)$. This means $\pi \mid a b$ hence $\pi \mid a$ or $\pi \mid b$. So $a \in(\pi)$ or $b \in(\pi)$
Theorem 5.26. Let R be a Dedekind domain. Then R is a UFD if and only if R is a PID.
Proof. $\Leftarrow)$ Every PID is a UFD
$\Rightarrow)$ Let $I \neq 0$ be any ideal that is not principal. We can write $I=P_{1} P_{2} \ldots P_{n}$, without loss of generality say P_{1} is not principal. Now take any $0 \neq a \in P_{1}$ and write $a=\epsilon \pi_{1} \ldots \pi_{m}$ with π_{i} irreducible. Then $(a)=\left(\pi_{1}\right)\left(\pi_{2}\right) \ldots\left(\pi_{m}\right)$. But $P_{1} \mid(a)$, so we get P_{1} is not principal while (a) is, hence contradiction.

So \mathcal{O}_{K} is a UFD if and only if $h_{K}=1$. We can say " h_{K} measures the non-uniqueness of factorisation on \mathcal{O}_{K} "
Example. Find all integer solutions to $x^{2}+20=y^{3}$
We can factorise this over $\mathbb{Z}[\sqrt{-5}]=\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}$ into $(x+2 \sqrt{-5})(x-2 \sqrt{-5})=y^{3}$. Fact: $h_{\mathbb{Q}(\sqrt{-5})}=2$.
As ideals we have $(x+2 \sqrt{-5}) \cdot(x-2 \sqrt{-5})=(y)^{3}$. As usual, let us find the common factors of $(x+2 \sqrt{-5})$ and $(x-2 \sqrt{-5})$

Suppose P is a prime ideal such that $P \mid(x+2 \sqrt{-5})$ and $P \mid(x-2 \sqrt{-5})$, then $(x+2 \sqrt{-5}, x-2 \sqrt{-5}) \subseteq P$. Now we have $(4 \sqrt{-5}) \subset(x+2 \sqrt{-5}, x-2 \sqrt{-5})$. Note that $(2,1+\sqrt{-5})(2,1-\sqrt{-5})=(4,2+2 \sqrt{-5}, 2-2 \sqrt{-5}, 6)=(2)$, hence $(2)=(2,1+\sqrt{-5})^{2}$ (and we know from a previous exercise that $(2,1+\sqrt{-5})$ is prime). Furthermore $(\sqrt{-5})$ is prime:

$$
\begin{aligned}
\mathbb{Z}[\sqrt{-5}] /(\sqrt{-5}) & \cong \mathbb{Z}[x] /\left(x^{2}+5, x\right) \\
& \cong \mathbb{Z}[x] /(5, x) \\
& \cong \mathbb{F}_{5}
\end{aligned}
$$

So $(4 \sqrt{-5})=(2,1+\sqrt{-5})^{4}(\sqrt{-5}) \Rightarrow P=(2,1+\sqrt{-5})$ or $P=(\sqrt{-5})$.
Write $(x+2 \sqrt{-5})=(2,1+\sqrt{-5})^{e_{1}}(\sqrt{-5})^{e_{2}} \prod P_{i}^{e_{i}}$. Apply the automorphism $\alpha \mapsto \bar{\alpha}$, to get $(x-2 \sqrt{-5})=$ $(2,1+\sqrt{-5})^{e_{1}}(\sqrt{-5})^{e_{2}} \prod \bar{P}_{i}^{e_{i}}$ (since $(\sqrt{-5})=(-\sqrt{-5})$ and as noted before $(2,1+\sqrt{-5})=(2,1-\sqrt{-5})$). Note that the products P_{i} must be distinct. So we get $(x+2 \sqrt{-5})(x-2 \sqrt{-5})=(2,1+\sqrt{-5})^{2 e_{1}}(\sqrt{-5})^{2 e_{2}} \prod P_{i}^{e_{i}} \prod \bar{P}_{i}{ }^{e_{i}}=(y)^{3}$. Since factorization into prime ideal is unique, we have $3 \mid e_{i}$ for all i. Hence $(x+2 \sqrt{-5})=I^{3}$ for some ideal I.

Let \widetilde{I} be the class of I. Then in $\mathrm{Cl}_{\mathcal{O}_{\bullet(\sqrt{ }-5)}}$, we have $\widetilde{I}^{3}=1$ (since $(x+2 \sqrt{-5})$ is principal). Now the class group has order 2, hence $\widetilde{I}=1$ since $\operatorname{gcd}(2,3)=1$. Hence I is principal, so write $I=(a+b \sqrt{-5})$. So $(x+2 \sqrt{-5})=$ $\left((a+b \sqrt{-5})^{3}\right) \Rightarrow x+2 \sqrt{-5}=$ unit $\cdot(a+b \sqrt{-5})^{3}$. Now units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1, which are both cubes, so without loss of generality, $x+2 \sqrt{-5}=(x+b \sqrt{-5})$.

Hence $x+2 \sqrt{05}=a^{3}+3 a^{2} b \sqrt{-5}-15 a b^{2}-5 b^{3} \sqrt{-5}=\left(a^{3}-15 a b^{2}\right)+\sqrt{-5}\left(3 a^{2} b-5 b^{3}\right)$. So we need to solve $2=b\left(3 a^{2}-5 b^{2}\right)$, but 2 is prime, so $b= \pm 1, \pm 2$.

If $b= \pm 1$, then $3 a^{2}-5= \pm 2$, either $3 a^{2}=7$ which is impossible, or $3 a^{2}=3 \Rightarrow a= \pm 1$. In that case we have $x=a^{3}-15 a b^{2}= \pm(1-15)= \pm 14$. Then $14^{2}+20=196+20=216=6^{3} \Rightarrow(\pm 14,16)$ are solutions.

If $b= \pm 2$, then $3 a^{2}-20= \pm 1$, so $3 a^{2}=21$ or 19 , but both cases are impossible.
Hence $(\pm 14,16)$ are the only integer solutions to $x^{2}+20=y^{3}$.

5.3 Kummer-Dedekind Theorem

Let K be a number field, and $I \subset \mathcal{O}_{K}$ a non-zero ideal. Note that I contains $a \mathcal{O}_{K}$ for any $a \in I$, hence we have that $\left(\mathcal{O}_{K}: I\right)$ is finite. This leads us to the following definition:

Definition 5.27. The norm of an ideal $I \subset \mathcal{O}_{K}$ is defined as $N(I)= \begin{cases}\left(\mathcal{O}_{K}: I\right) & I \neq 0 \\ 0 & I=0\end{cases}$
Theorem 5.28. For any principal ideal $(a) \subset \mathcal{O}_{K}$, we have $N((a))=|N(a)|$
Proof. If $\omega_{1}, \ldots, \omega_{n}$ is a basis for \mathcal{O}_{K}, then $a \omega_{1}, \ldots, a \omega_{n}$ is a basis for (a). Now multiplication by a can be seen as a matrix A in terms of $\omega_{1}, \ldots, \omega_{n}$. So $\left(\mathcal{O}_{K}: a \mathcal{O}_{K}\right)=|\operatorname{det} A|=|N(a)|$

Theorem 5.29. The norm of ideals in \mathcal{O}_{K} is multiplicative. That is $N(I J)=N(I) N(J)$
Proof. First note $N\left(\mathcal{O}_{K}\right)=1$.
We can write every non-zero ideal as a product of prime ideals (as \mathcal{O}_{K} is Dedekind and using Theorem 5.16) So it suffices to prove that $N(I P)=N(I) N(P)$ where P is a non-zero prime. We have $N(I P)=\left(\mathcal{O}_{K}: I P\right)$ and $I P \subset I \subset \mathcal{O}_{K}$, hence $N(I P)=(I: I P)\left(\mathcal{O}_{K}: I\right)=(I: I P) N(I)$.

We must show that $(I: I P)=N(P)=\left(\mathcal{O}_{K}: P\right)$. Now P is maximal, so \mathcal{O}_{K} / P is a field. We have $I / I P$ is a vector space over \mathcal{O}_{K} / P. We want to show that $d=\operatorname{dim}_{\mathcal{O}_{K} / P} I / I P=1$.
$I P \neq I$ as \mathcal{O}_{K} is Dedekind, so $I / I P \neq 0$, hence $d \geq 1$
Suppose that $d \geq 2$, then there exists $\bar{a}, \bar{b} \in I / I P$ that are linearly independent over \mathcal{O}_{K} / P. Take lifts $a, b \in I$. For all $x, y \in \mathcal{O}_{K}$ with $a x+b y \in P$, we have $x \in P$ and $y \in P$. Write $I=P^{e} I^{\prime}$, then $(a) \subset I$, so $P^{e}|I|(a)$, also $a \notin I P$, so $I P \nmid(a)$. Hence $P^{e+1} \nmid(a)$. Similarly we find $P^{e+1} \nmid(b)$. So we can rewrite this as $(a)=P^{e} I^{\prime} J_{1},(b)=P^{e} I^{\prime} J_{2}$ with $P \nmid I^{\prime} J_{1}, P \nmid I^{\prime} J_{2}$. We have $(a) J_{2}=(b) J_{1}$. Since $J_{2} \nsubseteq P$, there exists $c \in J_{2} \backslash P$. So av $\in(b) J_{1} \Rightarrow a c=b e$ for some $e \in J_{1}$. Now $a c-b e=0 \in P \Rightarrow c \in P$. This is a contradiction. Hence the dimension is 1 as required.

Corollary 5.30. If $N(I)$ is prime, then I is prime
Proof. If I is not prime, then $I=P I^{\prime}$ with P a non-zero prime and $I^{\prime} \neq(1)$. Then $N(I)=N(P) N\left(I^{\prime}\right)$ cannot be prime.
Theorem 5.31. If $I \subset \mathcal{O}_{K}$ is a non-zero prime, then $N(I)=p^{f}$ for some prime p and $f \in \mathbb{Z}>0$
Proof. \mathcal{O}_{K} / I is a field (I is maximal) of $N(I)$ elements. Any finite field has p^{f} elements for some prime p and $f \in \mathbb{Z}_{>0}$

Theorem 5.32. If I is a non-zero ideal, we have $N(I) \in I$
Proof. $N(I)=\left|\mathcal{O}_{K} / I\right|$ by definition. Then Lagrange theorem implies $N(I) \cdot \mathcal{O}_{K} / I=\mathcal{O}_{K}$, so $N(I) \mathcal{O}_{K} \subset I$.
Theorem 5.33. If P is a non-zero prime with $N(P)=p^{f}$ then $p \in P$
Proof. By the previous theorem we have $p^{f} \in P$. But since P is prime, $p \in P$.
Kummer - Dedekind Theorem. Let $f \in \mathbb{Z}[x]$ be monic and irreducible. Let $\alpha \in \overline{\mathbb{Q}}$ be such that $f(\alpha)=0$. Let $\underline{p} \in \mathbb{Z}$ be prime. Choose $g_{i}(x) \in \mathbb{Z}[x]$ monic and $e_{i} \in \mathbb{Z}_{>0}$ such that $f \equiv \prod g_{i}(x)^{e_{i}} \bmod p$ is the factorization of $\bar{f} \in \mathbb{F}_{p}[x]$ into irreducible (with $\overline{g_{i}} \neq \overline{g_{j}}$ for $i \neq j$). Then:

1. The prime ideals of $\mathbb{Z}[\alpha]$ containing p are precisely the ideals $\left(p, g_{i}(\alpha)\right)=: P_{i}$
2. $\Pi P_{i}^{e_{i}} \subset(p)$
3. If all P_{i} are invertible then $\prod P_{i}^{e_{i}}=(p)$. Furthermore $N\left(P_{i}\right)=p^{f_{i}}$ where $f_{i}=\operatorname{deg} g_{i}$
4. For each i, let $r_{i} \in \mathbb{Z}[x]$ be the remainder of f upon division by g_{i}. Then P_{i} is not invertible if and only if $e_{i}>1$ and $p^{2} \mid r_{i}$

Proof. 1. We have $\mathbb{Z}[\alpha] \cong \mathbb{Z}[x] /(f)$ (Galois Theory). Primes of $\mathbb{Z}[\alpha]$ containing p have a one to one correspondence to primes of $\mathbb{Z}[\alpha] /(p) \cong \mathbb{Z}[x] /(p)(f)$. But $\mathbb{Z}[x] /(p, f) \cong \mathbb{F}_{p}[x] /(\bar{f})$, so primes of $\mathbb{F}_{p}[x] /(\bar{f})$ have a one to one correspondence to primes of $\mathbb{F}_{p}[x]$ containing \bar{f}. We know $\mathbb{F}_{p}[x]$ is a PID. So theses primes corresponds to irreducible $\bar{g} \in \mathbb{F}_{p}[x]$ such that $\bar{g} \mid \bar{f} \Longleftrightarrow \bar{f} \in(\bar{g})$.
Working backward from this set of correspondence we get what we want
2. Let $I=\prod\left(p, g_{i}(\alpha)\right)^{e_{i}}$. We want to show that $I \subset(p)$, i.e., all elements of I are divisible by p. Now I is generated by expression of the form $p^{d} \prod_{i=1}^{s} g_{i}(\alpha)^{m_{i}}, m_{i} \leq e_{i}$. So the only non-trivial case is when $d=0$, i.e., $\prod g_{i}(\alpha)^{e_{i}}$. We have $\prod g_{i}(x)^{e_{i}} \equiv f \bmod p$. Substituting α we get $\prod g_{i}(\alpha)^{e_{i}} \equiv f(\alpha) \equiv 0 \bmod p$
3. Assume $\mathbb{Z}[\alpha]=\mathcal{O}_{\mathbb{Q}(\alpha)}$. We have $\prod P_{i}^{e_{i}} \subset(p) \Rightarrow(p) \mid \prod P_{i}^{e_{i}}$. Now $N((p))=|N(p)|=p^{n}$ where $n=\operatorname{deg} f$. So $N\left(\prod P_{i}^{e_{i}}\right)=\prod N\left(P_{i}^{e_{i}}\right)=p^{\sum e_{i} \cdot \operatorname{deg}\left(g_{i}\right)}=p^{n}$
4. Left out as it requires too much commutative algebra.

Example. Consider $\mathbb{Q}(\sqrt{-5})$, then $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}=\mathbb{Z}[\sqrt{-5}]$. So take $f=x^{2}+5$.

- $p=2$, then $\bar{f}=x^{2}+1=(x+1)^{2} \in \mathbb{F}_{2}[x]$. So $g_{1}=x+1$ and $e_{1}=2$. Now $(2)=P_{1}^{2}=(2,1+\sqrt{-5})^{2}$ and $N\left(P_{1}\right)=2$. If P_{1} principle? If $P_{1}=(\alpha)$ then $N\left(P_{1}\right)=|N(\alpha)|$. Now $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$ which is never 2. Hence P_{1} is not principal.
- $p=3$, then $\bar{f}=x^{2}-1=(x+1)(x-1) \in \mathbb{F}_{3}[x]$. So we have $(3)=P_{1} P_{2}$ where $P_{1}=(3,-1+\sqrt{-5})$ and $P_{2}=(3,1+\sqrt{-5})$. Again we have $N\left(P_{1}\right)=N\left(P_{2}\right)=3$, so neither are principal as $3 \neq a^{2}+5 b^{2}$.
- $p=5$, then $\bar{f}=x^{2} \in \mathbb{F}_{5}[x]$. So we get $(5)=(5, \sqrt{-5})^{2}=(\sqrt{-5})^{2}($ since $5=-\sqrt{-5} \sqrt{-5})$.

Consider $\mathbb{Q}(\sqrt[3]{2})$, then $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}=\mathbb{Z}[\sqrt[3]{2}]$. So take $f=x^{3}-2$.

- $p=2$, then $\bar{f}=x^{3} \in \mathbb{F}_{2}[x]$. So $(2)=(2, \sqrt[3]{2})^{3}=(\sqrt[3]{2})^{3}($ since $2=\sqrt[3]{2} \sqrt[3]{2} \sqrt[3]{2})$
- $p=3$, then $\bar{f}=x^{3}-2$ is a cubic. Cubic polynomials are reducible if and only if they have a root. If this case, i.e., in \mathbb{F}_{3}, we have 2 is a root. So $x^{3}-2=(x-2)\left(x^{2}+2 x+1\right)=(x-2)(x+1)^{2}=(x+1)^{3}$. Hence $(3)=(3,1+\sqrt[3]{2})^{3}$ and $N(3,1+\sqrt[3]{2})=3$. Now $(3,1+\sqrt[3]{2})$ is principal if there exist $\alpha \in(3,1+\sqrt[3]{2})$ with $|N(\alpha)|=3$. Notice that $N(1+\sqrt[3]{2})=1^{3}+2 \cdot 1^{3}=3$, so $(3,1+\sqrt[3]{2})=(1+\sqrt[3]{2})$

6 The Geometry of Numbers

6.1 Minkowski's Theorem

Let K be a number field of degree n. Let $\sigma_{1}, \ldots, \sigma_{n}: K \hookrightarrow \mathbb{C}$ be its complex embedding. We see that if $\sigma: K \hookrightarrow \mathbb{C}$ is an embedding then $\bar{\sigma}: K \hookrightarrow \mathbb{C}$ defined by $\alpha \mapsto \overline{\sigma(\alpha)}$ is also an embedding. We have $\overline{\bar{\sigma}}=\sigma$ so ${ }^{-}$is an involution on $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, with fixed points being those σ with $\sigma(k) \subseteq \mathbb{R}$ for all $k \in K$.

Definition 6.1. Let K be a number field of degree n and $\sigma_{1}, \ldots, \sigma_{n}: K \hookrightarrow \mathbb{C}$ be its complex embeddings. Say there are r real embeddings $(\sigma(k) \subset \mathbb{R})$ and s pairs of complex embedding. So we have $r+2 s=n$. Then (r, s) is called the signature of K

We can use $\sigma_{1}, \ldots, \sigma_{n}$ to embed K into \mathbb{C}^{n} by $\alpha \mapsto\left(\sigma_{1},(\alpha), \ldots, \sigma_{n}(\alpha)\right)$. We view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ with the usual inner product, that is $\left\|z_{1}, \ldots, z_{n}\right\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$.

Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{2 n}$ be given, denote $P_{v_{1}, \ldots, v_{m}}:=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{m} v_{m}: \lambda_{i} \in[0,1]\right\}$. We have (see Algebra I)

$$
\operatorname{Vol}\left(P_{v_{1}, \ldots, v_{m}}\right)=\left(\operatorname{det}\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \cdots & \left\langle v_{1}, v_{m}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle v_{m}, v_{1}\right\rangle & \cdots & \left\langle v_{m}, v_{m}\right\rangle
\end{array}\right)\right)^{1 / 2}
$$

Theorem 6.2. $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ embeds K as a subset of $K_{\mathbb{R}}:=\left\{z_{1}, \ldots, z_{n} \in \mathbb{C}^{n}: z_{i}=\overline{z_{j}}\right.$ when $\left.\sigma_{i}=\overline{\sigma_{j}}\right\}$
$\underline{\text { Proof. For each } \alpha \in K \text { we have }\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right)=\left(z_{1}, \ldots, z_{n}\right) \text { satisfied for } i, j \text { with } \sigma_{i}=\overline{\sigma_{j}} \text {. So } z_{i}=\sigma_{i}(\alpha)=}$ $\overline{\sigma_{j}(\alpha)}=\overline{z_{j}}$

Theorem 6.3. $K_{\mathbb{R}}$ has dimension n.
Proof. Without loss of generality let $\sigma_{1}, \ldots, \sigma_{r}$ be the real embedding of $K \hookrightarrow \mathbb{R}$ and let $\sigma_{r+i}=\overline{\sigma_{r+s+i}}$ for $i \in\{1, \ldots, s\}$. Identifying $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$, we have $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)$ is in $K_{\mathbb{R}}$ if an only if:

- $y_{i}=0$ for $i \in\{1, \ldots, r\}$
- $x_{r+i}=x_{r+i+s}$ for $i \in\{1, \ldots, s\}$
- $y_{r+i}=-y_{r+i+s}$ for $i \in\{1, \ldots, s\}$

The number of independent linear equation is $r+2 s=n$. Hence the dimension of $K_{\mathbb{R}}=2 n-n=n$.
Definition 6.4. Let V be a finite dimensional vector space over \mathbb{R}, with inner product \langle,$\rangle (that is a positive$ definite symmetric bilinear form). Then V is called a Euclidean space.

Example. $V=\mathbb{R}^{n}$ with $\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Or V a subspace of \mathbb{R}^{n} (with the same inner product)

Fact. Any Euclidean space has an orthonormal basis.
Definition 6.5. Let V be an Euclidean space. A lattice Λ in V is a subgroup generated by \mathbb{R}-linearly independent vectors, v_{1}, \ldots, v_{m}.

The rank of the lattice is m.
The covolume of Λ is $\operatorname{Vol}\left(P_{v_{1}, \ldots, v_{m}}\right)$
Theorem 6.6. \mathcal{O}_{K} embeds as a full rank lattice in $K_{\mathbb{R}}$ of covolume $\sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$
Proof. Let $\omega_{1}, \ldots, \omega_{n}$ be a basis for \mathcal{O}_{K}. Put $\sigma(\alpha)=\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right) \in K_{\mathbb{R}} \subset \mathbb{C}^{n}$ for all $\alpha \in K$. We have the vectors $\sigma\left(\omega_{1}\right), \ldots, \sigma\left(\omega_{n}\right) \in K_{\mathbb{R}}$.

So we need to show that $\operatorname{Vol}\left(P_{\sigma\left(\omega_{1}\right), \ldots, \sigma\left(\omega_{n}\right)}\right)=\sqrt{\Delta\left(\mathcal{O}_{K}\right)} \neq 0$. We have

$$
\begin{aligned}
\operatorname{Vol}\left(P_{\sigma\left(\omega_{1}\right), \ldots, \sigma\left(\omega_{n}\right)}\right)^{2} & =\operatorname{det}\left(\left(\left\langle\sigma\left(\omega_{i}\right), \sigma\left(\omega_{j}\right)\right\rangle\right)_{i j}\right) \\
& =\operatorname{det}\left(\left(\sum_{k=1}^{n} \sigma_{k}\left(\omega_{i}\right) \sigma_{k}\left(\omega_{j}\right)\right)_{i j}\right) \\
& =\operatorname{det}\left(\left(\sum_{k=1}^{n} \sigma_{k}\left(\omega_{i} \omega_{j}\right)_{i j}\right)\right. \\
& =\operatorname{det}\left(\left(\operatorname{Tr}\left(\omega_{i} \omega_{j}\right)_{i j}\right)\right. \\
& =\Delta\left(\mathcal{O}_{K}\right)
\end{aligned}
$$

Corollary 6.7. For any non-zero ideal $I \subset \mathcal{O}_{K}$, we have $\sigma(I) \subset K_{\mathbb{R}}$ is a full rank lattice of covolume $\sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$. $N(I)$

Proof. Obvious
Minkowski's Theorem. Let Λ be a full rank lattice in a Euclidean space V of dimension n. Let $X \subset V$ be a bounded convex symmetric subset, satisfying $\operatorname{Vol}(X)>2^{n} \cdot \operatorname{covolume}(\Lambda)$. Then X contains a non-zero point of Λ.

Proof. See Topics in Number Theory course
A small refinement to the theorem can be made: If X is closed then $\operatorname{Vol}(X) \geq 2^{n} \cdot \operatorname{covolume}(\Lambda)$ suffices.

6.2 Class Number

Theorem 6.8. Let K be a number field of signature (r, s). Then every non-zero ideal I of \mathcal{O}_{K} contains a non-zero element α with

$$
|N(\alpha)| \leq\left(\frac{2}{\pi}\right)^{s} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}
$$

Proof. Let $n=r+2 s=[K: \mathbb{Q}]$. Consider for $t \in \mathbb{R}_{>0}$, the closed set $X_{t}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}:\left|z_{i}\right| \leq t\right\}$. We claim that $\operatorname{Vol}\left(X_{t}\right)=2^{r+s} \pi^{s} t^{n}$

In terms of the orthogonal basis, X_{t} is isomorphic to $[-t, t]^{r} \times B(0, \sqrt{2} t)^{s}$ (where $B(a, r)$ is the standard notation for a ball of radius r centred at a, there is some bit of work need to see that the radius is indeed $\sqrt{2} t$). So

$$
\begin{aligned}
\operatorname{Vol}\left(X_{t}\right) & =(2 t)^{2}\left(\left(\pi(\sqrt{2} t)^{2}\right)^{s}\right. \\
& =2^{r} t^{r} \pi^{s} 2^{s} t^{2 s} \\
& =2^{r+s} \pi^{s} t^{r+2 s}
\end{aligned}
$$

Now choose t such that $\operatorname{Vol}\left(X_{t}\right)=2^{n}$ covolume $\left(I\right.$ in $\left.K_{\mathbb{R}}\right)=2^{n} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$. Then by Minkwoski's there is an $0 \neq \alpha \in I$ with $\sigma(\alpha) \in X_{t}$. So $|N(\alpha)|=\prod\left|\sigma_{i}(\alpha)\right| \leq t^{n}$, but since $s^{r+s} \pi^{s} t^{n}=2^{n} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$, we have $|N(\alpha)| \leq t^{n}=\frac{2^{s}}{\pi^{s}} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$

A better set for the above proof is $X_{t}^{\prime}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}:\left|z_{1}\right|+\cdots+\left|z_{n}\right| \leq t\right\}$. In that case we have $\operatorname{Vol}\left(X_{t}^{\prime}\right)=\frac{2^{r} \pi^{s} t^{n}}{n!}$. This can be proven using integral calculus.

Theorem 6.9. Every ideal $I \subset \mathcal{O}_{K}$ has an element $\alpha \neq 0$ with $|N(\alpha)| \leq \mu_{K} N(I)$ with

$$
\mu_{K}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}
$$

Proof. Choose t with $\operatorname{Vol}\left(X_{t}^{\prime}\right)=2^{n} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$, that is $\frac{2^{r} \pi^{s} t^{n}}{n!}=2^{n} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$. Then there exists $0 \neq \alpha \in I$ with $\sigma(\alpha) \in X_{t}^{\prime}$. Hence

$$
\begin{aligned}
|N(\alpha)| & =\prod\left|\sigma_{i}(\alpha)\right| \\
& \leq\left(\frac{\sum\left|\sigma_{i}(\alpha)\right|}{n}\right)^{n} \\
& \leq\left(\frac{t}{n}\right)^{n} \\
& =\frac{1}{n^{n}} n!2^{n-r} \pi^{-s} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|} \\
& =\frac{4^{s}}{\pi^{s}} \frac{n!}{n^{n}} N(I) \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}
\end{aligned}
$$

where the first inequality follows form the well know theorem that Geometric Mean \leq Arithmetic Mean. (If $x_{1}, \ldots, x_{n} \in \mathbb{R}_{>0}$, then the Geometric mean is $\left(x_{1}, \ldots, x_{n}\right)^{1 / n}$, while the arithmetic mean is $\left.\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)\right)$

Remark. The number μ_{K} is sometimes called Minkowski's constant.
Theorem 6.10. For any number field K we have

$$
\left|\Delta\left(\mathcal{O}_{K}\right)\right| \leq\left(\frac{\pi}{4}\right)^{2 s}\left(\frac{n^{n}}{n!}\right)^{2}
$$

Proof. Apply the above with $I=\mathcal{O}_{K}$. Then there exists $\alpha \in \mathcal{O}_{K}$ with $|N(\alpha)| \leq \mu_{K}$. Also $N(\alpha) \in \mathbb{Z}$ and non-zero if $\alpha \neq 0$. So $|N(\alpha)| \geq 1$. Hence

$$
\mu_{K}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|} \geq 1 \Rightarrow\left|\Delta\left(\mathcal{O}_{K}\right)\right| \leq\left(\frac{\pi}{4}\right)^{2 s}\left(\frac{n^{n}}{n!}\right)^{2}
$$

Corollary 6.11. If $K \neq \mathbb{Q}$, then $\left|\Delta\left(\mathcal{O}_{K}\right)\right| \neq 1$
Proof. We have $n \geq 2$. We need to show that $\left(\frac{\pi}{4}\right)^{2 s}\left(\frac{n^{n}}{n!}\right)^{2}>1$. Now $\left(\frac{\pi}{4}\right)^{2 s} \geq\left(\frac{\pi}{4}\right)^{n}$, so we need to show $\left(\frac{\pi}{4}\right)^{n}\left(\frac{n^{n}}{n!}\right)^{2}>1$. This can easily be done by induction.

Corollary 6.12. Let K be a number field and let C be an ideal class of K. Then there exists $I \in C$ with $N(I) \leq \mu_{K}$
Proof. Apply Theorem 6.9 to an ideal $J \in C^{-1}$. (Note: if $J \in C^{-1}$ is any fractional ideal there is an $a \in \mathcal{O}_{K}$ with $a J \subset \mathcal{O}_{K}$, since $a J \in C^{-1}$ we may suppose without lose of generality that J is an ideal).

So there exists $\alpha \in J$ with $|N(\alpha)| \leq \mu_{k} N(J)$. Consider $(\alpha) J^{-1}$, we have $J \mid(\alpha)$ so $I:=(\alpha) J^{-1}$ is an ideal of \mathcal{O}_{K}. Furthermore $N(I)=N((\alpha)) N\left(J^{-1}\right) \leq \mu_{k} N(J) N\left(J^{-1}\right)=\mu_{k}$

Corollary 6.13. The class group of any number field is finite.
Proof. Every class is represented by an ideal of bounded norm and norms are in $\mathbb{Z}_{>0}$. So it suffices to show that for any $n \in \mathbb{Z}_{>0}$ we have $\#\left\{I \subset \mathcal{O}_{K}: N(I)=n\right\}<\infty$

Let $n \in \mathbb{Z}_{>0}$ be given and $I \subset \mathcal{O}_{K}$ be an ideal with $N(I)=n$. Factor n into primes, $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, and factor I into prime ideals $I=P_{1}^{f_{1}} P_{2}^{f_{2}} \ldots P_{s}^{f_{s}}$. Then we have $N(I)=N\left(P_{1}\right)^{f_{1}} N\left(P_{2}\right)^{f_{2}} \ldots N\left(P_{s}\right)^{f_{s}}=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$. By Kummer - Dedekind, for any p there exists finitely many prime ideals whose norms is a power of p. So there are finitely many prime ideals P whose norm is a power of one of the p_{i}. Furthermore if $N\left(P_{i}\right)=p_{j}^{e_{j}}$, then $f_{i} \leq e_{j}$, so there are finitely many possibilities.

Example. - Let $K=\mathbb{Q}(\sqrt{-5})$, note that it has signature $(0,1)$. Then we have

$$
\mu_{K}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}=\frac{4}{\pi} \frac{2}{4} \sqrt{4 \cdot 5}=\frac{1}{\pi} \sqrt{80}<\frac{1}{3} \sqrt{81}=3
$$

So every ideal class is represented by an ideal of norm at most 2. Let us work out the ideals of norm 2. By Kummer - Dedekind, we know $(2)=(2,1+\sqrt{-5})^{2}$, and $N((2,1+\sqrt{-5}))=2$.
We have seen before that $(2,1+\sqrt{-5})$ is not principal. So there are two ideal class in \mathcal{O}_{K}. They are $[(1)],[(2,1+\sqrt{-5})]$, so $h_{k}=2 \Rightarrow \mathrm{Cl}_{K} \cong \mathbb{Z} / 2 \mathbb{Z}$

- Let $K=\mathbb{Q}(\sqrt{-19})$, note that is has signature $(0,1)$. Then we have

$$
\mu_{K}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}=\frac{4}{\pi} \frac{2}{4} \sqrt{19}=\frac{1}{\pi} \sqrt{76}<\frac{1}{3} \sqrt{81}=3
$$

Also here, every ideal class is represented by an ideal of norm 1 or 2. Apply Kummer - Dedekind to factor (2). $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$, hence $f_{\alpha}=\left(x-\frac{1+\sqrt{-19}}{2}\right)\left(x-\frac{1-\sqrt{-19}}{2}\right)=x^{2}-x+5$. So $f \equiv x^{2}+x+1 \in \mathbb{F}_{2}[x]$, but this is an irreducible polynomial. So $(2)=(2,0)=(2)$ is a prime ideal, of norm 4 . Hence there are no ideals of norm 2.
So $h_{K}=1$, hence \mathcal{O}_{K} is a PID.

- Let $K=\mathbb{Q}(\sqrt{-14})$, this has signature $(0,1)$. Then we have

$$
\mu_{K}=\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}=\frac{4}{\pi} \frac{2}{4} \sqrt{4 \cdot 14}=\frac{1}{\pi} \sqrt{16 \cdot 14} \leq \frac{1}{3} \sqrt{15^{2}}=5
$$

So only ideals of norms at most 4 are of concern. Every ideal can be factored into prime ideals. So the class group is generated by classes represented by prime ideals of norm $\leq \mu_{K}$. Prime ideals of norm ≤ 4 are prime ideals dividing (2) or (3). Hence we apply Kummer - Dedekind. We have $f=x^{2}+14$
$-p=2: x^{2}+14 \equiv x^{2} \bmod 2$. So $(2)=(2, \sqrt{-14})^{2}:=P^{2}$. Note that $N(P)=2$
$-p=3: x^{2}+14 \equiv x^{2}-1 \equiv(x-1)(x+1) \bmod 3$. So $(3)=(3, \sqrt{-14}-1)(3, \sqrt{-14}+1):=Q R$. Note that $N(Q)=N(R)=3$

So ideals of norms less than 4 are (1), P, Q, R, P^{2}. Note that P^{2} is principal as it is (2), so $\left[P^{2}\right]=[(1)]$. Since $N(a+b \sqrt{-14})=a^{2}+14 b^{2}$ but 2 and 3 are not of this form, we have that P, Q, R are not principal. Also note that $Q R=(3)$ so $[Q][R]=1$
We claim that $[(1)],[P],[Q],[R]$ are four distinct elements of the class group.
Suppose that $[P]=[Q]$. Then $[Q][Q]=[P]^{2}=1=[Q][R] \Rightarrow[Q]=[R]$. Furthermore, since $N(Q)=N(R)=$ 3 , if $[Q]=[R]$ then $[Q R]=1=[Q Q]$. Hence Q^{2} is principal, $N\left(Q^{2}\right)=N(Q)^{2}=9$, so we need to solve $a^{2}+14 b^{2}=9 \Rightarrow a=3, b=0$. Hence $Q^{2}=(3)=Q R \Rightarrow Q=R$. Which is a contradiction.
This argument also showed $[Q] \neq[R]$. A similar argument shows that $[P] \neq[R]$.
Hence we have that $h_{K}=4$. (With not too much work we can show that $\mathrm{Cl}_{K} \cong \mathbb{Z} / 4 \mathbb{Z}$)

6.3 Dirichlet's Unit Theorem

Dirichlet's Unit Theorem. Let K be a number field of signature (r, s). Let W be the group of roots of unity in K. Then W is finite, and $\mathcal{O}_{K}^{*} \cong W \times \mathbb{Z}^{r+s-1}$. That is, there exists $\eta_{1}, \ldots, \eta_{r+s-1} \in \mathcal{O}_{K}^{*}$ such that every units in \mathcal{O}_{K} can be uniquely written as $\omega \cdot \eta_{1}^{k_{1}} \cdots \cdots \eta_{r+s-1}^{k_{r+s-1}}$ with $\omega \in W$ and $k_{i} \in \mathbb{Z}$.

Example. Let $K=\mathbb{Q}(\sqrt{d})$ with $d>0$ and square free. Then it has signature (2,0), so $r+s-1=1$. Also $W=\{ \pm 1\}$. Hence $\mathcal{O}_{K}^{*} \cong W \times \mathbb{Z}=\{ \pm 1\} \times \mathbb{Z}= \pm \epsilon_{d}^{n}$ (where ϵ_{d} is as in section 1)

If $K=\mathbb{Q}(\sqrt{d})$ with $d<0$ square free, then it has signature $(0,1)$, so $\mathcal{O}_{K}^{*}=W$, which is finite (see next lemma)
Fact. A subgroup $\Lambda \subset \mathbb{R}^{n}$ is a lattice if and only if for any $M \in \mathbb{R}_{>0}$ we have $[-M, M]^{n} \cap \Lambda$ is finite.
Lemma 6.14. The group W is finite.
Proof. If $\omega \in W$, then for all $\sigma_{i}: K \hookrightarrow \mathbb{C}$ we have $\sigma_{i}(\omega)$ is a root of unity (if $\omega^{n}=1$ then $\sigma_{i}(\omega)^{n}=1$). So $\sigma(\omega)=\left(\sigma_{1}(\omega), \ldots, \sigma_{n}(\omega)\right) \in\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}:\left|z_{i}\right|=1 \forall i\right\}$. This is a bounded subset of $K_{\mathbb{R}}$. Also $\omega \in \mathcal{O}_{K}$ as it satisfies some monic polynomial $x^{n}-1 \in \mathbb{Z}[x]$. Hence $\sigma(W) \subset \sigma\left(\mathcal{O}_{K}\right) \cap$ bounded set, but $\sigma\left(\mathcal{O}_{K}\right)$ is a lattice, hence by the fact, $\sigma(W)$ is finite.

Proof of Dirichlet's Unit Theorem.
Let $K_{\mathbb{R}}^{*}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}: z_{i} \neq 0 \forall i\right\}$. We have $\mathcal{O}_{K}^{*} \hookrightarrow K^{*} \hookrightarrow$ $K_{\mathbb{R}}^{*}$. We will use logarithms: define $\log : K_{\mathbb{R}}^{*} \rightarrow \mathbb{R}^{n}$ by $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$. This is a group homomorphism. Also define $L: \mathcal{O}_{K}^{*} \rightarrow \mathbb{R}^{n}$ by $\alpha \mapsto \log (\sigma(\alpha))=\left(\log \left|\sigma_{1}(\alpha)\right|, \ldots, \log \left|\sigma_{n}(\alpha)\right|\right)$, this is also a group homomorphism.

Lemma 6.15. $\operatorname{ker}(L)=W$
Proof. \supset : For all $\omega \in W$ and σ_{i} we have $\left|\sigma_{i}(\omega)\right|=1$, so $\log \left|\sigma_{i}(\omega)\right|=0$
\subset : Take $\alpha \in \operatorname{ker}(L)$. Then $\log \left|\sigma_{i}(\alpha)\right|=0 \forall i \Rightarrow\left|\sigma_{i}(\alpha)\right|=1$ for all i. So α is in some finite set. For every n, we have $\alpha^{n} \in \operatorname{ker}(L)$ which is a finite set, so there are some $n>m$, with $\alpha^{n}=\alpha^{m}$ and $n \neq m$. Then $\alpha^{n-m}=1$.

Lemma 6.16. $\operatorname{im}(L)$ is a lattice in \mathbb{R}^{n}.
Proof. We must show that $[-M, M]^{n} \cap \operatorname{im}(L)$ is finite. Take $L(\alpha)=\left(x_{1}, \ldots, x_{n}\right) \in[-M, M]^{n} \cap \operatorname{im}(L)$ (where $\alpha \in \mathcal{O}_{K}^{*} \subset \mathcal{O}_{K}$). We have for all i, $|\log | \sigma_{i}(\alpha)| | \leq M$, so $\left|\sigma_{i}(\alpha)\right| \leq e^{M}$, hence $\sigma(\alpha) \in$ bounded set $\cap \sigma\left(\mathcal{O}_{K}\right)=$ finite. So there are finitely many possibilities for α

Put $\Lambda=L\left(\mathcal{O}_{K}^{*}\right) \subset \mathbb{R}^{n}$. Eventually, we have to show that $\operatorname{rk}(\Lambda)=r+s-1$.
Lemma 6.17. We have that $\operatorname{rk}(\Lambda) \leq r+s-1$
Proof. Order σ_{i} such that $\sigma_{1}, \ldots \sigma_{r}$ are real and $\sigma_{r+i}=\overline{\sigma_{r+s+i}}$ for $i \in\{1, \ldots, s\}$. Take $\alpha \in \mathcal{O}_{K}^{*}$. Then for $i \in\{1, \ldots, s\}$ we have $\sigma_{r+i}(\alpha)=\overline{\sigma_{r+s+i}(\alpha)}$. Hence $\log \left|\sigma_{r+i}(\alpha)\right|=\log \left|\overline{\sigma_{r+s+i}(\alpha)}\right|=\log \left|\sigma_{r+s+i}(\alpha)\right|$. So for $\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$, we have $x_{r+i}=x_{r+s+i}$ for $i \in\{1, \ldots, s\}$. Hence we have found s relations. So $\Lambda \subset$ subspace of dimension $n-r=r+2 s-s=r+s$
So we need to find one extra relation. Now α is a unit, so $|N(\alpha)|=1$. So $|N(\alpha)|=\left|\sigma_{1}(\alpha) \ldots \sigma_{n}(\alpha)\right|=$ $\left|\sigma_{1}(\alpha)\right| \ldots\left|\sigma_{n}(\alpha)\right|=1 \Rightarrow \log \left|\sigma_{1}(\alpha)\right|+\cdots+\log \left|\sigma_{n}(\alpha)\right|=0$. So we have also the relation $x_{1}+\cdots+x_{n}=0$. this shows $\Lambda \subset V \subset \mathbb{R}^{n}$, where V is a subspace of dimension $r+s-1$ defined by these relations.

So we are left to prove that $\operatorname{rk}(\Lambda) \geq r+s-1$ or Λ is a full rank lattice in V.
Note that for $\alpha \in \mathcal{O}_{K}^{*}$, we have $\sigma_{1}(\alpha) \ldots \sigma_{n}(\alpha)= \pm 1$. So $\sigma\left(\mathcal{O}_{K}^{*}\right) \subset\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}^{*}: z_{1} \ldots z_{n}=\right.$ $\pm 1\}=: E$. We have to construct lots of units:
The idea: if $(\alpha)=(\beta)$ then β / α is a unit. So we will construct lots of $\alpha \in \mathcal{O}_{K}$ by generating finitely many ideals. Consider $X_{t}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}:\left|z_{i}\right| \leq t\right\}$. Choose t such that $\operatorname{Vol}\left(X_{t}\right)=2^{n} \sqrt{\left|\Delta\left(\mathcal{O}_{K}\right)\right|}$. Then by Minkowski's theorem, there exists a non-zero element in $\sigma\left(\mathcal{O}_{K}\right) \cap X_{t}$.
For any $e \in E$, consider $e X_{t}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in K_{\mathbb{R}}:\left|z_{i}\right|<\left|e_{i}\right| t\right\}$. Then $\operatorname{Vol}\left(e X_{t}\right)=\left|e_{1} \ldots e_{n}\right| \operatorname{Vol}\left(X_{t}\right)=$ $\operatorname{Vol}\left(X_{t}\right)$. So by Minkowski's there exists a non-zero element in $\sigma\left(\mathcal{O}_{K}\right) \cap e X_{t}$. Covering E with boxes $e X_{t}$ means we get lots of elements $a_{e} \in \sigma\left(\mathcal{O}_{K}\right) \cap e X_{t} \forall e \in E$. We have $\left|N\left(a_{e}\right)\right|=\prod\left|\sigma_{i}\left(a_{e}\right)\right| \leq \prod\left|e_{i}\right| t \leq t^{n}$. So the norms of a_{e} are bounded, hence $N\left(\left(a_{e}\right)\right)=\left|N\left(a_{e}\right)\right|$ is bounded.
So the set of ideals $\left\{\left(a_{e}\right): e \in E\right\}$ is finite. Let b_{1}, \ldots, b_{m} be such that $\left\{\left(a_{e}\right): e \in E\right\}=\left\{\left(b_{1}\right), \ldots,\left(b_{m}\right)\right\}$. For all $e \in E$ there is some $i \in\{1, \ldots, m\}$ such that $\left(a_{e}\right)=\left(b_{i}\right)$. So $U_{e}=a_{e} / b_{i}$ is a unit of \mathcal{O}_{K}.
Claim: $S=\left\{U_{e}: e \in E\right\}$ generates a full rank lattice in V, after applying L. If $\langle L(S)\rangle$ is not of full rank, then $L(S)$ spans a subspace $Z \nsubseteq V$. Consider $Y:=\cup\left(b_{i}^{-1} \cdot X_{t}\right) \subset K_{\mathbb{R}}$, it is bounded and without loss of generality we can choose it, such that $\sigma(1) \in Y$. Consider $\cup_{e \in E} U_{e}^{-1} \cdot Y$ (all of these are bounded) We want to show that $e^{-1} \in U_{e}^{-1} Y=\frac{b_{i}}{a_{e}} \cdot Y$. By construction, $b_{i} \cdot Y \supset X_{t}$, so $\frac{b_{i}}{a_{e}} \cdot Y \supset \frac{1}{a_{e}} \cdot X_{t}$. We have $a_{e} \in e X_{t}$, so $\frac{1}{e} \in \frac{1}{a_{e}} X_{t}$. Hence $\cup_{e \in E} U_{e}^{-1}$ contains E. So $V=\cup_{s \in S} \log (s)+\log (Y)$. We are assuming $\log (s) \in Z$ and $\log (Y)$ is bounded. If $Z \neq V$ then V is at some bounded distance from Z. This proves that $\langle L(S)\rangle$ is of full rank.
So $L\left(\mathcal{O}_{K}^{*}\right)$ is a full rank lattice in V. Hence it has rank $r+s-1$, i.e., $L\left(\mathcal{O}_{K}^{*}\right) \cong \mathbb{Z}^{r+s-1}$
Lemma 6.18. Let A be an abelian group, let $A^{\prime} \subset A$ be a subgroup and put $A^{\prime \prime}=A / A^{\prime}$. If $A^{\prime \prime}$ is free (i.e., $\cong \mathbb{Z}^{n}$ for some n), then $A \cong A^{\prime} \times A^{\prime \prime}$

Proof. Omitted, but can be found in any algebra course.
In our case, we have $A=\mathcal{O}_{K}^{*}$ and $A^{\prime}=W$. Then by the first isomorphism theorem $A^{\prime \prime} \cong L\left(\mathcal{O}_{K}^{*}\right)$ (as $W=\operatorname{ker}(L))$. So using the lemma, we have $A \cong W \times L\left(\mathcal{O}_{K}^{*}\right) \cong L \times \mathbb{Z}^{r+s-1}$ as required.

