Graduate Algebra

Diane Maclagan
Notes by Florian Bouyer

Copyright (C) Bouyer 2011.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction 2
1.1 Groups 2
1.2 Rings 3
2 Category Theory 4
2.1 Functors 6
2.2 Some natural occurring functors 6
2.3 Natural Transformations 7
3 Free Groups 8
4 Tensor Product 10
4.1 Functoriality 11
4.2 Tensor Algebras 13
4.3 Symmetric and Exterior Algebras 14
4.4 Summary 14
5 Homological Algebra 15
6 Representation Theory 21
6.1 Ring Theory for Representation Theory 21
7 Galois Theory 26

1 Introduction

1.1 Groups

Definition 1.1. A semigroup is a non-empty set G together with a binary operation ("multiplication") which is associative $((a b) c=a(b c) \forall a, b, c \in G)$

A monoid is a semigroup G which contains an element $e \in G$ such that $a e=e a=a \forall a \in G$.
A group is a monoid such that $\forall a \in G \exists a^{-1}$ such that $a a^{-1}=a^{-1} a=e$.
Note. Many authors say "semigroup" for monoid. e.g. $\mathbb{N}=\{0,1, \ldots\}$ is called a semigroup.
Example (Semigroups that are not monoids).

- A proper ideal in a ring under multiplication
- ($\mathbb{N} \backslash\{0\},+)$
- $(2 \mathbb{Z}, \times)$
- $\left(M_{n}(2 \mathbb{Z}), \times\right)$
- (\mathbb{R}, \min)

Example (Monoids that are not groups). - ($\mathbb{N},+$)

- Polynomials in 1 variable under composition
- Rings with identity that has non-invertible elements under multiplication
- $(\mathbb{R} \cup \infty, \min)$

Exercise. - In a monoid, identities are unique

- In a group, inverses are unique.

Definition 1.2. Let G and H be semigroups. A function $f: G \rightarrow H$ is a homomorphism of semigroups if $f(a b)=f(a) f(b) \forall a, b \in G$

If it is a bijection, it is called an isomorphism.
Let G and H be monoids. A monoid homomorphism is a semigroup homomorphism with $f\left(e_{G}\right)=e_{H}$
A group homomorphism between groups G, H is a semigroup homomorphism between the underlying semigroups.
Group homomorphisms are automatically monoid homomorphisms: $f: G \rightarrow H, f\left(e_{G}\right)=f\left(e_{G} e_{G}\right)=f\left(e_{G}\right) f\left(e_{G}\right)$. Multiply by $f\left(e_{G}\right)^{-1}$ then we get $e_{H}=f\left(e_{G}\right)^{-1} f\left(e_{G}\right)=f\left(e_{G}\right)^{-1} f\left(e_{G}\right) f\left(e_{G}\right)=e_{H} f\left(e_{G}\right)=f\left(e_{G}\right)$.

Example (Important example of a group: Permutation Group). Let X be a non-empty set. Let $P(X)$ be the set of all bijection $f: X \rightarrow X . P(X)$ is a group under function composition that is $f g: X \rightarrow X$ is $f \circ g: X \rightarrow X$.

- This is associative because function composition is
- The identity is id (the identity map)
- The inverse of f is $f^{-1}: X \rightarrow X$. (Which exists since f is a bijection

If $|X|=n$ then $P(X) \cong S_{n}$ (the symmetric group on n elements)
Definition 1.3. A sub\{group, monoid, semigroup\} of a \{group, monoid, semigroup $\}$ is a subset $H \subset G$ that is a \{group, monoid, semigroup\} under the operation of G.

Let $\phi: G \rightarrow H$ be a group homomorphism, the kernel of ϕ is $\operatorname{ker} \phi=\left\{a \in G \mid \phi(a)=e_{H}\right\}$
Note. The kernel of ϕ is a subgroup of G. In fact it is normal (i.e., $\forall g \in G, g h g^{-1} \in H=\operatorname{ker} \phi$ for all $\left.h \in H\right\}$
Definition 1.4. A group G is abelian if $a b=b a$ for all $a b \in G$
Exercise. Find $\phi: G \rightarrow H$ (G, H monoid) that is a semigroup homomorphism but not a monoid homomorphism $(\mathbb{R}, \times) \rightarrow\left(M_{2}(\mathbb{R}), \times\right)$ by $\phi(a) \mapsto\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$

1.2 Rings

Definition 1.5. A ring R is a non-empty set R together with binary operations,$+ \times$ such that

1. $(R,+)$ is an abelian group (write identity as 0)
2. $a(b c)=(a b) c$ (multiplication is associative, so (R, \times) is a semigroup)
3. $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ (distributivity)

If there is $1_{R} \in R$ such that $1_{R} a=a 1_{R}=a \forall a \in R$ then R is a ring with identity
R is commutative if $a b=b a \forall a, b \in R$.
Let R, S be rings. A ring homomorphism $\phi: R \rightarrow S$ is a function ϕ such that :

1. $\phi(r+s)=\phi(r)+\phi(s)$ (group homomorphism)
2. $\phi(r s)=\phi(r) \phi(s)$ (semigroup homomorphism)

Note. We do not require that if R, S have identities, that $\phi\left(1_{R}\right)=1_{S}$ (e.g., $\phi(a)=0_{S} \forall a$ is OK)
Definition 1.6. Let R be a ring with identity. An element $a \in R$ is left (respectively right) invertible if $\exists b \in R$ (respectively $c \in R$) such that $b a=1_{R}$ (respectively $a c=1_{R}$)

If a is left and right invertible then a is called invertible, or a unit.
A ring with identity $1_{R} \neq 0_{R}$ in which every non-zero element is a unit is a division ring. A commutative division ring is a field.

A field homomorphism is a ring homomorphism ϕ of the underlying rings.
Example (Useful example of a ring: Group rings). Let R be a commutative ring with 1. Let G be a group. The group ring $R[G]$ has entries $\left\{\sum_{g \in G} r_{g} g: r_{g} \in R\right\}$ "formal sums" (all but finitely many $r_{g}=0$). This is a ring under coordinate wise addition, and multiplication is induced from $\left(g_{1}\right)\left(g_{2}\right)=\left(g_{1} g_{2}\right)$.
e.g.: $R=\mathbb{C}, G=\mathbb{Z}$ then $\mathbb{C}[\mathbb{Z}]=\mathbb{C}\left[t, t^{-1}\right]$. $\mathbb{C}[\mathbb{Z} / 3 \mathbb{Z}]=\mathbb{C}[t] /\left(t^{3}\right)$

Definition 1.7. Let R be a ring. A (left) R-module is an abelian group M (write additively) together with a function $R \times M \rightarrow M$ such that

1. $r\left(m+m^{\prime}\right)=r m+r m^{\prime}$
2. $(r+s) m=r m+s m$
3. $r(s m)=(r s) m$

If R is a field an R-module is a vector space. If R has 1_{R} we usually ask $1_{R} m=m$ for all $m \in M$.
Definition 1.8. An R-module homomorphism is a group homomorphism $\phi: M \rightarrow M^{\prime}$ such that $\phi(r m)=r \phi(m)$.

2 Category Theory

Definition 2.1. A category is a class $\operatorname{Ob}(\mathscr{C})$ of objects (write A, B, C, \ldots) together with:

1. a class, $\operatorname{mor}(\mathscr{C})$, of disjoint sets $\operatorname{hom}(A, B)$. one for each pair of objects in $\mathrm{Ob}(\mathscr{C})$. An element f of $\operatorname{hom}(A, B)$ is called a morphism from A to B. (write $f: A \rightarrow B$)
2. For each triple (A, B, C) of objects: a function $\operatorname{hom}(B, C) \times \operatorname{hom}(A, B) \rightarrow \operatorname{hom}(A, C)($ write $(f, g) \mapsto f \circ g)$ "composition of morphism satisfying:
(a) associativity: $h \circ(g \circ f)=(h \circ g) \circ f$ with $f \in \operatorname{hom}(A, B), g \in \operatorname{hom}(B, C)$ and $h \in \operatorname{hom}(C, D)$
(b) Identity: For each $B \in \operatorname{Ob}(\mathscr{C})$ there exists $1_{B}: B \rightarrow B$ such that $\forall f \in \operatorname{hom}(A, B) 1_{B} \circ f=f$ and $\forall g \in \operatorname{hom}(B, C) g \circ 1_{B}=g$

Example.

Sets: Objects: the class of all sets. Morphisms $\operatorname{hom}(A, B)$ is the set of all functions $f: A \rightarrow B$
Groups: Objects: Groups. Morphisms: group homomorphism.
Semigroups: Object: semigroups. Morphisms: semigroup homomorphism
Monoids: Object: monoids. Morphisms: monoid homomorphism.
Rings: Objects: Rings. Morphisms: ring homomorphism
$\mathrm{Ab}: \quad$ Objects: abelian groups. Morphisms: group homomorphism
Vect $_{k}$: Objects: Vector spaces over (a field) k. Morphisms: linear transformations.
Top: Objects: Topological spaces. Morphisms: Continuous functions.
Manifolds: Objects: Manifolds. Morphisms: Continuous maps.
Diff: Objects: Differentiable manifolds. Morphisms: differentiable maps
Point Let G be a group. Object: one point. Morphisms: hom(pt, pt) $=G$ (composition is multiplication)
Note. $\forall f \in \operatorname{hom}(\mathrm{pt}, \mathrm{pt})$ there exists g such that $f \circ g=1_{\mathrm{pt}}=g \circ f$. (This example is useful for Groupoid)
Open Sets Fix a topological space X. The category of open set on X : Objects: Open sets. Morphisms: inclusions. (i.e., $\operatorname{hom}(A, B)$ is empty or has size one) (This example is useful for sheaves)
R-module Fix a ring R. Objects: are R-modules. Morphisms: R-module homomorphism $\phi(r m)=r \phi(m)$
Definition 2.2. In a category a morphism $f \in \operatorname{hom}(A, B)$ is called an equivalence if there exists $g \in \operatorname{hom}(B, A)$ such that $g \circ f=1_{A}$ and $f \circ g=1_{B}$.

If $f \in \operatorname{hom}(A, B)$ is an equivalence then A and B are said to be equivalent.
Example. Groups Equivalence is isomorphism
Top Equivalence is homeomorphism
Set Equivalence is bijection.
Definition 2.3. Let \mathscr{C} be a category and $\left\{A_{\alpha}: \alpha \in I\right\}$ be a family of objects of \mathscr{C}. A product for the family is an object P of \mathscr{C} together with a family of morphisms $\left\{\pi_{\alpha}: P \rightarrow A_{\alpha}: \alpha \in I\right\}$ such that for any object B with morphisms $\phi_{\alpha}: B \rightarrow A_{\alpha} \exists!\phi: B \rightarrow P$ such that $\phi_{\alpha} \circ \phi=\phi_{\alpha} \forall \alpha$

Example. $|I|=2$

Warning: Products don't always exists, but when they do, we often recognize them

Example.

Set: Products is Cartesian product.
Groups Product is direct product.
Open sets of X Interior $\left(\cap A_{\alpha}\right)$.
Lemma 2.4. If $\left(P, \pi_{\alpha}\right)$ and $\left(Q, \psi_{\alpha}\right)$ are both products of the family $\left\{A_{\alpha}, \alpha \in I\right\}$ then P and Q are equivalent (isomorphic).
Proof. Since Q is a product $\exists!f: P \rightarrow Q$ such that $\pi_{\alpha}=\psi_{\alpha} \circ f$. Since P is a product $\exists!g: Q \rightarrow P$ such that $\psi_{\alpha}=\pi_{\alpha} \circ g$. So $g \circ f: P \rightarrow P$ satisfies $\pi_{\alpha}=\pi_{\alpha} \circ(g \circ f) \forall \alpha$. Since P is a product $\exists!h: P \rightarrow P$ such that $\pi_{\alpha}=\pi_{\alpha} \circ h$. Since $h=1_{P}$ satisfies this, we must have $g \circ f=1_{P}$. Similarly $f \circ g: Q \rightarrow Q$ equals 1_{Q}. So f is an equivalence.

Definition 2.5. An object I in a category \mathscr{C} is universal (or initial) if for all objects $C \in \operatorname{Ob}(\mathscr{C})$ there is an unique morphism $I \rightarrow C$. J is couniversal (or terminal) if for all object C there is a unique morphism $C \rightarrow J$.

Example.

Sets \emptyset initial, $\{x\}$ terminal.
Groups Trivial group, initial and terminal.
Open sets \emptyset is initial. X is terminal
Example. Pointed topological spaces: Objects: Pairs (X, p) where X is a non-empty topological space, $p \in X$. Morphisms: Continuous maps $f:(X, p) \rightarrow(Y, q)$ with $f(p)=q . \quad(\{p\}, p)$ is terminal and initial.
Theorem 2.6. Any two initial (terminal) objects in a category are equivalent.
Proof. Let I, J be two initial objects in \mathscr{C}. Since I is initial $\exists!f: I \rightarrow J$. Since J is initial $\exists!g: J \rightarrow I$. Since I is initial, 1_{I} is the only morphism $I \rightarrow I$, so $g \circ f=1_{I}$. Similarly, $f \circ g=I_{J}$ so f is an equivalence. For terminal objects the proof is the same with the arrows reversed.

Why is the lemma a special case of the theorem. Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be a family of objects in a category \mathscr{C}. Define a category \mathscr{E} whose objects are all pairs $\left(B, f_{\alpha}: \alpha \in I\right)$ where $f_{\alpha}: B \rightarrow A_{\alpha}$. The morphisms are morphisms $\left(B, f_{\alpha}\right) \rightarrow\left(C, g_{\alpha}\right)$ are morphisms $h: B \rightarrow C$ such that $f_{\alpha}=g_{\alpha} \circ h$.

Check:

- $I_{B}: B \rightarrow B$ induces $1_{\left(B, f_{\alpha}\right)}$ in \mathscr{E}
- Composition of morphisms is still ok (These first two checks that \mathscr{E} is a category)
- h is an equivalence in \mathscr{E} implies h is an equivalence in \mathscr{C}. (This will help us show what we wanted)

If a product of $\left\{A_{\alpha}\right\}$ exists, it is terminal in \mathscr{E}. We just showed terminal objects are unique (up to equivalence) so products are unique (up to equivalence).
Note. Not every category has products. (for example finite groups)
Definition 2.7. A coproduct of $\left\{A_{\alpha}\right\}$ in \mathscr{C} is "a product with the arrows reversed", i.e., Q with $\pi_{\alpha}: A_{\alpha} \rightarrow Q$ such that $\forall C$ with $\phi_{\alpha}: A_{\alpha} \rightarrow C, \exists!f: Q \rightarrow C$ such that $\phi_{\alpha}=f \circ \pi_{\alpha}$
$\underbrace{A_{1}}_{1}$
Example. The coproduct of sets is a disjoint union.
For the pointed topological space we have the product is $\left(\prod X_{\alpha}, \prod p_{\alpha}\right)$. The coproduct is the wedge product, that is, (in the case of the coproduct of two object) $X \coprod Y / p \sim q$.

For abelian groups the coproduct is direct sum, i.e., $\oplus_{I} G_{\alpha} \ni\left(g_{\alpha}: \alpha \in I, g_{\alpha} \in G_{\alpha}\right)$ and all but finitely many $g_{\alpha}=e_{G_{\alpha}}$.

2.1 Functors

Definition 2.8. Let \mathscr{C} and \mathscr{D} be categories. A covariant functor T from \mathscr{C} to \mathscr{D} is a pair of functions (both denoted by T):

1. An object function: $T: \mathrm{Ob}(\mathscr{C}) \rightarrow \mathrm{Ob}(\mathscr{D})$
2. A morphism function $T: \operatorname{mor}(\mathscr{C}) \rightarrow \operatorname{mor}(\mathscr{D})$ with $f: A \rightarrow B \mapsto T(f): T(A) \rightarrow T(B)$ such that
(a) $T\left(1_{C}\right)=1_{T(C)} \forall C \in \mathrm{Ob}(\mathscr{C})$
(b) $T(g \circ f)=T(g) \circ T(f)$ for all $f, g \in \operatorname{mor}(\mathscr{C})$ where composition is defined

Example. - The "forgetful functor" from Groups to Sets. $T(G)=$ underlying set and $T(f)=f$ (i.e. same functions, thought of as a map of sets)

- $\operatorname{hom}(G,-):$ Groups \rightarrow Sets. Let G be a fixed group. Let T be the functor that takes a group H to the set $\operatorname{hom}(G, H)$. If $f: H \rightarrow H^{\prime}$ is a group homomorphism, then $T(f): T(H) \rightarrow T\left(H^{\prime}\right)$ is given by $T(f)(g)=f \circ g$. Check:

$$
\begin{aligned}
& -T\left(1_{H}\right)(g)=1_{H} \circ g=g \text { so } T\left(1_{H}\right)=1_{T(H)} \\
& -T(g \circ f)(h)=(g \circ f) \circ h=g \circ(f \circ h)=T(g)(f \circ h)=T(g)(T(f)(h))=(T(g) \circ T(f))(h)
\end{aligned}
$$

Definition 2.9. Let \mathscr{C} and \mathscr{D} be categories. A contravariant functor T from \mathscr{C} to \mathscr{D} is a pair of functions (both denoted by T):

1. An object function: $T: \mathrm{Ob}(\mathscr{C}) \rightarrow \mathrm{Ob}(\mathscr{D})$
2. A morphism function $T: \operatorname{mor}(\mathscr{C}) \rightarrow \operatorname{mor}(\mathscr{D})$ with $f: A \rightarrow B \mapsto T(f): T(B) \rightarrow T(A)$ such that
(a) $T\left(1_{C}\right)=1_{T(C)} \forall C \in \mathrm{Ob}(\mathscr{C})$
(b) $T(g \circ f)=T(f) \circ T(g)$ for all $f, g \in \operatorname{mor}(\mathscr{C})$ where composition is defined

Example. hom $(-, G)$:Groups \rightarrow Sets. Let G be a fixed group. Let T be the functor that takes a group H to the set $\operatorname{hom}(H, G)$. If $f: H \rightarrow H^{\prime}$ is a group homomorphism, then $T(f): T\left(H^{\prime}\right) \rightarrow T\left(H^{\prime}\right)$ is given by $T(f)(g)=g \circ f$.
Definition 2.10. Let \mathscr{C} be a category. The opposite category $\mathscr{C}^{\text {op }}$ has object $\mathrm{Ob}(\mathscr{C})$ and $\operatorname{hom}_{\mathscr{C} \text { op }}(A, B)=$ $\operatorname{hom}_{\mathscr{C}}(B, A)$. ("reverse the arrows")

One can see that this is a category with $g^{\mathrm{op}} \circ f^{\text {op }}=(f \circ g)^{\mathrm{op}}$.
If $T: \mathscr{C} \rightarrow \mathscr{D}$ is a contravariant functor then $T^{\mathrm{op}}: \mathscr{C}{ }^{\mathrm{op}} \rightarrow \mathscr{D}$ defined by $T^{\mathrm{op}}(C)=T(C)$ and $T^{\mathrm{op}}(f)=T(f)$ is covariant.

2.2 Some natural occurring functors

1. Fundamental group (ref: Hatcher "Algebraic Topology")
π_{1} : Pointed topological spaces \rightarrow Groups. $\pi_{1}(X, p)=$ homotopy classes of maps $f:[0,1] \rightarrow X$ such that $f(0)=f(1)=p$. This is a group under concatenation of loops. $f \circ g:[0,1] \rightarrow X$ with $f \circ g(t)=$ $\left\{\begin{array}{ll}g(2 t) & 0 \leq t \leq \frac{1}{2} \\ f(2 t-1) & \frac{1}{2} \leq t \leq 1\end{array}, f^{-1}(t)=f(1-t)\right.$. If $\phi:(X, x) \rightarrow(Y, y)$ is a continuous map with $\phi(x)=y$, then we get an induced map $\pi_{1}(X, x) \rightarrow \pi_{1}(Y, y)$ by $(f:[0,1] \rightarrow X) \mapsto(\phi(f):[0,1] \rightarrow Y)$ by $\phi(f)(t)=\phi \circ f(t)$.
Check:
(a) This is a group homomorphism
(b) $\pi_{1}\left(1_{(X, x)}\right)=1_{\pi_{1}(X, x)}$
(c) $\pi_{1}(\phi \circ \psi)=\pi_{1}(\phi) \circ \pi_{1}(\psi)$

Recall: A group is a category with one object where all morphisms are isomorphisms (have inverses). A groupoid is a category where all morphisms are isomorphisms.
2. Consider the category $\mathscr{U}(X)$ of open sets on X with morphisms inclusion $T: \mathscr{U} \rightarrow \operatorname{Sets}, T(U)=\{$ continuous functions from U to $\mathbb{R}\}$. If $V \subseteq U$ then $T(V) \leftarrow T(U)$ (by restriction). Good easy exercise is to finish checking that this is a functor. This is an example of a presheaf.

2.3 Natural Transformations

Definition 2.11. Let \mathscr{C} and \mathscr{D} be categories and let S and T be covariant functors from \mathscr{C} to \mathscr{D}. A natural transformation α from S to T is a collection $\left\{\alpha_{c}: c \in \operatorname{Ob}(\mathscr{C})\right\}$ in mor (\mathscr{D}), where $\alpha_{c}: S(C) \rightarrow T(C)$ such that if $f: C \rightarrow C^{\prime}$ is a morphism in \mathscr{C} then

commutes.
Example. $\mathscr{C}=$ groups, $\mathscr{D}=$ sets. $S=\operatorname{hom}(G,-)$ and $T=\operatorname{hom}(H,-)$. Let $\phi: H \rightarrow G$ be a group homomorphism. Given a group A, we construct $\alpha_{A}: \operatorname{hom}(G, A) \rightarrow \operatorname{hom}(H, A)$ by $g \mapsto g \circ \phi($ where $\phi: H \rightarrow G)$. Let $f: A \rightarrow B$

Definition 2.12. A natural transformation where all α_{c} are isomorphism is called a natural isomorphism.
Example. Let $\mathscr{C}=\mathscr{D}=n$-dimensional vector space over k. Let $S=$ id and $T: V \rightarrow V^{* *}$ (i.e. $T(V)=V^{* *}$ if $f: V \rightarrow W, w^{*} \rightarrow k$ then $T(f): V^{* *} \rightarrow W^{*}, T(f)(\beta) \in W^{* *}$ we have $T(f)(\beta)(\psi)=\beta(\psi \circ f) \in k$

We claim T and S are naturally isomorphic. For $V \in \operatorname{Vect}_{n}^{k}$, let α_{v} be the linear transformation $V \rightarrow V^{* *}$ given by $v \mapsto \phi_{V}$ where $\phi_{V}(\psi)=\psi(v)$. Then for $f: V \rightarrow W$

$$
\begin{aligned}
& T(f)\left(\alpha_{V}(v)\right)(\psi)=T(f)\left(\phi_{V}\right)(\psi) \\
& =\phi_{V}(\psi \circ f) \\
& =\psi \circ f(v) \\
& =\phi_{f(v)}(\psi)
\end{aligned}
$$

Since $\alpha_{w} \circ f(v)=\phi_{f(v)}$ means the diagram commutes. Since each α_{V} is an isomorphism (exercise that this uses finite dimension), T is naturally isomorphic to S.

Definition. Two categories \mathscr{C} and \mathscr{D} are equivalent if there are functors $f: \mathscr{C} \rightarrow \mathscr{D}$ and $g: \mathscr{D} \rightarrow \mathscr{C}$ such that $f \circ g$ is natural isomorphic to $1_{\mathscr{D}}: \mathscr{D} \rightarrow \mathscr{D}, g \circ f$ is naturally isomorphic to $1_{\mathscr{C}}: \mathscr{C} \rightarrow \mathscr{C}$.

3 Free Groups

Intuitive idea: Group formed by "words" in an alphabet. Multiplication is concatenation, e.g. $F_{2}=$ words in x and y for example $x y x^{-1} y^{-1} x^{3} y^{2}$

Construction

Input: A set X (might be infinite)

1) Choose a set X^{-1} disjoint from X with $\left|X^{-1}\right|=|X|$ and a bijection $X \rightarrow X^{-1}, x \mapsto x^{-1}$. Choose an element $1 \notin X \cup X^{-1}$
2) A word on X is a sequence $\left(a_{!}, a_{2}, \ldots\right)$ with $a_{i} \in X \cup X^{-1} \cup\{1\}$ such that there exists N such that $a_{n}=1 \forall n>N . \quad(1,1,1, \ldots)$ is the empty word and written as 1
3)

A word is reduced if:

1. $\forall x \in X, x$ and x^{-1} are never adjacent (i.e., if $a_{k}=x$ then $a_{k-1}, a_{k+1} \neq x^{-1}$)
2. $a_{k}=1 \Rightarrow a_{i}=1 \forall i>k$

A non-empty reduced word has the form ($x_{1}^{\lambda_{1}}, x_{2}^{\lambda_{2}}, \ldots, x_{n}^{\lambda_{n}}, 1,1, \ldots$) with $x_{i} \in X$ and $\lambda_{i}= \pm 1$. Write this as $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{n}^{\lambda_{n}}$.
4)

Our group $F(X)$ as a set is the set of reduced words.
Naive attempt at defining multiplication: Define $\left(x_{1}^{\lambda_{1}} \ldots x_{n}^{\lambda_{n}}\right)\left(y_{1}^{\delta_{1}} \ldots y_{m}^{\delta_{m}}\right)$ to be $x_{1}^{\lambda_{1}} \ldots x_{n}^{\lambda_{n}} y_{1}^{\delta_{1}} \ldots y_{m}^{\delta_{m}}$
Problem: This product might not be reduced
Solution: Reduce it:
Formally: if $a=\left(x_{1}^{\lambda_{1}} \ldots x_{m}^{\lambda_{m}}\right)\left(y_{1}^{\delta_{1}} \ldots y_{n}^{\delta_{n}}\right)$ (and suppose that $m \leq n$). Let
$K=\max _{0 \leq k \leq n}\left\{k: x_{m-j}^{\lambda_{m-j}}=y_{j+1}^{-\delta_{j}+1}\right.$ for all $\left.0 \leq j \leq k-1\right\}$. Then define
$a b=\left\{\begin{array}{ll}x_{1}^{\lambda_{1}} \ldots x_{m-k}^{\lambda_{m-k}} y_{k+1}^{\delta_{k+1}} \ldots y_{n}^{\delta_{n}} & k<m \\ y_{m+1}^{\delta_{m+1}} \ldots \delta_{n}^{\delta_{n}} & k=m<n \\ 1 & k=m=n\end{array}\right.$ (and analogously if $m>n$)
This define a multiplication $F(X) \times F(X) \rightarrow F(X)$.
Claim: This is a group

- 1 is the identity
- The inverse of $x_{1}^{\lambda_{1}} \ldots x_{m}^{\lambda_{m}}$ is $x_{m}^{-\lambda_{m}} \ldots x_{1}^{-\lambda_{1}}$
- For associativity see Lemma 3.1

Lemma 3.1. The multiplication $F(X) \times F(X) \rightarrow F(X)$ is associative.
Proof. For each $x \in X$ and $\delta= \pm 1$ let $\left|x^{\delta}\right|: F(X) \rightarrow F(X)$ be the map given by:

- $1 \mapsto x^{\delta}$
- $x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}} \mapsto \begin{cases}x^{\delta} x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}} & x^{\delta} \neq x_{1}^{-\delta_{1}} \\ x_{2}^{\delta_{2}} \ldots x_{n}^{\delta_{n}} & x^{\delta}=x_{1}^{-\delta_{1}}, n>1 \\ 1 & n=1, x^{\delta}=x^{-\delta_{1}}\end{cases}$

Note that this map is a bijection, since $\left|x^{\delta}\right|\left|x^{-\delta}\right|=1=\left|x^{-\delta}\right|\left|x^{\delta}\right|$. Let $A(X)$ be the group of all permutations of $F(X)$. Consider the map $\phi: F(X) \rightarrow A(X)$ given by

- $1 \mapsto 1_{A(X)}$
- $x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}} \mapsto\left|x_{1}^{\delta_{1}}\right|\left|x_{2}^{\delta_{2}}\right| \ldots\left|x_{n}^{\delta_{n}}\right|$
since $\left|x_{1}^{\delta_{1}}\right| \ldots\left|x_{n}^{\delta_{n}}\right|: 1 \mapsto x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}}$ we have ϕ is injective. Note that if $w_{1}, w_{2} \in F(X)$, then $\phi\left(w_{1} w_{2}\right)=\phi\left(w_{1}\right) \phi\left(w_{2}\right)$. Since $A(X)$ is a group, the multiplication is associative, so the multiplication in $F(X)$ is associative.

Example. - $X=\{x\}, F(X) \cong \mathbb{Z}$ (reduced words are $\left.1, x^{n}, x^{-n}\right)$

- $X=\{x, y\} . F(X)=$ "words in x, y, x^{-1}, y^{-1}, e.g. $x y x^{-1} y^{-1}$ is reduced. So $F(X)$ is not abelian as $x y x^{-1} y^{-1} \neq$ 1 so $x y \neq y x$.

Note. There is an inclusion $i: X \rightarrow F(X)$.
Lemma 3.2. If G is a group and $f: X \rightarrow G$ is a map of sets then \exists ! homomorphism $\bar{f}: F(X) \rightarrow G$ such that $\bar{f} i=f$.
Proof. Define $\bar{f}(1)=e \in G$. If $x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}}$ is a non-empty reduced word on X, set $\bar{f}\left(x_{1}^{\delta_{1}} \ldots x_{n}^{\delta_{n}}\right)=f\left(x_{1}\right)^{\delta_{1}} \ldots f\left(x_{n}\right)^{\delta_{n}}$. Then \bar{f} is a group homomorphism with $\bar{f} i=f$ by construction and it is unique by the homomorphism requirement.

This says the free group is a free object in the category of group. If \mathscr{C} is a concrete category (there exists a forgetful functor $F: \mathscr{C} \rightarrow$ Sets) and $i: X \rightarrow F(X)$, where X is a set and $A \in \mathrm{Ob}(\mathscr{C})$, is a function, then A is free on X if for all $j: X \rightarrow F(B) \exists!\phi: A \rightarrow B$ such that $\phi \circ i=j$. (Note $B \in \operatorname{Ob}(\mathscr{C})$ and $\phi \in \operatorname{mor}(\mathscr{C})$).

Compare:

- Vector Spaces
- Commutative k-algebra
- R-modules

Corollary 3.3. Every group G is the homomorphic image of the a free group.
Proof. Let X be a set of generators of G.The inclusion $f: X \rightarrow G$ gives a map $\bar{f}: \underset{x \mapsto x}{F(X) \rightarrow G}$. The map \bar{f} is surjective since X is a set of generators. So $G \cong F(X) / \operatorname{ker}(f)$.

Definition 3.4. Let G be a group and let Y be a subset of G. The normal subgroup $N=N(Y)$ of G generated by Y is the intersection of all normal subgroups of G containing Y.

Check that it is well defined. (That is check $N(Y)$ is non-empty, it relies on the fact G is normal)
Definition 3.5. Let X be a set and let Y be a set of (reduced) words on X. A group G is said to be defined by generators X and relations $w=e$ for $w \in Y$ if $G \cong F(X) / N(Y)$. (We say $(X \mid Y)$ is a presentation of G)

Example. $\left\langle x \mid x^{6}\right\rangle \cong \mathbb{Z} / 6 \mathbb{Z}$
$\left\langle x, y \mid x^{4}, y^{2},(x y)^{2}\right\rangle \cong D_{4}$ (or D_{8} depending of your notation)
Note. Presentations are not unique, e.g., $\left\langle x, y \mid x^{3}, y^{2}, x y x^{-1} y^{-1}\right\rangle \cong \mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z},\left\langle x, y \mid x y^{-5}\right\rangle \cong \mathbb{Z}$, $\left\langle x, y \mid x^{2}, y^{2},(x y)^{4}\right\rangle \cong D_{4}$ (the Coveter presentation)

Given a presentation $G=\langle X \mid R\rangle \cong F(X) / N(R)$. The word problem asks if a given word $w \in F(X)$ equals the identity of G. This is undecidable! [Novikav 1955].

Example. Burnside groups, $B(m, n)=\left\langle x_{1}, \ldots, x_{m}\right| w^{n}$ for any word $\left.w\right\rangle$. Question (Burnside 1902) Is $B(n, m)$ finite? In the case $B(1, n) \cong \mathbb{Z} / n \mathbb{Z}$ and $B(m, 2) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$.

Question: What are free objects in the category of abelian groups? $\bigoplus_{x \in X} \mathbb{Z}$.

4 Tensor Product

We'll work in the category of R-modules (no assumptions are made on R, including whether it has 1 or not). (Cross-reference this whole chapter with Commutative Algebra Chapter 2)

Recall $\quad M$ is a left R-module if $R \times M \rightarrow M$ with $(r, m) \mapsto r m$ and $r(s(m))=(r s) m$. And M is a right R-module if $R \times M \rightarrow M$ with $(r, m) \mapsto m r$ and $(m r) s=m(r s)$

Example. $R=M_{n}(\mathbb{C})$ and $M=\mathbb{C}^{n}$ is left (M is columns vectors) or right (M is row vectors) R-module
If R is commutative a left R-module structure gives rise to a right R-module structure, i.e., we define $m r=r m . M$ is an $S-R$ bimodule if M is a left S-module and a right R-module and $(s m) r=s(m r)$, e.g., \mathbb{C}^{n} is a $M_{n}(\mathbb{C})-\mathbb{C}$ bimodule.

Suppose we have $f: A \oplus B \rightarrow C$ such that $f\left(a_{1}+a_{2}, b\right)=f\left(a_{1}, b\right)+f\left(a_{2}, b\right), f\left(a, b_{1}+b_{2}\right)=f\left(a, b_{1}\right)+f\left(a, b_{2}\right)$ and $f(a r, b)=f(a, r b)$. We show $A \times B \rightarrow A \otimes_{R} B \rightarrow C$.
Example. $f: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}, f\left(\binom{a}{b},\binom{c}{d}\right)=4 a c+b c+a d+4 b d$. (Easy to check the above relations holds)
Definition 4.1. Let A be a right R-module and B a left R-module. Let F be the free abelian group on the set $A \times B$. Let K be the subgroup generated by all elements:

1. $\left(a+a^{\prime}, b\right)-(a, b)-\left(a^{\prime}, b\right)$
2. $\left(a, b+b^{\prime}\right)-(a, b)-\left(a, b^{\prime}\right)$
3. $(a r, b)-(a, r b)$
for all $a, a^{\prime} \in A, b, b^{\prime} \in B$ and $r \in R$. The quotient F / K is called the tensor product of A and B and is written $A \otimes_{R} B$. Note: $(a, b)+K$ is written $a \otimes b$ and $(0,0)+K$ is written 0 . This is an abelian group.

Warning: Not every element of $A \otimes_{R} B$ has the form $a \otimes b$. A general element is (finite) $\sum n_{i}\left(a_{i} \otimes b_{i}\right)$ with $n_{i} \in \mathbb{Z}$.

We have relations $\left(a_{1}+a_{2}\right) \otimes b=a_{1} \otimes b+a_{2} \otimes b, a \otimes\left(b_{1}+b_{2}\right)=a \otimes b_{1}+a \otimes b_{2}$ and $a r \otimes b=a \otimes r b$. If A is a $S-R$ bimodule then $A \otimes_{R} B$ is a left S-module since F is an S-module by $s(a, b)=(s a, b)$ and K is an S-submodule.

Example. $\mathbb{Z} / 2 \mathbb{Z} \otimes \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}$. (c.f. Commutative Algebra)
There is a function $\pi: A \times B \rightarrow A \otimes_{R} B$ defined by $(a, b) \mapsto a \otimes b$. Note: π is not a group homomorphism as $\left(a_{1}+a_{2}, b_{1}+b_{2}\right) \mapsto a_{1} \otimes b_{1}+a_{1} \otimes b_{2}+a_{2} \otimes b_{1}+a_{2} \otimes b_{2}$. However $\pi\left(a_{1}+a_{2}, b\right)=\pi\left(a_{1}, b\right)+\pi\left(a_{2}, b\right)$ and $\pi\left(a, b_{1}+b_{2}\right)=\pi\left(a, b_{1}\right)+\pi\left(a, b_{2}\right)$ and $\pi(a r, b)=\pi(a, r b)$. (Call these relations "middle linear")

The universal property of Tensor Product . Let $A_{R},{ }_{R} B$ be R-module and C an abelian group. If $g: A \times B \rightarrow C$ is "middle linear" then $\exists!\bar{g}: A \otimes_{R} B \rightarrow C$ such that $\bar{g} \pi=g$.

If A is an $S-R$ bimodule and C is an S-module then \bar{g} is a S-module homomorphism.
Proof. Let F be the free abelian group on $A \times B$. There is a unique group homomorphism $g_{1}: F \rightarrow C$ determined by $(a, b) \mapsto g(a, b)$. Since g is "middle linear", $g_{1}\left(\left(a+a^{\prime}, b\right)-(a, b)-\left(a^{\prime}, b\right)\right)=g\left(a+a^{\prime}, b\right)-g(a, b)-g\left(a^{\prime}, b\right)=0$. Similarly, the other generators of K live in ker g_{1}, so we get an induced map $\bar{g}: \underbrace{A \otimes_{R} B}_{=F / K} \rightarrow C$. Note that $\bar{g}(a \otimes b)=$ $g_{!}((a, b))=g(a, b)$ so $\bar{g} \pi=g$.

If $h: A \otimes B \rightarrow C$ is a group homomorphism with $h \pi=g$ then $h(a \otimes b)=h \pi(a, b)=g(a, b)=\bar{g}(\pi(a, b))=\bar{g}(a \otimes b)$. So h and \bar{g} agree on generators $a \otimes b$ of $A \otimes_{R} B$, so $h=\bar{g}$.

Example. $R=\mathbb{Z}, A=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z}, B=\mathbb{Q}$. Then $A \otimes_{R} B=\mathbb{Q}$.
To prove this, define $f: \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} \times \mathbb{Q} \rightarrow \mathbb{Q}$ by $f((a, b), c)=b c$. Then $f\left(\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right), c\right)=b_{1} c+b_{2} c=$ $f\left(\left(a_{1}, b_{1}\right), c\right)+f\left(\left(a_{2}, b_{2}\right), c\right), f\left((a, b), c_{1}+c_{2}\right)=b\left(c_{1}+c_{2}\right)=b c_{1}+b c_{2}, f((a, b) n, c)=f((n a, n b), c)=n b c=$ $f((a, b), n c)$. So f is "middle linear", so by the proposition there exists a unique $\bar{f}: A \otimes B \rightarrow \mathbb{Q}$ with $\bar{f}((a, b) \otimes c)=$ $b c$. We have that \bar{f} is surjective since $\bar{f}((0,1) \otimes c)=c$ for all $c \in \mathbb{Q}$. Now consider $d=\sum n_{i}\left(a_{i}, b_{i}\right) \otimes c_{i}$ in $\operatorname{ker}(\bar{f})$. So $\bar{f}(d)=\sum n_{i} b_{i} c_{i}=0$. Now $(a, b) \otimes c=(a, b) 4 \otimes \frac{c}{4}=(0,4 b) \otimes \frac{c}{4}=(0,1) 4 b \otimes \frac{c}{4}=(0,1) \otimes b c$. Hence $d=\sum n_{i}(0,1) \otimes b_{i} c_{i}=(0,1) \otimes \sum n_{i} b_{i} c_{i}=(0,1) \otimes 0=0$.

Tensor products of vector spaces. If V is a vector space over k with basis e_{1}, \ldots, e_{n} and W is a vector space over k with basis f_{1}, \ldots, f_{m}, then $V \otimes_{k} W$ is a vector space with basis $\left\{e_{i} \otimes f_{j}\right\}$ (so dimension is $n m$)

To prove this, let U be a vector space with basis $\left\{g_{i j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Let $h: V \times W \rightarrow U$ be given by $\left(\sum a_{i} e_{i}, \sum b_{j} f_{j}\right) \mapsto \sum a_{i} b_{j} g_{i j}$. Check: h is "middle-linear". So by the proposition there exists a unique $\bar{h}: V \otimes_{k} W \rightarrow U$. The k-module homomorphism \bar{h} is surjective since $\bar{h}\left(e_{i} \otimes f_{j}\right)=g_{i j}$. Note that if $a=\sum a_{i} e_{i}$ and $b=\sum b_{j} f_{j}$, then $a \otimes b=\left(\sum a_{i} e_{i}\right) \otimes\left(\sum b_{j} f_{j}\right)=\sum a_{i} b_{j}\left(e_{i} \otimes f_{j}\right)$. So if $\bar{h}\left(\sum n_{i j} e_{i} \otimes f_{j}\right)=0$, then $\sum n_{i j} g_{i j}=0$ so $n_{i j}=0$ for all i, j, hence $\sum n_{i j}\left(e_{i} \otimes f_{j}\right)=0$ so \bar{h} is injective.

Consider $\mathbb{R} \otimes_{\mathbb{Q}} V$. Since \mathbb{R} is a $\mathbb{R}-\mathbb{Q}$ bimodule, this is a left \mathbb{R}-module, so a vector space.
Exercise. If $\left\{e_{i}\right\}$ is a basis for V, then $\left\{1 \otimes e_{i}\right\}$ is a basis for $\mathbb{R} \otimes_{\mathbb{Q}} V$ as a \mathbb{R}-vector space.
Lemma 4.2. Let R be a ring with 1 and A be a unitary left R-module. Then $R \otimes_{R} A \cong A$ as a left R-module.
Proof. The map $f: R \times A \rightarrow A$ defined by $(r, a) \mapsto r a$ is "middle-linear" (check!), so $\exists!\bar{f}: R \otimes_{R} A \rightarrow A$ with $\bar{f}(r \otimes a)=r a$. Since $r\left(r^{\prime} \otimes a\right)=r r^{\prime} \otimes a$. So $\bar{f}\left(r\left(r^{\prime} \otimes a\right)\right)=r r^{\prime} a=r \bar{f}\left(r^{\prime} \otimes a\right)$, so \bar{f} is an R-module homomorphism. Since $1 \otimes a \mapsto a, \bar{f}$ is surjective. Note that $r \otimes a=1 \otimes r a$, so if $\bar{f}\left(\sum n_{i}\left(r_{i} \otimes_{R} b_{i}\right)\right)=0$ then since we have

$$
\begin{aligned}
\sum n_{i}\left(r_{i} \otimes b_{i}\right) & =\sum n_{i}\left(1 \otimes r_{i} b_{i}\right) \\
& =\sum 1 \otimes n_{i} r_{i} b_{i} \\
& =1 \otimes \sum n_{i} r_{i} b_{i}
\end{aligned}
$$

we find $\bar{f}\left(\sum n_{i}\left(r_{i} \otimes b_{i}\right)\right)=\sum n_{i} r_{i} b_{i}=0$, so $\sum n_{i}\left(r_{i} \otimes b_{i}\right)=1 \otimes 0=0$. So \bar{f} is injective.
In general, if M is a left R-module, and $\phi: R \rightarrow S$ a ring homomorphism, then $S \otimes_{R} M$ is a left S-module. This is often called extension of scalars or sometime base change. If R, S are fields then $S \otimes_{R} M$ is a vector space with the same dimension of M.

Exercise. $K \subsetneq L$ fields, $L \otimes_{K} K\left[x_{1}, \ldots, x_{n}\right] \cong L\left[x_{1}, \ldots, x_{n}\right]$ (as vector spaces)

4.1 Functoriality

Suppose $\phi: M_{R} \rightarrow N_{R}$ and $\psi:_{R} M^{\prime} \rightarrow_{R} N^{\prime}$ are R-module homomorphisms. We will now construct $\phi \otimes \psi:$ $M \otimes_{R} M^{\prime} \rightarrow N \otimes_{R} N^{\prime}$ as follows: The map $f: M \times M^{\prime} \rightarrow N \otimes_{R} N^{\prime}$ given by $\left(m, m^{\prime}\right) \mapsto \phi(m) \otimes \psi\left(m^{\prime}\right)$ is "middle-linear". Check this yourself but we can see that

$$
\begin{aligned}
\left(m_{1}+m_{1}, m^{\prime}\right) \mapsto \phi\left(m_{1}+m_{2}\right) \otimes \psi\left(m^{\prime}\right) & =\left(\phi\left(m_{1}\right)+\phi\left(m_{2}\right)\right) \otimes \psi\left(m^{\prime}\right) \\
& =\phi\left(m_{1}\right) \otimes \psi\left(m^{\prime}\right)+\phi\left(m_{2}\right) \otimes \psi\left(m^{\prime}\right) \\
& =f\left(m_{1}, m^{\prime}\right)+f\left(m_{2}, m^{\prime}\right)
\end{aligned}
$$

This gives an induced map $\bar{f}=\phi \otimes \psi: M \otimes_{R} M^{\prime} \rightarrow N \otimes_{R} N^{\prime}$ defined by $\phi \otimes \psi\left(m \otimes m^{\prime}\right)=\phi(m) \otimes \psi\left(m^{\prime}\right)$
If M, N are $S-R$ bimodules and ϕ is a bimodule homomorphism then $\phi \otimes \psi$ is an S-module homomorphism.
Then, given a right R-module A, we get a functor $A \otimes-:_{R} \operatorname{Mod} \rightarrow$ Groups, it act on objects by $B \mapsto A \otimes_{R} B$ and on morphisms it acts by $(f: B \rightarrow C) \mapsto(1 \otimes f: A \otimes B \rightarrow A \otimes C)$. Similarly, a left R-module B gives a functor $-\otimes_{R} B: \operatorname{Mod}_{R} \rightarrow$ Groups.

If A is an $S-R$ bimodule, we replace Groups by ${ }_{S} \operatorname{Mod}$.
Theorem 4.3. Let R, S be rings, let A be a right R-module, B an $R-S$ bimodule, and C a right S-module. Then $\operatorname{hom}_{S}\left(A \otimes_{R} B, C\right) \cong \operatorname{hom}_{R}\left(A, \operatorname{hom}_{S}(B, C)\right)$.

Note. - Write F for the functor $-\otimes B$ and G for the functor $\operatorname{hom}(B,-)$. Then the theorem says hom ${ }_{S}(F(A), C)=$ $\operatorname{hom}_{R}(A, G(C))$. When we have such a situation for a pair of functors F is called left adjoint to G and G is right adjoint to F

- If B is an $R-S$ bimodule and C is a right S module, then $\operatorname{hom}_{S}(B, C)$ is a right R-module, under the map $\psi r \in \operatorname{hom}_{S}(B, C)$ is given by $(\psi r)(b)=\psi(r b)$. Check: $(\psi r) s=\psi(r s)$ since $((\psi r) s)(b)=(\psi r)(s b)=\psi(r s b)=$ $\psi(r s)(b)$.
- $\operatorname{hom}_{S}(B, C)$ is an abelian group $(\phi+\psi)(b)=\phi(b)+\psi(b)$. Identity: $\phi(b)=0 \forall b \in B$.

Example. $R=S=C=K$ then $(A \otimes B)^{\mathrm{op}} \cong \operatorname{hom}\left(A, B^{\mathrm{op}}\right)$
of Theorem 4.3. Given $\phi: A \otimes B \rightarrow C$, define $\Psi(\phi)=\psi: A \rightarrow \operatorname{hom}_{S}(B, C)$ by $\psi(a)(b)=\phi(a \otimes b)$. We check:

1. For each $a, \psi(a) \in \operatorname{hom}_{S}(B, C)$,

$$
\begin{aligned}
\psi(a)\left(b+b^{\prime}\right) & =\phi\left(a \otimes\left(b+b^{\prime}\right)\right) \\
& =\phi\left(a \otimes b+a \otimes b^{\prime}\right) \\
& =\phi(a \otimes b)+\phi\left(a \otimes b^{\prime}\right) \\
& =\psi(a)(b)+\psi(a)\left(b^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\psi(a)(b s) & =\phi(a \otimes b s) \\
& =\phi((a \otimes b) s) \\
& =\phi(a \otimes b) s \text { since } \phi \text { is an } S \text {-module homomorphism } \\
& =\psi(a)(b) s
\end{aligned}
$$

2. ψ is an R-module homomorphism:

$$
\begin{aligned}
\psi\left(a+a^{\prime}\right)(b) & =\phi\left(\left(a+a^{\prime}\right) \otimes b\right) \\
& =\phi\left(a \otimes b+a^{\prime} \otimes b\right) \\
& =\phi(a \otimes b)+\phi\left(a^{\prime} \otimes b\right) \\
& =\psi(a)(b)+\psi\left(a^{\prime}\right)(b) \forall b
\end{aligned}
$$

So $\psi\left(a+a^{\prime}\right)=\psi(a)+\psi\left(a^{\prime}\right) \in \operatorname{hom}_{S}(B, C)$

$$
\begin{aligned}
\psi(a r)(b) & =\phi(a r \otimes b) \\
& =\psi(a)(r b) \\
& =(\psi(a) r)(b)
\end{aligned}
$$

So $\psi(a r)=\psi(a) r$.
3. Ψ is a group homomorphism

$$
\begin{aligned}
\Psi\left(\phi+\phi^{\prime}\right)(a)(b) & =\left(\phi+\phi^{\prime}\right)(a \otimes b) \\
& =\phi(a \otimes b)+\phi^{\prime}(a \otimes b) \\
& =\Psi(\phi)(a)(b)+\Psi\left(\phi^{\prime}\right)(a)(b)
\end{aligned}
$$

This is true for all a, b so $\Psi\left(\phi+\phi^{\prime}\right)=\Psi(\phi)+\Psi\left(\phi^{\prime}\right)$. Hence Ψ is a group homomorphism.
For the inverse, given an R-module homomorphism $\psi: A \rightarrow \operatorname{hom}_{S}(B, C)$ define the function $f: A \times B \rightarrow C$ by $f(a, b)=\psi(a)(b)$. This is "middle linear" (Check!). So f defines $\phi: A \otimes_{R} B \rightarrow C$ with $\phi(a \otimes b)=\psi(a)(b)$. This gives an inverse to Ψ.

Example. Of Adjoints. Let $F:$ Sets \rightarrow Groups defined by $X \mapsto F(X)$ (the free group) and $G:$ Groups \rightarrow Sets the forgetful functor. Then $\operatorname{hom}_{\text {Groups }}(F X, H) \cong \operatorname{hom}_{\text {Sets }}(X, G H)$.

The point of all this is: if F is a left adjoint functor, then F preserves coproduct.

Example. $-\otimes B$ preserves direct sums of modules. $(A \oplus B) \otimes C \cong(A \otimes C) \oplus(B \otimes C)$.
Proposition 4.4. Let A be a right R-module, B an $R-S$ bimodule and C a left S-module. Then $\left(A \otimes_{R} B\right) \otimes_{S} C \cong$ $A \otimes_{R}\left(B \otimes_{S} C\right)$.

Proof. Sketch 1 Fix C, define $A \otimes B \rightarrow A \otimes(B \otimes C)$ and define $a \otimes b \mapsto a \otimes(b \otimes c)$. This means that the map $(A \otimes B) \times C \rightarrow A \otimes(B \otimes C)$ given by $(a \otimes b, c)=a \otimes(b \otimes c)$ is well define and "middle linear". Then do the same thing for the other direction and we have an isomorphism.

Sketch 2 We construct $A \otimes_{R} B \otimes C$ by $F(A \times B \times C) / R$ where R is a set of relations. (For example $\left(a+a^{\prime}, b, c\right)=$ $(a, b, c)+\left(a^{\prime}, b, c\right)$ or $(a r, b, c)=(a, r b, c)$ or $(a, b s, c)=(a, b, s c)$ etc.) Then use universal properties of categories.

Definition 4.5. Let R be a commutative ring with identity. An R-algebra is a ring A with identity and a ring homomorphism $f: R \rightarrow A$ mapping 1_{R} to 1_{A} such that $f(R)$ is in the centre of $A(f(r) a=a f(r) \forall r \in R, a \in A)$. This makes A a left and right R-module.

Example. $R=k$ a field, $A=k\left[x_{1}, \ldots, x_{n}\right]$
$K \subseteq L$ fields, $R=K, A=L$
$R=K, A=M_{n}(K)$
Definition. An R-algebra morphism is a ring homomorphism $\phi: A \rightarrow B$ with $\phi\left(1_{A}\right)=1_{B}$ that is also an R-module homomorphism. So $\phi(r a)=r \phi(a)$.

Proposition 4.6. Let R be a commutative ring with 1 , and let A, B be R-algebras. Then $A \otimes_{R} B$ is an R-algebra with multiplication induced from $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}$.

Proof. Once we have shown that the multiplication is well-defined, then $1 \otimes 1$ is the identity and we have $f: R \rightarrow$ $A \otimes B$ given by $f(r)=r \otimes 1=1 \otimes r$. This satisfies $(r \otimes 1)(a \otimes b)=r a \otimes b=a r \otimes b=(a \otimes b)(r \otimes 1)$.

To show that the multiplication is well-defined and distributive we can construct a homomorphism $A \otimes B \otimes A \otimes$ $B \rightarrow A \otimes B$ by $a \otimes b \otimes a^{\prime} \otimes b^{\prime} \mapsto a a^{\prime} \otimes b b^{\prime}$. We construct this map in stages: fix a^{\prime}, b^{\prime} and construct $\phi_{a^{\prime}, b^{\prime}}: A \otimes B \rightarrow A \otimes B$. Use $\phi_{a^{\prime}, b^{\prime}}$ to construct $\psi_{b}: A \otimes B \otimes A \rightarrow A \otimes B$ and thus the above map. This homomorphism is induced by a "middle linear" map $f: A \otimes B \times A \otimes B \rightarrow A \otimes B$ defined by $\left(a \otimes b, a^{\prime} \otimes b^{\prime}\right) \mapsto\left(a a^{\prime}, b b^{\prime}\right)$ which is our multiplication. The "middle-linearity" shows distributivity.

4.2 Tensor Algebras

Let R be a commutative ring with 1 and let M be an R-module
Definition 4.7. For each $k \geq 1$, set $T^{k}(M)=\underbrace{M \otimes_{R} M \otimes_{R} \cdots \otimes_{R} M}_{k}$. So $T^{0}(M)=R$. Define $T(M)=R \oplus M \oplus$ $(M \otimes M) \oplus \cdots=\bigoplus_{k=0}^{\infty} T^{k}(M)$. By construction this is a left and right R-module.

Theorem 4.8. $T(M)$ is an R-algebra containing M defined by $\left(m_{1} \otimes \cdots \otimes m_{i}\right)\left(m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime}\right)=m_{1} \otimes \cdots \otimes m_{i} \otimes$ $m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime}$ and extend via distributivity. For this multiplication, $T^{i}(M) T^{j}(M) \subseteq T^{i+j}(M)$. If A is any R-algebra and $\phi: M \rightarrow A$ is a R-module homomorphism, then there exists a unique R-algebra homomorphism $\Phi: T(M) \rightarrow A$ such that $\left.\Phi\right|_{M}=\phi$.

Proof. The map $T^{i}(M) \times T^{j}(M) \rightarrow T^{i+j}(M)$ defined by $\left(m_{1} \otimes \cdots \otimes m_{i}, m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime}\right) \mapsto\left(m_{1} \otimes \cdots \otimes m_{i} \otimes m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime}\right)$ is "middle-linear" (check that this is well-defined.) So multiplication is defined and distributive. Suppose A is an R-algebra and $\phi: M \rightarrow A$ is an R-module homomorphism. Then $M \times M \rightarrow A$ defined by $\left(m_{1}, m_{2}\right) \mapsto \phi\left(m_{1}\right) \phi\left(m_{2}\right)$ is middle linear. So it defines an R-module homomorphism $M \otimes M \rightarrow A$. (Exercise: check actually we get $\left.T^{k}(M) \rightarrow A\right)$. We thus get a R-module homomorphism $\Phi: T(M) \rightarrow A$ with $\left.\Phi\right|_{M}=\phi$. This respect multiplication, so is a ring homomorphism. Now $\Phi(1)=1$ by construction, so we have a R-algebra homomorphism. Since $\Phi(m)=\phi(m)$ for all $m \in M$, if $\Psi: T(M) \rightarrow A$ were another such R-algebra homomorphism, $\Psi\left(m_{1} \otimes \cdots \otimes m_{i}\right)=$ $\Phi \Psi\left(m_{1}\right) \ldots \Psi\left(m_{i}\right)=\phi\left(m_{1}\right) \ldots \phi\left(m_{i}\right)=\Phi\left(m_{1} \otimes \cdots \otimes m_{i}\right)$, so $\Psi=\Phi$.

Example. $R=K$ a field, $M=V$ a d dimensional vector space with basis e_{1}, \ldots, e_{d}. $T^{j}(M)$ is a vector space with basis $e_{i_{1}} \otimes \cdots \otimes e_{i_{j}}$ and hence has dimension d^{j}. Multiplication is concatenation, so $T(M)$ consists of "noncommutative polynomials" in the variables e_{1}, \ldots, e_{d}. This is either called the "non-commutative polynomial algebra" or "free associative algebra".
$R=\mathbb{Z}$ and $M=\mathbb{Z} / 6 \mathbb{Z}$. Now $T^{j}(M) \cong \mathbb{Z} / 6 \mathbb{Z}$, so $T(M) \cong \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} \oplus \ldots \cong \mathbb{Z}[x] /\langle 6 x\rangle$.
We work out $T(\mathbb{Q} / \mathbb{Z})$. Now $\mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}=0$, to see this $\frac{a}{b} \otimes \frac{c}{d}=\frac{a}{b} \otimes \frac{b}{b} \frac{c}{d}=\left(\frac{a}{b}\right) b \otimes \frac{1}{b} \frac{c}{d}=a \otimes \frac{c}{b d}=0 \otimes \frac{c}{b d}=0$. So $T(\mathbb{Q} / \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Q} / \mathbb{Z}$.

Definition 4.9. A ring S is (\mathbb{N})- graded if $S \cong S_{0} \oplus S_{1} \oplus \cdots=\oplus_{k \geq 0} S_{k}$ (as groups) with $S_{j} S_{i} \subseteq S_{i+j}$ and $S_{i} S_{j} \subseteq S_{i+j}$ $\forall i, j \geq 0$. The elements of S_{i} are called homogeneous of degree i. A homomorphism $\phi: S \rightarrow T$ of graded rings is graded if $\phi\left(S_{k}\right) \subseteq T_{k}$ for all k.

Example. $S=k\left[x_{1}, \ldots, x_{n}\right]$ or $S=T^{k}(M)$
Note. $S_{0} S_{0} \subseteq S_{0}$, so S_{0} is a subring. Also $S_{0} S_{j} \subseteq S_{j}$, so each S_{j} is an S_{0}-module. If S has an identity 1, it lives in S_{0}. (if not $1=e_{k}+e, e \in \oplus_{j=0}^{k+1} S_{j}$, for $s \in S_{1}, s=1 \cdot s=\left(e_{k}+e\right) s=e_{k} s+e s \rightarrow e_{k} s=0$). If S_{0} is in the centre of S, then S is an S_{0}-algebra.

4.3 Symmetric and Exterior Algebras

Definition 4.10. The symmetric algebra of an R-module M is $S(M)=T(M) / C(M)$ where $C(M)=\left\langle m_{1} \otimes m_{2}-m_{2} \otimes m_{1}: m_{1}, m_{2} \in M\right\rangle$ (two-sided ideal generated by).

Since $T(M)$ is generated as an R-algebra by T and M, and the images of $m_{1} \otimes m_{2}$ and $m_{2} \otimes m_{1}$ agrees in $S(M)$, we have $S(M)$ is a commutative ring. (Exercise: think about universal properties)

Example. V is a d-dimensional vector space over k, spanned by e_{1}, \ldots, e_{d}. Then $S(V) \cong k\left[x_{1}, \ldots, x_{n}\right]$.
Definition 4.11. The exterior algebra of an R-module M is the R-algebra $\wedge(M)=T(M) / A(M)$ where $A(M)=$ $\langle m \otimes m: m \in M\rangle$. The image of $m_{1} \otimes \cdots \otimes m_{j}$ in $\wedge M$ is written $m_{1} \wedge m_{2} \wedge \cdots \wedge m_{j}$. Multiplication is called exterior or wedge product.

Example. $M=V$ a d-dimensional vector space over k (of characteristic not 2), spanned by e_{1}, \ldots, e_{d}. Then $\wedge M=T(M) / A(M)=$ \{non-commutative polynomials $\} /\left\langle l^{2}\right\rangle$ where $l=\sum a_{i} e_{i}$. We see that this forces $x_{i} x_{j}=$ $-x_{j} x_{i}$ (consider $\left(x_{i}+x_{j}\right)^{2}$). So in this case $\wedge V=k\left\langle x_{1}, \ldots, x_{j}\right\rangle /\left\langle x_{i} x_{j}+x_{j} x_{i}\right\rangle$. In characteristic 2, we have that $x_{i} x_{i} \notin\left\langle x_{i} x_{j}+x_{j} x_{i}\right\rangle$

Write $\wedge^{k} M$ for the image of $T^{k}(M)$ in $\wedge(M)$
Exercise. This is a graded component, i.e., $\wedge(M)=\oplus \wedge^{k}(M)$.
If $f \in \wedge^{k} M, g \in \wedge^{l} M$ then $f g=(-1)^{k l} g f$. This is referred as "graded commutative"

4.4 Summary

What we should remember/understand

- $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$
- $L \otimes K\left[x_{1}, \ldots, x_{n}\right]$
- $V \otimes_{k} W$ where V, W are vector-space over k
- $\wedge^{k} V$ where V is a vector-space over k.

5 Homological Algebra

Definition 5.1. A sequence $\cdots \longrightarrow M_{1} \xrightarrow{\phi_{1}} M_{2} \xrightarrow{\phi_{2}} M_{3} \xrightarrow{\phi_{3}} M_{4} \longrightarrow \cdots$ of groups $/ R$-modules $/ \ldots$ is a complex if $\phi_{i+1} \circ \phi=0$, i.e., $\phi_{i} \subseteq \operatorname{ker}\left(\phi_{i+1}\right)$.

It is exact if $\operatorname{ker}\left(\phi_{i+1}\right)=\operatorname{im}\left(\phi_{i}\right) \forall i$.
A short exact sequence is $0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$. This means:

1. ϕ is injective
2. $\operatorname{im} \phi=\operatorname{ker} \psi$
3. ψ is surjective

A morphism of complexes

is a sequences of maps $f_{i}: A_{i} \rightarrow B_{i}$ such that the diagram

commutes. If all the f_{i} are isomorphism then the complexes are isomorphic.
Short 5-lemma. Let

be morphism of short exact sequences of groups.

- If α and γ are injective so is β.
- If α and γ is surjective so is β
- If α and γ are isomorphism so is β

Proof. Suppose that α and γ are injective, and $\beta(b)=0$ for some $b \in B^{\prime}$. Then $\phi^{\prime} \beta(b)=0=\gamma \phi(b)$. Since γ is injective, $\phi(b)=0$, so $b \in \operatorname{ker} \phi$, hence there exists $a \in A$ such that $b=\psi(a)$. So $\beta(b)=\beta \psi(a)=\psi^{\prime} \alpha(a)=0$. Since ψ^{\prime} is injective, $\alpha(a)=0$, but α is also injective, so $\alpha=0$. So $b=\psi(a)=0$ and thus β is injective.

Suppose α and γ are surjective and consider $b^{\prime} \in B^{\prime}$. Since γ is surjective, there exists $c \in C$ with $\gamma(c)=\phi^{\prime}\left(b^{\prime}\right)$. Since ϕ is surjective, there exists $b \in B$ with $\phi(b)=0$, so $\gamma \phi(b)=\phi^{\prime} \beta(b)=\phi^{\prime}\left(b^{\prime}\right)$. Thus $\beta(b)=b^{\prime} \in \operatorname{ker} \phi^{\prime}=\operatorname{im} \psi^{\prime}$. So there exists $a^{\prime} \in A^{\prime}$ with $\psi^{\prime}\left(a^{\prime}\right)=\beta(b)-b^{\prime}$. Since α is surjective, there exists $a \in A$ such that $\alpha(a)=a^{\prime}$, so $\psi^{\prime} \alpha(a)=\beta(b)-b^{\prime}$. Thus $\beta \psi(a)=\beta(b)-b^{\prime}$, so $b^{\prime}=\beta(b-\psi(a)) \in \operatorname{im} \beta$.

Question: Given A, C what can you say about B with $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ exact? One obvious answer is $0 \rightarrow A \xrightarrow{a \mapsto(a, 0)} A \oplus C \underset{(a, c) \mapsto c}{ } C \rightarrow 0$ is always exact.

Definition 5.2. Let R be a ring and let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be a short exact sequence of R-modules. The sequence is said to split (or be split) if there exists an R-submodule $D \subseteq B$ such that $B=D+\psi(A)$ with $D \cap \psi(A)=\{0\}$ (i.e., $B \cong D \oplus \psi(A)$). "There exists R-module complement of $\psi(A)$ in B "

Lemma 5.3. The short exact sequence $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ splits if and only if there exists $\mu: C \rightarrow B$ (called a section) such that $\phi \circ \mu=\mathrm{id}_{C}$, if and only if there exists $\lambda: B \rightarrow A$ such that $\lambda \circ \psi=\mathrm{id}_{A}$

Note. If there exists an R-module complement D to $\psi(A)$ in B, then $D \cong B / \psi(A) \cong C$
Proof of Note. Consider $\phi: B \rightarrow C$. Note that $\left.\phi\right|_{D}$ is injective, since $D \cap \psi(A)=\{0)($ as $\psi(A)=\operatorname{ker} \phi)$. Since ϕ is surjective, for any $c \in C$, there exists $b \in B$ with $\phi(b)=c$. Write $b=d+\psi(a)$ for some $d \in D, a \in A$. But then $\phi(b)=\phi(d+\psi(a))=\phi(d)+\phi(\psi(a))=\phi(d)$, so $\left.\phi\right|_{D}$ is surjective.

Proof of Lemma. If the sequence splits, there exists an R-module complement D for $\phi(A)$. By above, $D \cong C$, so let $\mu: C \rightarrow D$ be the isomorphism $\left(\mu=\phi^{-1}\right)$. By construction $\phi(\mu(c))=c$ so $\phi \circ \mu=\operatorname{id}_{c}$.

Conversely, if there exists $\mu: C \rightarrow B$ such that $\phi \circ \mu=\operatorname{id}_{C}$, let $D=\mu(C)$. We need to show that D is an R-module complement for $\psi(A)$. Let $b \in D \cap \psi(A)$. Then $b=\mu(c)$, so $\phi(B)=\phi(\mu(c))=c$, but since $b=\psi(a)$ for some a, we have $\phi(b)=\phi(\psi(a))=0$, so $c=0$ and thus $b=\mu(0)=0$. Given $b \in B$, let $d=\mu(\phi(b))$. Then $\phi(b-d)=\phi(b-\mu \phi(b))=\phi(b)-\phi \mu \phi(b)=\phi(b)-\phi(b)=0$, so $b-d \in \operatorname{ker} \phi=\operatorname{im} \psi$. So there exists $a \in A$ such that $b=d+\phi(a)$, so $B=D+\psi(A)$

Example. Given A and letting $C=\mathbb{Z}$, what are the options for B with $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$? In this case, $B \cong A \oplus \mathbb{Z}$, since the map $\mu: C \cong \mathbb{Z} \rightarrow B$, given by $\mu: 1 \mapsto b$ where b is a fixed choice of $b \in B$ with $\phi(b)=1$, is a splitting. As $\phi \circ \mu(n)=\phi(n b)=n \phi(b)=n \cdot 1=n$.

Recall that $\operatorname{hom}_{R}(D,-)$ is a functor, $f: A \rightarrow B, f: \operatorname{hom}_{R}(D, A) \rightarrow \operatorname{hom}_{R}(D, B)$ defined by $\phi \mapsto f \circ \phi$.
Given $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$, we can apply $\operatorname{hom}_{R}(D,-)$ to it:

$$
0 \longrightarrow \operatorname{hom}_{R}(D, A) \stackrel{\psi}{\longrightarrow} \operatorname{hom}_{R}(D, B) \xrightarrow{\phi} \operatorname{hom}_{R}(D, C) \longrightarrow 0
$$

WARNING: no claims this is a complex yet.
Claim: $0 \rightarrow A \xrightarrow{\phi} B$ is exact, then $0 \rightarrow \operatorname{hom}_{R}(D, A) \xrightarrow{\phi} \operatorname{hom}_{R}(D, B)$ is exact.
Proof. Consider $f \in \operatorname{hom}_{R}(D, A)$. If $f \neq 0$, then there exists $d \in D$ with $f(d)=a \neq 0$. Then $\phi(f)(d)=\phi(f(d))=$ $\phi(a) \neq 0$ since ϕ is injective. So $\phi(f) \mid n e q 0, \operatorname{som}_{R}(D, A) \xrightarrow{\phi} \operatorname{hom}_{R}(D, B)$ is injective.

Claim: If $0 \rightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C$ is exact then $\operatorname{hom}_{R}(D, A) \xrightarrow{\psi} \operatorname{hom}_{R}(D, B) \xrightarrow{\phi} \operatorname{hom}_{R}(D, C)$ is exact
Proof. Let $f \in \operatorname{hom}_{R}(D, A)$. Then for all $d \in D, \phi \circ \psi(f)(d)=\phi\left(\psi(f(d))=0\right.$, so $\phi \circ \psi: \operatorname{hom}_{R}(D, A) \rightarrow$ $\operatorname{hom}_{R}(D, C)=0$ (i.e., this is a complex). Now consider $f \in \operatorname{hom}_{R}(D, B)$ with $\phi(f)=0$. Then for any $d \in D$, $\phi(f(d))=0$, so $f(d) \in \operatorname{ker} \phi$, and thus there exists $a \in A$ with $\phi(a)=f(d)$. The choice of a is forced since ψ is injective.

Define $g: D \rightarrow A$ by $g(d)=a$. We now check this is an R-module homomorphism. Then $\psi g=f$, so $f \in \operatorname{im} \psi$. Suppose $g(d)=a, g\left(d^{\prime}\right)=a^{\prime}$, then $\psi(a)=f(d), \psi\left(a^{\prime}\right)=f\left(d^{\prime}\right)$. So $\psi\left(a+a^{\prime}\right)=\psi(a)+\psi\left(a^{\prime}\right)=f(d)+f\left(d^{\prime}\right)=f\left(d+d^{\prime}\right)$. So we must have (since ψ is injective) $g\left(d+d^{\prime}\right)=a+a^{\prime}=g(d)+g\left(d^{\prime}\right)$. (Check $g(r d)=r g(d)$)

However if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ we do not necessarily have $\operatorname{hom}_{R}(D, B) \rightarrow \operatorname{hom}_{R}(D, C) \rightarrow 0$ is exact.
Example. $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$, and $D=\mathbb{Z} / 2 \mathbb{Z}$.
Definition 5.4. We say that $\operatorname{hom}_{R}(D,-)$ is a left exact functor.
If F is a covariant functor, $F: R$-module $\rightarrow R$-module, then F is left exact if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$.

It is right exact if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow 0$
Hence it is exact if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow 0$

Question: For which D is $\operatorname{hom}_{R}(D,-)$ exact? Let $D=R$ (a ring with identity) If $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact then $0 \longrightarrow \operatorname{hom}_{R}(R, A) \longrightarrow \operatorname{hom}_{R}(R, B) \longrightarrow \operatorname{hom}(R, C) \longrightarrow 0$ is exact because $\operatorname{hom}_{R}(R, A) \cong A$ by $\phi \mapsto \phi(1)$ and

$$
f \longmapsto \longmapsto \psi f
$$

commutes.
Definition 5.5. An R-module P is projective if for any surjection $\phi: M \rightarrow N$ of R-modules and an R-module map $f: P \rightarrow N$ such that there exists $g: P \rightarrow M$ such that $f=\phi \circ g$

Example. $P=R^{n}$ for some n
Proposition 5.6. Let P be an R-module. The following are equivalent:

1. P is projective
2. For all short exact sequence $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ we have $0 \longrightarrow \operatorname{hom}_{R}(P, A) \longrightarrow \operatorname{hom}_{R}(P, B) \longrightarrow \operatorname{hom}_{R}(P, C) \longrightarrow 0$ is exact. (That is $\operatorname{hom}_{R}(P,-)$ is an exact functor)
3. There exist an R-module Q and set S such that $P \oplus Q \cong \oplus_{S} R$. " P is a direct summand of a free module"

Note. If $R=\mathbb{Z}, R=k\left[x_{1}, \ldots, x_{n}\right]$ then all projective modules are free. (The second is Serre's conjecture and proven by Quillen-Suslin)

Proof. $1 \Rightarrow 2 \quad$ Let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be a short exact sequence. Then we know
$0 \longrightarrow \operatorname{hom}_{R}(P, A) \longrightarrow \operatorname{hom}_{R}(P, B) \longrightarrow \operatorname{hom}_{R}(P, C)$ is exact. Now given $f \in \operatorname{hom}_{R}(P, C)$ we have

so there exists a unique $g: P \rightarrow B$ such that $f=\phi \circ g$, i.e., $f=\phi(g)$. Thus $\phi: \operatorname{hom}_{R}(P, B) \rightarrow \operatorname{hom}_{R}(P, C)$ is surjective.
$2 \Rightarrow 3 \quad$ Suppose $\operatorname{hom}_{R}(P,-)$ is exact. Write $P=\oplus_{s \in S} R / K$ as a quotient of a free module. Then $0 \rightarrow K \rightarrow$ $\oplus R \xrightarrow{\pi} P \rightarrow 0$ is exact. Since $\operatorname{hom}_{R}(P, \oplus R) \rightarrow \operatorname{hom}_{R}(P, P)$ is surjective, there exists $\mu: P \rightarrow \oplus R$ such that $\pi(\mu)=\mathrm{id}: P \rightarrow P$, i.e., for all $p \in P$ we have $\pi \circ \mu(p)=p$. Thus $\oplus R \cong P \oplus K$.
$3 \Rightarrow 1 \quad$ Suppose $P \oplus Q=F$ (where F is a free R-module, i.e., $F \cong \oplus_{s \in S} R, S$ a set and let $i: S \rightarrow F$) and

Let $\pi: F \rightarrow P$ for the projection map. Then $f \circ \pi \in \operatorname{hom}(F, N)$. For each $s \in S$, let n_{s} be $f(\pi(i(s))$. Choose $m_{s} \in M$ with $\phi\left(m_{s}\right)=n_{s}$. By the universal property there exists a unique $g: F \rightarrow M$ such that $\phi \circ g=f \circ \pi$. So we have the following commutative diagram

So define $h: P \rightarrow M$ by $h(p)=g(p, 0)$. Check: This is an R-module homomorphism. Then $\phi(h(p))=$ $\phi(g(p, 0))=f(\pi(p, 0))=f(p)$. So $\phi \circ h=f$ and so P is projective.

Question: What about other functors? For example hom $(-, D)$ or $A \otimes-$?
Example. $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$ and apply $\operatorname{hom}(-, \mathbb{Z} / 2 \mathbb{Z})$. Then applying hom $(-, \mathbb{Z} / 2 \mathbb{Z})$, we get $0 \longleftarrow \mathbb{Z} / 2 \mathbb{Z} \longleftarrow \mathbb{Z} / 2 \mathbb{Z} \longleftarrow \mathbb{Z} / 2 \mathbb{Z} \longleftarrow 0$, but this is not exact. To see this note that we must have $\mathbb{Z} / 2 \mathbb{Z} \leftarrow^{0} \mathbb{Z} / 2 \mathbb{Z} \leftarrow^{\text {id }} \mathbb{Z} / 2 \mathbb{Z} \longleftarrow 0$, showing the failure of surjectivity.

Lemma 5.7. Let $\psi: A \rightarrow B, \phi: B \rightarrow C$ be R-module homomorphism. If $0 \longrightarrow \operatorname{hom}(C, D) \longrightarrow \operatorname{hom}(B, C) \longrightarrow \operatorname{hom}(A, D)$ is exact for all R-modules D, then $\quad A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ is exact.

Proof. We need to show:

1. ϕ is surjective, use $D=C / \operatorname{im} \phi$

Set $D=C / \phi(B)$, let $\phi_{1}: C \rightarrow D$ be the projection map. Then $\pi_{1} \circ \phi: B \rightarrow C / \phi(B)$ is the zero map by construction. So $\phi\left(\pi_{1}\right)=0 \in \operatorname{hom}(B, D)$. Since $\operatorname{hom}(C, D) \rightarrow \operatorname{hom}(B, D)$ is injective, $\pi_{1}=0$, so the projection $C \rightarrow C / \phi(B)$ is the zero map. So $C / \phi(B)=0$ and thus $\phi(B)=C$ so it is surjective.
2. $\operatorname{im} \psi \subseteq \operatorname{ker} \phi$, use $D=C$, id : $C \rightarrow C$

Exercise
3. $\operatorname{ker}(\phi) \subseteq \operatorname{im} \psi$, use $D=B / \operatorname{im} \psi$.

Exercise

Proposition 5.8. Let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be an exact sequence of R-modules. Then
$D \otimes A \xrightarrow{1 \otimes \psi} D \otimes B \xrightarrow{1 \otimes \phi} D \otimes C \longrightarrow 0$ is exact.
Proof. Recall hom $(F \otimes G, H) \cong \operatorname{hom}(F, \operatorname{hom}(G, H))$. Now by left exactness of hom $(-, E)$, for any E we have
$0 \longrightarrow \operatorname{hom}(C, E) \longrightarrow \operatorname{hom}(B, E) \longrightarrow \operatorname{hom}(A, E)$. Then for all D
$0 \longrightarrow \operatorname{hom}(D, \operatorname{hom}(C, E)) \longrightarrow \operatorname{hom}(D, \operatorname{hom}(B, E)) \longrightarrow \operatorname{hom}(D, \operatorname{hom}(A, E))$
So $0 \longrightarrow \operatorname{hom}(D \otimes C, E) \longrightarrow \operatorname{hom}(D \otimes B, E) \longrightarrow \operatorname{hom}(D \otimes A, E))$ is exact. So by the lemma $D \otimes A \rightarrow$ $D \otimes B \rightarrow D \otimes C \rightarrow 0$ is exact (Check the maps are what you think they are)

Recall: $M^{\bullet}: \ldots \longrightarrow M^{i-1} \xrightarrow{\partial_{i}} M^{i} \xrightarrow{\partial_{i+1}} M^{i+1} \xrightarrow{\partial_{1+2}} M^{i+2} \longrightarrow \ldots$ is a complex (or cochain complex) if $\partial_{j+1} \circ$ $\partial_{j}=0$ for all j
Definition 5.9. Given a (cochain) complex M, the $n^{\text {th }}$ cohomology group is $H^{n}(M)=\operatorname{ker} \partial_{n+1} / \operatorname{im} \partial_{n}$
Notation. If $M_{\bullet} \ldots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}} M_{i} \xrightarrow{\partial_{i}} M_{i-1} \xrightarrow{\partial_{i-1}} M_{i-2} \longrightarrow \ldots$ is a (chain) complex, we write $H_{n}(M)=$ $\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1}$ and call this the $n^{\text {th }}$ homology group.

Definition 5.10. Let A be an R-module. A projective resolution of A is an exact sequence \mathscr{P}

$$
\ldots \longrightarrow P_{n} \xrightarrow{\partial_{n}} P_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} A \longrightarrow 0
$$

such that each P_{i} is a projective module.

Example. $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$ is a projective resolution of the \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$
Note. For R-module, we can actually ask that the P_{i} be free R-modules. These always exists for R-modules
Let $F: R$-modules $\rightarrow R$-modules be a covariant right exact functor or a contravariant left exact functor. Then applying F to $P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow 0\left(\right.$ forget A) gives a complex $F(\mathscr{P})$. Then the $n^{\text {th }}$ derived functor of F is $H^{n}(F(\mathscr{P}))$

Example. F is $\operatorname{hom}(-, D)$. Then $F(\mathscr{P})$ is, $0 \longrightarrow \operatorname{hom}\left(P_{0}, D\right) \xrightarrow{\partial_{1}} \operatorname{hom}\left(P_{1}, D\right) \xrightarrow{\partial_{2}} \operatorname{hom}\left(P_{2}, D\right)$
Definition 5.11. With the above setting $\operatorname{Ext}^{n}(A, D)=\operatorname{ker} \partial_{n+1} / \operatorname{im} \partial_{n}$ for $n \geq 1 . \operatorname{Ext}^{0}(A, D)=\operatorname{ker} \partial_{1}$
Example. $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$, what is $\operatorname{Ext}^{n}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})$? $0 \stackrel{\partial_{2}}{\leftarrow} \mathbb{Z} / 2 \mathbb{Z} \stackrel{0=\partial_{1}}{\longleftarrow} \mathbb{Z} / 2 \mathbb{Z} \leftarrow_{\longleftarrow}^{\text {id }} \mathbb{Z} / 2 \mathbb{Z} \longleftarrow 0$. So:

- $\operatorname{Ext}^{0}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker} \partial_{1}=\mathbb{Z} / 2 \mathbb{Z}$
- $\operatorname{Ext}^{1}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker} \partial_{2} / \operatorname{im} \partial_{1}=\mathbb{Z} / 2 \mathbb{Z}$
- $\operatorname{Ext}^{n}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=0$ for $n \geq 2$

Theorem 5.12. $\operatorname{Ext}^{n}(A, D)$ does not depend on the choice of projective resolution
Remark. $\operatorname{Ext}_{R}^{1}(C, A)$ is in bijection with the equivalence classes of B such that $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact. "Extension of C by A "

Example. $D \otimes-$. Let \mathscr{P} be a projective resolution of $A: 0 \longleftarrow A \leftarrow P_{0} \stackrel{\partial_{1}}{\leftarrow} P_{1} \stackrel{\partial_{2}}{\leftarrow} P_{2} \stackrel{\partial_{3}}{\leftarrow} \ldots$. Apply $D \otimes-$ to $\mathscr{P} 0 \lessdot D \otimes P_{0} \stackrel{1 \otimes \partial_{2}}{\leftarrow} D \otimes P_{1} \stackrel{1 \otimes \partial_{2}}{\gtrless} D \otimes P_{2} \stackrel{1 \otimes \partial_{3}}{\gtrless} \ldots \mathrm{~d}$

Definition 5.13. The $n^{\text {th }}$ derived functor of $D \otimes-$ is called $\operatorname{Tor}_{n}^{R}(D,-)$. So $\operatorname{Tor}_{n}^{R}(D, A)=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1}$ and $\operatorname{Tor}_{0}^{R}(D, A)=D \otimes P_{0} / \operatorname{im} \partial$

Example. $R=\mathbb{Z}, A=\mathbb{Z} / 7 \mathbb{Z}$ and $0 \longleftarrow A \longleftarrow \mathbb{Z} \longleftarrow{ }^{\times 7} \mathbb{Z} \longleftarrow 0$ and $D=\mathbb{Z} / 7 \mathbb{Z}$. So we get
$0<\mathbb{Z} / 7 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \stackrel{\partial_{1}=0}{<} \mathbb{Z} / 7 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \leftarrow 0$, but $\mathbb{Z} / 7 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Z} / 7 \mathbb{Z}$. So

- $\operatorname{Tor}_{0}^{\mathbb{Z}}(\mathbb{Z} / 7 \mathbb{Z}, \mathbb{Z} / 7 \mathbb{Z})=(\mathbb{Z} / 7 \mathbb{Z}) / \operatorname{im} \partial_{1}=\mathbb{Z} / 7 \mathbb{Z}$
- $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / 7 \mathbb{Z}, \mathbb{Z} / 7 \mathbb{Z})=(\mathbb{Z} / 7 \mathbb{Z}) / 0=\mathbb{Z} / 7 \mathbb{Z}$

Remark. If A is a \mathbb{Z}-module (abelian group) then A is torsion free if and only if $\operatorname{Tor}_{1}(A, B)=0$ for every abelian group.

Definition 5.14. A short exact sequence of complexes $0 \longrightarrow \mathscr{A} \xrightarrow{\psi} \mathscr{B} \xrightarrow{\phi} \mathscr{C} \longrightarrow 0$ is a set oh homomorphism
of complexes such that $0 \longrightarrow A_{n} \xrightarrow{\psi_{n}} B_{n} \xrightarrow{\phi_{n}} C_{n} \longrightarrow 0$ is exact for every n.

This diagrams commutes, the rows are complexes and the columns are exacts.
Theorem 5.15 (Long exact sequence of cohomology). Let $0 \longrightarrow \mathscr{A} \xrightarrow{\psi} \mathscr{B} \xrightarrow{\phi} \mathscr{C} \longrightarrow 0$ be a short exact sequence of complexes. Then there is a long exact sequence

$$
0 \longrightarrow H^{0}(\mathscr{A}) \longrightarrow H^{0}(\mathscr{B}) \longrightarrow H^{0}(\mathscr{C}) \xrightarrow{\partial_{0}} H^{1}(\mathscr{A}) \longrightarrow H^{1}(\mathscr{B}) \longrightarrow H^{1}(\mathscr{C}) \xrightarrow{\partial_{1}} H^{2}(\mathscr{A}) \longrightarrow \ldots
$$

What are the maps? Given

$$
\begin{aligned}
A_{n-1} & \xrightarrow{\partial_{n}} A_{n} \xrightarrow{\partial_{n+1}} A_{n+1} \\
\psi_{n-1} \downarrow & \psi_{n} \downarrow \\
B_{n-1} & \stackrel{\psi_{n+1}}{\mu_{n}} B_{n} \\
\underset{\mu_{n+1}}{\longrightarrow} & B_{n+1}
\end{aligned}
$$

We want $H^{n}(\mathscr{A}) \rightarrow H^{n}(\mathscr{B})$. Let $a \in \operatorname{ker} \partial_{n+1}$. Then $\psi_{n+1} \circ \partial_{n+1}(a)=0$, so $\mu_{n+1} \circ \psi_{n}(a)=0$, hence $\psi_{n}(a) \in$ $\operatorname{ker} \mu_{n+1}$. We want $\operatorname{ker} \partial_{n+1} / \operatorname{im} \partial_{n} \rightarrow \operatorname{ker} \mu_{n+1} / \operatorname{im} \mu_{n}$. It suffices to check $\psi\left(\operatorname{im} \partial_{n}\right) \subseteq \operatorname{im}\left(\mu_{n}\right)$. If $a \in A_{n-1}$ then $\psi_{n} \circ \partial_{n}(a)=\mu_{n} \circ \psi_{n-1}(a) \operatorname{im}\left(\mu_{n}\right)$. So we get a map $H^{n}(\mathscr{A}) \rightarrow H^{n}(\mathscr{B})$ and similarly $H^{n}(\mathscr{B}) \rightarrow H^{n}(\mathscr{C})$

For the other map, we use the Snake Lemma
Snake Lemma. Let

be a commutative diagram with exact rows. Then there is an exact sequence

$$
\operatorname{ker} f \longrightarrow \operatorname{ker} g \longrightarrow \operatorname{ker} h \longrightarrow \text { coker } f \cong A^{\prime} / \operatorname{im} f \longrightarrow \operatorname{coker} g \longrightarrow \operatorname{coker} h
$$

Proof. Define $\delta: \operatorname{ker} h \rightarrow$ coker f. Let $c \in \operatorname{ker} h$. Then there is $b \in B$ with $\phi(b)=c$ since ϕ is surjective. By commutativity $0=h(c)=h \circ \phi(b)=\phi^{\prime} \circ g(b)$. So $g(b) \in \operatorname{ker} \psi^{\prime}$. By exactness there exists $a^{\prime} \in A^{\prime}$ such that $\psi^{\prime}\left(a^{\prime}\right)=g(b)$. Set $\partial(c)=a^{\prime}+\operatorname{im} f \in$ coker f.

We need to show that ∂ is well defined. Given another choice \widetilde{b} with $\phi(\widetilde{b})=c$, the difference $b-\widetilde{b} \in \operatorname{ker} \phi=\operatorname{im} \psi$. So there exists $a \in A$ such that $\psi(a)=b-\widetilde{b}$. But then $g \psi(a)^{\prime}=g(b)-g(\widetilde{b})=\psi^{\prime} f(a)$. So $g(\widetilde{b})=\psi^{\prime}\left(a^{\prime}-f(a)\right)$. We then would set $\partial(c)=a^{\prime}-f(a)+\operatorname{im} f=a^{\prime}+\operatorname{im} f$.

6 Representation Theory

Check in this chapter whether each proposition or lemma rely on the fact that rings need to have 1.

6.1 Ring Theory for Representation Theory

Recall: Let G be a group. The group algebra $R[G]=\left\{\sum a_{g} g: a_{g} \in R, g \in G\right\}=\oplus_{g \in G} R$.
Representation theory is the study of modules over $R[G]$
Definition 6.1. An R-module $M \neq\{0\}$ is simple if M has no proper submodules, i.e., $N \subseteq M$ then $N=M$ or $N=\{0\}$

Proposition 6.2. Let M and M^{\prime} be simple left R-modules. Then every R-module homomorphism $f: M \rightarrow M^{\prime}$ is either 0 or an isomorphism.

Proof. Suppose f is not zero. Then $\operatorname{ker}(f)$ is a submodule of M that is not equal to M, so it must be the 0 module, i.e., f is injective. Similarly $\operatorname{im} f$ is a submodule of M^{\prime} that is not the zero module, so $\operatorname{im} f=M^{\prime}$ and thus f is surjective. So f is an isomorphism.

A ring R is simple if ${ }_{R} R$ is a simple R-module, e.g, $R=k$ a field
Definition 6.3. A left R-module is semi-simple if it is the direct sum of simple modules.
Definition 6.4. A left ideal $I \subseteq R$ is minimal if there exists no left ideal J of R such that $0 \subsetneq J \subsetneq I$.
Example. $R=M_{n}(k) . I=\left(\begin{array}{cc}* & \\ \vdots & 0 \\ * & \end{array}\right)$ is a minimal left ideal.
Definition 6.5. A ring R is (left) semisimple if it is isomorphic as an R-module to a direct sum of minimal left ideals. (i.e. ${ }_{R} R$ is a semisimple R-module)

Example. $M_{n}(K) \cong \oplus_{j=0}^{n} I_{j}$ where $I_{j}=\left(\begin{array}{ccc}* \\ 0 & \vdots & 0 \\ & * & \\ j^{\text {th }} \text {-column }\end{array}\right)$
Proposition 6.6. A left R-module M is semisimple if and only if every submodule of M is a direct summand.
Proof. $\Rightarrow)$ Suppose M is semisimple, so $M \cong \oplus_{j \in J} S_{j}$. For any subset $I \subseteq J$, define $S_{I}=\oplus_{j \in I} S_{j}$. Let B be a submodule of M. Then by Zorn's lemma, there is $K \subseteq J$ maximal with respect to the property that $S_{K} \cap B=\{0\}$. (Suppose $K_{1} \subsetneq K_{2} \subsetneq \ldots$ with $S_{k_{i}} \cap B=\{0\}$. Set $K^{\prime}=\cup K_{i}$ and consider $S_{K^{\prime}}$. If $b \in S_{K^{\prime}} \cap B$ then $b \in \oplus_{j \in K^{\prime}} S_{j}$, so $b=s_{j_{1}}+\cdots+s_{j_{r}}, s_{j_{i}} \in S_{j_{i}}$. There is K_{s} with $j_{1}, \ldots, j_{r} \in K_{s}$, so $B \in S_{K_{s}} \cap B$ which is a contradiction)

We claim $M=B \oplus S_{K}$, we just need to show that $m \in M \Rightarrow m=b+s_{k}$ for $b \in b, s_{k} \in S_{K}$. If $j \in K$, then $S_{j} \subseteq B+S_{K}$.

If $j \notin K$, then by maximality, $\left(S_{K}+S_{j}\right) \cap B \ni b \neq 0$. So there exists $s_{K} \in S_{K}, s_{j} \in S_{j}$ such that $s_{K}+s_{j}=b$, so $s_{j}=b-s_{K} \in S_{j} \cap\left(B+S_{K}\right) \neq 0$ since $s_{j} \neq 0$ as $b \notin S_{K}$. Thus all S_{j} are contained in $B+S_{K}$, so $M \subseteq B+S_{K}$.
$\Leftarrow)$ Suppose every submodule of M is a direct summand. We first show that every non-zero submodule B of M contains a simple summand.

Fix $b \neq 0$ with $b \in B$. By Zorn's lemma there exists a submodule C of B maximal with respect to $b \notin C$. If $C=\{0\}$, then $B=R b$ and B must be simple (otherwise any proper non-zero submodule would not contain b).

Otherwise write $M=C \oplus C^{\prime}$, then $B=C \oplus(\underbrace{C^{\prime} \cap B}_{D})$. (Since $C \cap\left(C^{\prime} \cap B\right)=\{0\}$ and $b \in B \Rightarrow b=c+c^{\prime}$ for $c \in C, c^{\prime} \in C^{\prime}$, since $b, c \in B, c^{\prime} \in B$.) We claim that the non-zero submodule D is simple. If not by the above argument we can write, $D=D^{\prime} \oplus D^{\prime \prime}$ where $D^{\prime}, D^{\prime \prime}$ are non-zero submodules of D. We claim that we do not have $b \in\left(C \oplus D^{\prime}\right) \cap\left(C \oplus D^{\prime \prime}\right)$. If we did, we could write $b=c+d^{\prime}=c^{\prime}+d^{\prime \prime}$ for $c, c^{\prime} \in C$ and $d^{\prime} \in D^{\prime}, d^{\prime \prime} \in D^{\prime \prime}$. But then $c-c^{\prime}=d^{\prime \prime}-d^{\prime} \in C \cap D=\{0\}$, so $d^{\prime}=d^{\prime \prime} \in D^{\prime} \cap D^{\prime \prime}=\{0\}$, hence $c=c^{\prime}=b$ contradicting $b \notin C$. But this means one of $C \oplus D^{\prime}$ and $C \oplus D^{\prime \prime}$ does not contain b, contradicting the choice of C. Thus $B=C \oplus D$ contains the simple summand D.

We now show that M is semisimple. By Zorn's lemma there is a family $\left\{S_{j}: j \in I\right\}$ of simple submodules of M maximal with respect to the property that the submodule U that they generated is their direct sum. By hypothesis, $M=U \oplus V$. If $V=\{0\}, M$ is a direct sum of simple modules, so we are done. Otherwise V has a non-zero simple summand $S, V \cong S \oplus V^{\prime}$. Then $U \cap S=\{0\}$, so $\sum S_{j}+S=\oplus S_{j} \oplus S$ contradicting the maximality of U. So $V=\{0\}$ and M is the direct sum of simple submodules.

Maschke's Theorem. If G is a finite group and k a field with char $(K) \nmid|G|$, then $k[G]$ is semisimple. (i.e. $k[G]$ is a direct sum of simple $k[G]$-modules)

Proof. It suffices to show that every submodule (ideal) I of $k G$ is a direct summand. We have

so it suffices to construct $\lambda: k G \rightarrow I$ such that $\lambda \circ i=\mathrm{id}_{I}$. Since both $k G$ and I are vector space over k, there exists $V \subseteq k G$ such that $k G \cong I \oplus V$ as vector space. Let $\pi: k G \rightarrow I$ be the projection map (it is a linear map).

Define $\lambda: k G \rightarrow k G$ by $\lambda(u)=\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} u\right)$. Note that $\lambda(u) \in I$, since $\pi\left(g^{-1} u\right) \in I$ and $g \pi\left(g^{-1} u\right) \in I$ as I is a left ideal. Note also that if $b \in I$ then $\lambda(b)=b$. Indeed $\lambda(b)=\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} b\right)=\frac{1}{|G|} \sum_{g \in G} g g^{-1} b=\frac{|G|}{|G|} b=b$.

Finally we check that λ is a $k G$-module homomorphism. It is straightforward to check that λ is a k-linear map, since π is. Also for $h \in G$,

$$
\begin{aligned}
\lambda(h u) & =\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} h u\right) \\
& =\frac{h}{|G|} \sum_{g \in G} h^{-} g \pi\left(g^{-1} h u\right) \\
& =\frac{h}{|G|} \sum_{g^{\prime} \in G} g^{\prime} \pi\left(g^{\prime-1} u\right) \quad \text { where } g^{\prime}=h^{-1} g \\
& =h \lambda(u)
\end{aligned}
$$

so λ is a $k G$-module homomorphism with $\lambda \circ i=\operatorname{id}_{I}$. So I is a direct summand.
Example. $\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}]=\{a(0)+b(1): a, b \in \mathbb{C}\}=\underbrace{\mathbb{C}((0)+(1))}_{=\{a(0)+a(1): a \in \mathbb{C}\}} \oplus \underbrace{\mathbb{C}((0)-(1))}_{=\{a(0)-a(1): a \in \mathbb{C}\}}$
Definition 6.7. Let G be a group. A representation of G is a group homomorphism, $\phi: G \rightarrow \mathrm{GL}(V)$ where V is a vector space. It is finite dimensional if V is a finite dimensional vector space. V is a simple $k G$-module if V has no G-invariant subspace.

Point: If V is a vector space over k, then V is a $k G$-module, via $g \cdot v=\phi(g) \cdot v$.
Example. Let $G=S_{3}$ and $\phi: S_{3} \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ send a permutation to its permutation matrix. $\phi((1,2))=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $\phi((1,2,3))=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. This makes \mathbb{C}^{3} into a $\mathbb{C}\left[S_{3}\right]$-module. Is it simple? The answer is no because we notice that $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is a common subspace to both matrix. So we have $\mathbb{C}^{3} \cong_{\mathbb{C}\left[S_{3}\right]}$ span $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \oplus V$, where V is a 2-dimensional submodule. In fact $V=\operatorname{span}\left(\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right)$. In the basis $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ for V we have $(1,2) \rightarrow\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),(1,2,3) \rightarrow\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -1\end{array}\right)$.

Example. $\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}], \mathbb{F}_{2}[\mathbb{Z} / 2 \mathbb{Z}]$ and let $V=\mathbb{C}((0)+(1))$ and $W=\mathbb{F}_{2}((0)+(1))$. Maschke's theorem tells us that $\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}]$ is a direct summand (see previous example) but nothing about $\mathbb{F}_{2}[\mathbb{Z} / 2 \mathbb{Z}]$. In fact we can not write $\mathbb{F}_{2}[\mathbb{Z} / 2 \mathbb{Z}] \cong W \oplus$.

Proposition 6.8. 1. Every submodule and every quotient of a semisimple module is semisimple
2. If R is semisimple, then every left R-module M is semisimple.

Proof. 1. Let B be a submodule of M. Every submodule C of B is a submodule of M, so $M \cong C \oplus D$ for some D. Let $\pi: M \rightarrow C$ be the projection map and let $\lambda: B \rightarrow C$ be given by $\lambda=\left.\pi\right|_{B}$. Then

$$
0 \longrightarrow C \underset{{ }_{\lambda}}{\stackrel{i}{\longleftrightarrow}} B \longrightarrow \text { coker } \longrightarrow 0
$$

so $B \cong C \oplus$ coker. So every submodule of B is a direct summand so B is semisimple.
Let M / H be a quotient of M. Since M is semisimple we have $M \cong H \oplus H^{\prime}$ for some submodule H^{\prime}. By the first part H^{\prime} is semisimple so $M / H \cong H^{\prime}$ is semisimple.
2. Suppose R is semisimple. Then any free R-module is semisimple. ($R \cong \oplus M_{i}$ so $\oplus R \cong \oplus \oplus M_{i}$) But every R-module is a quotient of a free module, so every R-module is semisimple.

Corollary 6.9. Let G be a finite group and k a field with chark $\nmid G \mid$. Then every $k G$-module is a direct sum of simple $k G$-modules, so every representation is a direct sum of irreducible representation.

Proposition 6.10. Let $R \cong{ }_{R} \oplus_{i \in I} M_{i}$ be a semisimple ring, where the M_{i} are simple modules and let B be a simple R-module. Then $B \cong M_{i}$ for some i.

Proof. We have $0 \neq B \cong \operatorname{Hom}_{R}(R, B) \cong \oplus_{i \in I} \operatorname{Hom}_{R}\left(M_{i}, B\right)$. However by Schur's Lemma $\operatorname{Hom}_{R}\left(M_{i}, B\right)=0$ unless $M_{i} \cong B$.

Corollary 6.11. Let G be a finite group and k a field with chark $\nmid|G|$. Then there are only a finite number of simple $k G$-modules up to isomorphism, and thus only a finite number of irreducible representation of G.

Example. Let $G=S_{3}$.

- $\phi_{1}: G \rightarrow \mathbb{C}^{*}, \phi_{1}(g)=1$ for all g. This corresponds to the $\mathbb{C}\left[S_{3}\right]$ submodule $\mathbb{C}\left(\sum_{g \in S_{3}} g\right)$.
- $\phi_{2}: G \rightarrow \mathbb{C}^{*}, \phi_{2}(g)=\operatorname{sgn}(g)=\left\{\begin{array}{ll}1 & g \text { is even } \\ -1 & g \text { is odd }\end{array}\right.$. This corresponds to the $\mathbb{C}\left[S_{3}\right]$ submodule $\mathbb{C}\left(\sum_{g \in S_{3}} \operatorname{sgn}(g) g\right)$.
- $\phi_{3}: G \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \phi_{3}((1,2))=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\phi_{3}((1,2,3))=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$.

Exercise:
a Check that this is an irreducible representation
b Find a two dimensional submodule of $\mathbb{C}\left[S_{3}\right]$ that this is isomorphic to.
So $\mathbb{C}\left[S_{3}\right] \cong \underset{\cong \phi_{1}}{\mathbb{C}} \oplus \underset{\cong \phi_{2}}{\mathbb{C}} \oplus \underset{\cong \phi_{3}}{\mathbb{C}^{2}} \oplus \underset{\cong}{\mathbb{C}_{3}}$
Question: What are the possibilities for semisimple rings?
e.g.: $k[G], G$ finite, good characteristic. $M_{n}(k) . M_{n}(D)$ where D is a division ring. From these we can create more for example $M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)$.

Theorem 6.12 (Wedderburn-Artin). A ring R (with 1) is semisimple if and only if R is isomorphic to a direct sum/product of matrix rings over division rings. $R \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)$. The n_{i}, D_{i} are unique up to permutation.

Proof. We've just discuss "if"
Suppose R is semisimple, so $R \cong_{R} \oplus_{i \in I} M_{i}$. We first note that $|I|<\infty$, since $1 \in R, 1=m_{i_{1}}+\cdots+m_{i_{s}}$ for some $m_{i_{j}} \in M_{i_{j}}$. So $R=R 1 \subseteq M_{i_{1}} \oplus \cdots \oplus M_{i_{s}} \subseteq R$, so we have equality. After reordering, we may assume that $M_{i} \nsupseteq M_{j}$ for $i \neq j, 1 \leq i, j \leq r$ and for all $j<r$ there exists $i \leq r$ with $M_{j} \cong M_{i}$. Write $B_{i}=\oplus_{M_{j} \cong M_{i}} M_{j}$, so $R \cong B_{1} \oplus \cdots \oplus B_{r}$.

We have $R^{\text {op }} \cong \operatorname{Hom}_{R}(R, R)$ (as a ring) with the map $f(1) \ll f$, then $f(r)=f(r \cdot 1)=r f(1)$ and $f \circ g(1)=f(g(1))=g(1) f(1) \longleftarrow f \circ g$ So $R^{\text {op }} \cong \operatorname{Hom}_{R}(R, R) \cong \operatorname{Hom}_{R}\left(\oplus_{i=1}^{r} B_{i}, \oplus_{i=1}^{r} B_{i}\right) \cong \oplus_{i, j=1}^{r} \operatorname{Hom}_{R}\left(B_{i}, B_{j}\right)$. Now $\operatorname{Hom}_{R}\left(B_{i}, B_{j}\right)=\operatorname{Hom}_{R}\left(\oplus_{l=1}^{n_{i}} M_{l}, \oplus_{k=1}^{n_{j}} M_{k}\right)=\oplus_{l=1}^{n_{i}} \oplus_{k=1}^{n_{j}} \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)=0$ if $i \neq j$ by Schur's Lemma. Since every non-zero function in $\operatorname{Hom}_{R}\left(M_{i}, M_{i}\right)$ is an isomorphism by Schur's lemma $\operatorname{Hom}_{R}\left(M_{i}, M_{i}\right)$ is a division ring with multiplication being function composition. Call this D_{i}^{op}. Then $\operatorname{Hom}_{R}\left(B_{i}, B_{i}\right) \cong \oplus_{k, l}^{n_{i}} D_{i}^{\mathrm{op}} \xlongequal[\text { check }]{\cong} M_{n_{i}}\left(D_{i}^{\mathrm{op}}\right)$. So $R^{\mathrm{op}} \cong M_{n_{1}}\left(D_{1}^{\mathrm{op}}\right) \times \cdots \times M_{n_{r}}\left(D_{r}^{\mathrm{op}}\right)$, hence $R \cong M_{n_{1}}\left(D_{1}^{\mathrm{op}}\right)^{\mathrm{op}} \times \cdots \times M_{n_{r}}\left(D_{r}^{\mathrm{op}}\right)^{\mathrm{op}}=M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)$.

Proof omits uniqueness.
Exercise. $M_{n}\left(D^{\mathrm{op}}\right)^{\mathrm{op}} \cong M_{n}(D)$
Corollary 6.13 (Molien). If G is a finite group, and k is algebraically closed, with chark $\nmid|G|$, then $k[G] \cong$ $M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k)$ and thus $\sum n_{i}^{2}=|G|$.
Example. $\mathbb{C}[\mathbb{Z} / 3 \mathbb{Z}] \cong M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$. Now $3=n_{1}^{2}+\cdots+n_{r}^{2}$ implies $r=3$ and $n_{1}=n_{2}=n_{3}=1$. So $\mathbb{C}[\mathbb{Z} / 3 \mathbb{Z}] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}$.

Let us look at the irreducible representation. We always have the "trivial representation", $\phi_{1}: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathbb{C}^{*}$ defined by $\phi_{1}(g)=1$ for all g.

We then have $\phi_{2}((0))=1, \phi_{2}((1))=\omega$ and $\phi_{2}((2))=\omega^{2}$ where $\omega=e^{\frac{2 \pi i}{3}}$, similarly we also get $\phi_{3}((0))=1$, $\phi_{3}((1))=\omega^{2}$ and $\phi_{3}((2))=\omega$

So then $\mathbb{C}[\mathbb{Z} / 3 \mathbb{Z}] \cong \underbrace{\mathbb{C}((0)+(1)+(2))}_{\phi_{1}} \times \underbrace{\mathbb{C}\left((0)+\omega^{2}(1)+\omega(2)\right)}_{\phi_{2}} \times \underbrace{\mathbb{C}\left((0)+\omega(1)+\omega^{2}(2)\right)}_{\phi_{3}}$. Check that this is a
ring isomorphism e.g. $((0)+(1)+(2))\left((0)+\omega(1)+\omega^{2}(2)\right)=0$.
Proof of Corollary. By Maschke's theorem $k[G]$ is semisimple, so by Wedderburn-Artin theorem $k[G] \cong M_{n_{1}}\left(D_{1}\right) \times$ $\cdots \times M_{n_{r}}\left(D_{r}\right)$ where $D_{i} \cong \operatorname{Hom}_{K G}\left(M_{i}, M_{i}\right)^{\mathrm{op}}$ for simple $k G$-module M_{i}. First note that $k \subseteq \operatorname{Hom}\left(M_{i}, M_{i}\right)^{\mathrm{op}}$, for $a \in k, u \in M_{i}$ we set $a(u)=a u$. Then $a(g u)=a g u=g(a u)$ so this is $k G$-homomorphism. Consider any $f \in D_{i}^{\mathrm{op}}$, since f is a $k G$-homomorphism it is a linear transformation, so $f(a u)=a f(u)$, i.e., $(a f)(u)=(f a)(u)$, so f commutes with any $a \in k$. Let $k(f)$ be the smallest sub division ring of D_{i}^{op} that contains k and f. The division ring $k(f)$ is a finite dimensional vector space over k.

Thus $1, f, f^{2}, f^{3}, \ldots$ are linearly dependent over k, so there exists $g \in k[X]$ with $g(f)=0$. Take g with minimal degree. But then $\left\{a_{0}+a_{1} f+\cdots+a_{r} f^{\operatorname{deg}(g)-1}: a_{i} \in k\right\}$ is closed under addition, multiplication. Also g is an irreducible polynomial, since otherwise $g=g_{1} g_{2}$ would imply $\underbrace{g_{1}(f)}_{\neq 0} \underbrace{g_{2}(f)}_{\neq 0}=0$ in the division ring $D_{i}^{\text {op }}$. We show that this is closed under division. Given $h=\sum a_{i} f^{i}$, the elements $1, h, h^{2}, h^{3}, \ldots$ are linearly dependant over k. So there exists $b_{i} \in k$ with $\sum_{i=j \geq 0}^{s} b_{i} h^{i}=0$, where we may assume that $b_{j}=1$, then $\frac{1}{h}=-\sum_{i=j+1}^{s} b_{i} h^{i-j-1}$ and this can be written as $\sum_{i=0}^{r} c_{i} f^{i}$. Then the multiplication in $k(f)$ is commutative (since k commutes with f), so $k(f)$ is a field containing k. Since f is algebraic over the algebraically closed field $k, f \in k$.

Question: We now have (for good k) $k G \cong M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k)$. What is r ?
Answer: It is the number of conjugacy class of G
Recall: A conjugacy class of a group G is a set $C_{h}=\left\{g h g^{-1}: g \in G\right\}$ of all conjugates of an element of h. The class sum corresponding to C_{h} is $z_{h}=\sum_{g^{\prime} \in C_{h}} g^{\prime}$. The centre of a ring R is $Z(R)=\{a \in R: a b=b a \forall b \in R\}$. e.g. The centre of $M_{n}(k)$ is $\{\lambda I: \lambda \in k\}$

Lemma 6.14. Let G be a finite group. Then the class sum z_{h} form a k-basis for $Z(k[G])$
Proof. First consider $z_{h}=\sum_{g^{\prime}=g h g^{-1}} g^{\prime} \in k[G]$. For any $\widetilde{g} \in G$ we have

$$
\widetilde{g} z_{h}=\sum_{g^{\prime}=g h g^{-1}} \tilde{g} g^{\prime}=\sum_{g^{\prime}=g h g^{-1}}(\widetilde{g} g) g\left(g^{-1} \widetilde{g}^{-1}\right) \widetilde{g}=z_{h} \widetilde{g}
$$

since if $g_{1} \neq g_{2} \in C_{h}$ then $\widetilde{g} g_{1} \widetilde{g} \neq \widetilde{g} g_{2} \widetilde{g}$. Hence $z_{h} \in Z(K[G])$
Now suppose $z \in \sum a_{g} g \in Z(k[G])$. Then for all $\widetilde{g} \in G, \widetilde{g} z \widetilde{g}^{-1}=\sum a_{g} \widetilde{g} g \widetilde{g}^{-1}=\sum a_{g} g$, so $a_{\tilde{g} g \tilde{g}^{-1}}=a_{g}$ and thus the coefficients of z are constant on conjugacy classes. So z is a linear combination of class sums.

Corollary 6.15. Let G be a finite group and k a field with $k=\bar{k}$ and charK $\nmid|G|$. Then $k G \cong M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k)$ where $r=$ number of conjugacy class of G.

Proof. The centre of $M_{n_{1}}(k) \times \cdots \times M_{n_{r}}(k)$ has dimension r over k, so $r=$ number of conjugacy classes.
Definition 6.16. Let $\phi: G \rightarrow \mathrm{GL}(V)$ be a representation of G. The character of ϕ is $\chi_{\phi}: G \rightarrow k, \chi_{\phi}(g)=\operatorname{Tr} \phi(g)$. (Note $\operatorname{Tr}(A)=\sum a_{i i}$)

Warning: This is not a group homomorphism unless $\operatorname{dim} V=1$.
Note. $\chi\left(g h g^{-1}\right)=\operatorname{Tr} \phi\left(g h g^{-1}\right)=\operatorname{Tr}\left(\phi(g) \phi(h) \phi(g)^{-1}\right)=\operatorname{Tr}\left(\phi(h) \phi(g) \phi(g)^{-1}\right)=\operatorname{Tr} \phi(h)=\chi_{\phi}(h)$, so characters are constant on conjugacy classes.

Definition 6.17. The character table of a finite group G is the $r \times r$ table (where r is the number of conjugacy classes) with columns indexed by conjugacy classes and rows indexed by irreducible representation recording the character.

Example. $G=S_{3}$

	(1)	$(1,2),(1,3),(2,3)$	$(1,2,3),(1,3,2)$
ϕ_{1}	1	1	1
ϕ_{2}	1	-1	1
ϕ_{3}	2	0	-1

$G=\mathbb{Z} / 3 \mathbb{Z}$

	(0)	(1)	(2)
1	1	1	1
ω	1	ω	ω^{2}
ω^{2}	1	ω^{2}	ω

7 Galois Theory

Definition 7.1. A field extension L of a field K is a field L containing K. We'll write L / K or $L: K$. Given a subset X of L the intersection of all subfields of L containing K and X is denoted $K(X)$.

Example. $K=\mathbb{Q}, L=\mathbb{R}$ and $X=\{\sqrt{2}\}$ then $K(\sqrt{2})=\{a+b \sqrt{2}: a \in \mathbb{Q}\}$.
$X=\pi, K(\pi)=$ set of all rational functions of π
Definition 7.2. An extension field L / K is simple if $L=K(\alpha)$ for some $\alpha \in L$
Example. $L=\mathbb{Q}(i, \sqrt{5})=\mathbb{Q}(i+\sqrt{5})$. The inclusion one way is clear. For the other way notice that $(i+\sqrt{5})^{2}=$ $4+2 \sqrt{5} i \in L \Rightarrow \sqrt{5} i \in L$. Also $-\sqrt{5}+5 i \in L \Rightarrow 6 i \in L$ so $i \in L$.

Definition 7.3. An element $\alpha \in L$ is algebraic over K if there exists a monic polynomial $g \in K[x]$ with $g(\alpha)=0$. The g of lowest degree is called the minimal polynomial. If α is not algebraic, it is said to be transcendental.

Example. $\overline{\mathbb{Q}}=$ the algebraic closure of $\mathbb{Q}=$ the set of all algebraic number over \mathbb{Q}. This is countable. (So transcendental elements of \mathbb{C} exists)

Definition 7.4. An extension L / K is algebraic if every element of L is algebraic.
In general if α is algebraic over \mathbb{Q} with a minimal polynomial f of degree d and β is algebraic over \mathbb{Q} with a minimal polynomial g of degree e, what can you say about $\alpha+\beta$?

Definition 7.5. The degree of L / K written $[L: K]$ is the dimension of L as a vector space over K.
Note. If $L=K(\alpha)$ for α algebraic with minimal polynomial g then $[L: K]=\operatorname{deg} g \operatorname{since}\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{\operatorname{deg} g-1}\right\}$ is a basis. If α is transcendental then $L \cong K(t)$ and $[L: K]=\infty($ define $\phi: K(t) \rightarrow K(\alpha), t \mapsto \alpha)$

The Tower Law. Let K, L, M be fields with $K \subseteq L \subseteq M$. Then $[M: K]=[M: L][L: K]$
Proof. Let $\left\{x_{\alpha}: \alpha \in I\right\}$ be a basis for L / K and let $\left\{y_{\beta}: \beta: J\right\}$ be a basis for M / L. Define $z_{\alpha \beta}=x_{\alpha} y_{\beta} \in M$. We claim that $\left\{z_{\alpha \beta}\right\}$ is a basis for M / K.

We show that they are linearly independent. If $\sum_{\alpha, \beta} a_{\alpha \beta} z_{\alpha \beta}=0$ with finitely many $a_{\alpha \beta} \in K$ non-zero. Then $\sum_{\beta}\left(\sum_{\alpha} a_{\alpha \beta} x_{\alpha}\right) y_{\beta}=0$, since the y_{β} are linearly independent over L we have $\sum_{\alpha} a_{\alpha \beta} x_{\alpha}=0$ for all β. Since the x_{α} are linearly independent over K we have $a_{\alpha \beta}=0$ for all α, β.

We show spanning. If $z \in M$, then $z=\sum \lambda_{\beta} y_{\beta}$ for $\lambda_{\beta} \in L$. For each $\lambda_{\beta}=\sum a_{\alpha \beta} x_{\alpha}$. So $x=\sum_{\beta}\left(\sum_{\alpha} a_{\alpha \beta} x_{\alpha}\right) y_{\beta}=$ $\sum_{\alpha, \beta} a_{\alpha \beta} x_{\alpha} y_{\beta}=\sum a_{\alpha \beta} x_{\alpha \beta}$.

So $\left\{z_{\alpha \beta}\right\}$ is a basis for M over K, so $[M: K]=[M: L][L: K]$
Example. $[\mathbb{Q}(i, \sqrt{5}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{5}): \mathbb{Q}(i)][\mathbb{Q}(i): \mathbb{Q}]=2 \times 2=4$. The minimal polynomial of $i+\sqrt{5}$ over \mathbb{Q} is $x^{4}-8 x^{2}+36$. (Note that this is not $\left.\left(x^{2}+1\right)\left(x^{2}-5\right)\right)$

Definition 7.6. An automorphism of L is a field isomorphism $\phi: L \rightarrow L$ (so $\phi(0)=0$ and $\phi(1)=1)$. We say ϕ fixes K if $\phi(a)=a$ for all $a \in K$.

Example. $\phi: \mathbb{C} \rightarrow \mathbb{C}$. $\phi(a+b i)=a-b i$ complex conjugation.
$\phi: \mathbb{Q}(\sqrt{5}, i) \rightarrow \mathbb{Q}(\sqrt{5}, i)$ defined by $\phi(a+b \sqrt{5}+c i+d \sqrt{5} i)=a-b \sqrt{5}+c i-d \sqrt{5} i$. Note ϕ fixes $\mathbb{Q}(i)$ but not $\mathbb{Q}(\sqrt{5})$.

Definition 7.7. The Galois group $\operatorname{Gal}(L / K)$ of L / K is the group of all automorphisms of L fixing K.
Example. Using the ϕ defined in the second part of the previous example, we have $\phi \in \operatorname{Gal}(\mathbb{Q}(\sqrt{5}, i) / \mathbb{Q}(i))$ but not in $\operatorname{Gal}(\mathbb{Q}(\sqrt{5}, i) / \mathbb{Q}(\sqrt{5}))$.
$\operatorname{Gal}(\mathbb{C} / \mathbb{R}) \cong \mathbb{Z} / 2 \mathbb{Z}$ (generated by complex conjugation) (Because $\phi(a+b i)=a+b \phi(i)$ and $\left.\phi(i)^{2}=\phi(-1)=-1\right)$
Note that $\operatorname{Gal}(L / K)$ is a group under function composition. $\phi: L \rightarrow L, \psi: L \rightarrow L, \phi(a)=\psi(a)=a$ for $a \in K$. $\phi \circ \psi: L \rightarrow L$ is an isomorphism and $\phi \psi(a)=\phi(\psi(a))=\phi(a)=a$ for $a \in K$
Example. $\operatorname{Gal}(\mathbb{Q}(\sqrt{5}, i) / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
$\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=1,[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$
Definition 7.8. For a subgroup H of $\operatorname{Gal}(L / K)$ we denote by L^{H} the set $L^{H}=\{\alpha \in L: \phi(\alpha)=\alpha$ for all $\alpha \in H\}$. This is a subfield of L called the fixed field of H

Example. $H=\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \mathbb{C}^{H}=\mathbb{R}$.
$\operatorname{Gal}(\mathbb{Q}(\sqrt{5}, i) / \mathbb{Q})=\left\langle\phi_{1}, \phi_{2}\right\rangle$ where $\phi_{1}(i)=-i, \phi_{1}(\sqrt{5})=\sqrt{5}$ and $\phi_{2}(i)=i, \phi_{2}(\sqrt{5})=-\sqrt{5}$. Let $H_{i}=\left\langle\phi_{i}\right\rangle$. Then $\mathbb{Q}(\sqrt{5}, i)^{H_{1}}=\mathbb{Q}(i), \mathbb{Q}(\sqrt{5}, i)^{H_{2}}=\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{5}, i)^{\mathrm{Gal}}=\mathbb{Q}$. Define $H_{3}=\left\langle\phi_{3}\right\rangle$, where $\phi_{3}(i)=-i$ and $\phi_{3}(\sqrt{5})=-\sqrt{5}$.

Note. For any subgroup H of $\operatorname{Gal}(L / K)$ we have $K \subseteq L^{H} \subseteq L$ and $H \leq \operatorname{Gal}\left(L / L^{H}\right) \leq \operatorname{Gal}(L / K)$
Definition 7.9. A polynomial $f \in K[x]$ splits over K if $f=a \prod_{i=1}^{d}\left(x-b_{i}\right), a, b_{1}, \ldots, b_{d} \in K$
Example. ef $=x^{3}-2$ splits over \mathbb{C} Note $f=(x-\sqrt[3]{2})(x-\sqrt[3]{2} \omega)\left(x-\sqrt[3]{2} \omega^{2}\right)$ where $\omega=e^{\frac{2 \pi i}{3}}$. So we see that f does not split over $\mathbb{Q}(\sqrt[3]{2})$

Definition 7.10. A field L is a splitting field for a polynomial $f \in K[x]$ if $K \subseteq L$ and

1. f splits over L
2. If $K \subseteq M \subseteq L$ and splits over M then $M=L$
(Equivalently $L=K\left(\sigma_{1}, \ldots, \sigma_{d}\right)$ where $\sigma_{1}, \ldots, \sigma_{d}$ are the roots of f in L)
These always exist, and are unique up to isomorphism. The proof uses induction on $\operatorname{deg} f$, where we use the intermediate field $M=K[x] /(f)$.

Example. $\mathbb{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}\right)=\mathbb{Q}(\sqrt[3]{2}, \omega)$ is a splitting field for $f=x^{3}-2\left(\right.$ where $\left.\omega=e^{\frac{2 \pi i}{3}}\right)$
Definition 7.11. An extension L / K is normal if every irreducible polynomial f over K which has at least one root in L splits over L.

Example. \mathbb{C} / \mathbb{R} is normal
$\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not normal.
Definition 7.12. An irreducible polynomial $f \in K[x]$ is separable over K if it has no multiple zeros in a splitting field, (i.e, the b_{i} are distinct). Otherwise it is inseparable

Example. $x^{4}+x^{3}+x^{2}+x+1$ is separable, its roots are $\omega^{j}, j=1, \ldots, 4$ where $\omega^{5}=1$
$K=\mathbb{F}_{2}(x), f(t)=t^{2}+x$ is inseparable. $K \subseteq L$ where $y \in L$ satisfies $f(y)=0 . f(y)=y^{2}+x=0, x=y^{2}$, so $f=t^{2}+y^{2}=(t+y)^{2}$

Proposition 7.13. If K is a field of characteristic 0 , then every irreducible polynomial is separable over K.
If K has characteristic $p>0$, then f is separable unless $f=g\left(x^{p}\right)$.
Recall: A polynomial $f \in K[x]$ has a double root if and only if f and f^{\prime} (the formal derivative) have a common factor. If f had a double root and $f^{\prime} \neq 0, f$ and f^{\prime} would have a common factor in $K[x]$ (by the Euclidean algorithm). But since $\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f)$, this factor is not f, contradicting f being irreducible, unless $f^{\prime}=0$. We only have $f^{\prime}=0$ if char $K=p$ and $f=g\left(x^{p}\right)$.

Definition 7.14. An algebraic extension L / K is separable if for $\alpha \in L$, its minimal polynomial is separable over K.

Theorem 7.15 (Fundamental Theorem of Galois Theory). Let L / K be a finite separable normal field extension with $[L: K]=n$ and $\operatorname{Gal}(L / K)=G$ then

1. $|G|=n$
2. For $K \subseteq M \subseteq L$ we have $M=L^{\operatorname{Gal}(L / M)}$ and $H=\operatorname{Gal}\left(L / L^{H}\right)$, so $H \mapsto L^{H}$ is an order reversing bijection between the poset of subgroups of G and subfields $K \subseteq M \subseteq L$
3. If $K \subseteq M \subseteq L$ then $[L: M]=|\operatorname{Gal}(L / M)|$ and $[M: K]=|G| /|G a l(L / M)|$
4. M / K is normal if and only if $G a l(L / M)$ is a normal subgroup of $G a l(L / K)$. In that case $G a l(M / K) \cong$ $G / \operatorname{Gal}(L / M)$

Corollary 7.16. 1. If L / K is finite, normal, separable then there are only finitely many fields M with $K \subseteq$ $M \subseteq L$.
2. If $G a l(L / K)$ is abelian, then for any $K \subseteq M \subseteq L$ we have M / K normal.

We see from this that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \omega) / \mathbb{Q})=S_{3}$ since $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not normal (exercise: show this directly by writing down 6 automorphism)

Galois' Application: $\operatorname{Gal}(L / K)$ simple implies no intermediate normal M / K, This in terns implies no highest degree polynomial "solved by radicals"

Proof of the Fundamental Theorem of Galois Theory (in ideas).

Lemma 7.17. If $\phi_{i}: M \rightarrow L, i=1, \ldots, r$ are distinct inclusion of fields, then the ϕ_{i} are linearly independent over L, i.e., $\sum a_{i} \phi_{i}(m)=0 \forall m$ then $a_{i}=0 \forall i$.

We apply this to $M=L$. For H a subgroup of $\operatorname{Gal}(L / K)$ we use the lemma to show that $\left[L: L^{H}\right]=|H|$. $(\{\phi \in H\}$ are linearly independent $\phi: L \rightarrow L)$. So $\left[L^{H}: K\right]=[L: K] /|H|$. Next we use the following propositions
Proposition 7.18. If L / K is normal and $K \subseteq M \subseteq L$ has M / K normal then for all $\phi \in G a l(L / K), \phi(M)=M$
We use twice. Once for 4. and first to show that the $[L: K] \operatorname{maps} L \rightarrow N$ (where N is a bigger field) we construct by hand have image in L. Use this to show $|\operatorname{Gal}(L / K)|=[L: K]$, thus $L^{\operatorname{Gal}(L / K)}=K$, because $\left[L: L^{\operatorname{Gal}(L / K)}\right]=|G|=[L: K]$.

Example. \quad - $K=\mathbb{Q}, L=$ splitting field of $x^{3}-2$, that is $L=\mathbb{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}\right)=\mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega=e^{\frac{2 \pi i}{3}}$. Now $K \leq L$ if finite, separable (characteristic 0) and normal. What is $\operatorname{Gal}(L / K)=G$? Any elements of G permutes $\sqrt[3]{2}, \sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}$. So $G \subseteq S_{3}$, but since G is of order $6=[L: K]$, we must have $G=S_{3}$.

- Let $K=\mathbb{Q}$ and L be the splitting field of $x^{3}-3 x-1=(x-\alpha)(x-\beta)(x-\gamma)$. Then $\mathbb{Q} \leq L=\mathbb{Q}(\alpha, \beta, \gamma)$. What is $\operatorname{Gal}(L / K)=$? So $G \subseteq S_{3}$. Using the fact about discriminant (see below) we have that no transposition is in G. (Since $(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)= \pm 9$.) Hence we have $|G|=3$ so $G=\mathbb{Z} / 3 \mathbb{Z}$.

Fact. If L is the splitting field of a cubic then $G a l(L / K)= \begin{cases}\mathbb{Z} / 3 \mathbb{Z} & \Delta(f) \text { is a square in } \mathbb{Q} \\ S_{3} & \text { otherwise }\end{cases}$
Definition 7.19. The discriminant of a polynomial f with roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is $\Delta(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$
Fact. You can express $\Delta(f)$ as a polynomial on the coefficients of f
Example. If $f=x^{3}-a x^{2}+b x-c, \Delta(f)=a^{2} b^{2}+18 a b c-27 c^{2}-4 a^{3} c-4 b^{3}$

