Graduate Algebra

Diane Maclagan Notes by Florian Bouyer

Copyright (C) Bouyer 2011.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction						
	1.1 Groups	2				
	1.2 Rings	3				
2	Category Theory					
	2.1 Functors	6				
	2.2 Some natural occurring functors	6				
	2.3 Natural Transformations	7				
3	Free Groups	8				
4	Tensor Product	10				
	4.1 Functoriality	11				
	4.2 Tensor Algebras	13				
	4.3 Symmetric and Exterior Algebras	14				
	4.4 Summary	14				
5	Homological Algebra	15				
6	Representation Theory	21				
-	6.1 Ring Theory for Representation Theory	21				
7	Galois Theory	26				

1 Introduction

1.1 Groups

Definition 1.1. A semigroup is a non-empty set G together with a binary operation ("multiplication") which is associative $((ab)c = a(bc) \forall a, b, c \in G)$

A monoid is a semigroup G which contains an element $e \in G$ such that $ae = ea = a \forall a \in G$.

A group is a monoid such that $\forall a \in G \exists a^{-1}$ such that $aa^{-1} = a^{-1}a = e$.

Note. Many authors say "semigroup" for monoid. e.g. $\mathbb{N} = \{0, 1, ...\}$ is called a semigroup.

Example (Semigroups that are not monoids). • A proper ideal in a ring under multiplication

- $(\mathbb{N} \setminus \{0\}, +)$
- $(2\mathbb{Z}, \times)$
- $(M_n(2\mathbb{Z}), \times)$
- (\mathbb{R}, \min)

Example (Monoids that are not groups). • $(\mathbb{N}, +)$

- Polynomials in 1 variable under composition
- Rings with identity that has non-invertible elements under multiplication
- $(\mathbb{R} \cup \infty, \min)$

Exercise. • In a monoid, identities are unique

• In a group, inverses are unique.

Definition 1.2. Let G and H be semigroups. A function $f : G \to H$ is a homomorphism of semigroups if $f(ab) = f(a)f(b) \forall a, b \in G$

If it is a bijection, it is called an *isomorphism*.

Let G and H be monoids. A monoid homomorphism is a semigroup homomorphism with $f(e_G) = e_H$ A group homomorphism between groups G, H is a semigroup homomorphism between the underlying semigroups.

Group homomorphisms are automatically monoid homomorphisms: $f: G \to H$, $f(e_G) = f(e_G e_G) = f(e_G)f(e_G)$. Multiply by $f(e_G)^{-1}$ then we get $e_H = f(e_G)^{-1}f(e_G) = f(e_G)^{-1}f(e_G)f(e_G) = e_H f(e_G) = f(e_G)$.

Example (Important example of a group: Permutation Group). Let X be a non-empty set. Let P(X) be the set of all bijection $f: X \to X$. P(X) is a group under function composition that is $fg: X \to X$ is $f \circ g: X \to X$.

- This is associative because function composition is
- The identity is id (the identity map)
- The inverse of f is $f^{-1}: X \to X$. (Which exists since f is a bijection

If |X| = n then $P(X) \cong S_n$ (the symmetric group on *n* elements)

Definition 1.3. A sub{group, monoid, semigroup} of a {group, monoid, semigroup} G is a subset $H \subset G$ that is a {group, monoid, semigroup} under the operation of G.

Let $\phi: G \to H$ be a group homomorphism, the kernel of ϕ is ker $\phi = \{a \in G | \phi(a) = e_H\}$

Note. The kernel of ϕ is a subgroup of G. In fact it is <u>normal</u> (i.e., $\forall g \in G, ghg^{-1} \in H = \ker \phi$ for all $h \in H$ }

Definition 1.4. A group G is abelian if ab = ba for all $ab \in G$

Exercise. Find $\phi: G \to H$ (G, H monoid) that is a semigroup homomorphism but not a monoid homomorphism $(\mathbb{R}, \times) \to (M_2(\mathbb{R}), \times)$ by $\phi(a) \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$

1.2 Rings

Definition 1.5. A ring R is a non-empty set R together with binary operations $+, \times$ such that

- 1. (R, +) is an abelian group (write identity as 0)
- 2. a(bc) = (ab)c (multiplication is associative, so (R, \times) is a semigroup)
- 3. a(b+c) = ab + ac and (a+b)c = ac + bc (distributivity)
- If there is $1_R \in R$ such that $1_R a = a 1_R = a \forall a \in R$ then R is a ring with identity R is commutative if $ab = ba \forall a, b \in R$.

Let R, S be rings. A ring homomorphism $\phi : R \to S$ is a function ϕ such that :

1. $\phi(r+s) = \phi(r) + \phi(s)$ (group homomorphism)

2. $\phi(rs) = \phi(r)\phi(s)$ (semigroup homomorphism)

Note. We do not require that if R, S have identities, that $\phi(1_R) = 1_S$ (e.g., $\phi(a) = 0_S \forall a \text{ is OK}$)

Definition 1.6. Let R be a ring with identity. An element $a \in R$ is *left* (respectively *right*) *invertible* if $\exists b \in R$ (respectively $c \in R$) such that $ba = 1_R$ (respectively $ac = 1_R$)

If a is left and right invertible then a is called *invertible*, or a *unit*.

A ring with identity $1_R \neq 0_R$ in which every non-zero element is a unit is a division ring. A commutative division ring is a field.

A field homomorphism is a ring homomorphism ϕ of the underlying rings.

Example (Useful example of a ring: Group rings). Let R be a commutative ring with 1. Let G be a group. The group ring R[G] has entries $\left\{\sum_{g \in G} r_g g : r_g \in R\right\}$ "formal sums" (all but finitely many $r_g = 0$). This is a ring under coordinate wise addition, and multiplication is induced from $(g_1)(g_2) = (g_1g_2)$. e.g.: $R = \mathbb{C}, G = \mathbb{Z}$ then $\mathbb{C}[\mathbb{Z}] = \mathbb{C}[t, t^{-1}]$. $\mathbb{C}[\mathbb{Z}/3\mathbb{Z}] = \mathbb{C}[t]/(t^3)$

Definition 1.7. Let R be a ring. A (*left*) R-module is an abelian group M (write additively) together with a function $R \times M \to M$ such that

- 1. r(m+m') = rm + rm'
- 2. (r+s)m = rm + sm
- 3. r(sm) = (rs)m

If R is a field an R-module is a vector space. If R has 1_R we usually ask $1_R m = m$ for all $m \in M$.

Definition 1.8. An *R*-module homomorphism is a group homomorphism $\phi: M \to M'$ such that $\phi(rm) = r\phi(m)$.

2 Category Theory

Definition 2.1. A category is a class $Ob(\mathscr{C})$ of objects (write A, B, C, ...) together with:

- 1. a class, $mor(\mathscr{C})$, of disjoint sets hom(A, B). one for each pair of objects in $Ob(\mathscr{C})$. An element f of hom(A, B) is called a *morphism* from A to B. (write $f : A \to B$)
- 2. For each triple (A, B, C) of objects: a function $hom(B, C) \times hom(A, B) \to hom(A, C)$ (write $(f, g) \mapsto f \circ g$) "composition of morphism satisfying:
 - (a) associativity: $h \circ (g \circ f) = (h \circ g) \circ f$ with $f \in hom(A, B), g \in hom(B, C)$ and $h \in hom(C, D)$
 - (b) Identity: For each $B \in Ob(\mathscr{C})$ there exists $1_B : B \to B$ such that $\forall f \in hom(A, B) \ 1_B \circ f = f$ and $\forall g \in hom(B, C) \ g \circ 1_B = g$

Example.

Sets: Objects: the class of all sets. Morphisms hom(A, B) is the set of all functions $f: A \to B$

Groups: Objects: Groups. Morphisms: group homomorphism.

Semigroups: Object: semigroups. Morphisms: semigroup homomorphism

Monoids: Object: monoids. Morphisms: monoid homomorphism.

Rings: Objects: Rings. Morphisms: ring homomorphism

Ab: Objects: abelian groups. Morphisms: group homomorphism

 $Vect_k$: Objects: Vector spaces over (a field) k. Morphisms: linear transformations.

Top: Objects: Topological spaces. Morphisms: Continuous functions.

Manifolds: Objects: Manifolds. Morphisms: Continuous maps.

Diff: Objects: Differentiable manifolds. Morphisms: differentiable maps

- Point Let G be a group. Object: one point. Morphisms: hom(pt, pt) = G (composition is multiplication) Note. $\forall f \in hom(pt, pt)$ there exists g such that $f \circ g = 1_{pt} = g \circ f$. (This example is useful for Groupoid)
- Open Sets Fix a topological space X. The category of open set on X: Objects: Open sets. Morphisms: inclusions. (i.e., hom(A, B) is empty or has size one) (This example is useful for sheaves)

R-module Fix a ring *R*. Objects: are *R*-modules. Morphisms: *R*-module homomorphism $\phi(rm) = r\phi(m)$

Definition 2.2. In a category a morphism $f \in hom(A, B)$ is called an *equivalence* if there exists $g \in hom(B, A)$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$.

If $f \in hom(A, B)$ is an equivalence then A and B are said to be *equivalent*.

Example. Groups Equivalence is isomorphism

Top Equivalence is homeomorphism

Set Equivalence is bijection.

Definition 2.3. Let \mathscr{C} be a category and $\{A_{\alpha} : \alpha \in I\}$ be a family of objects of \mathscr{C} . A *product* for the family is an object P of \mathscr{C} together with a family of morphisms $\{\pi_{\alpha} : P \to A_{\alpha} : \alpha \in I\}$ such that for any object B with morphisms $\phi_{\alpha} : B \to A_{\alpha} \exists ! \phi : B \to P$ such that $\phi_{\alpha} \circ \phi = \phi_{\alpha} \forall \alpha$

Example. |I| = 2

Warning: Products don't always exists, but when they do, we often recognize them

Example.

Set: Products is Cartesian product.

Groups Product is direct product.

Open sets of X Interior $(\cap A_{\alpha})$.

Lemma 2.4. If (P, π_{α}) and (Q, ψ_{α}) are both products of the family $\{A_{\alpha}, \alpha \in I\}$ then P and Q are equivalent (isomorphic).

Proof. Since Q is a product $\exists !f : P \to Q$ such that $\pi_{\alpha} = \psi_{\alpha} \circ f$. Since P is a product $\exists !g : Q \to P$ such that $\psi_{\alpha} = \pi_{\alpha} \circ g$. So $g \circ f : P \to P$ satisfies $\pi_{\alpha} = \pi_{\alpha} \circ (g \circ f) \forall \alpha$. Since P is a product $\exists !h : P \to P$ such that $\pi_{\alpha} = \pi_{\alpha} \circ h$. Since $h = 1_P$ satisfies this, we must have $g \circ f = 1_P$. Similarly $f \circ g : Q \to Q$ equals 1_Q . So f is an equivalence. \Box

Definition 2.5. An object I in a category \mathscr{C} is *universal* (or initial) if for all objects $C \in Ob(\mathscr{C})$ there is an unique morphism $I \to C$. J is *couniversal* (or terminal) if for all object C there is a unique morphism $C \to J$.

Example.

Sets \emptyset initial, $\{x\}$ terminal.

Groups Trivial group, initial and terminal.

Open sets \emptyset is initial. X is terminal

Example. Pointed topological spaces: Objects: Pairs (X, p) where X is a non-empty topological space, $p \in X$. Morphisms: Continuous maps $f: (X, p) \to (Y, q)$ with f(p) = q. $(\{p\}, p)$ is terminal and initial.

Theorem 2.6. Any two initial (terminal) objects in a category are equivalent.

Proof. Let I, J be two initial objects in \mathscr{C} . Since I is initial $\exists !f : I \to J$. Since J is initial $\exists !g : J \to I$. Since I is initial, 1_I is the only morphism $I \to I$, so $g \circ f = 1_I$. Similarly, $f \circ g = I_J$ so f is an equivalence. For terminal objects the proof is the same with the arrows reversed.

Why is the lemma a special case of the theorem. Let $\{A_{\alpha} : \alpha \in I\}$ be a family of objects in a category \mathscr{C} . Define a category \mathscr{E} whose objects are all pairs $(B, f_{\alpha} : \alpha \in I)$ where $f_{\alpha} : B \to A_{\alpha}$. The morphisms are morphisms $(B, f_{\alpha}) \to (C, g_{\alpha})$ are morphisms $h : B \to C$ such that $f_{\alpha} = g_{\alpha} \circ h$.

Check:

- $I_B: B \to B$ induces $1_{(B, f_\alpha)}$ in \mathscr{E}
- Composition of morphisms is still ok (These first two checks that \mathscr{E} is a category)
- h is an equivalence in \mathscr{E} implies h is an equivalence in \mathscr{C} . (This will help us show what we wanted)

If a product of $\{A_{\alpha}\}$ exists, it is terminal in \mathscr{E} . We just showed terminal objects are unique (up to equivalence) so products are unique (up to equivalence).

Note. Not every category has products. (for example finite groups)

Definition 2.7. A coproduct of $\{A_{\alpha}\}$ in \mathscr{C} is "a product with the arrows reversed", i.e., Q with $\pi_{\alpha} : A_{\alpha} \to Q$ such that $\forall C$ with $\phi_{\alpha} : A_{\alpha} \to C$, $\exists ! f : Q \to C$ such that $\phi_{\alpha} = f \circ \pi_{\alpha}$

Example. The coproduct of sets is a disjoint union.

For the pointed topological space we have the product is $(\prod X_{\alpha}, \prod p_{\alpha})$. The coproduct is the wedge product, that is, (in the case of the coproduct of two object) $X \coprod Y/p \sim q$.

For abelian groups the coproduct is direct sum, i.e., $\oplus_I G_\alpha \ni (g_\alpha : \alpha \in I, g_\alpha \in G_\alpha)$ and all but finitely many $g_\alpha = e_{G_\alpha}$.

2.1**Functors**

Definition 2.8. Let \mathscr{C} and \mathscr{D} be categories. A *covariant* functor T from \mathscr{C} to \mathscr{D} is a pair of functions (both denoted by T):

- 1. An object function: $T: \operatorname{Ob}(\mathscr{C}) \to \operatorname{Ob}(\mathscr{D})$
- 2. A morphism function $T: \operatorname{mor}(\mathscr{C}) \to \operatorname{mor}(\mathscr{D})$ with $f: A \to B \mapsto T(f): T(A) \to T(B)$ such that
 - (a) $T(1_C) = 1_{T(C)} \forall C \in Ob(\mathscr{C})$
 - (b) $T(g \circ f) = T(g) \circ T(f)$ for all $f, g \in mor(\mathscr{C})$ where composition is defined
- The "forgetful functor" from Groups to Sets. T(G) =underlying set and T(f) = f (i.e. same Example. functions, thought of as a map of sets)
 - $\hom(G, -)$:Groups \rightarrow Sets. Let G be a fixed group. Let T be the functor that takes a group H to the set hom(G, H). If $f: H \to H'$ is a group homomorphism, then $T(f): T(H) \to T(H')$ is given by $T(f)(q) = f \circ q$. Check:
 - $-T(1_H)(g) = 1_H \circ g = g$ so $T(1_H) = 1_{T(H)}$
 - $T(g \circ f)(h) = (g \circ f) \circ h = g \circ (f \circ h) = T(g)(f \circ h) = T(g)(T(f)(h)) = (T(g) \circ T(f))(h)$

Definition 2.9. Let \mathscr{C} and \mathscr{D} be categories. A *contravariant* functor T from \mathscr{C} to \mathscr{D} is a pair of functions (both denoted by T):

- 1. An object function: $T: Ob(\mathscr{C}) \to Ob(\mathscr{D})$
- 2. A morphism function $T : \operatorname{mor}(\mathscr{C}) \to \operatorname{mor}(\mathscr{D})$ with $f : A \to B \mapsto T(f) : T(B) \to T(A)$ such that
 - (a) $T(1_C) = 1_{T(C)} \forall C \in Ob(\mathscr{C})$
 - (b) $T(g \circ f) = T(f) \circ T(g)$ for all $f, g \in mor(\mathscr{C})$ where composition is defined

Example. hom(-, G): Groups \rightarrow Sets. Let G be a fixed group. Let T be the functor that takes a group H to the set hom(H,G). If $f: H \to H'$ is a group homomorphism, then $T(f): T(H') \to T(H')$ is given by $T(f)(g) = g \circ f$.

Definition 2.10. Let \mathscr{C} be a category. The opposite category \mathscr{C}^{op} has object $Ob(\mathscr{C})$ and $\hom_{\mathscr{C}^{\text{op}}}(A, B) =$ $\hom_{\mathscr{C}}(B, A)$. ("reverse the arrows")

One can see that this is a category with $g^{\text{op}} \circ f^{\text{op}} = (f \circ g)^{\text{op}}$.

If $T: \mathscr{C} \to \mathscr{D}$ is a contravariant functor then $T^{\mathrm{op}}: \mathscr{C}^{\mathrm{op}} \to \mathscr{D}$ defined by $T^{\mathrm{op}}(C) = T(C)$ and $T^{\mathrm{op}}(f) = T(f)$ is covariant.

2.2Some natural occurring functors

1. Fundamental group (ref: Hatcher "Algebraic Topology")

 π_1 : Pointed topological spaces \rightarrow Groups. $\pi_1(X,p)$ =homotopy classes of maps $f:[0,1] \rightarrow X$ such that f(0) = f(1) = p. This is a group under concatenation of loops. $f \circ g : [0,1] \to X$ with $f \circ g(t) = f(0)$ $\begin{cases} g(2t) & 0 \le t \le \frac{1}{2} \\ f(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}, \ f^{-1}(t) = f(1-t). \text{ If } \phi: (X,x) \to (Y,y) \text{ is a continuous map with } \phi(x) = y, \text{ then we} \end{cases}$ get an induced map $\pi_1(X, x) \to \pi_1(Y, y)$ by $(f: [0, 1] \to X) \mapsto (\phi(f): [0, 1] \to Y)$ by $\phi(f)(t) = \phi \circ f(t)$. Check:

(a) This is a group homomorphism

(b)
$$\pi_1(1_{(X,x)}) = 1_{\pi_1(X,x)}$$

(c) $\pi_1(\phi \circ \psi) = \pi_1(\phi) \circ \pi_1(\psi)$

Recall: A group is a category with one object where all morphisms are isomorphisms (have inverses). A groupoid is a category where all morphisms are isomorphisms.

2. Consider the category $\mathscr{U}(X)$ of open sets on X with morphisms inclusion $T: \mathscr{U} \to \operatorname{Sets}, T(U) = \{$ continuous functions from U to \mathbb{R} . If $V \subseteq U$ then $T(V) \leftarrow T(U)$ (by restriction). Good easy exercise is to finish checking that this is a functor. This is an example of a presheaf.

2.3 Natural Transformations

Definition 2.11. Let \mathscr{C} and \mathscr{D} be categories and let S and T be covariant functors from \mathscr{C} to \mathscr{D} . A natural transformation α from S to T is a collection $\{\alpha_c : c \in \operatorname{Ob}(\mathscr{C})\}$ in $\operatorname{mor}(\mathscr{D})$, where $\alpha_c : S(C) \to T(C)$ such that if $f : C \to C'$ is a morphism in \mathscr{C} then

commutes.

Example. \mathscr{C} =groups, \mathscr{D} =sets. $S = \hom(G, -)$ and $T = \hom(H, -)$. Let $\phi : H \to G$ be a group homomorphism. Given a group A, we construct $\alpha_A : \hom(G, A) \to \hom(H, A)$ by $g \mapsto g \circ \phi$ (where $\phi : H \to G$). Let $f : A \to B$

$$\begin{array}{c|c} \hom(G,A) \xrightarrow{g \mapsto g \circ \phi} \hom(H,A) \\ g \mapsto f \circ g \\ \downarrow & \downarrow g' \mapsto f \circ g \\ \hom(G,B) \xrightarrow{g' \mapsto g \circ \phi} \hom(H,B) \end{array}$$

Definition 2.12. A natural transformation where all α_c are isomorphism is called a *natural isomorphism*.

Example. Let $\mathscr{C} = \mathscr{D} = n$ -dimensional vector space over k. Let S = id and $T : V \to V^{**}$ (i.e. $T(V) = V^{**}$ if $f : V \to W, w^* \to k$ then $T(f) : V^{**} \to W^*, T(f)(\beta) \in W^{**}$ we have $T(f)(\beta)(\psi) = \beta(\psi \circ f) \in k$

We claim T and S are naturally isomorphic. For $V \in \operatorname{Vect}_n^k$, let α_v be the linear transformation $V \to V^{**}$ given by $v \mapsto \phi_V$ where $\phi_V(\psi) = \psi(v)$. Then for $f: V \to W$

$$\begin{array}{c|c} V & \xrightarrow{\alpha_V} V^{**} \\ S(f) = f & & \downarrow T(f) \\ W & \xrightarrow{\alpha_W} W^{**} \end{array}$$

$$T(f)(\alpha_V(v))(\psi) = T(f)(\phi_V)(\psi)$$

= $\phi_V(\psi \circ f)$
= $\psi \circ f(v)$
= $\phi_{f(v)}(\psi)$

Since $\alpha_w \circ f(v) = \phi_{f(v)}$ means the diagram commutes. Since each α_V is an isomorphism (exercise that this uses finite dimension), T is naturally isomorphic to S.

Definition. Two categories \mathscr{C} and \mathscr{D} are equivalent if there are functors $f: \mathscr{C} \to \mathscr{D}$ and $g: \mathscr{D} \to \mathscr{C}$ such that $f \circ g$ is natural isomorphic to $1_{\mathscr{D}}: \mathscr{D} \to \mathscr{D}, g \circ f$ is naturally isomorphic to $1_{\mathscr{C}}: \mathscr{C} \to \mathscr{C}$.

3 Free Groups

Intuitive idea: Group formed by "words" in an alphabet. Multiplication is concatenation, e.g. F_2 =words in x and y for example $xyx^{-1}y^{-1}x^3y^2$

Construction

Input:	A set X (might be infinite)
1)	Choose a set X^{-1} disjoint from X with $ X^{-1} = X $ and a bijection $X\to X^{-1}$, $x\mapsto x^{-1}$. Choose an element $1\notin X\cup X^{-1}$
2)	A word on X is a sequence $(a_1, a_2,)$ with $a_i \in X \cup X^{-1} \cup \{1\}$ such that there exists N such that $a_n = 1 \forall n > N$. $(1, 1, 1,)$ is the empty word and written as 1
3)	A word is <i>reduced</i> if:
	1. $\forall x \in X$, x and x^{-1} are never adjacent (i.e., if $a_k = x$ then $a_{k-1}, a_{k+1} \neq x^{-1}$) 2. $a_k = 1 \Rightarrow a_k = 1 \forall i > k$
	$z: \ u_k - 1 \rightarrow u_i - 1 \ \forall i > h$
	A non-empty reduced word has the form $(x_1^{\lambda_1}, x_2^{\lambda_2}, \dots, x_n^{\lambda_n}, 1, 1, \dots)$ with $x_i \in X$ and $\lambda_i = \pm 1$. Write this as $x_1^{\lambda_1} x_2^{\lambda_2} \dots x_n^{\lambda_n}$.
4)	Our group $F(X)$ as a set is the set of reduced words.
	Naive attempt at defining multiplication: Define $(x_1^{\lambda_1}\dots x_n^{\lambda_n})(y_1^{\delta_1}\dots y_m^{\delta_m})$ to be $x_1^{\lambda_1}\dots x_n^{\lambda_n}y_1^{\delta_1}\dots y_m^{\delta_m}$
	Problem: This product might not be reduced
	Solution: Reduce it:
	Formally: if $a=(x_1^{\lambda_1}\dots x_m^{\lambda_m})(y_1^{\delta_1}\dots y_n^{\delta_n})$ (and suppose that $m\leq n$). Let
	$K = \max_{0 \le k \le n} \{k : x_{m-j}^{\lambda_{m-j}} = y_{j+1}^{-\delta_j+1} \text{ for all } 0 \le j \le k-1\}.$ Then define
	$ \begin{pmatrix} x_1^{\lambda_1} \dots x_{m-k}^{\lambda_{m-k}} y_{k+1}^{\delta_{k+1}} \dots y_n^{\delta_n} & k < m \end{cases} $
	$ab = \begin{cases} y_{m+1}^{\delta_{m+1}} \dots \delta_{n}^{\delta_{n}} & k = m < n \text{ (and analogously if } m > n) \end{cases}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	This define a multiplication $F(X) \times F(X) \to F(X)$.
	Claim: This is a group
	• 1 is the identity
	• The inverse of x^{λ_1} x^{λ_m} is $x^{-\lambda_m}$ $x^{-\lambda_1}$
	• The inverse of $x_1 \dots x_m$ is $x_m \dots x_1$ • For associativity see Lemma 3.1
	• FOT apportativity see Lemma 3.1

Lemma 3.1. The multiplication $F(X) \times F(X) \rightarrow F(X)$ is associative.

Proof. For each $x \in X$ and $\delta = \pm 1$ let $|x^{\delta}| : F(X) \to F(X)$ be the map given by:

 $\bullet \ 1 \mapsto x^\delta$

•
$$x_1^{\delta_1} \dots x_n^{\delta_n} \mapsto \begin{cases} x^{\delta} x_1^{\delta_1} \dots x_n^{\delta_n} & x^{\delta} \neq x_1^{-\delta_1} \\ x_2^{\delta_2} \dots x_n^{\delta_n} & x^{\delta} = x_1^{-\delta_1}, n > 1 \\ 1 & n = 1, x^{\delta} = x^{-\delta_1} \end{cases}$$

Note that this map is a bijection, since $|x^{\delta}||x^{-\delta}| = 1 = |x^{-\delta}||x^{\delta}|$. Let A(X) be the group of all permutations of F(X). Consider the map $\phi: F(X) \to A(X)$ given by

• $1 \mapsto 1_{A(X)}$ • $x_1^{\delta_1} \dots x_n^{\delta_n} \mapsto |x_1^{\delta_1}| |x_2^{\delta_2}| \dots |x_n^{\delta_n}|$

since $|x_1^{\delta_1}| \dots |x_n^{\delta_n}| : 1 \mapsto x_1^{\delta_1} \dots x_n^{\delta_n}$ we have ϕ is injective. Note that if $w_1, w_2 \in F(X)$, then $\phi(w_1w_2) = \phi(w_1)\phi(w_2)$. Since A(X) is a group, the multiplication is associative, so the multiplication in F(X) is associative. \Box

Example. • $X = \{x\}, F(X) \cong \mathbb{Z}$ (reduced words are $1, x^n, x^{-n}$)

• $X = \{x, y\}$. F(X) = "words in x, y, x^{-1}, y^{-1} , e.g. $xyx^{-1}y^{-1}$ is reduced. So F(X) is not abelian as $xyx^{-1}y^{-1} \neq 1$ so $xy \neq yx$.

Note. There is an inclusion $i: X \to F(X)$.

Lemma 3.2. If G is a group and $f: X \to G$ is a map of sets then $\exists !$ homomorphism $\overline{f}: F(X) \to G$ such that $\overline{fi} = f$.

Proof. Define $\overline{f}(1) = e \in G$. If $x_1^{\delta_1} \dots x_n^{\delta_n}$ is a non-empty reduced word on X, set $\overline{f}(x_1^{\delta_1} \dots x_n^{\delta_n}) = f(x_1)^{\delta_1} \dots f(x_n)^{\delta_n}$. Then \overline{f} is a group homomorphism with $\overline{f}i = f$ by construction and it is unique by the homomorphism requirement.

This says the free group is a free object in the category of group. If \mathscr{C} is a concrete category (there exists a forgetful functor $F : \mathscr{C} \to \operatorname{Sets}$) and $i : X \to F(X)$, where X is a set and $A \in \operatorname{Ob}(\mathscr{C})$, is a function, then A is free on X if for all $j : X \to F(B) \exists ! \phi : A \to B$ such that $\phi \circ i = j$. (Note $B \in \operatorname{Ob}(\mathscr{C})$ and $\phi \in \operatorname{mor}(\mathscr{C})$).

Compare:

- Vector Spaces
- Commutative *k*-algebra
- *R*-modules

Corollary 3.3. Every group G is the homomorphic image of the a free group.

Proof. Let X be a set of generators of G. The inclusion $f : X \to G$ gives a map $\overline{f} : F(X) \to G$. The map \overline{f} is surjective since X is a set of generators. So $G \cong F(X)/\ker(f)$.

Definition 3.4. Let G be a group and let Y be a subset of G. The normal subgroup N = N(Y) of G generated by Y is the intersection of all normal subgroups of G containing Y.

Check that it is well defined. (That is check N(Y) is non-empty, it relies on the fact G is normal)

Definition 3.5. Let X be a set and let Y be a set of (reduced) words on X. A group G is said to be defined by generators X and relations w = e for $w \in Y$ if $G \cong F(X)/N(Y)$. (We say (X|Y) is a presentation of G)

Example. $\langle x|x^6 \rangle \cong \mathbb{Z}/6\mathbb{Z}$ $\langle x, y|x^4, y^2, (xy)^2 \rangle \cong D_4$ (or D_8 depending of your notation)

Note. Presentations are not unique, e.g., $\langle x, y | x^3, y^2, xyx^{-1}y^{-1} \rangle \cong \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, \langle x, y | xy^{-5} \rangle \cong \mathbb{Z}, \langle x, y | x^2, y^2, (xy)^4 \rangle \cong D_4$ (the Coveter presentation)

Given a presentation $G = \langle X | R \rangle \cong F(X)/N(R)$. The word problem asks if a given word $w \in F(X)$ equals the identity of G. This is undecidable! [Novikav 1955].

Example. Burnside groups, $B(m,n) = \langle x_1, \ldots, x_m | w^n$ for any word $w \rangle$. Question (Burnside 1902) Is B(n,m) finite? In the case $B(1,n) \cong \mathbb{Z}/n\mathbb{Z}$ and $B(m,2) \cong (\mathbb{Z}/2\mathbb{Z})^n$.

Question: What are free objects in the category of abelian groups? $\bigoplus_{x \in X} \mathbb{Z}$.

4 Tensor Product

We'll work in the category of R-modules (no assumptions are made on R, including whether it has 1 or not). (Cross-reference this whole chapter with Commutative Algebra Chapter 2)

Recall M is a left R-module if $R \times M \to M$ with $(r, m) \mapsto rm$ and r(s(m)) = (rs)m. And M is a right R-module if $R \times M \to M$ with $(r, m) \mapsto mr$ and (mr)s = m(rs)

Example. $R = M_n(\mathbb{C})$ and $M = \mathbb{C}^n$ is left (M is columns vectors) or right (M is row vectors) R-module

If R is commutative a left R-module structure gives rise to a right R-module structure, i.e., we define mr = rm. M is an S - R bimodule if M is a left S-module and a right R-module and (sm)r = s(mr), e.g., \mathbb{C}^n is a $M_n(\mathbb{C}) - \mathbb{C}$ bimodule.

Suppose we have $f: A \oplus B \to C$ such that $f(a_1 + a_2, b) = f(a_1, b) + f(a_2, b)$, $f(a, b_1 + b_2) = f(a, b_1) + f(a, b_2)$ and f(ar, b) = f(a, rb). We show $A \times B \to A \otimes_R B \to C$.

Example. $f : \mathbb{R}^2 \oplus \mathbb{R}^2 \to \mathbb{R}, f\left(\begin{pmatrix}a\\b\end{pmatrix}, \begin{pmatrix}c\\d\end{pmatrix}\right) = 4ac + bc + ad + 4bd.$ (Easy to check the above relations holds)

Definition 4.1. Let A be a right R-module and B a left R-module. Let F be the free abelian group on the set $A \times B$. Let K be the subgroup generated by all elements:

- 1. (a + a', b) (a, b) (a', b)
- 2. (a, b + b') (a, b) (a, b')
- 3. (ar, b) (a, rb)

for all $a, a' \in A, b, b' \in B$ and $r \in R$. The quotient F/K is called the *tensor product* of A and B and is written $A \otimes_R B$. Note: (a, b) + K is written $a \otimes b$ and (0, 0) + K is written 0. This is an abelian group.

Warning: Not every element of $A \otimes_R B$ has the form $a \otimes b$. A general element is (finite) $\sum n_i(a_i \otimes b_i)$ with $n_i \in \mathbb{Z}$.

We have relations $(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$, $a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2$ and $ar \otimes b = a \otimes rb$. If A is a S - R bimodule then $A \otimes_R B$ is a left S-module since F is an S-module by s(a, b) = (sa, b) and K is an S-submodule.

Example. $\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$. (c.f. Commutative Algebra)

There is a function $\pi : A \times B \to A \otimes_R B$ defined by $(a, b) \mapsto a \otimes b$. Note: π is not a group homomorphism as $(a_1 + a_2, b_1 + b_2) \mapsto a_1 \otimes b_1 + a_1 \otimes b_2 + a_2 \otimes b_1 + a_2 \otimes b_2$. However $\pi(a_1 + a_2, b) = \pi(a_1, b) + \pi(a_2, b)$ and $\pi(a, b_1 + b_2) = \pi(a, b_1) + \pi(a, b_2)$ and $\pi(ar, b) = \pi(a, rb)$. (Call these relations "middle linear")

The universal property of Tensor Product. Let $A_{R,R} B$ be R-module and C an abelian group. If $g: A \times B \to C$ is "middle linear" then $\exists ! \overline{g} : A \otimes_R B \to C$ such that $\overline{g}\pi = g$.

If A is an S - R bimodule and C is an S-module then \overline{g} is a S-module homomorphism.

Proof. Let F be the free abelian group on $A \times B$. There is a unique group homomorphism $g_1 : F \to C$ determined by $(a,b) \mapsto g(a,b)$. Since g is "middle linear", $g_1((a+a',b)-(a,b)-(a',b)) = g(a+a',b) - g(a,b) - g(a',b) = 0$. Similarly, the other generators of K live in ker g_1 , so we get an induced map $\overline{g} : \underbrace{A \otimes_R B}_{=F/K} \to C$. Note that $\overline{g}(a \otimes b) = \underbrace{F/K}_{=F/K}$

 $g_!((a,b)) = g(a,b)$ so $\overline{g}\pi = g$.

If $h: A \otimes B \to C$ is a group homomorphism with $h\pi = g$ then $h(a \otimes b) = h\pi(a, b) = g(a, b) = \overline{g}(\pi(a, b)) = \overline{g}(a \otimes b)$. So h and \overline{g} agree on generators $a \otimes b$ of $A \otimes_R B$, so $h = \overline{g}$. **Example.** $R = \mathbb{Z}, A = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}, B = \mathbb{Q}$. Then $A \otimes_R B = \mathbb{Q}$.

To prove this, define $f: \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z} \times \mathbb{Q} \to \mathbb{Q}$ by f((a,b),c) = bc. Then $f((a_1,b_1) + (a_2,b_2),c) = b_1c + b_2c = f((a_1,b_1),c) + f((a_2,b_2),c)$, $f((a,b),c_1 + c_2) = b(c_1 + c_2) = bc_1 + bc_2$, f((a,b)n,c) = f((na,nb),c) = nbc = f((a,b),nc). So f is "middle linear", so by the proposition there exists a unique $\overline{f}: A \otimes B \to \mathbb{Q}$ with $\overline{f}((a,b) \otimes c) = bc$. We have that \overline{f} is surjective since $\overline{f}((0,1) \otimes c) = c$ for all $c \in \mathbb{Q}$. Now consider $d = \sum n_i(a_i,b_i) \otimes c_i$ in $\ker(\overline{f})$. So $\overline{f}(d) = \sum n_i b_i c_i = 0$. Now $(a,b) \otimes c = (a,b) 4 \otimes \frac{c}{4} = (0,4b) \otimes \frac{c}{4} = (0,1) 4b \otimes \frac{c}{4} = (0,1) \otimes bc$. Hence $d = \sum n_i(0,1) \otimes b_i c_i = (0,1) \otimes \sum n_i b_i c_i = (0,1) \otimes 0 = 0$.

Tensor products of vector spaces. If V is a vector space over k with basis e_1, \ldots, e_n and W is a vector space over k with basis f_1, \ldots, f_m , then $V \otimes_k W$ is a vector space with basis $\{e_i \otimes f_j\}$ (so dimension is nm)

To prove this, let U be a vector space with basis $\{g_{ij} : 1 \leq i \leq n, 1 \leq j \leq m\}$. Let $h : V \times W \to U$ be given by $(\sum a_i e_i, \sum b_j f_j) \mapsto \sum a_i b_j g_{ij}$. Check: h is "middle-linear". So by the proposition there exists a unique $\overline{h} : V \otimes_k W \to U$. The k-module homomorphism \overline{h} is surjective since $\overline{h}(e_i \otimes f_j) = g_{ij}$. Note that if $a = \sum a_i e_i$ and $b = \sum b_j f_j$, then $a \otimes b = (\sum a_i e_i) \otimes (\sum b_j f_j) = \sum a_i b_j (e_i \otimes f_j)$. So if $\overline{h}(\sum n_{ij} e_i \otimes f_j) = 0$, then $\sum n_{ij} g_{ij} = 0$ so $n_{ij} = 0$ for all i, j, hence $\sum n_{ij}(e_i \otimes f_j) = 0$ so \overline{h} is injective.

Consider $\mathbb{R} \otimes_{\mathbb{Q}} V$. Since \mathbb{R} is a $\mathbb{R} - \mathbb{Q}$ bimodule, this is a left \mathbb{R} -module, so a vector space.

Exercise. If $\{e_i\}$ is a basis for V, then $\{1 \otimes e_i\}$ is a basis for $\mathbb{R} \otimes_{\mathbb{Q}} V$ as a \mathbb{R} -vector space.

Lemma 4.2. Let R be a ring with 1 and A be a unitary left R-module. Then $R \otimes_R A \cong A$ as a left R-module.

Proof. The map $f: R \times A \to A$ defined by $(r, a) \mapsto ra$ is "middle-linear" (check!), so $\exists !\overline{f}: R \otimes_R A \to A$ with $\overline{f}(r \otimes a) = ra$. Since $r(r' \otimes a) = rr' \otimes a$. So $\overline{f}(r(r' \otimes a)) = rr'a = r\overline{f}(r' \otimes a)$, so \overline{f} is an *R*-module homomorphism. Since $1 \otimes a \mapsto a$, \overline{f} is surjective. Note that $r \otimes a = 1 \otimes ra$, so if $\overline{f}(\sum n_i(r_i \otimes_R b_i)) = 0$ then since we have

$$\sum n_i(r_i \otimes b_i) = \sum n_i(1 \otimes r_i b_i)$$
$$= \sum 1 \otimes n_i r_i b_i$$
$$= 1 \otimes \sum n_i r_i b_i$$

we find $\overline{f}(\sum n_i(r_i \otimes b_i)) = \sum n_i r_i b_i = 0$, so $\sum n_i(r_i \otimes b_i) = 1 \otimes 0 = 0$. So \overline{f} is injective.

In general, if M is a left R-module, and $\phi : R \to S$ a ring homomorphism, then $S \otimes_R M$ is a left S-module. This is often called *extension of scalars* or sometime *base change*. If R, S are fields then $S \otimes_R M$ is a vector space with the same dimension of M.

Exercise. $K \subsetneq L$ fields, $L \otimes_K K[x_1, \ldots, x_n] \cong L[x_1, \ldots, x_n]$ (as vector spaces)

4.1 Functoriality

Suppose $\phi : M_R \to N_R$ and $\psi :_R M' \to_R N'$ are *R*-module homomorphisms. We will now construct $\phi \otimes \psi : M \otimes_R M' \to N \otimes_R N'$ as follows: The map $f : M \times M' \to N \otimes_R N'$ given by $(m, m') \mapsto \phi(m) \otimes \psi(m')$ is "middle-linear". Check this yourself but we can see that

$$(m_1 + m_1, m') \mapsto \phi(m_1 + m_2) \otimes \psi(m') = (\phi(m_1) + \phi(m_2)) \otimes \psi(m')$$
$$= \phi(m_1) \otimes \psi(m') + \phi(m_2) \otimes \psi(m')$$
$$= f(m_1, m') + f(m_2, m')$$

This gives an induced map $\overline{f} = \phi \otimes \psi : M \otimes_R M' \to N \otimes_R N'$ defined by $\phi \otimes \psi(m \otimes m') = \phi(m) \otimes \psi(m')$

If M, N are S - R bimodules and ϕ is a bimodule homomorphism then $\phi \otimes \psi$ is an S-module homomorphism.

Then, given a right *R*-module *A*, we get a functor $A \otimes - :_R \operatorname{Mod} \to \operatorname{Groups}$, it act on objects by $B \mapsto A \otimes_R B$ and on morphisms it acts by $(f : B \to C) \mapsto (1 \otimes f : A \otimes B \to A \otimes C)$. Similarly, a left *R*-module *B* gives a functor $- \otimes_R B : \operatorname{Mod}_R \to \operatorname{Groups}$.

If A is an S - R bimodule, we replace Groups by _SMod.

Theorem 4.3. Let R, S be rings, let A be a right R-module, B an R-S bimodule, and C a right S-module. Then $\hom_S(A \otimes_R B, C) \cong \hom_R(A, \hom_S(B, C)).$

- Write F for the functor $-\otimes B$ and G for the functor $\hom(B, -)$. Then the theorem says $\hom_S(F(A), C) = \hom_R(A, G(C))$. When we have such a situation for a pair of functors F is called *left adjoint* to G and G is right adjoint to F
 - If B is an R-S bimodule and C is a right S module, then $\hom_S(B,C)$ is a right R-module, under the map $\psi r \in \hom_S(B,C)$ is given by $(\psi r)(b) = \psi(rb)$. Check: $(\psi r)s = \psi(rs)$ since $((\psi r)s)(b) = (\psi r)(sb) = \psi(rsb) = \psi(rs)(b)$.
 - $\hom_S(B, C)$ is an abelian group $(\phi + \psi)(b) = \phi(b) + \psi(b)$. Identity: $\phi(b) = 0 \forall b \in B$.

Example. R = S = C = K then $(A \otimes B)^{\text{op}} \cong \text{hom}(A, B^{\text{op}})$

of Theorem 4.3. Given $\phi: A \otimes B \to C$, define $\Psi(\phi) = \psi: A \to \hom_S(B, C)$ by $\psi(a)(b) = \phi(a \otimes b)$. We check:

1. For each $a, \psi(a) \in \hom_S(B, C)$,

$$\psi(a)(b+b') = \phi(a \otimes (b+b'))$$

= $\phi(a \otimes b + a \otimes b')$
= $\phi(a \otimes b) + \phi(a \otimes b')$
= $\psi(a)(b) + \psi(a)(b')$

$$\begin{split} \psi(a)(bs) &= \phi(a \otimes bs) \\ &= \phi((a \otimes b)s) \\ &= \phi(a \otimes b)s \text{ since } \phi \text{ is an } S \text{-module homomorphism} \\ &= \psi(a)(b)s \end{split}$$

2. ψ is an *R*-module homomorphism:

$$\psi(a + a')(b) = \phi((a + a') \otimes b)$$

= $\phi(a \otimes b + a' \otimes b)$
= $\phi(a \otimes b) + \phi(a' \otimes b)$
= $\psi(a)(b) + \psi(a')(b) \forall b$

So $\psi(a + a') = \psi(a) + \psi(a') \in \hom_S(B, C)$

$$\psi(ar)(b) = \phi(ar \otimes b)$$

= $\psi(a)(rb)$
= $(\psi(a)r)(b)$

So $\psi(ar) = \psi(a)r$.

3. Ψ is a group homomorphism

$$\Psi(\phi + \phi')(a)(b) = (\phi + \phi')(a \otimes b)$$

= $\phi(a \otimes b) + \phi'(a \otimes b)$
= $\Psi(\phi)(a)(b) + \Psi(\phi')(a)(b)$

This is true for all a, b so $\Psi(\phi + \phi') = \Psi(\phi) + \Psi(\phi')$. Hence Ψ is a group homomorphism.

For the inverse, given an *R*-module homomorphism $\psi : A \to \hom_S(B, C)$ define the function $f : A \times B \to C$ by $f(a, b) = \psi(a)(b)$. This is "middle linear" (Check!). So f defines $\phi : A \otimes_R B \to C$ with $\phi(a \otimes b) = \psi(a)(b)$. This gives an inverse to Ψ .

Example. Of Adjoints. Let F :Sets \rightarrow Groups defined by $X \mapsto F(X)$ (the free group) and G :Groups \rightarrow Sets the forgetful functor. Then hom_{Groups} $(FX, H) \cong hom_{Sets}(X, GH)$.

The point of all this is: if F is a left adjoint functor, then F preserves coproduct.

Example. $-\otimes B$ preserves direct sums of modules. $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$.

Proposition 4.4. Let A be a right R-module, B an R-S bimodule and C a left S-module. Then $(A \otimes_R B) \otimes_S C \cong A \otimes_R (B \otimes_S C)$.

- *Proof.* Sketch 1 Fix C, define $A \otimes B \to A \otimes (B \otimes C)$ and define $a \otimes b \mapsto a \otimes (b \otimes c)$. This means that the map $(A \otimes B) \times C \to A \otimes (B \otimes C)$ given by $(a \otimes b, c) = a \otimes (b \otimes c)$ is well define and "middle linear". Then do the same thing for the other direction and we have an isomorphism.
- Sketch 2 We construct $A \otimes_R B \otimes C$ by $F(A \times B \times C)/R$ where R is a set of relations. (For example (a + a', b, c) = (a, b, c) + (a', b, c) or (ar, b, c) = (a, rb, c) or (a, bs, c) = (a, b, sc) etc.) Then use universal properties of categories.

Definition 4.5. Let R be a commutative ring with identity. An *R*-algebra is a ring A with identity and a ring homomorphism $f: R \to A$ mapping 1_R to 1_A such that f(R) is in the centre of A $(f(r)a = af(r) \forall r \in R, a \in A)$. This makes A a left and right R -module.

Example. R = k a field, $A = k[x_1, \dots, x_n]$ $K \subseteq L$ fields, R = K, A = L $R = K, A = M_n(K)$

Definition. An *R*-algebra *morphism* is a ring homomorphism $\phi : A \to B$ with $\phi(1_A) = 1_B$ that is also an *R*-module homomorphism. So $\phi(ra) = r\phi(a)$.

Proposition 4.6. Let R be a commutative ring with 1, and let A, B be R-algebras. Then $A \otimes_R B$ is an R-algebra with multiplication induced from $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$.

Proof. Once we have shown that the multiplication is well-defined, then $1 \otimes 1$ is the identity and we have $f : R \to A \otimes B$ given by $f(r) = r \otimes 1 = 1 \otimes r$. This satisfies $(r \otimes 1)(a \otimes b) = ra \otimes b = ar \otimes b = (a \otimes b)(r \otimes 1)$.

To show that the multiplication is well-defined and distributive we can construct a homomorphism $A \otimes B \otimes A \otimes B \to A \otimes B$ by $a \otimes b \otimes a' \otimes b' \mapsto aa' \otimes bb'$. We construct this map in stages: fix a', b' and construct $\phi_{a',b'} : A \otimes B \to A \otimes B$. Use $\phi_{a',b'}$ to construct $\psi_b : A \otimes B \otimes A \to A \otimes B$ and thus the above map. This homomorphism is induced by a "middle linear" map $f : A \otimes B \times A \otimes B \to A \otimes B$ defined by $(a \otimes b, a' \otimes b') \mapsto (aa', bb')$ which is our multiplication. The "middle-linearity" shows distributivity.

4.2 Tensor Algebras

Let R be a commutative ring with 1 and let M be an R-module

Definition 4.7. For each $k \ge 1$, set $T^k(M) = \underbrace{M \otimes_R M \otimes_R \cdots \otimes_R M}_{k}$. So $T^0(M) = R$. Define $T(M) = R \oplus M \oplus \underbrace{M \otimes_R M \otimes_R \cdots \otimes_R M}_{k}$.

 $(M \otimes M) \oplus \cdots = \bigoplus_{k=0}^{\infty} T^k(M)$. By construction this is a left and right *R*-module.

Theorem 4.8. T(M) is an R-algebra containing M defined by $(m_1 \otimes \cdots \otimes m_i)(m'_1 \otimes \cdots \otimes m'_j) = m_1 \otimes \cdots \otimes m_i \otimes m'_1 \otimes \cdots \otimes m'_j$ and extend via distributivity. For this multiplication, $T^i(M)T^j(M) \subseteq T^{i+j}(M)$. If A is any R-algebra and $\phi: M \to A$ is a R-module homomorphism, then there exists a unique R-algebra homomorphism $\Phi: T(M) \to A$ such that $\Phi|_M = \phi$.

Proof. The map $T^i(M) \times T^j(M) \to T^{i+j}(M)$ defined by $(m_1 \otimes \cdots \otimes m_i, m'_1 \otimes \cdots \otimes m'_j) \mapsto (m_1 \otimes \cdots \otimes m_i \otimes m'_1 \otimes \cdots \otimes m'_j)$ is "middle-linear" (check that this is well-defined.) So multiplication is defined and distributive. Suppose A is an R-algebra and $\phi: M \to A$ is an R-module homomorphism. Then $M \times M \to A$ defined by $(m_1, m_2) \mapsto \phi(m_1)\phi(m_2)$ is middle linear. So it defines an R-module homomorphism $M \otimes M \to A$. (Exercise: check actually we get $T^k(M) \to A$). We thus get a R-module homomorphism $\Phi: T(M) \to A$ with $\Phi|_M = \phi$. This respect multiplication, so is a ring homomorphism. Now $\Phi(1) = 1$ by construction, so we have a R-algebra homomorphism. Since $\Phi(m) = \phi(m)$ for all $m \in M$, if $\Psi: T(M) \to A$ were another such R-algebra homomorphism, $\Psi(m_1 \otimes \cdots \otimes m_i) =$ $\Phi\Psi(m_1) \ldots \Psi(m_i) = \phi(m_1) \ldots \phi(m_i) = \Phi(m_1 \otimes \cdots \otimes m_i)$, so $\Psi = \Phi$. **Example.** R = K a field, M = V a d dimensional vector space with basis e_1, \ldots, e_d . $T^j(M)$ is a vector space with basis $e_{i_1} \otimes \cdots \otimes e_{i_j}$ and hence has dimension d^j . Multiplication is concatenation, so T(M) consists of "non-commutative polynomials" in the variables e_1, \ldots, e_d . This is either called the "non-commutative polynomial algebra" or "free associative algebra".

 $R = \mathbb{Z}$ and $M = \mathbb{Z}/6\mathbb{Z}$. Now $T^{j}(M) \cong \mathbb{Z}/6\mathbb{Z}$, so $T(M) \cong \mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \ldots \cong \mathbb{Z}[x]/\langle 6x \rangle$.

We work out $T(\mathbb{Q}/\mathbb{Z})$. Now $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$, to see this $\frac{a}{b} \otimes \frac{c}{d} = \frac{a}{b} \otimes \frac{b}{b} \frac{c}{d} = \left(\frac{a}{b}\right) b \otimes \frac{1}{b} \frac{c}{d} = a \otimes \frac{c}{bd} = 0$. So $T(\mathbb{Q}/\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Q}/\mathbb{Z}$.

Definition 4.9. A ring S is (N)-graded if $S \cong S_0 \oplus S_1 \oplus \cdots = \bigoplus_{k \ge 0} S_k$ (as groups) with $S_j S_i \subseteq S_{i+j}$ and $S_i S_j \subseteq S_{i+j}$ $\forall i, j \ge 0$. The elements of S_i are called *homogeneous of degree i*. A homomorphism $\phi : S \to T$ of graded rings is graded if $\phi(S_k) \subseteq T_k$ for all k.

Example. $S = k[x_1, \ldots, x_n]$ or $S = T^k(M)$

Note. $S_0S_0 \subseteq S_0$, so S_0 is a subring. Also $S_0S_j \subseteq S_j$, so each S_j is an S_0 -module. If S has an identity 1, it lives in S_0 . (if not $1 = e_k + e$, $e \in \bigoplus_{j=0}^{k+1} S_j$, for $s \in S_1$, $s = 1 \cdot s = (e_k + e)s = e_ks + es \to e_ks = 0$). If S_0 is in the centre of S, then S is an S_0 -algebra.

4.3 Symmetric and Exterior Algebras

Definition 4.10. The symmetric algebra of an *R*-module *M* is S(M) = T(M)/C(M) where $C(M) = \langle m_1 \otimes m_2 - m_2 \otimes m_1 : m_1, m_2 \in M \rangle$ (two-sided ideal generated by).

Since T(M) is generated as an *R*-algebra by *T* and *M*, and the images of $m_1 \otimes m_2$ and $m_2 \otimes m_1$ agrees in S(M), we have S(M) is a commutative ring. (Exercise: think about universal properties)

Example. V is a d-dimensional vector space over k, spanned by e_1, \ldots, e_d . Then $S(V) \cong k[x_1, \ldots, x_n]$.

Definition 4.11. The exterior algebra of an *R*-module *M* is the *R*-algebra $\wedge(M) = T(M)/A(M)$ where $A(M) = \langle m \otimes m : m \in M \rangle$. The image of $m_1 \otimes \cdots \otimes m_j$ in $\wedge M$ is written $m_1 \wedge m_2 \wedge \cdots \wedge m_j$. Multiplication is called exterior or wedge product.

Example. M = V a *d*-dimensional vector space over k (of characteristic not 2), spanned by e_1, \ldots, e_d . Then $\wedge M = T(M)/A(M) = \{\text{non-commutative polynomials}\}/\langle l^2 \rangle$ where $l = \sum a_i e_i$. We see that this forces $x_i x_j = -x_j x_i$ (consider $(x_i + x_j)^2$). So in this case $\wedge V = k \langle x_1, \ldots, x_j \rangle / \langle x_i x_j + x_j x_i \rangle$. In characteristic 2, we have that $x_i x_i \notin \langle x_i x_j + x_j x_i \rangle$

Write $\wedge^k M$ for the image of $T^k(M)$ in $\wedge(M)$

Exercise. This is a graded component, i.e., $\wedge(M) = \bigoplus \wedge^k (M)$.

If $f \in \wedge^k M, g \in \wedge^l M$ then $fg = (-1)^{kl}gf$. This is referred as "graded commutative"

4.4 Summary

What we should remember/understand

- $\mathbb{Z}/m\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}$
- $L \otimes K[x_1, \ldots, x_n]$
- $V \otimes_k W$ where V, W are vector-space over k
- $\wedge^k V$ where V is a vector-space over k.

5 Homological Algebra

Definition 5.1. A sequence $\cdots \longrightarrow M_1 \xrightarrow{\phi_1} M_2 \xrightarrow{\phi_2} M_3 \xrightarrow{\phi_3} M_4 \longrightarrow \cdots$ of groups/*R*-modules/... is a *complex* if $\phi_{i+1} \circ \phi = 0$, i.e., $\phi_i \subseteq \ker(\phi_{i+1})$.

It is *exact* if $\ker(\phi_{i+1}) = \operatorname{im}(\phi_i) \forall i$.

A short exact sequence is $0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$. This means:

- 1. ϕ is injective
- 2. $\operatorname{im} \phi = \ker \psi$
- 3. ψ is surjective
- A morphism of complexes

$$\cdots \longrightarrow A_{i} \xrightarrow{\delta_{i}} A_{i+1} \xrightarrow{\delta_{i+1}} A_{i+2} \xrightarrow{\delta_{i+2}} \cdots$$

$$f_{i} \bigvee f_{i+1} \bigvee f_{i+2} \bigvee f_{i+2} \bigvee$$

$$\cdots \longrightarrow B_{i} \xrightarrow{\mu_{i}} B_{i+1} \xrightarrow{\mu_{i+1}} B_{i+2} \xrightarrow{\mu_{i+2}} \cdots$$

is a sequences of maps $f_i: A_i \to B_i$ such that the diagram

$$\begin{array}{c|c} A_i & \xrightarrow{\delta_i} & A_{i+1} \\ f_i & & f_{i+1} \\ f_i & & \mu_i \\ B_i & \xrightarrow{\mu_i} & B_{i+1} \end{array}$$

commutes. If all the f_i are isomorphism then the complexes are *isomorphic*. Short 5-lemma. Let

be morphism of short exact sequences of groups.

- If α and γ are injective so is β .
- If α and γ is surjective so is β
- If α and γ are isomorphism so is β

Proof. Suppose that α and γ are injective, and $\beta(b) = 0$ for some $b \in B'$. Then $\phi'\beta(b) = 0 = \gamma\phi(b)$. Since γ is injective, $\phi(b) = 0$, so $b \in \ker \phi$, hence there exists $a \in A$ such that $b = \psi(a)$. So $\beta(b) = \beta\psi(a) = \psi'\alpha(a) = 0$. Since ψ' is injective, $\alpha(a) = 0$, but α is also injective, so $\alpha = 0$. So $b = \psi(a) = 0$ and thus β is injective.

Suppose α and γ are surjective and consider $b' \in B'$. Since γ is surjective, there exists $c \in C$ with $\gamma(c) = \phi'(b')$. Since ϕ is surjective, there exists $b \in B$ with $\phi(b) = 0$, so $\gamma\phi(b) = \phi'\beta(b) = \phi'(b')$. Thus $\beta(b) = b' \in \ker \phi' = \operatorname{im} \psi'$. So there exists $a' \in A'$ with $\psi'(a') = \beta(b) - b'$. Since α is surjective, there exists $a \in A$ such that $\alpha(a) = a'$, so $\psi'\alpha(a) = \beta(b) - b'$. Thus $\beta\psi(a) = \beta(b) - b'$, so $b' = \beta(b - \psi(a)) \in \operatorname{im} \beta$.

Question: Given A, C what can you say about B with $0 \to A \to B \to C \to 0$ exact? One obvious answer is $0 \to A \xrightarrow{a \mapsto (a,0)} A \oplus C \xrightarrow{(a,c) \mapsto c} C \to 0$ is always exact.

Definition 5.2. Let R be a ring and let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be a short exact sequence of R-modules. The sequence is said to *split* (or *be split*) if there exists an R-submodule $D \subseteq B$ such that $B = D + \psi(A)$ with $D \cap \psi(A) = \{0\}$ (i.e., $B \cong D \oplus \psi(A)$). "There exists R-module complement of $\psi(A)$ in B"

Lemma 5.3. The short exact sequence $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ splits if and only if there exists $\mu : C \to B$ (called a section) such that $\phi \circ \mu = \mathrm{id}_C$, if and only if there exists $\lambda : B \to A$ such that $\lambda \circ \psi = \mathrm{id}_A$

Note. If there exists an R-module complement D to $\psi(A)$ in B, then $D \cong B/\psi(A) \cong C$

Proof of Note. Consider $\phi: B \to C$. Note that $\phi|_D$ is injective, since $D \cap \psi(A) = \{0\}$ (as $\psi(A) = \ker \phi$). Since ϕ is surjective, for any $c \in C$, there exists $b \in B$ with $\phi(b) = c$. Write $b = d + \psi(a)$ for some $d \in D, a \in A$. But then $\phi(b) = \phi(d + \psi(a)) = \phi(d) + \phi(\psi(a)) = \phi(d)$, so $\phi|_D$ is surjective.

Proof of Lemma. If the sequence splits, there exists an R-module complement D for $\phi(A)$. By above, $D \cong C$, so let $\mu: C \to D$ be the isomorphism ($\mu = \phi^{-1}$). By construction $\phi(\mu(c)) = c$ so $\phi \circ \mu = \mathrm{id}_c$.

Conversely, if there exists $\mu : C \to B$ such that $\phi \circ \mu = \mathrm{id}_C$, let $D = \mu(C)$. We need to show that D is an R-module complement for $\psi(A)$. Let $b \in D \cap \psi(A)$. Then $b = \mu(c)$, so $\phi(B) = \phi(\mu(c)) = c$, but since $b = \psi(a)$ for some a, we have $\phi(b) = \phi(\psi(a)) = 0$, so c = 0 and thus $b = \mu(0) = 0$. Given $b \in B$, let $d = \mu(\phi(b))$. Then $\phi(b-d) = \phi(b-\mu\phi(b)) = \phi(b) - \phi\mu\phi(b) = \phi(b) - \phi(b) = 0$, so $b-d \in \ker \phi = \operatorname{im} \psi$. So there exists $a \in A$ such that $b = d + \phi(a)$, so $B = D + \psi(A)$

Example. Given A and letting $C = \mathbb{Z}$, what are the options for B with $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$? In this case, $B \cong A \oplus \mathbb{Z}$, since the map $\mu : C \cong \mathbb{Z} \to B$, given by $\mu : 1 \mapsto b$ where b is a fixed choice of $b \in B$ with $\phi(b) = 1$, is a splitting. As $\phi \circ \mu(n) = \phi(nb) = n\phi(b) = n \cdot 1 = n$.

Recall that $\hom_R(D, -)$ is a functor, $f : A \to B, f : \hom_R(D, A) \to \hom_R(D, B)$ defined by $\phi \mapsto f \circ \phi$. Given $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$, we can apply $\hom_R(D, -)$ to it:

$$0 \longrightarrow \hom_R(D, A) \xrightarrow{\psi} \hom_R(D, B) \xrightarrow{\phi} \hom_R(D, C) \longrightarrow 0$$

. WARNING: no claims this is a complex yet.

Claim: $0 \to A \xrightarrow{\phi} B$ is exact, then $0 \to \hom_R(D, A) \xrightarrow{\phi} \hom_R(D, B)$ is exact.

Proof. Consider $f \in \hom_R(D, A)$. If $f \neq 0$, then there exists $d \in D$ with $f(d) = a \neq 0$. Then $\phi(f)(d) = \phi(f(d)) = \phi(a) \neq 0$ since ϕ is injective. So $\phi(f)|neq0$, so $\hom_R(D, A) \xrightarrow{\phi} \hom_R(D, B)$ is injective. \Box

Claim: If $0 \to A \xrightarrow{\psi} B \xrightarrow{\phi} C$ is exact then $\hom_R(D, A) \xrightarrow{\psi} \hom_R(D, B) \xrightarrow{\phi} \hom_R(D, C)$ is exact

Proof. Let $f \in \hom_R(D, A)$. Then for all $d \in D$, $\phi \circ \psi(f)(d) = \phi(\psi(f(d)) = 0$, so $\phi \circ \psi$: $\hom_R(D, A) \to \hom_R(D, C) = 0$ (i.e., this is a complex). Now consider $f \in \hom_R(D, B)$ with $\phi(f) = 0$. Then for any $d \in D$, $\phi(f(d)) = 0$, so $f(d) \in \ker \phi$, and thus there exists $a \in A$ with $\phi(a) = f(d)$. The choice of a is forced since ψ is injective.

Define $g: D \to A$ by g(d) = a. We now check this is an *R*-module homomorphism. Then $\psi g = f$, so $f \in \operatorname{im} \psi$. Suppose g(d) = a, g(d') = a', then $\psi(a) = f(d), \psi(a') = f(d')$. So $\psi(a+a') = \psi(a) + \psi(a') = f(d) + f(d') = f(d+d')$. So we must have (since ψ is injective) g(d+d') = a + a' = g(d) + g(d'). (Check g(rd) = rg(d))

However if $0 \to A \to B \to C \to 0$ we do not necessarily have $\hom_R(D, B) \to \hom_R(D, C) \to 0$ is exact.

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$, and $D = \mathbb{Z}/2\mathbb{Z}$.

Definition 5.4. We say that $\hom_R(D, -)$ is a left exact functor.

If F is a covariant functor, F : R-module $\rightarrow R$ -module, then F is *left exact* if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$.

It is right exact if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow 0$

Hence it is *exact* if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ implies $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow 0$

Question: For which D is $\hom_R(D, -)$ exact? Let D = R (a ring with identity) If $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact then $0 \longrightarrow \hom_R(R, A) \longrightarrow \hom_R(R, B) \longrightarrow \hom(R, C) \longrightarrow 0$ is exact because $\hom_R(R, A) \cong A$ by $\phi \mapsto \phi(1)$ and

commutes.

Definition 5.5. An *R*-module *P* is projective if for any surjection $\phi : M \to N$ of *R*-modules and an *R*-module map $f : P \to N$ such that there exists $g : P \to M$ such that $f = \phi \circ g$

Example. $P = R^n$ for some n

Proposition 5.6. Let P be an R-module. The following are equivalent:

- 1. P is projective
- 2. For all short exact sequence $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ we have $0 \longrightarrow \hom_R(P, A) \longrightarrow \hom_R(P, B) \longrightarrow \hom_R(P, C) \longrightarrow 0$ is exact. (That is $\hom_R(P, -)$ is an exact functor)
- 3. There exist an R-module Q and set S such that $P \oplus Q \cong \bigoplus_S R$. "P is a direct summand of a free module"

Note. If $R = \mathbb{Z}, R = k[x_1, \ldots, x_n]$ then all projective modules are free. (The second is Serre's conjecture and proven by Quillen-Suslin)

Proof. $1 \Rightarrow 2$ Let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be a short exact sequence. Then we know $0 \longrightarrow \hom_R(P, A) \longrightarrow \hom_R(P, B) \longrightarrow \hom_R(P, C)$ is exact. Now given $f \in \hom_R(P, C)$ we have

so there exists a unique $g: P \to B$ such that $f = \phi \circ g$, i.e., $f = \phi(g)$. Thus $\phi: \hom_R(P, B) \to \hom_R(P, C)$ is surjective.

- 2 \Rightarrow 3 Suppose hom_R(P, -) is exact. Write $P = \bigoplus_{s \in S} R/K$ as a quotient of a free module. Then $0 \to K \to \bigoplus R \xrightarrow{\pi} P \to 0$ is exact. Since hom_R(P, $\oplus R$) \to hom_R(P, P) is surjective, there exists $\mu : P \to \oplus R$ such that $\pi(\mu) = \text{id} : P \to P$, i.e., for all $p \in P$ we have $\pi \circ \mu(p) = p$. Thus $\oplus R \cong P \oplus K$.
- $3 \Rightarrow 1$ Suppose $P \oplus Q = F$ (where F is a free R-module, i.e., $F \cong \bigoplus_{s \in S} R$, S a set and let $i: S \to F$) and

$$\begin{array}{c} P \\ \downarrow f \\ M \xrightarrow{\phi} N \longrightarrow 0 \end{array}$$

Let $\pi : F \to P$ for the projection map. Then $f \circ \pi \in \text{hom}(F, N)$. For each $s \in S$, let n_s be $f(\pi(i(s)))$. Choose $m_s \in M$ with $\phi(m_s) = n_s$. By the universal property there exists a unique $g : F \to M$ such that $\phi \circ g = f \circ \pi$. So we have the following commutative diagram

So define $h: P \to M$ by h(p) = g(p, 0). Check: This is an *R*-module homomorphism. Then $\phi(h(p)) = \phi(g(p, 0)) = f(\pi(p, 0)) = f(p)$. So $\phi \circ h = f$ and so *P* is projective.

Question: What about other functors? For example hom(-, D) or $A \otimes -?$

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ and apply hom $(-,\mathbb{Z}/2\mathbb{Z})$. Then applying hom $(-,\mathbb{Z}/2\mathbb{Z})$, we get $0 \leftarrow \mathbb{Z}/2\mathbb{Z} \leftarrow \mathbb{Z}/2\mathbb{Z} \leftarrow \mathbb{Z}/2\mathbb{Z} \leftarrow 0$, but this is not exact. To see this note that we must have

 $\mathbb{Z}/2\mathbb{Z} \stackrel{\text{o}}{\longleftarrow} \mathbb{Z}/2\mathbb{Z} \stackrel{\text{id}}{\longleftarrow} \mathbb{Z}/2\mathbb{Z} \stackrel{\text{o}}{\longleftarrow} 0$, showing the failure of surjectivity.

Lemma 5.7. Let $\psi : A \to B, \phi : B \to C$ be *R*-module homomorphism. If $0 \longrightarrow \hom(C, D) \longrightarrow \hom(B, C) \longrightarrow \hom(A, D)$ is exact for <u>all *R*-modules D</u>, then $A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ is exact.

Proof. We need to show:

1. ϕ is surjective, use $D = C / \operatorname{im} \phi$

Set $D = C/\phi(B)$, let $\phi_1 : C \to D$ be the projection map. Then $\pi_1 \circ \phi : B \to C/\phi(B)$ is the zero map by construction. So $\phi(\pi_1) = 0 \in \text{hom}(B, D)$. Since $\text{hom}(C, D) \to \text{hom}(B, D)$ is injective, $\pi_1 = 0$, so the projection $C \to C/\phi(B)$ is the zero map. So $C/\phi(B) = 0$ and thus $\phi(B) = C$ so it is surjective.

- 2. im $\psi \subseteq \ker \phi$, use D = C, id : $C \to C$ Exercise
- 3. $\ker(\phi) \subseteq \operatorname{im} \psi$, use $D = B/\operatorname{im} \psi$. Exercise

Proposition 5.8. Let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be an exact sequence of *R*-modules. Then $D \otimes A \xrightarrow{1 \otimes \psi} D \otimes B \xrightarrow{1 \otimes \phi} D \otimes C \longrightarrow 0$ is exact.

Proof. Recall $\hom(F \otimes G, H) \cong \hom(F, \hom(G, H))$. Now by left exactness of $\hom(-, E)$, for any E we have $0 \longrightarrow \hom(C, E) \longrightarrow \hom(B, E) \longrightarrow \hom(A, E)$. Then for all D

 $0 \longrightarrow \hom(D, \hom(C, E)) \longrightarrow \hom(D, \hom(B, E)) \longrightarrow \hom(D, \hom(A, E))$

So $0 \longrightarrow \hom(D \otimes C, E) \longrightarrow \hom(D \otimes B, E) \longrightarrow \hom(D \otimes A, E))$ is exact. So by the lemma $D \otimes A \rightarrow D \otimes B \rightarrow D \otimes C \rightarrow 0$ is exact (Check the maps are what you think they are)

Recall: M^{\bullet} : ... $\longrightarrow M^{i-1} \xrightarrow{\partial_i} M^i \xrightarrow{\partial_{i+1}} M^{i+1} \xrightarrow{\partial_{1+2}} M^{i+2} \longrightarrow ...$ is a *complex* (or *cochain complex*) if $\partial_{j+1} \circ \partial_j = 0$ for all j

Definition 5.9. Given a (cochain) complex M, the n^{th} cohomology group is $H^n(M) = \ker \partial_{n+1} / \operatorname{im} \partial_n$

Notation. If $M_{\bullet} \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}} M_i \xrightarrow{\partial_i} M_{i-1} \xrightarrow{\partial_{i-1}} M_{i-2} \longrightarrow \dots$ is a (chain) complex, we write $H_n(M) = \ker \partial_n / \operatorname{im} \partial_{n+1}$ and call this the n^{th} homology group.

Definition 5.10. Let A be an R-module. A projective resolution of A is an exact sequence \mathscr{P}

 $\dots \longrightarrow P_n \xrightarrow{\partial_n} P_{n-1} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} P_0 \xrightarrow{\epsilon} A \longrightarrow 0$

such that each P_i is a projective module.

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ is a projective resolution of the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$

Note. For R-module, we can actually ask that the P_i be free R-modules. These always exists for R-modules

Let F: R-modules $\to R$ -modules be a covariant right exact functor or a contravariant left exact functor. Then applying F to $P_n \to P_{n-1} \to \cdots \to P_0 \to 0$ (forget A) gives a complex $F(\mathscr{P})$. Then the n^{th} derived functor of Fis $H^n(F(\mathscr{P}))$

Example. F is hom(-, D). Then $F(\mathscr{P})$ is, $0 \longrightarrow \hom(P_0, D) \xrightarrow{\partial_1} \hom(P_1, D) \xrightarrow{\partial_2} \hom(P_2, D)$

Definition 5.11. With the above setting $\operatorname{Ext}^{n}(A, D) = \ker \partial_{n+1} / \operatorname{im} \partial_{n}$ for $n \geq 1$. $\operatorname{Ext}^{0}(A, D) = \ker \partial_{1}$

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$, what is $\operatorname{Ext}^n(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$? $0 \xleftarrow{\partial_2} \mathbb{Z}/2\mathbb{Z} (\overrightarrow{2} \mathbb{Z}/2\mathbb{Z})$

- $\operatorname{Ext}^{0}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = \ker \partial_{1} = \mathbb{Z}/2\mathbb{Z}$
- $\operatorname{Ext}^{1}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = \ker \partial_{2}/\operatorname{im} \partial_{1} = \mathbb{Z}/2\mathbb{Z}$
- $\operatorname{Ext}^n(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = 0$ for $n \ge 2$

Theorem 5.12. $\operatorname{Ext}^n(A, D)$ does not depend on the choice of projective resolution

Remark. Ext¹_R(C, A) is in bijection with the equivalence classes of B such that $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact. "Extension of C by A"

Example. $D \otimes -$. Let \mathscr{P} be a projective resolution of A: $0 \leftarrow A \leftarrow P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow P_2 \leftarrow P_3$... Apply $D \otimes -$ to \mathscr{P} $0 \leftarrow D \otimes P_0 \leftarrow D \otimes P_1 \leftarrow D \otimes P_1 \leftarrow D \otimes P_2 \leftarrow P_2 \leftarrow P_2 \leftarrow P_2 \leftarrow P_3$... d

Definition 5.13. The n^{th} derived functor of $D \otimes -$ is called $\operatorname{Tor}_n^R(D, -)$. So $\operatorname{Tor}_n^R(D, A) = \ker \partial_n / \operatorname{im} \partial_{n+1}$ and $\operatorname{Tor}_0^R(D, A) = D \otimes P_0 / \operatorname{im} \partial$

Example. $R = \mathbb{Z}, A = \mathbb{Z}/7\mathbb{Z} \text{ and } 0 \longleftarrow A \longleftarrow \mathbb{Z} \xleftarrow{\times 7} \mathbb{Z} \longleftarrow 0 \text{ and } D = \mathbb{Z}/7\mathbb{Z}.$ So we get $0 \longleftarrow \mathbb{Z}/7\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \xleftarrow{\partial_1 = 0} \mathbb{Z}/7\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \xleftarrow{\sim} 0$, but $\mathbb{Z}/7\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Z}/7\mathbb{Z}.$ So

- $\operatorname{Tor}_0^{\mathbb{Z}}(\mathbb{Z}/7\mathbb{Z},\mathbb{Z}/7\mathbb{Z}) = (\mathbb{Z}/7\mathbb{Z})/\operatorname{im} \partial_1 = \mathbb{Z}/7\mathbb{Z}$
- $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/7\mathbb{Z},\mathbb{Z}/7\mathbb{Z}) = (\mathbb{Z}/7\mathbb{Z})/0 = \mathbb{Z}/7\mathbb{Z}$

Remark. If A is a \mathbb{Z} -module (abelian group) then A is torsion free if and only if $\text{Tor}_1(A, B) = 0$ for every abelian group.

Definition 5.14. A short exact sequence of complexes $0 \longrightarrow \mathscr{A} \xrightarrow{\psi} \mathscr{B} \xrightarrow{\phi} \mathscr{C} \longrightarrow 0$ is a set of homomorphism

of complexes such that $0 \longrightarrow A_n \xrightarrow{\psi_n} B_n \xrightarrow{\phi_n} C_n \longrightarrow 0$ is exact for every n.

This diagrams commutes, the rows are complexes and the columns are exacts.

Theorem 5.15 (Long exact sequence of cohomology). Let $0 \longrightarrow \mathscr{A} \xrightarrow{\psi} \mathscr{B} \xrightarrow{\phi} \mathscr{C} \longrightarrow 0$ be a short exact sequence of complexes. Then there is a long exact sequence

$$0 \longrightarrow H^0(\mathscr{A}) \longrightarrow H^0(\mathscr{B}) \longrightarrow H^0(\mathscr{C}) \xrightarrow{\partial_0} H^1(\mathscr{A}) \longrightarrow H^1(\mathscr{B}) \longrightarrow H^1(\mathscr{C}) \xrightarrow{\partial_1} H^2(\mathscr{A}) \longrightarrow \dots$$

What are the maps? Given

$$\begin{array}{c|c} A_{n-1} \xrightarrow{\partial_n} A_n \xrightarrow{\partial_{n+1}} A_{n+1} \\ \downarrow \\ \psi_{n-1} & \psi_n & \psi_{n+1} \\ B_{n-1} \xrightarrow{\psi_n} B_n \xrightarrow{\psi_{n+1}} B_{n+1} \end{array}$$

We want $H^n(\mathscr{A}) \to H^n(\mathscr{B})$. Let $a \in \ker \partial_{n+1}$. Then $\psi_{n+1} \circ \partial_{n+1}(a) = 0$, so $\mu_{n+1} \circ \psi_n(a) = 0$, hence $\psi_n(a) \in \ker \mu_{n+1}$. We want $\ker \partial_{n+1}/\operatorname{im} \partial_n \to \ker \mu_{n+1}/\operatorname{im} \mu_n$. It suffices to check $\psi(\operatorname{im} \partial_n) \subseteq \operatorname{im}(\mu_n)$. If $a \in A_{n-1}$ then $\psi_n \circ \partial_n(a) = \mu_n \circ \psi_{n-1}(a) \operatorname{im}(\mu_n)$. So we get a map $H^n(\mathscr{A}) \to H^n(\mathscr{B})$ and similarly $H^n(\mathscr{B}) \to H^n(\mathscr{C})$

For the other map, we use the Snake Lemma

Snake Lemma. Let

$$\begin{array}{c|c} A \xrightarrow{\psi} B \xrightarrow{\phi_{n+1}} C \longrightarrow 0 \\ f & \downarrow & g & \downarrow & h \\ 0 \longrightarrow A' \xrightarrow{\psi'} B' \xrightarrow{\phi'} C' \end{array}$$

be a commutative diagram with exact rows. Then there is an exact sequence

$$\ker f \longrightarrow \ker g \longrightarrow \ker h \longrightarrow \operatorname{coker} f \cong A' / \operatorname{im} f \longrightarrow \operatorname{coker} g \longrightarrow \operatorname{coker} h$$

Proof. Define δ : ker $h \to \operatorname{coker} f$. Let $c \in \ker h$. Then there is $b \in B$ with $\phi(b) = c$ since ϕ is surjective. By commutativity $0 = h(c) = h \circ \phi(b) = \phi' \circ g(b)$. So $g(b) \in \ker \psi'$. By exactness there exists $a' \in A'$ such that $\psi'(a') = g(b)$. Set $\partial(c) = a' + \operatorname{im} f \in \operatorname{coker} f$.

We need to show that ∂ is well defined. Given another choice \tilde{b} with $\phi(\tilde{b}) = c$, the difference $b - \tilde{b} \in \ker \phi = \operatorname{im} \psi$. So there exists $a \in A$ such that $\psi(a) = b - \tilde{b}$. But then $g\psi(a)' = g(b) - g(\tilde{b}) = \psi'f(a)$. So $g(\tilde{b}) = \psi'(a' - f(a))$. We then would set $\partial(c) = a' - f(a) + \operatorname{im} f = a' + \operatorname{im} f$.

6 Representation Theory

Check in this chapter whether each proposition or lemma rely on the fact that rings need to have 1.

6.1 Ring Theory for Representation Theory

Recall: Let G be a group. The group algebra $R[G] = \{\sum a_g g : a_g \in R, g \in G\} = \bigoplus_{g \in G} R$. Representation theory is the study of modules over R[G]

Definition 6.1. An *R*-module $M \neq \{0\}$ is *simple* if *M* has no proper submodules, i.e., $N \subseteq M$ then N = M or $N = \{0\}$

Proposition 6.2. Let M and M' be simple left R-modules. Then every R-module homomorphism $f: M \to M'$ is either 0 or an isomorphism.

Proof. Suppose f is not zero. Then ker(f) is a submodule of M that is not equal to M, so it must be the 0 module, i.e., f is injective. Similarly im f is a submodule of M' that is not the zero module, so im f = M' and thus f is surjective. So f is an isomorphism.

A ring R is simple if $_{R}R$ is a simple R-module, e.g, R = k a field

Definition 6.3. A left *R*-module is *semi-simple* if it is the direct sum of simple modules.

Definition 6.4. A left ideal $I \subseteq R$ is *minimal* if there exists no left ideal J of R such that $0 \subsetneq J \subsetneq I$.

Example.
$$R = M_n(k)$$
. $I = \begin{pmatrix} * \\ \vdots \\ * \end{pmatrix}$ is a minimal left ideal.

Definition 6.5. A ring R is (left) *semisimple* if it is isomorphic as an R-module to a direct sum of minimal left ideals. (i.e. $_{R}R$ is a semisimple R-module)

Example.
$$M_n(K) \cong \bigoplus_{j=0}^n I_j$$
 where $I_j = \begin{pmatrix} & * & \\ 0 & \vdots & 0 \\ & * & \\ & j^{\text{th}-column} \end{pmatrix}$

Proposition 6.6. A left R-module M is semisimple if and only if every submodule of M is a direct summand.

Proof. ⇒) Suppose *M* is semisimple, so $M \cong \bigoplus_{j \in J} S_j$. For any subset $I \subseteq J$, define $S_I = \bigoplus_{j \in I} S_j$. Let *B* be a submodule of *M*. Then by Zorn's lemma, there is $K \subseteq J$ maximal with respect to the property that $S_K \cap B = \{0\}$. (Suppose $K_1 \subsetneq K_2 \subsetneq \ldots$ with $S_{k_i} \cap B = \{0\}$. Set $K' = \bigcup K_i$ and consider $S_{K'}$. If $b \in S_{K'} \cap B$ then $b \in \bigoplus_{j \in K'} S_j$, so $b = s_{j_1} + \cdots + s_{j_r} \cdot s_{j_i} \in S_{j_i}$. There is K_s with $j_1, \ldots, j_r \in K_s$, so $B \in S_{K_s} \cap B$ which is a contradiction)

We claim $M = B \oplus S_K$, we just need to show that $m \in M \Rightarrow m = b + s_k$ for $b \in b, s_k \in S_K$. If $j \in K$, then $S_j \subseteq B + S_K$.

If $j \notin K$, then by maximality, $(S_K + S_j) \cap B \ni b \neq 0$. So there exists $s_K \in S_K$, $s_j \in S_j$ such that $s_K + s_j = b$, so $s_j = b - s_K \in S_j \cap (B + S_K) \neq 0$ since $s_j \neq 0$ as $b \notin S_K$. Thus all S_j are contained in $B + S_K$, so $M \subseteq B + S_K$.

 \Leftarrow) Suppose every submodule of M is a direct summand. We first show that every non-zero submodule B of M contains a simple summand.

Fix $b \neq 0$ with $b \in B$. By Zorn's lemma there exists a submodule C of B maximal with respect to $b \notin C$. If $C = \{0\}$, then B = Rb and B must be simple (otherwise any proper non-zero submodule would not contain b).

Otherwise write $M = C \oplus C'$, then $B = C \oplus (\underline{C' \cap B})$. (Since $C \cap (C' \cap B) = \{0\}$ and $b \in B \Rightarrow b = c + c'$ for

 $c \in C, c' \in C'$, since $b, c \in B, c' \in B$.) We claim that the non-zero submodule D is simple. If not by the above argument we can write, $D = D' \oplus D''$ where D', D'' are non-zero submodules of D. We claim that we do not have $b \in (C \oplus D') \cap (C \oplus D'')$. If we did, we could write b = c + d' = c' + d'' for $c, c' \in C$ and $d' \in D', d'' \in D''$. But then $c - c' = d'' - d' \in C \cap D = \{0\}$, so $d' = d'' \in D' \cap D'' = \{0\}$, hence c = c' = b contradicting $b \notin C$. But this means one of $C \oplus D'$ and $C \oplus D''$ does not contain b, contradicting the choice of C. Thus $B = C \oplus D$ contains the simple summand D.

We now show that M is semisimple. By Zorn's lemma there is a family $\{S_j : j \in I\}$ of simple submodules of M maximal with respect to the property that the submodule U that they generated is their direct sum. By hypothesis, $M = U \oplus V$. If $V = \{0\}$, M is a direct sum of simple modules, so we are done. Otherwise V has a non-zero simple summand $S, V \cong S \oplus V'$. Then $U \cap S = \{0\}$, so $\sum S_j + S = \oplus S_j \oplus S$ contradicting the maximality of U. So $V = \{0\}$ and M is the direct sum of simple submodules.

Maschke's Theorem. If G is a finite group and k a field with $char(K) \nmid |G|$, then k[G] is semisimple. (i.e. k[G] is a direct sum of simple k[G]-modules)

Proof. It suffices to show that every submodule (ideal) I of kG is a direct summand. We have

$$0 \longrightarrow I \xrightarrow{i} kG \longrightarrow \operatorname{coker} \longrightarrow 0$$

so it suffices to construct $\lambda : kG \to I$ such that $\lambda \circ i = id_I$. Since both kG and I are vector space over k, there exists $V \subseteq kG$ such that $kG \cong I \oplus V$ as vector space. Let $\pi : kG \to I$ be the projection map (it is a linear map).

Define $\lambda: kG \to kG$ by $\lambda(u) = \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1}u)$. Note that $\lambda(u) \in I$, since $\pi(g^{-1}u) \in I$ and $g\pi(g^{-1}u) \in I$ as I is a left ideal. Note clear that if $h \in I$ then $\lambda(h) = h$. Indeed $\lambda(h) = \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1}u) = \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1$

is a left ideal. Note also that if $b \in I$ then $\lambda(b) = b$. Indeed $\lambda(b) = \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1}b) = \frac{1}{|G|} \sum_{g \in G} gg^{-1}b = \frac{|G|}{|G|}b = b$. Finally we check that λ is a kG-module homomorphism. It is straightforward to check that λ is a k-linear map, since π is. Also for $h \in G$,

$$\begin{split} \lambda(hu) &= \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1}hu) \\ &= \frac{h}{|G|} \sum_{g \in G} h^{-}g\pi(g^{-1}hu) \\ &= \frac{h}{|G|} \sum_{g' \in G} g'\pi(g'^{-1}u) \quad \text{where } g' = h^{-1}g \\ &= h\lambda(u) \end{split}$$

so λ is a kG-module homomorphism with $\lambda \circ i = id_I$. So I is a direct summand.

Example.
$$\mathbb{C}[\mathbb{Z}/2\mathbb{Z}] = \{a(0) + b(1) : a, b \in \mathbb{C}\} = \underbrace{\mathbb{C}((0) + (1))}_{=\{a(0) + a(1):a \in \mathbb{C}\}} \oplus \underbrace{\mathbb{C}((0) - (1))}_{=\{a(0) - a(1):a \in \mathbb{C}\}}$$

Definition 6.7. Let G be a group. A representation of G is a group homomorphism, $\phi : G \to GL(V)$ where V is a vector space. It is *finite dimensional* if V is a finite dimensional vector space. V is a simple kG-module if V has no G-invariant subspace.

Point: If V is a vector space over k, then V is a kG-module, via $g \cdot v = \phi(g) \cdot v$.

Example. Let $G = S_3$ and $\phi : S_3 \to \operatorname{GL}_3(\mathbb{C})$ send a permutation to its permutation matrix. $\phi((1,2)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

and $\phi((1,2,3)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. This makes \mathbb{C}^3 into a $\mathbb{C}[S_3]$ -module. Is it simple? The answer is no because we (1)

notice that
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 is a common subspace to both matrix. So we have $\mathbb{C}^3 \cong_{\mathbb{C}[S_3]} \operatorname{span} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \oplus V$, where V is a

2-dimensional submodule. In fact $V = \operatorname{span}\left(\begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}\right)$. In the basis $\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ for V we have $(1,2) \rightarrow \begin{pmatrix} 1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0 \end{pmatrix}, (1,2,3) \rightarrow \begin{pmatrix} 1 & 0 & 0\\0 & 0 & 1\\0 & -1 & -1 \end{pmatrix}$.

г		٦
L		
-	_	_

Example. $\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]$, $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z}]$ and let $V = \mathbb{C}((0) + (1))$ and $W = \mathbb{F}_2((0) + (1))$. Maschke's theorem tells us that $\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]$ is a direct summand (see previous example) but nothing about $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z}]$. In fact we can not write $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z}] \cong W \oplus ?$.

Proposition 6.8. 1. Every submodule and every quotient of a semisimple module is semisimple

2. If R is semisimple, then every left R-module M is semisimple.

Proof. 1. Let B be a submodule of M. Every submodule C of B is a submodule of M, so $M \cong C \oplus D$ for some D. Let $\pi: M \to C$ be the projection map and let $\lambda: B \to C$ be given by $\lambda = \pi|_B$. Then

$$0 \longrightarrow C \xrightarrow[\lambda]{i} B \longrightarrow \operatorname{coker} \longrightarrow 0$$

so $B \cong C \oplus$ coker. So every submodule of B is a direct summand so B is semisimple.

Let M/H be a quotient of M. Since M is semisimple we have $M \cong H \oplus H'$ for some submodule H'. By the first part H' is semisimple so $M/H \cong H'$ is semisimple.

2. Suppose R is semisimple. Then any free R-module is semisimple. $(R \cong \oplus M_i \text{ so } \oplus R \cong \oplus \oplus M_i)$ But every R-module is a quotient of a free module, so every R-module is semisimple.

Corollary 6.9. Let G be a finite group and k a field with chark $\nmid |G|$. Then every kG-module is a direct sum of simple kG-modules, so every representation is a direct sum of irreducible representation.

Proposition 6.10. Let $R \cong_R \bigoplus_{i \in I} M_i$ be a semisimple ring, where the M_i are simple modules and let B be a simple R-module. Then $B \cong M_i$ for some i.

Proof. We have $0 \neq B \cong \operatorname{Hom}_R(R, B) \cong \bigoplus_{i \in I} \operatorname{Hom}_R(M_i, B)$. However by Schur's Lemma $\operatorname{Hom}_R(M_i, B) = 0$ unless $M_i \cong B$.

Corollary 6.11. Let G be a finite group and k a field with chark $\nmid |G|$. Then there are only a finite number of simple kG-modules up to isomorphism, and thus only a finite number of irreducible representation of G.

Example. Let $G = S_3$.

- $\phi_1: G \to \mathbb{C}^*, \ \phi_1(g) = 1$ for all g. This corresponds to the $\mathbb{C}[S_3]$ submodule $\mathbb{C}(\sum_{g \in S_3} g)$.
- $\phi_2: G \to \mathbb{C}^*, \phi_2(g) = \operatorname{sgn}(g) = \begin{cases} 1 & g \text{ is even} \\ -1 & g \text{ is odd} \end{cases}$. This corresponds to the $\mathbb{C}[S_3]$ submodule $\mathbb{C}\left(\sum_{g \in S_3} \operatorname{sgn}(g)g\right)$.

•
$$\phi_3: G \to \operatorname{GL}_2(\mathbb{C}), \ \phi_3((1,2)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \phi_3((1,2,3)) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

Exercise:

- a Check that this is an irreducible representation
- b Find a two dimensional submodule of $\mathbb{C}[S_3]$ that this is isomorphic to.

So $\mathbb{C}[S_3] \cong \underset{\cong \phi_1}{\mathbb{C}} \oplus \underset{\cong \phi_2}{\mathbb{C}} \oplus \underset{\cong \phi_3}{\mathbb{C}^2} \oplus \underset{\cong \phi_3}{\mathbb{C}^2}$

Question: What are the possibilities for semisimple rings?

e.g.: k[G], G finite, good characteristic. $M_n(k)$. $M_n(D)$ where D is a division ring. From these we can create more for example $M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r)$.

Theorem 6.12 (Wedderburn-Artin). A ring R (with 1) is semisimple if and only if R is isomorphic to a direct sum/product of matrix rings over division rings. $R \cong M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r)$. The n_i , D_i are unique up to permutation.

Proof. We've just discuss "if"

Suppose R is semisimple, so $R \cong_R \bigoplus_{i \in I} M_i$. We first note that $|I| < \infty$, since $1 \in R$, $1 = m_{i_1} + \cdots + m_{i_s}$ for some $m_{i_j} \in M_{i_j}$. So $R = R1 \subseteq M_{i_1} \oplus \cdots \oplus M_{i_s} \subseteq R$, so we have equality. After reordering, we may assume that $M_i \ncong M_j$ for $i \neq j, 1 \leq i, j \leq r$ and for all j < r there exists $i \leq r$ with $M_j \cong M_i$. Write $B_i = \bigoplus_{M_j \cong M_i} M_j$, so $R \cong B_1 \oplus \cdots \oplus B_r$.

We have $R^{\text{op}} \cong \text{Hom}_R(R, R)$ (as a ring) with the map $f(1) \prec f$, then $f(r) = f(r \cdot 1) = rf(1)$ and

 $f \circ g(1) = f(g(1)) = g(1)f(1) \longleftrightarrow f \circ g \text{ So } R^{\text{op}} \cong \text{Hom}_R(R, R) \cong \text{Hom}_R(\oplus_{i=1}^r B_i, \oplus_{i=1}^r B_i) \cong \oplus_{i,j=1}^r \text{Hom}_R(B_i, B_j).$ Now $\text{Hom}_R(B_i, B_j) = \text{Hom}_R(\oplus_{l=1}^{n_i} M_l, \oplus_{k=1}^{n_j} M_k) = \oplus_{l=1}^{n_i} \oplus_{k=1}^{n_j} \text{Hom}_R(M_i, M_j) = 0 \text{ if } i \neq j \text{ by Schur's Lemma. Since every non-zero function in } \text{Hom}_R(M_i, M_i) \text{ is an isomorphism by Schur's lemma } \text{Hom}_R(M_i, M_i) \text{ is a division ring with multiplication being function composition. Call this } D_i^{\text{op}}.$ Then $\text{Hom}_R(B_i, B_i) \cong \bigoplus_{k,l}^{n_i} D_i^{\text{op}} \cong M_{n_i}(D_i^{\text{op}}).$ So

 $R^{\mathrm{op}} \cong M_{n_1}(D_1^{\mathrm{op}}) \times \cdots \times M_{n_r}(D_r^{\mathrm{op}}), \text{ hence } R \cong M_{n_1}(D_1^{\mathrm{op}})^{\mathrm{op}} \times \cdots \times M_{n_r}(D_r^{\mathrm{op}})^{\mathrm{op}} = M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r).$ Proof omits uniqueness.

Exercise. $M_n(D^{\mathrm{op}})^{\mathrm{op}} \cong M_n(D)$

Corollary 6.13 (Molien). If G is a finite group, and k is algebraically closed, with chark $\nmid |G|$, then $k[G] \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$ and thus $\sum n_i^2 = |G|$.

Example. $\mathbb{C}[\mathbb{Z}/3\mathbb{Z}] \cong M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$. Now $3 = n_1^2 + \cdots + n_r^2$ implies r = 3 and $n_1 = n_2 = n_3 = 1$. So $\mathbb{C}[\mathbb{Z}/3\mathbb{Z}] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}$.

Let us look at the irreducible representation. We always have the "trivial representation", $\phi_1 : \mathbb{Z}/3\mathbb{Z} \to \mathbb{C}^*$ defined by $\phi_1(g) = 1$ for all g.

We then have $\phi_2((0)) = 1$, $\phi_2((1)) = \omega$ and $\phi_2((2)) = \omega^2$ where $\omega = e^{\frac{2\pi i}{3}}$, similarly we also get $\phi_3((0)) = 1$, $\phi_3((1)) = \omega^2$ and $\phi_3((2)) = \omega$

So then
$$\mathbb{C}[\mathbb{Z}/3\mathbb{Z}] \cong \underbrace{\mathbb{C}((0) + (1) + (2))}_{\phi_1} \times \underbrace{\mathbb{C}((0) + \omega^2(1) + \omega(2))}_{\phi_2} \times \underbrace{\mathbb{C}((0) + \omega(1) + \omega^2(2))}_{\phi_3}$$
. Check that this is a ing isomorphism of $((0) + (1) + (2))((0) + \omega(1) + \omega^2(2)) = 0$.

ring isomorphism e.g. $((0) + (1) + (2))((0) + \omega(1) + \omega^2(2)) = 0.$

Proof of Corollary. By Maschke's theorem k[G] is semisimple, so by Wedderburn-Artin theorem $k[G] \cong M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r)$ where $D_i \cong \operatorname{Hom}_{KG}(M_i, M_i)^{\operatorname{op}}$ for simple kG-module M_i . First note that $k \subseteq \operatorname{Hom}(M_i, M_i)^{\operatorname{op}}$, for $a \in k, u \in M_i$ we set a(u) = au. Then a(gu) = agu = g(au) so this is kG-homomorphism. Consider any $f \in D_i^{\operatorname{op}}$, since f is a kG-homomorphism it is a linear transformation, so f(au) = af(u), i.e., (af)(u) = (fa)(u), so f commutes with any $a \in k$. Let k(f) be the smallest sub division ring of D_i^{op} that contains k and f. The division ring k(f) is a finite dimensional vector space over k.

Thus $1, f, f^2, f^3, \ldots$ are linearly dependent over k, so there exists $g \in k[X]$ with g(f) = 0. Take g with minimal degree. But then $\{a_0 + a_1f + \cdots + a_rf^{\deg(g)-1} : a_i \in k\}$ is closed under addition, multiplication. Also g is an irreducible polynomial, since otherwise $g = g_1g_2$ would imply $\underbrace{g_1(f)g_2(f)}_{\neq 0 \neq 0} = 0$ in the division ring D_i^{op} . We show

that this is closed under division. Given $h = \sum a_i f^i$, the elements $1, h, h^2, h^3, \ldots$ are linearly dependant over k. So there exists $b_i \in k$ with $\sum_{i=j\geq 0}^s b_i h^i = 0$, where we may assume that $b_j = 1$, then $\frac{1}{h} = -\sum_{i=j+1}^s b_i h^{i-j-1}$ and this can be written as $\sum_{i=0}^r c_i f^i$. Then the multiplication in k(f) is commutative (since k commutes with f), so k(f) is a field containing k. Since f is algebraic over the algebraically closed field $k, f \in k$.

Question: We now have (for good k) $kG \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$. What is r?

Answer: It is the number of conjugacy class of G

Recall: A conjugacy class of a group G is a set $C_h = \{ghg^{-1} : g \in G\}$ of all conjugates of an element of h. The class sum corresponding to C_h is $z_h = \sum_{g' \in C_h} g'$. The centre of a ring R is $Z(R) = \{a \in R : ab = ba \forall b \in R\}$. e.g. The centre of $M_n(k)$ is $\{\lambda I : \lambda \in k\}$

Lemma 6.14. Let G be a finite group. Then the class sum z_h form a k-basis for Z(k[G])

Proof. First consider $z_h = \sum_{g'=ghg^{-1}} g' \in k[G]$. For any $\widetilde{g} \in G$ we have

$$\widetilde{g}z_h = \sum_{g'=ghg^{-1}} \widetilde{g}g' = \sum_{g'=ghg^{-1}} (\widetilde{g}g)g(g^{-1}\widetilde{g}^{-1})\widetilde{g} = z_h\widetilde{g}$$

since if $g_1 \neq g_2 \in C_h$ then $\tilde{g}g_1\tilde{g} \neq \tilde{g}g_2\tilde{g}$. Hence $z_h \in Z(K[G])$

Now suppose $z \in \sum a_g g \in Z(k[G])$. Then for all $\tilde{g} \in G$, $\tilde{g}z\tilde{g}^{-1} = \sum a_g\tilde{g}g\tilde{g}^{-1} = \sum a_g g$, so $a_{\tilde{g}g\tilde{g}^{-1}} = a_g$ and thus the coefficients of z are constant on conjugacy classes. So z is a linear combination of class sums.

Corollary 6.15. Let G be a finite group and k a field with $k = \overline{k}$ and charK $\nmid |G|$. Then $kG \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$ where r = number of conjugacy class of G.

Proof. The centre of $M_{n_1}(k) \times \cdots \times M_{n_r}(k)$ has dimension r over k, so r = number of conjugacy classes.

Definition 6.16. Let $\phi : G \to \operatorname{GL}(V)$ be a representation of G. The *character* of ϕ is $\chi_{\phi} : G \to k, \chi_{\phi}(g) = \operatorname{Tr} \phi(g)$. (Note $\operatorname{Tr}(A) = \sum a_{ii}$)

Warning: This is not a group homomorphism unless dim V = 1.

Note. $\chi(ghg^{-1}) = \operatorname{Tr} \phi(ghg^{-1}) = \operatorname{Tr}(\phi(g)\phi(h)\phi(g)^{-1}) = \operatorname{Tr}(\phi(h)\phi(g)\phi(g)^{-1}) = \operatorname{Tr}\phi(h) = \chi_{\phi}(h)$, so characters are constant on conjugacy classes.

Definition 6.17. The *character table* of a finite group G is the $r \times r$ table (where r is the number of conjugacy classes) with columns indexed by conjugacy classes and rows indexed by irreducible representation recording the character.

Example. $G = S_3$

	(1)	(1,2),(1,3),(2,3)	(1, 2, 3), (1, 3, 2)
ϕ_1	1	1	1
ϕ_2	1	-1	1
ϕ_3	2	0	-1

 $G = \mathbb{Z}/3\mathbb{Z}$

	(0)	(1)	(2)
1	1	1	1
ω	1	ω	ω^2
ω^2	1	ω^2	ω

Galois Theory 7

Definition 7.1. A field extension L of a field K is a field L containing K. We'll write L/K or L: K. Given a subset X of L the intersection of all subfields of L containing K and X is denoted K(X).

Example. $K = \mathbb{Q}, L = \mathbb{R}$ and $X = \{\sqrt{2}\}$ then $K(\sqrt{2}) = \{a + b\sqrt{2} : a \in \mathbb{Q}\}$. $X = \pi, K(\pi) = \text{set of all rational functions of } \pi$

Definition 7.2. An extension field L/K is simple if $L = K(\alpha)$ for some $\alpha \in L$

Example. $L = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i + \sqrt{5})$. The inclusion one way is clear. For the other way notice that $(i + \sqrt{5})^2 =$ $4 + 2\sqrt{5}i \in L \Rightarrow \sqrt{5}i \in L$. Also $-\sqrt{5} + 5i \in L \Rightarrow 6i \in L$ so $i \in L$.

Definition 7.3. An element $\alpha \in L$ is algebraic over K if there exists a monic polynomial $q \in K[x]$ with $q(\alpha) = 0$. The q of lowest degree is called the *minimal polynomial*. If α is not algebraic, it is said to be transcendental.

Example. $\overline{\mathbb{Q}}$ = the algebraic closure of \mathbb{Q} = the set of all algebraic number over \mathbb{Q} . This is countable. (So transcendental elements of \mathbb{C} exists)

Definition 7.4. An extension L/K is algebraic if every element of L is algebraic.

In general if α is algebraic over \mathbb{Q} with a minimal polynomial f of degree d and β is algebraic over \mathbb{Q} with a minimal polynomial q of degree e, what can you say about $\alpha + \beta$?

Definition 7.5. The degree of L/K written [L:K] is the dimension of L as a vector space over K.

Note. If $L = K(\alpha)$ for α algebraic with minimal polynomial q then $[L:K] = \deg q$ since $\{1, \alpha, \alpha^2, \ldots, \alpha^{\deg g-1}\}$ is a basis. If α is transcendental then $L \cong K(t)$ and $[L:K] = \infty$ (define $\phi: K(t) \to K(\alpha), t \mapsto \alpha$)

The Tower Law. Let K, L, M be fields with $K \subseteq L \subseteq M$. Then [M:K] = [M:L][L:K]

Proof. Let $\{x_{\alpha} : \alpha \in I\}$ be a basis for L/K and let $\{y_{\beta} : \beta : J\}$ be a basis for M/L. Define $z_{\alpha\beta} = x_{\alpha}y_{\beta} \in M$. We claim that $\{z_{\alpha\beta}\}$ is a basis for M/K.

We show that they are linearly independent. If $\sum_{\alpha,\beta} a_{\alpha\beta} z_{\alpha\beta} = 0$ with finitely many $a_{\alpha\beta} \in K$ non-zero. Then $\sum_{\beta} (\sum_{\alpha} a_{\alpha\beta} x_{\alpha}) y_{\beta} = 0$, since the y_{β} are linearly independent over L we have $\sum_{\alpha} a_{\alpha\beta} x_{\alpha} = 0$ for all β . Since the x_{α} are linearly independent over K we have $a_{\alpha\beta} = 0$ for all α, β .

We show spanning. If $z \in M$, then $z = \sum_{\beta} \lambda_{\beta} y_{\beta}$ for $\lambda_{\beta} \in L$. For each $\lambda_{\beta} = \sum a_{\alpha\beta} x_{\alpha}$. So $x = \sum_{\beta} (\sum_{\alpha} a_{\alpha\beta} x_{\alpha}) y_{\beta} = \sum_{\beta} (\sum_{\alpha} a_{\alpha\beta} x_{\alpha}) y_{\beta}$ $\begin{array}{l} \sum_{\alpha,\beta}a_{\alpha\beta}x_{\alpha}y_{\beta}=\sum a_{\alpha\beta}x_{\alpha\beta}.\\ \text{So }\{z_{\alpha\beta}\}\text{ is a basis for }M\text{ over }K\text{, so }[M:K]=[M:L][L:K] \end{array}$

Example. $[\mathbb{Q}(i,\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(i,\sqrt{5}):\mathbb{Q}(i)][\mathbb{Q}(i):\mathbb{Q}] = 2 \times 2 = 4$. The minimal polynomial of $i + \sqrt{5}$ over \mathbb{Q} is $x^4 - 8x^2 + 36$. (Note that this is not $(x^2 + 1)(x^2 - 5)$)

Definition 7.6. An automorphism of L is a field isomorphism $\phi: L \to L$ (so $\phi(0) = 0$ and $\phi(1) = 1$). We say ϕ fixes K if $\phi(a) = a$ for all $a \in K$.

Example. $\phi : \mathbb{C} \to \mathbb{C}$. $\phi(a + bi) = a - bi$ complex conjugation. $\phi: \mathbb{Q}(\sqrt{5}, i) \to \mathbb{Q}(\sqrt{5}, i)$ defined by $\phi(a + b\sqrt{5} + ci + d\sqrt{5}i) = a - b\sqrt{5} + ci - d\sqrt{5}i$. Note ϕ fixes $\mathbb{Q}(i)$ but not $\mathbb{Q}(\sqrt{5}).$

Definition 7.7. The Galois group Gal(L/K) of L/K is the group of all automorphisms of L fixing K.

Example. Using the ϕ defined in the second part of the previous example, we have $\phi \in \text{Gal}(\mathbb{Q}(\sqrt{5},i)/\mathbb{Q}(i))$ but not in $\operatorname{Gal}(\mathbb{Q}(\sqrt{5},i)/\mathbb{Q}(\sqrt{5})).$

 $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) \cong \mathbb{Z}/2\mathbb{Z}$ (generated by complex conjugation) (Because $\phi(a+bi) = a + b\phi(i)$ and $\phi(i)^2 = \phi(-1) = -1$)

Note that $\operatorname{Gal}(L/K)$ is a group under function composition. $\phi: L \to L, \psi: L \to L, \phi(a) = \psi(a) = a$ for $a \in K$. $\phi \circ \psi : L \to L$ is an isomorphism and $\phi \psi(a) = \phi(\psi(a)) = \phi(a) = a$ for $a \in K$

Example. Gal $(\mathbb{Q}(\sqrt{5}, i)/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = 1, \ [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$

Definition 7.8. For a subgroup H of $\operatorname{Gal}(L/K)$ we denote by L^H the set $L^H = \{\alpha \in L : \phi(\alpha) = \alpha \text{ for all } \alpha \in H\}$. This is a subfield of L called the fixed field of H

Example. $H = \operatorname{Gal}(\mathbb{C}/\mathbb{R}), \mathbb{C}^H = \mathbb{R}.$

 $\operatorname{Gal}(\mathbb{Q}(\sqrt{5},i)/\mathbb{Q}) = \langle \phi_1, \phi_2 \rangle \text{ where } \phi_1(i) = -i, \phi_1(\sqrt{5}) = \sqrt{5} \text{ and } \phi_2(i) = i, \phi_2(\sqrt{5}) = -\sqrt{5}. \text{ Let } H_i = \langle \phi_i \rangle.$ Then $\mathbb{Q}(\sqrt{5},i)^{H_1} = \mathbb{Q}(i), \mathbb{Q}(\sqrt{5},i)^{H_2} = \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{5},i)^{\operatorname{Gal}} = \mathbb{Q}.$ Define $H_3 = \langle \phi_3 \rangle$, where $\phi_3(i) = -i$ and $\phi_3(\sqrt{5}) = -\sqrt{5}.$

Note. For any subgroup H of $\operatorname{Gal}(L/K)$ we have $K \subseteq L^H \subseteq L$ and $H \leq \operatorname{Gal}(L/L^H) \leq \operatorname{Gal}(L/K)$

Definition 7.9. A polynomial $f \in K[x]$ splits over K if $f = a \prod_{i=1}^{d} (x - b_i), a, b_1, \dots, b_d \in K$

Example. $ef = x^3 - 2$ splits over \mathbb{C} Note $f = (x - \sqrt[3]{2})(x - \sqrt[3]{2}\omega)(x - \sqrt[3]{2}\omega^2)$ where $\omega = e^{\frac{2\pi i}{3}}$. So we see that f does not split over $\mathbb{Q}(\sqrt[3]{2})$

Definition 7.10. A field L is a splitting field for a polynomial $f \in K[x]$ if $K \subseteq L$ and

- 1. f splits over L
- 2. If $K \subseteq M \subseteq L$ and splits over M then M = L

(Equivalently $L = K(\sigma_1, \ldots, \sigma_d)$ where $\sigma_1, \ldots, \sigma_d$ are the roots of f in L)

These always exist, and are unique up to isomorphism. The proof uses induction on deg f, where we use the intermediate field M = K[x]/(f).

Example. $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$ is a splitting field for $f = x^3 - 2$ (where $\omega = e^{\frac{2\pi i}{3}}$)

Definition 7.11. An extension L/K is normal if every irreducible polynomial f over K which has at least one root in L splits over L.

Example. \mathbb{C}/\mathbb{R} is normal $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal.

Definition 7.12. An irreducible polynomial $f \in K[x]$ is *separable* over K if it has no multiple zeros in a splitting field, (i.e., the b_i are distinct). Otherwise it is *inseparable*

Example. $x^4 + x^3 + x^2 + x + 1$ is separable, its roots are ω^j , j = 1, ..., 4 where $\omega^5 = 1$ $K = \mathbb{F}_2(x), f(t) = t^2 + x$ is inseparable. $K \subseteq L$ where $y \in L$ satisfies f(y) = 0. $f(y) = y^2 + x = 0$, $x = y^2$, so $f = t^2 + y^2 = (t+y)^2$

Proposition 7.13. If K is a field of characteristic 0, then every irreducible polynomial is separable over K. If K has characteristic p > 0, then f is separable unless $f = g(x^p)$.

Recall: A polynomial $f \in K[x]$ has a double root if and only if f and f' (the formal derivative) have a common factor. If f had a double root and $f' \neq 0$, f and f' would have a common factor in K[x] (by the Euclidean algorithm). But since $\deg(f') < \deg(f)$, this factor is not f, contradicting f being irreducible, unless f' = 0. We only have f' = 0 if charK = p and $f = g(x^p)$.

Definition 7.14. An algebraic extension L/K is *separable* if for $\alpha \in L$, its minimal polynomial is separable over K.

Theorem 7.15 (Fundamental Theorem of Galois Theory). Let L/K be a finite separable normal field extension with [L:K] = n and Gal(L/K) = G then

- 1. |G| = n
- 2. For $K \subseteq M \subseteq L$ we have $M = L^{\operatorname{Gal}(L/M)}$ and $H = \operatorname{Gal}(L/L^H)$, so $H \mapsto L^H$ is an order reversing bijection between the poset of subgroups of G and subfields $K \subseteq M \subseteq L$
- 3. If $K \subseteq M \subseteq L$ then [L:M] = |Gal(L/M)| and [M:K] = |G|/|Gal(L/M)|
- 4. M/K is normal if and only if Gal(L/M) is a normal subgroup of Gal(L/K). In that case $Gal(M/K) \cong G/Gal(L/M)$
- **Corollary 7.16.** 1. If L/K is finite, normal, separable then there are only finitely many fields M with $K \subseteq M \subseteq L$.
 - 2. If Gal(L/K) is abelian, then for any $K \subseteq M \subseteq L$ we have M/K normal.

We see from this that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}) = S_3$ since $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal (exercise: show this directly by writing down 6 automorphism)

Galois' Application: $\operatorname{Gal}(L/K)$ simple implies no intermediate normal M/K, This in terms implies no highest degree polynomial "solved by radicals"

Proof of the Fundamental Theorem of Galois Theory (in ideas).

Lemma 7.17. If $\phi_i : M \to L$, i = 1, ..., r are distinct inclusion of fields, then the ϕ_i are linearly independent over L, *i.e.*, $\sum a_i \phi_i(m) = 0 \forall m$ then $a_i = 0 \forall i$.

We apply this to M = L. For H a subgroup of $\operatorname{Gal}(L/K)$ we use the lemma to show that $[L : L^H] = |H|$. $(\{\phi \in H\} \text{ are linearly independent } \phi : L \to L)$. So $[L^H : K] = [L : K]/|H|$. Next we use the following propositions

Proposition 7.18. If L/K is normal and $K \subseteq M \subseteq L$ has M/K normal then for all $\phi \in Gal(L/K), \phi(M) = M$

We use twice. Once for 4. and first to show that the [L:K] maps $L \to N$ (where N is a bigger field) we construct by hand have image in L. Use this to show |Gal(L/K)| = [L:K], thus $L^{\text{Gal}(L/K)} = K$, because $[L:L^{\text{Gal}(L/K)}] = |G| = [L:K]$.

Example. • $K = \mathbb{Q}, L =$ splitting field of $x^3 - 2$, that is $L = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega = e^{\frac{2\pi i}{3}}$. Now $K \leq L$ if finite, separable (characteristic 0) and normal. What is $\operatorname{Gal}(L/K) = G$? Any elements of G permutes $\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2$. So $G \subseteq S_3$, but since G is of order 6 = [L:K], we must have $G = S_3$.

• Let $K = \mathbb{Q}$ and L be the splitting field of $x^3 - 3x - 1 = (x - \alpha)(x - \beta)(x - \gamma)$. Then $\mathbb{Q} \leq L = \mathbb{Q}(\alpha, \beta, \gamma)$. What is $\operatorname{Gal}(L/K) =$? So $G \subseteq S_3$. Using the fact about discriminant (see below) we have that no transposition is in G. (Since $(\alpha - \beta)(\alpha - \gamma)(\beta - \gamma) = \pm 9$.) Hence we have |G| = 3 so $G = \mathbb{Z}/3\mathbb{Z}$.

Fact. If L is the splitting field of a cubic then $Gal(L/K) = \begin{cases} \mathbb{Z}/3\mathbb{Z} & \Delta(f) \text{ is a square in } \mathbb{Q} \\ S_3 & otherwise \end{cases}$

Definition 7.19. The discriminant of a polynomial f with roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ is $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$

Fact. You can express $\Delta(f)$ as a polynomial on the coefficients of f

Example. If $f = x^3 - ax^2 + bx - c$, $\Delta(f) = a^2b^2 + 18abc - 27c^2 - 4a^3c - 4b^3$