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Why study modular curves?

1. They give more information on modular forms.

2. They give friendly examples of moduli spaces.

0 Wa�e

Let H = {z ∈ C| im z > 0}. We have that the group SL2(R) acts on H. Take Γ < SL2(Z) of �nite index. We de�ne
Y (Γ) = Γ\H. We will equip this with various interesting structures.

0.1 Recap of modular forms

Fix:

• Γ ≤ SL2(Z) with �nite index (which we call the level)

• k ∈ Z (which we call the weight)

Then there exists a space MK(Γ) of modular forms which are functions f : H → C holomorphic, such that

f

(
az + b

cz + d

)
= (cz + d)kf(z) ∀

(
a b
c d

)
∈ Γ,

and a growth condition on the boundary.
There exists a subspace Sk(Γ) ⊂MK(Γ) of cusp forms.

Fact (Basic). Both Mk and Sk are �nite dimensional over C.

Any modular form has a q-expansion, let h be the least integer such that

(
1 h
0 1

)
∈ Γ, then

f(z) =
∑
n≥0

anq
n
h , an ∈ C, qh = e2πiz/h.
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1 Modular Curves as Riemann Surfaces

1.1 Modular curves as topological spaces

H has a topology (obviously) so Y (Γ) gets a quotient topology (i.e., strongest topology such that π : H → Γ(Y ) is
continuous). Quotient topology can be pretty nasty (for example Q acting on R by translation) - quotient can even
be the indiscrete topology.

Proposition 1.1. For any τ1, τ2 ∈ H there exists a neighbourhood U1 3 τ1, U2 3 τ2 such that if γ ∈ SL2(Z) satis�es
γ(U1) ∩ U2 6= ∅, then γ(τ1) = τ2.

Proof. See Proposition 2.1.1 of Diamond and Shurman.

We say that SL2(Z) acts properly discontinuously on H.

Corollary 1.2. Y (Γ) is Hausdor�

Proof. Let P1 6= P2 be two points of Y (Γ). Choose, τ1, τ2 ∈ H be lifting of P1, P2 respectively. Let U1, U2 be
neighbourhoods of τ1, τ2 as in Proposition 1.1. We claim that Vi = π(Ui) are open neighbourhoods of Pi such that
V1 ∩ V2 = ∅.

Suppose V1 ∩ V2 6= ∅, then π−1(V1) ∩ π−1(V2) 6= ∅. Hence ∪γ∈ΓγU1 ∩ ∪γ′∈Γγ
′U2 6= ∅. So there exists γ and γ′

such that γU1 ∩ γ′U2 6= ∅. This gives (γ′)−1γU1 ∩ U2 6= ∅, which by Proposition 1.1 means (γ′)−1γτ1 = τ2. This is
a contradiction to the assumption that P1 and P2 are distinct point (hence τ1, τ2 are in di�erent orbits)

We are also interested in a slightly larger space X(Γ), which is a compacti�cation of Y (Γ). As a set, we have

X(Γ) = Y (Γ) ∪ C(Γ)︸ ︷︷ ︸
”cusps” of Γ

C(Γ) = Γ\P1(Q).

Let H∗ = H ∪ P1(Q). Give H∗ a topology by extending the topology we have on H.

If we de�ne neighbourhoods of ∞ as {z : im z > R} for any R ∈ N. Then so that the topology make sense,
we de�ned neighbourhood of x ∈ Q as circles tangent to R at x. Actions on H∗ are still properly discontinuous so
X(Γ) is Hausdor�.

Proposition 1.3. X(Γ) is compact.

Proof. It su�ces to �nd a compact subset of H∗ mapping surjectively to X(Γ). Let D∗ = {∞} ∪ {z ∈ H : 1
2 ≤

re z ≤ 1
2 , |z| ≥ 1}. A standard fact is that D∗ contains a point of every SL2(Z) orbit on H∗. So if γ1, . . . , γn are

coset representative for Γ\SL2(Z), then ∪ni=1γiD
∗ surjects onto X(Γ). It is easy to check that D∗ is compact, hence

we are done.
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1.2 Riemann surfaces: recap

De�nition 1.4. A Riemann Surface consists of the following data:

• A topological space X, (which is Hausdor� and second - countable)

• A collection (Ui, Vi, φi)i∈I , where Vi ⊂ X are opens forming a cover of X, Ui are opens in C and φi : Ui → Vi
are homeomorphism, such that if Vi ∩ Vj 6= ∅, the map φ−1

j ◦ φi : Ui ∩ φ−1
i (Vi ∩ Vj) → Uj ∩ φ−1

j (Vi ∩ Vj) is
holomorphic.

Roughly: A Riemann surface is the least amount of structure on X needed to make sense of a function X → C
being holomorphic.

We will now show that Y (Γ) and X(Γ) have natural Riemann surface structures.

De�nition 1.5. We say P ∈ Y (Γ) is an elliptic point if for some (and hence any) τ ∈ H lifting of P1, StabΓ(τ) 6= {1},
where Γ is the image of Γ in PSL2(Z) (that is Γ/Γ ∩ {±1})

If P is elliptic for Γ, then it maps to an elliptic point of Y (SL2(Z)). One can see that there are only 2 of these
(the orbits of i and ρ = e2πi/3).

If P is not elliptic or a cusp, we can easily �nd a chart around P . Let τ be a lifting of P and apply Proposition
1.1 with τ1 = τ2 = τ . Let U = U1 ∩U2, then U a neighbourhood of τ such that γU ∩U = ∅ for any γ 6= 1 ∈ Γ. Let
V be the image of U in Y (Γ), then φ = π/U is a homeomorphism U

∼→ V .
If P is a elliptic, need to be a bit cleverer. Proposition 1.1 gives us a U 3 τ such that U ∩ γU 6= ∅ if and only

if γ ∈ StabΓ(τ) (which has order 2 or 3). Choose δ ∈ SL2(C) shifting τ to 0 and τ to ∞. Then StabΓ(τ) goes to
a �nite cyclic group of Mobius transformations �xing 0 and ∞, hence multiplication by e2πi/n with n = 2 or 3.
De�ne the map StabδΓδ−1(0)\δU → U ′ by z 7→ zn, then this is a bijection. We de�ne the coordinate chart to be
the map U ′ → V as de�ned in the following map

StabδΓδ−1(0)\δU //

∼
��

U ′

∼
xx

V ⊂ Y (Γ)

Lastly, if P is a cusp, we argue similarly. Choose δ mapping P to ∞, StabδΓδ−1(∞) is a group of translation,
and z 7→ e2πiz/h gives a local coordinates.

We have just proved that there exists a Riemann surface structure on Y (Γ) and X(Γ) such that π : H → Y (Γ)
is holomorphic. (Clearly the unique such structure).

1.3 Genus, rami�cation, Riemann-Hurwitz

Fact. Riemann surfaces are smooth orientable 2-manifolds, and there are not many of these. Compacts connected
ones all look like doughnuts with g holes.

De�nition 1.6. We de�ne genus of a compact 2-manifoldM , as the unique integer g = g(M) such thatH1(M,Z) ∼=
Z2g.

The genus is closely related to the Euler Characteristic, χ(M) =
∑
i≥0(−1)i rkHi(M,Z). If M is as in the

Fact, then H0 ∼= H2 ∼= Z and Hi = 0 for i ≥ 3, so χ(M) = 2− 2g.

Proposition 1.7. For Γ = SL2(Z), the space X(Γ) is isomorphic (as a Riemann surface, so in particular as
2-manifold) to P1(C) ∼= S2.
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Proof. The �j-invariant� j(z) = q−1 + 744 + 196884q + . . . is SL2(Z) invariant and descend to a holomorphic map
X(SL2 Z)→ P1(C). It is bijective (counting zeroes using contour integration) so it has a holomorphic inverse.

Convention: Unless otherwise stated all Riemann surfaces are assumed to be connected.
Recap: We want to �nd g(X(Γ)) for all Γ. We know that X(SL2(Z)) has genus 0. We have that for all Γ, there

is a map X(Γ) � X(SL2(Z))

De�nition 1.8.

1. For f : X → Y a non-constant morphism, P ∈ X, the rami�cation degree, eP (f), is the unique integer e ≥ 1
such that f �looks like z 7→ ze locally�. Note: points such that eP (f) > 1 are isolated.

2. If X and Y are compact, the sum
∑
P∈f−1(Q) ep(f) (which is independent of Q ∈ Y ) is called the degree of f .

The degree of X(Γ) → X(SL2(Z)) is [PSL2(Z) : Γ] (which is the number of preimages of a generic point of
X(SL2(Z))

Theorem 1.9 (Riemann - Hurwitz). For f : X → Y non-constant of degree N and X,Y compact, we have
2g(X)− 2 = N · (2g(Y )− 2) +

∑
P∈X(eP (f)− 1).

Corollary 1.10. For any Γ, we have

g(X(Γ)) = 1 +
[PSL2(Z) : Γ]

12
− ε2

4
− ε3

3
− ε∞

2

where ε2 is the number of elliptic points of order 2, ε3 the number of elliptic points of order 3 and e∞ the number
of cusps.

Proof. We need to analyse the rami�cation of X(Γ)→ X(SL2(Z)) at each P ∈ X(Γ)

• If P ∈ Y (Γ) is not in the SL2(Z)-orbit of i or ρ.

H

��
α

��

Y (Γ)

��
Y (SL2(Z))

The map α is unrami�ed at any τ lifting a non elliptic point of Y (SL2(Z)), so eP (f) = 1

• If P maps to [i]: all such P are either non-elliptic or elliptic of order 2. If P is elliptic of order 2, then
Y (Γ) → Y (SL2(Z) is locally an isomorphism at P so eP (f) = 1. If P is non-elliptic, then local coordinate
for SL2(Z) is square of that for Γ, so eP (f) = 2. We use the de�nition of the degree to count the number
of points above [i]. We have N = 1 · ε2(Γ) + 2 · (number of non-elliptic points of Y [Γ] above [i]). Hence, the
number of non-elliptic points above [i] is (N − ε2)/2. So∑

P∈f−1([i])

(eP − 1) =
N − ε2

2

• If P maps to [ρ], (where ρ = e2πi/3). Then eP (f) =

{
1 P elliptic

3 P non− elliptic
. We use the same argument as

before, using the de�nition of degree, to get that the number of non-elliptic points above [ρ] is (N − ε3)/3.
Hence ∑

P∈f−1([ρ])

(eP − 1) =
2(N − ε3)

3
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• IfP is a cusp: let h be the width of the cusp P (that is the integer such that e2πiz/h is a local coordinate for
X(Γ) at P ). A local coordinate for X(SL2(Z) at [∞] is (e2πiz/h)h, so ep(f) = h. Thus

∑
P∈f−1([∞])

(eP − 1) =

 ∑
P∈f−1([∞])

eP

− e∞ = N − e∞

Putting all of this together, we get

2g(X(Γ))− 2 = (−2)N +
N − ε2

2
+

2(N − ε3)

3
+ (N − ε∞)

g(X(Γ)) = 1 +
N

12
− ε2

4
− ε3

3
− ε∞

2

Example. Let Γ = Γ0(11). We have that N = 12, ε∞ = 2 (they are [0] and [∞]), ε2 = ε3 = 0 (Exercise, c.f. D&S).
Hence g(X(Γ) = 1 + 12

12 − 0− 0− 2
2 = 1.

Exercise. Show that the only primes p such that g(X(Γ0(p))) = 0 are {2, 3, 5, 7, 13}.

Remark. For any g, there exists �nitely many congruence subgroups Γ of PSL2(Z) of genus g. (J.G. Thompson)

1.4 Sheaves and Riemann-Roch

Conjecture 1.11. Let X be a topological space. Then you already know what a sheaf on X is.

Now let X be a Riemann surface. We have OX (�the structure sheaf�) is de�ned by OX(U) =holomorphic
functions U → C. It is a sheaf of rings, so we can make sense of sheaves of OX -modules.

De�nition 1.12. An invertible sheaf on X is a sheaf of OX -modules that is locally free of rank 1. (They are
exactly the ones who have an inverse with respect to tensor product of OX -modules)

Fact. (For geometers) Invertible sheaves are in bijection with line bundles with holomorphic structure.

Now we specialise to the case of X is compact. We have a notion of meromorphic sections of invertible sheaves
F (which are sections of F ⊗OX

{sheaf of meromorphic functions})

Theorem 1.13 (Riemann Existence Theorem). Any invertible sheaf on a compact Riemann Surface has a non-zero
global meromorphic section.

This implies that there is a notion of degree of an invertible sheaf, it is de�ned as the sum of the order of the
vanishing of any non-zero L meromorphic global section. This is wee de�ned as the sum of zeroes and poles of a
meromorphic function is 0.

We have deg(F ⊗G) = degF + deg G and deg(F−1) = −degF . (Note that invertible sheaves are a group under
⊗ with OX as identity, and deg is an group homomorphism to Z)

Theorem 1.14 (Riemann - Roch). Let X be a compact Riemann Surface, F an invertible sheaf on X. Then

1. F(X) =: H0(X,F) is �nite dimensional over C

2. dimH0(X,F)−dimH0(X,Ω⊗F−1) = 1− g+ degF , where Ω is the sheaf of holomorphic di�erentials on X.

Note that if deg(F) < 0, then F has no non-zero global sections, so if degF is large, H0(X,Ω ⊗ F−1) = 0,
hence we get a formula for dimH0(X,F). (Note that dimH0(X,Ω) = g(X) by setting F = OX , furthermore
deg Ω = 2g − 2 by taking F = Ω)

[Aside: There exists a cohomological theorem for sheaves on Riemann surfaces for which H0(X,F) is sections.
the Riemann - Roch is a combination of 2 things:

• a formula for χ(F) =
∑
i≥0(−1)i dimHi(X,F)

• Serre duality: Hi(X,F) = H1−i(X,Ω⊗F−1)∗. (This is why sometime Ω is referred as the �dualising sheaf�]
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1.5 The Katz sheaf

Let X = X(Γ) for some Γ, and choose k ∈ Z.

De�nition 1.15. Let ωk be the sheaf de�ned by ωk(V ) = {holomorphic functions on π−1(V ) ⊂ H∗ satisfying
f(γz) = j(γ, z)kf(z) for all γ ∈ Γ}.

This is a sheaf of OX(Γ)-modules. If k is odd and −1 ∈ Γ it is the zero sheaf, we now assume that we are not in
this case.

Theorem 1.16.

1. ωk is invertible

2. ω2 = ΩX(Γ)(cusps)

Remark. Here, for L an OX -module sheaf and D =
∑
niPi is a divisor (formal Z-linear combination of points), we

de�ne L(D)(U) = {meromorphic sections x of L over U with div(x) +D ≥ 0}. For example:

• L(P ) = �allow simple poles at P �

• L(−P ) = �sections vanishing at P �

Proof.

1. This is a case by case check. We just need to show it on a open neighbourhood of every P ∈ X(Γ). That
is we want to show that for every P ∈ X(Γ) there exists a neighbourhood V 3 P and b ∈ ωk(V ) such that
ωk(V ) = OX(V ) · b.
For P non-elliptic, not cusp, we can �nd V 3 P open such that π−1(V ) = tγ∈ΓγU and ωk(V ) ∼= OH(U) ∼=
OX(V ).

Other cases: Choose τ ∈ H∗ to be a lifting of P , U ⊂ H∗ open such that U is �xed by stabΓ(τ) and

π−1(V ) =
∐

γ∈Γ/stabΓ(τ)

γU

where V = π(U). So ωk(V ) = {f : U → C holomorphic and weight k invariant under StabΓ(τ)} while
OX(V ) = {f : U → C holomorphic and weight 0 invariant under StabΓ(τ)}. So if StabΓ(τ) = 1 we are done
(take b = 1), or more generally if the weight k action of StabΓ(τ) is trivial. (Happens if τ is elliptic and k is
divisible by the order of StabΓ(τ))

For elliptic points: if τ is elliptic, conjugate it onto z = 0 as before so StabΓ(τ) =cyclic group of rotation with
order n, say. A function U → C is weight k invariant under this group if and only if f(z) = zag(zn) where
a is the least non negative integer congruent to k mod n and some holomorphic function g. So z 7→ za is a
local basis.

For cusps: if τ is a cusp, and the cusp is regular or the weight is even, the action of StabΓ(τ) in weight k and
weight 0 coincides, so b = 1 works.

If τ is an irregular cusps, k odd, (without loss of generality τ =∞) then OX(V ) = {f : U → C holomorphic
such that f(z + h) = f(z)} while ωk(V ) = {f : U → C holomorphic such that f(z + h) = −f(z)} (where h is
the height of the cusp). Then z 7→ eiπz/h is a local basis.

2. The isomorphism is f 7→ f(z)dz. Clearly if is a bijection OH(H)→ Ω1
H(H) and it commutes with Γ-action if

we put weight 2 action on OH. Passing to Γ-invariants ω2|Y (Γ) = Ω1
Y (Γ).

We need to show that sections of ω2 extending to corresponding cusps correspond to di�erentials with simple
poles. It su�ces to consider the case τ = ∞ . Sections of Ω1 near ∞ are f(q)dq. But q = e2πiz/h implies
dq = 2πi

h e
2πiz/hdz, i.e., dz is a scalar times dq

q . Hence �OXdz = OX dq
q = OX(∞)dq� (over a neighbourhood

V 3 ∞)
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Obviously H0(X(Γ), ωk) = Mk(Γ).

Proposition 1.17. Let

r = lcm

(
order of Γ−stabaliser of elliptic points,

{
2 if ∃ irregular cusp
1 else

})
Note that 1 ≤ r ≤ 12. Then ωk+r

∼= ωk ⊗ ωr for all k ∈ Z. In particular if r = 1 then ωk = (ω1)⊗k for all k.

Proof. For k = r all the local bases b in Theorem 1.16 were 1 and bases of ωk for general k only depended on k
mod r. So local basis for ωk+r is equal to the product of ones for ωk and ωr

De�nition 1.18. If r = 1 above (i.e., Γ has no elliptic points, it does not contain −1 and all cusps are regular),
we say Γ is neat. Then ωk = ω⊗k1 , so ω = ω1 is obviously important. Call this the Katz sheaf.

Corollary. If Γ is neat, then for k ≥ 2 we have dimMk(Γ) = (k − 1)(g − 1) + k
2 ε∞.

Proof. We have

degω =
1

2
deg(ω⊗2)

=
1

2
(deg Ω + ε∞)

=
1

2
(2g − 2 + ε∞).

So if k ≥ 2, degω⊗k > 2g − 2 and Riemann - Roch gives

dimH0(X(Γ), ωk) = k · (g − 1 +
ε∞
2

)− g + 1

= (k − 1)(g − 1) +
k

2
ε∞

There exists similar (but messier) formulae in the non-neat case (c.f. D-S chapter 3)

Example. Let Γ = Γ1(5), this is neat (Γ1(N) is neat if and only if N ≥ 5), g = 0 and ε∞ = 4. So dimMk(Γ) = k+1
for k ≥ 2. For k = 1 we need to worry about H0(X(Γ),Ω1 ⊗ ω−1), but deg Ω1 = 2g − 2 = −2, degω = 1. So
Ω1 ⊗ ω−1 had deg−1.

If you try to do this for Γ1(23) if fails, deg Ω1⊗ω−1 is 0. So dimension of Wight 1 form spaces lie much deeper.
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2 Modular Curves as Algebraic Curves

2.1 Modular Curves over C
Theorem 2.1.

1. The C-points of a smooth connected projective algebraic curve over C are canonically a Riemann surface,
X 7→ Xan

2. Every compact Riemann surface is Xan for a unique X

3. There exists an equivalence of categories between (locally free sheaves of OX-modules) ∼= (locally free sheaves
of OXan-modules), preserving global sections

Remark. 1. is basically the implicit function theorem. We'll see later a bit about the proof of 2. . 3. is Serre's
�GAGA� theorem.

The functors are on one hand F 7→ OXan ⊗OX
F , and on the other hand F 7→ (subsheaf of F whose sections

over U are elements of F(U) extending to meromorphic sections on X).
Hence for any Γ there's an algebraic variety X(Γ)C and invertible sheaves ωk on it such that Mk(Γ) =

H0(X(Γ)C, ωk).
Here's an alternative, nicer, construction.

Theorem 2.2.

X(Γ)C = Proj

⊕
k≥0

Mk(Γ)

 .

Remark. C.f. Hartshorne Algebraic Geometry Chapter 2 for the de�nition/construction of Proj.

Proof. One knows that for any Noetherian graded C-algebra S•, with S0 = C, Proj(S•) = Proj(Sn•) for any n ≥ 1.
(Where Sn• = the subring ⊕k≥0Snk). Choose n to be r from Proposition 1.17, so

Sn• = ⊕kH0
(
X(Γ), ω⊗kn

)
.

We now quote a standard fact in algebraic geometry: Invertible sheaves of positive degree on curves are ample, so
their sections give an embedding in projective space.

Remark. In fact the same argument can be used to prove Theorem 2.1 part 2. : take any ample invertible sheaf on
a Riemann surface and get an embedding in Pn for n� 0.

2.2 Descending the base �eld

Question: Does there exists an algebraic curve over some number �eld K such that we get X(Γ)C by base extension?
Let's think a bit what this means:

• Clearly not all varieties over C are de�nable over number �elds. For example Y 2 = X3 + X + π, this is not
de�ned over any number �eld, as its j invariant is 6192

27π2+4 . But we need to be careful as πY 2 = X3 + X is

de�ned over Q (it is isomorphic to Y 2 = X3 +X)

• Even if descends exists they might not be unique. For example, P1
Q and {X2 + Y 2 + 2Z2 = 0} ⊂ P2

Q become
isomorphic over C.

So we need to ask, is there a descend to a number �eld that �means something�?

9



The curves - �elds correspondence

There is a bijection, for any �eld k, {smooth geometrically connected algebraic curves over k}↔ {�eld extensions
K/k of transcendence degree 1 containing no algebraic extensions of k}. The bijection is given by X 7→ k(X), the
�eld of rational functions on X.

So for a curveX over C we have {models of X over k ⊆ C} ↔ {sub�elds L of C(X) generating it over C but
with L ∩ C = k}.

So we want to look for nice sub�elds of C(X(Γ)C) = {meromorphic modular functions of weight 0 and level Γ}.
Theorem 2.3. Let N ≥ 2

1. C(X0(N)) = C (j(z), j(Nz))

2. The minimal monic polynomial of j(Nz) over C(j(z)) lies in Z[j][Y ] ⊆ C(j)[Y ], and is ΦN (j, Y ) for ΦN
symmetric.

3. If N = p is prime, Φp(X,Y ) ≡ (Y p −X)(Y −Xp) mod p.

In particular X0(N)C has a model over Q whose function �eld is Q(j(z), j(Nz))

Proof. (cf. Mine's notes �MFMF� pg 90-92)

1. Clearly j(Nz) ∈ C(X0(N)), so C(j(z), j(Nz)) ⊆ C(X0(N)). Over C(j), the right hand side has degree
[PSL2(Z) : Γ0(N)] = [SL2(Z) : Γ0(N)] =: µ. So if we show that j(Nz) has degree µ over C(j), then part
1. follows.

Let γ1, . . . , γµ be such that SL2 Z =
∐m
i=1 Γ0(N)γi (without loss of generality γ1 = 1). Consider the functions

j(Nγiz). All Galois conjugate to j(Nz) over C(j) (via the automorphism z 7→ γiz of C(H)). If we can
show that they are distinct then part 1. follows by Galois theory. So suppose j(Nγiz) = j(Nγkz) for some
1 ≤ i, k ≤ µ, for all z ∈ H. Then

j


(
N 0
0 1

)
γkγ
−1
i

(
N 0
0 1

)−1

︸ ︷︷ ︸
:=A

z

 = j(z) ∀z ∈ H.

By a question from sheet 1. this forces ±A ∈ PSL2(Z), so γkγ
−1
i ∈ Γ0(N), hence i = k.

2. From part 1. we know the monic minimal polynomial of j(Nz) is
∏n
i=1 (Y − j(Nγiz)). The coe�cients are

symmetric polynomials in {j(Nγiz)}, so they are all holomorphic on H. Since they are also rational functions
in j(z), they must be polynomials in j(z).

To control coe�cients we use q-expansions. We know that j(z) = q−1 + 744 + · · · ∈ q−1 + Z[[q]]. Moreover,
we can choose the γj such that j(Nγiz) = j

(
az+b
d

)
for some a, b, d ∈ Z such that ad = N . So j(Nγiz) ∈

Z[ζN ]((q
1
N )) (where ζN = e2πi/N ). So the coe�cients of ΦN (j, Y ) (as a polynomial in Y ) have q-expansion in

Z[ζN ]((q
1
N )) ∩ C((q)) = Z[ζN ]((q)).

Claim. These coe�cients are actually in Z[ζN ][j]

Let P =
∑k
i=1 bij

i ∈ Z[j] have q-expansion in R((q)) for some R ⊆ C a subring. Inspecting lowest term of
q-expansion, we see that bk ∈ R. By induction on degree, we have bi ∈ R for all i. So ΦN (X,Y ) ∈ Z[ζN ][X,Y ].
Write ΦN (X,Y ) =

∑
r,s crsX

rY s, substitute in q-expansions of j(z), j(Nz) and equate coe�cients. We get

equations for {crs}, linear with Q-coe�cients. We know crµ =

{
1 r = 0

0 r > 0
and that there is a unique solution

over C. So solution must be Gal(Z[ζN ]/Z) invariant, i.e., ΦN (X,Y ) ∈ Z[X,Y ].

To prove symmetry: ΦN (j(z), j(Nz)) = 0 for all z. This implies ΦN
(
j
(

1
Nz

)
, j
(−N
Nz

))
= 0∀z ∈ H. Rearran-

ging, this gives ΦN (j(Nz), j(z)) = 0. So ΦN (Y,X) is a multiple of ΦN (X,Y ). Hence ΦN (X,Y ) = cΦN (Y,X)
for some c2 = 1. Since N ≥ 2, we can't have c = −1 as this would force ΦN to be a multiple of X − Y , hence
c = 1.
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3. Note that Φp(j(z), Y ) has q-expansion

(Y − j(pz))

(
p−1∏
i=1

(
Y − j

(
z + i

p

)))
.

Now q-expansions of functions j
(
z+i
p

)
are all congruent modulo a unique prime p|p of Z[ζp], so modulo p

reduction φp(j, Y ) is

(Y − j(z))
(
Y − j

(
z

p

))p
≡ (Y − j(z)p)

(
Y p − j

(
z

p

)p)
≡ (Y − j(z)p) (Y p − j(z)) mod p.

This forces some congruence for Φp as a polynomial.

Remark.

1. Y0(N) is not the curve in A2 de�ned by ΦN (X,Y ) = 0. It is birationally equivalent to it but not generally
isomorphic; {ΦN (X,Y ) = 0} is generally singular.

2. ΦN 's have huge coe�cients. For example

Φ2(X,Y ) = X3 + Y 3 −X2Y 2 + 1488XY (X + Y )− 162000(X2 + Y 2)

+40733375XY + 8748000000(X + Y )− 137464000000000

3. Note that mod p relations of Φp de�nes a reducible curve, we get two copies of P1 intersecting.

We de�ne X0(N)Q as the unique smooth projective curve over Q with function �eld Q(X,Y )/ΦN (X,Y ).

Theorem 2.4. There is a sheaf ωk,Q on X0(N)Q whose base-extension to C is ωk.

Proof. As −1 ∈ Γ0(N), ωk is only non-zero for k ∈ 2Z. We know ω2
∼= Ω1

X0(N)C
(cusps). More generally we always

have ω2k
∼=
(

Ω1
X0(N)C

)⊗k
(Dk) where Dk is a Z-linear combination of the divisors: (cusps), (elliptic points of order

2), and (elliptic points of order 3).

Claim. These 3 divisors descend to X0(N)Q.
For (cusps) this is clear: the map X0(N)→ X0(1) is de�ned over Q (as j ∈ Q(j(z), j(Nz))). Cusps are exactly

the preimages of the Q-points (∞) ∈ X0(1).
For elliptic points we need to be a bit careful: {elliptic points of X0(N)C of order 2} = {preimages of i ∈ X0(1)

where the projection map X0(N)→ X0(1) is unrami�ed}. Rami�cation degree is Galois invariant so we are done.
Note j(i) = 1728 and j(ρ) = 0, hence i, ρ ∈ X0(1)(Q).

So we can de�ne

ω2k,Q =
(

Ω1
X0(N)Q

)⊗k
(Dk).

Corollary 2.5. For any k ≥ 2 even, any N ≥ 1, the spaces Sk(Γ0(N)) and Mk(Γ0(N)) have bases consisting of
forms with q-expansions in Q[[q]].

Proof. We only give the argument for Mk, as the argument for Sk is similar. We have

Mk(Γ0(N)) = H0(X0(N)C, ωk)

= C⊗Q H
0(X0(N)Q, ωk,Q).
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Claim. The image of H0(X0(N)Q, ωk,Q). is a function of q-expansions with in (2πi)k/2Q[[q]].
Any meromorphic section of ωk is in Q(j(z), j(Nz)) · (dj)⊗k/2. Now dj = j′(z)dz, say j(z) = J(q), then

dj = J ′(q)2πiqdz. So any meromorphic sections of ωk lands in (2πi)k/2Q((q)).
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3 Modular Curves as Moduli Spaces

3.1 Lattices and Level Structures

Recall: If Λ is a lattice in C (a discrete subgroup isomorphic to Z2), Λ is homothetic to a lattice of the form
Λτ := Z + Zτ for some τ ∈ H, and τ is uniquely determined modulo PSL2(Z).

Y (SL2(Z)) = {homothety classes of lattices} = {isomorphism classes of elliptic curves over C}.

Exercise.

1. For any N ≥ 2 there exists a bijection between Y0(N) ∼= {pairs of (Λ, C): Λ a lattice, C a cyclic subgroup of
C/Λ of order N , where (Λ, C) ∼= (Λ′, C ′) if there exists an isomorphism C/Λ ∼= C/Λ′ sending C to C ′}. The
isomorphism is de�ned by [τ ] 7→

(
Z + Zτ, 1

NZ
)
.

2. For any N ≥ 2 there exists a bijection between Y1(N) ∼= {pairs (Λ, P ) :Λ a lattice, P a point of exact order
N , modulo the equivalence relation (Λ, P ) ∼ (Λ′, P ′) if there exists an isomorphism C/Λ ∼= C/Λ′ sending P
to P ′}

Note that in part 2. (Λ, P ) is always equivalent to (Λ,−P ). In part 1. we have lots more exceptional cases
coming from elliptic points.

We have a natural question: if x ∈ Y0(N) is a Q-point, does (E,C), E = C/Λ, descend to Q? This is the
right sort of question to ask to understand modular curves over number �elds. (This actual question is vacuous for
N � 0, but we don't know that yet)

3.2 Moduli spaces and representable functors

All rings are commutative and unital. We have the categories: Rings, R-Alg for a ring R, and Sets. (We do not
worry about foundational issues). �Most sets that come up naturally in algebraic geometry are functors Ring→Set
(or R-Alg→Set)�.

Example.

1. Points of varieties over schemes.

2. Classes of varieties or structures on varieties.

A lot of the fun of algebraic geometry arises from the fact that instances of 2. are often 1. in disguise. These are
moduli spaces.

Some properties of functors and representable functions

Let C be a category (�locally small� - homomorphism between any two objects are a set). Then Hom(X,−) is a
functor C → Set, which we denote by hX . A functor F : C → Set is representable if there exists an isomorphism
of functors F ∼= hX for some X ∈ Ob(C). How do we specify the isomorphism F ∼= hX?

Note. hX has a canonical element: namely idX .

So we need to know a corresponding element of F(X), as hX(X) ∼= F(X). Having speci�ed a φ : F(X)
corresponding to idX , this determines an element of F(Y ) for every homomorphism α : X → Y , i.e., take F(α)(φ).

Proposition 3.1 (Yoneda's Lemma). This construction is a bijection: {natural transformations hX → F} ∼→F(X),
for any F : C → Set and X ∈ Ob(C).

Remark. WE have discussed covariant functors, but we get the same for contravariant functors by replacing C with
Copp)

So if F is representable, the bijection F(X) ∼= hX(Y ) is determined by a φ ∈ F(X); we are saying that for every
Y ∈ Ob(C) and every ψ ∈ F(Y ), there exists a unique homomorphism α : X → Y such that α(φ) = ψ. We say
(X,φ) represents F . Hence φ is essential part of the data.
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Example. Let C = Ring

• F(R) = R (the forgetful functor). This is represented by (Z[T ], T ), i.e., for any ring R, r ∈ R, there exists a
unique α : Z[T ]→ R such that α(T ) = r .

• F(R) = R∗ is represented by (Z[T, T−1], T )

• F(R) = {nth root of unity in R} is represented by (Z[T ]/(Tn − 1), T ).

Note. �primitive nth root of unity� is not a functor on R

A Non-Example. Let C = Ring. Consider F(R) = (squares in R). This is not representable

Proof. Suppose F is represented by (A, a), some ring A and a ∈ A with a2 = b for some b ∈ A. Then for any ring
S and element s ∈ S such that s is a square, there needs to exists a unique homomorphism α : A → S such that
α(a) = s. But take S = Z[T ], s = T 2, so there exists unique α : A → Z[T ] with α(a) = T 2, hence α(b) = {±T}.
Let σ : S → S be T 7→ −T , note that σ(s) = s. So σ ◦ α ∈ Hom(A,S) also sends a to s, but σ ◦ α 6= α as
(σ ◦ α)(b) 6= α(b). This contradicts uniqueness of α

The moral of this example: Automorphism are bad for representability.

3.3 Elliptic curves over general base schemes

We want to make sense of �elliptic curves over S�, where S a scheme.

De�nition 3.2. Let S be a scheme. An elliptic curve over S is a scheme E with a morphism π : E → S (an
S-scheme) such that π is �at and proper, and all �bres are smooth genus 1 curves, given with a section �O�: S → E .

Example. In Silverman's book, there is the equation Y 2 + XY = X3 − 36
j−1728X −

1
j−1728 . The associated

homogeneous cubic Y 2Z + XY Z = X3 − 36
j−1728XZ

2 − 1
j−1728Z

3 is a subscheme of P2/R, where R is the ring

Z[j, j−1, (j − 1728)−1]. This is an elliptic curve over SpecR. The discriminant is ∆ = j2/(j − 1728)3.
Think of this as a family of elliptic curves, one for every j 6= 0, 1728, varying in an �algebraic way�.

For E over S as above, E(S) = HomS−sch(S, E) =sections of π : E → S picking out a point on each �bre.
Warning: If P ∈ E(S) has order N , i.e., N · P = 0 and M · P 6= 0 for 1 ≤ M < N , it is not necessarily true

that Px has order N on Ex for every x ∈ S. (E.g., if E over Spec(Zp) can have points of order P reduction mod p
to 0 at closed points of SpecZp ).

Proposition 3.3. If E over S is an elliptic curve, then E has a Weierstrass equation locally on S. That is, there
exists a covering

∐
Ui → S in Zariski topology such that E|Ui

has a Weierstrass equation for all i.
More precisely, we'll �show� the following: ωE/S := π∗(Ω

1
E/S) is an invertible sheaf on S, and any local basis ω

of ωE/S (over some U ⊂ S open) determines a Weierstrass equation over U . If 2 is invertible on S, we can do this

in such a way that ω = −dx2y .

Proof (Sketch). The invertibility of ωE/S comes from a calculation in sheaf cohomology, c.f., pg53 of Mumford
�Abelian Varieties�.

Now, given U and ω a basis of π∗(Ω
1
E/U ), this gives local parameter on E at 0 such that ω = dT (1 +

higher order terms). T is called a �local parameter adapted to ω�. Now π∗ (OE(2(0))) is locally free of rank 2
over U . Assume U = Spec(A) a�ne, then π∗(OE(2(0))) is A · (1, x) where x = 1

T 2 (1 + . . . ). Similarly:

• π∗(OE(3(0)) is A(1, x, y) where y = 1
T 3 (1 + . . . ),

• π∗(OE(4(0)) is A(1, x, y, x2)

• π∗(OE(5(0)) is A(1, x, y, x2, xy)

14



Note y2−x3 ∈ π∗(OE(5(0)), so y2−x3 ∈ A(1, x, y, x2, xy) and that's a Weierstrass equation over A[x, y]. Moreover
dx = −2dT

T 3 + . . . and y = 1
T 3 + . . . , so −dx2Y = ω mod TdT . (We don't have such a nice characterization of the

Weierstrass equation if 2 is not invertible on S.

De�nition 3.4. For S a scheme, α, β ∈ Γ(S,OS), let E(α, β) be the subscheme of P2
S de�ned by Y 2Z + αXY Z +

βY Z2 = X3 + βX2Z, and let ∆(α, β) = −β3(α4 − α3 + 8α2β − 36αβ + 16β2 + 27β) be its discriminant.
If ∆(α, β) ∈ Γ(S,OS)∗ this is an elliptic curve over S. Note that P = (0 : 0 : 1) ∈ E(S) and we calculate

• P = (0 : 0 : 1)

• 2P = (−β : β(α− 1) : 1)

• 3P = (1− α : α− β − 1 : 1)

• −P = (0 : −β : 1)

• −2P = (−β : 0 : 1)

• −3P = (1− α : (α = 1)2 : 1)

This means that P does not have order 1, 2 or 3 in any �bre.

Proposition 3.5. For any scheme S, E an elliptic curve over S, and P ∈ E(S) such that P, 2P, 3P 6= 0 on any
�bre, there exists unique α, β ∈ Γ(S,OS) such that ∆(α, β) ∈ Γ(S,OS)∗ and a unique isomorphism E(α, β)

∼→ E
mapping (0, 0) to P .

Proof. First, assume E has a Weierstrass equation over S. By a translation x 7→ x + s, y 7→ y + t we can assume
P = (0, 0). Since P does not have order 2 in any �bre, the gradient of tangent line at P is in Γ(S,OS), so by
replacing y with y + rx for some r we can put equations in the form Y 2 + a1XY + a3Y = X3 + a2X

2, with
ai ∈ Γ(S,OS).

Since P does not have order 3 in any �bre, (0, 0) is not an in�exion point, so a2 ∈ Γ(S,OS)∗. So by scaling
x 7→ u2x and y 7→ u3y, we have that a2 = a3. Then E is E(α, β) where α = a1, β = a2.

This gives an isomorphism to a curve in Tate normal form.
Now consider a general E over S. We know there exists an a�ne covering S = ∪iUi such that E|Ui

has a
Weierstrass equation over Γ(Ui,OS). So we get αi, βi ∈ Γ(Ui,OS) such that (E|Ui

, P |Ui
) ∼= (E(αi, βi), (0, 0)). Since

αi, βi are unique, they must agree on Ui∩Uj . By the sheaf property of OS , we have that there exists α, β ∈ Γ(S,OS)
such that resUi(α) = αi and resUj (β) = β for all i. Then (E,P ) ∼= (E(α, β), (0, 0)).

Remark. The last step used in an essential way the uniqueness of (α, β): �local uniqueness give global existence�.

Corollary 3.6.

1. The pair (SpecZ[A, b,∆(A,B)−1], (E(A,B), (0, 0)) represent the functor Schopp → Set de�ned by S 7→ {(E,P )|E/S elliptic curve andP ∈ E(S) not of order 1, 2, 3 in any fibre}

2. The pair (SpecZ[B,∆(1+B,B)−1], (E(1+B,B), (0, 0))) represents S 7→ {(E,P )
∣∣E/S elliptic curve andP point of exact order 5 in every fibre}

Proof.

1. This is a restatement of Proposition 3.5

2. Just equate 3P = −2P . We have 3P = (1−A,A−B − 1) and −2P = (−B, 0).

Note. ∆(1 +B,B) = B5(B2 + 11B − 1). The discriminant of the quadratic is 53.

Is it reasonable to de�ne �Y1(5)Z� to be SpecZ[B,∆(1 + B,B)−1]. Sadly no: our de�nition of �point of exact
order 5� is too naive in characteristic 5. If E over F5 is supersingular, E[5] is a single point with multiplicity 25.
So there are no points of order 5, even over F5. So this scheme SpecZ[B,∆(1 + B,B)−1] has empty �bre over
supersingular j-invariants.
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De�nition 3.7. We set Y1(5)Z[ 1
5 ] = SpecZ

[
1
5 , B,∆(1 +B,B)−1

]
, and this represents the same functor as before

on category of Z
[

1
5

]
-schemes

More generally: For N ≥ 4, let YN = closed subscheme of Y = SpecZ[A,B,∆(A,B)−1], where N · (0, 0, 1) =
(0, 1, 0), and let

Y1(N)Z[ 1
N ] =

YN − ⋃
d|N,4≤d<N

Yd

×SpecZ SpecZ
[

1

N

]
By construction this represents S 7→ (elliptic curveE/S with point of exact orderN) on the category of Z[ 1

N ]-
schemes. (More precisely, Y1(N)Z[ 1

N ] has a universal elliptic curve over it by restricting E(A,B)/Y, and this has a

point (0, 0) and (Y1(N)Z[ 1
N ], ( this curve, this point)) represents the above functor)

Two natural questions:

1. What does Y1(N)Z[ 1
N ] look like? Is it non-singular?

2. There exists a bijection of sets between Y1(N)Z[ 1
N ](C) and Γ1(N)\H. Is this a map of algebraic varieties over

C?

3.4 Smoothness

De�nition 3.8. A morphism of schemes φ : X → Y is smooth if it's locally of �nite presentation, �at, and for
every point y ∈ Y , the �bre φ−1(y) is a smooth variety over k(y).

So our de�nitions of elliptic curves over S required that E → S be a smooth morphism.

Lemma 3.9.

1. The composition of smooth morphism is smooth

2. If E over S is an elliptic curve and N ≥ 1 is invertible on S, then [N ] : E → E is smooth.

Proof.

1. is standard (see EGA, follow trail of references from Wikipedia)

2. The morphism [N ] multiplies a global di�erential by N , so it induces an isomorphism on tangent space, i.e.,
it's on étale morphism. (and étale morphism are smooth)

Proposition 3.10 (Functorial criterion for smoothness). Let X → SpecR be a scheme of �nite type over R, with
R Noetherian. The map X → SpecR is a smooth morphism if and only if it's �formally smooth�, i.e., for every local
R-algebra A and nilpotent ideal I ⊂ A, the map HomScheme/R(SpecA,X)→ HomScheme/R(SpecA0, X) is surjective,
where A0 = A/I.

If we replace surjective with bijective, we get a notion of formally étale

Proof. See Stacks Project, section 36.9

Theorem 3.11. Y1(N)Z[ 1
N ] is smooth over Z

[
1
N

]
.

Proof. Let A be a local Z
[

1
N

]
-algebra, I ⊂ A nilpotent. Let (E0, P0) ∈ Y1(N)(A0). Since A0 is local, we have

E0 has a Weierstrass equation over Spec(A0). Lift coe�cients arbitrarily to A to get an E/A lifting of E0. (The
discriminant ∆(E) is in A∗ as its image in A0 is in A∗0). Can we lift P0 to an N -torsion point on E? In other words,
is E[N ] smooth? But it is, because [N ] : E → E is smooth and a composition of smooth morphism is smooth. ([N ]
composed with the structure map E → SpecA). So (E0, P0) lifts to (E,P ) and we are done.

Note. The schemes YN over Z are very rarely smooth, this was true for N = 5 essentially by accident.
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3.5 A complex - analytic digression

Let Λ ⊂ C be a lattice.

De�nition 3.12. The Weierstrass ℘-function ℘n(z) is the unique holomorphic function C/Λ → P1(C) such that
℘n(z) = 1

z2 +O(1) at z = 0, and ℘n(z) is holomorphic away from Λ. (The x-coordinate correspond to di�erential
dz)

The machinery of Proposition 3.3 implies that C/Λ is isomorphic to Y 2 = X3−g4X−g6 via z 7→ (℘(z),− 1
2℘
′(z)),

where g4 and g6 are constants depending on Λ.
If Λ = Λτ := Z+Zτ , then g4 and g6 are constant multiples of Eisenstein series E4, E6 respectively. Hence they

are holomorphic functions of τ .

Proposition 3.13. Let U = {(τ, z) ∈ H × C : z, 2z, 3z /∈ Λτ}. Then there exists a holomorphic map U
(α,β)→ C2 \

{α, β|∆(α, β) = 0} such that E(α(τ, z), β(τ, z)) ∼= C/Λτ and (0, 0)← z mod Λτ .

Proof. Start from the pair (Y 2 = X3 − g4X − g6, (℘(z),− 1
2℘
′(z))) (with g4, g6 correspond to Λτ ), manipulate as in

Proposition 3.5 to put this in Tate normal form. All coe�cients of rescaling and translations are holomorphic on
U as functions of (τ, z). Hence so are the resulting α, β.

Corollary 3.14. Y1(N)Z[ 1
N ](C) is isomorphic as a Riemann surface to Γ1(N)\H.

Recall: We characterized Y0(N) over Q using q-expansions.

Proposition 3.15 (Siegel, Kato 2004). Let E be an elliptic curve over S, c > 1 an integer not divisible by 2 or 3.
There exists a unique element cθE ∈ O(E \ E[c])∗ with the following properties:

1. div(cθE) = c2 · (0)− E[c]

2. Na(cθE) = cθE for a coprime to c, where Na is the norm map O(E \E[ac])∗ → O(E \E[c])∗ attached to the
a-multiplication on E.

Moreover, if E = C/(Z + Zτ), S = C, we have cθE = q
c2−1

12 (−t)−c(c−1)/2γq(t)
c2γq(t

c)−1 where t = e2πiz (for
z ∈ C/(Z + Zτ), q = e2πiτ and γq(t) =

∏
n≥0(1− qnt)

∏
n≥1(1− qnt−1).

Proof. First, note that this unit is unique if it exists. Assume some f satisfying 1. and 2. exits. Any other g
satisfying 1 . and 2. is g = uf for some u ∈ O(S)∗. Now N3(g) = g, then N3(uf) = uf , so u32

f = uf , i.e., u8 = 1.
Similarly N2(g) = g implies u3 = 1. Now u = (u3)2(u8)−1 = 1. Hence we get uniqueness.

It su�ces to show that c2(0) − E[c] is locally on S a prime divisor. There exists a theory of �relative Cartier
Divisor� and a map (deg 0 divisor onE)/(pullback of ones onS) → E(S). Since c2(0) − E[c] = 0 in E(S). Hence
c2(0)− E[c] is the pullback of a divisor on S, hence locally on S principal.

Let f be such that div(f) = c2(0) − E[c]. Since div(f) is invertible under Na, we must have Na(f) = uaf for

some ua ∈ O(S)∗. Since NaNb = NbNa, u
(b2−1)
a = u

(a2−1)
b for all a, b coprime to c. So if we put g = u−3

2 u3f , we
have

Na(g) = u−3a2

2 ua
2

3 uaf

= u
−3(a2−1)
2 u

(a2−1)
3 uag

= u−3(22−1)
a u(32−1)

a uag

= u0
ag

= g.

So cθE exists locally and by uniqueness it exists globally.
For the case S = C and E = Eτ ,we just check that the given function has properties 1. and 2. (c.f. the 3rd

problem sheet)
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De�nition 3.16. For N ≥ 4 and c > 1 with gcd(c, 6N) = 1, the Siegel unit cgN is the pullback of cθE along the
order N section Y1(N)→ E , where E/Y1(N) is the universal elliptic curve.

Remark. These units are the building blocks of Euler systems. (c.f. Kato's paper (Asterisque 295,2004), and
Loe�er's paper with Lei and Zerbes, 2013)

Important Corollary. Y1(N) is not characterised over Q by having q-expansions of elements of Q(Y1 (N)) in
Q((q)).

Proof. Calculate q-expansions of cg5 ∈ Q(Y1(5))∗. The order N sections is z = 1
5 mod Z + Zτ , so t = e2πiz =

e2πi/5 /∈ Q, cg5 = q(c2−1)/12(−e2πi/5)−c(c−1)/2
∏

(. . . ), which has ζ5's everywhere.

One can show: f ∈ Q(Y1(N)) if and only if f ∈ C(Y1(N)) and its q-expansion lands in Q(ζN )((q)) and satis�es
an(f)σ = an (〈σ〉 f) for all σ ∈ Gal(Q(µN )/Q) ∼= (Z/N)∗.

3.6 Quotients and Y0(N)

Proposition 3.17. Let X be a quasi-projective S-scheme (for some base scheme S) and G a �nite group action on
X by S-automorphisms. Then there exists a unique S-scheme X/G and a morphism X → X/G representing the
functor Y 7→ (homomorphism of S shcemesX → Y commuting withG−actions).

Proof. Uniqueness is obvious (representing a functor). So we prove existence: forX = Spec(A) a�ne, then Spec(AG)
works; and can show these patches nicely. (we need quasi-projectivity and �niteness of G here)

De�nition 3.18. For N ≥ 4 let Y0(N) = Y1(N)/ (Z/NZ)
∗
. (as a Z

[
1
N

]
-scheme).

The C-points of this are Γ0(N)\H.

Construction

Let S be a Z
[

1
N

]
-scheme. There is a map

{ isomorphism classes of pairs (E,C)}
{E/S elliptic curve, C ⊂ E subgroups− scheme}→ Y0(N)(S)

{étale locally isomorphic toZ/NZ}

de�ned as follows: Let (E,C) be in the LHS; then there exists S′ → S étale and P ∈ E(S′) such that C = 〈P 〉,
and this gives a point of Y1(N)(S′). Channing P changes this by an element of G = (Z/NZ)

∗
. So we get a G-orbit

of elements of Y1(N)(S′). By a scar lemma (�étale descent of morphism�) this gives an S-point of Y0(N). Thus we
have a well-de�ned map LS : {(E,C)/S} → Y0(N)(S). In general this is neither injective nor surjective, but if S is
Spec(k) for some k algebraic closed, it's a bijection.

Injectivity: If L/K is a �nite �eld extension Y0(N)(K) → Y0(N)(L) is obviously injective, but ((E,C)/K) →
((E,C)/L) is not injective (there exists obsturctions coming from quadratic twists, etc). For a �eld k, we can check
that the image (Lk) is the set of pairs (E,C) de�ned over k modulo isomorphism over k.

Surjectivity: We can show that for a �eld k, Lk is surjective (fairly hard, c.f. Proposition VI.3.2 of Deligne -
Rapopok) but for non-�eld S surjectivity can also fail. For instance, S = Y0(N) itself; in general there is no (E,C)
which correspond to the identity map. (Can try to use E/ (Z/NZ)

∗
but �bres over points of Y0(N) with nontrivial

stabilizers might not be elliptic curves!).

Fact. Y0(N) is smooth over Z
[

1
N

]
, and it agrees with our earlier construction over Q. (Sketch of last point, it

su�ces to show j(z) and j(Nz) lies in Q(Y1(N))G, just take j(E) and j(E/ 〈P 〉).)
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3.7 General Modular Curves

This section is following Katz - Mazur.

De�nition 3.19. Let R be a ring:

1. Let Ell/R be the following category:

• Objects are diagrams E → S where S is some R-scheme and E is an elliptic curve

• Morphisms are squares

E //

��

E′

��
S // T

where E ∼= E′ ×T S.

2. A moduli problem for elliptic curves over R is a contravariant functor P : Ell/S → Set.

3. We say that P is:

• representable if it is representable.

• relatively representable if, for every E/S ∈ Obj(Ell/R), the functor Sch/S → Sets de�ned by T 7→
P(E ×S T/T ) is representable.

Aside: The category Ell/R is �Sch/Y for a Y that doesn't exists�. If functor S 7→ {ell− curve/S} were
representable, by some (Y,E/Y ), then objects of Ell/R would be maps S → Y . This is the idea of stacks.

Proposition 3.20. For P a moduli problem let P̃ : Sch/R→ Sets be de�ned by S 7→ (pairs (E,α), E/S ell curve, α ∈ P(E,S)).

If P is representable on Ell/R, then P̃ is representable on Sch/R.
(The converse is not quite true).

Proof. If (E/S, α) represents P, can check (S, (E,α)) represents P̃.

De�nition 3.21. P is rigid if for all all E/S ∈ Obj(Ell/R), Aut(E/S) acts on P(E/S) without �xed points.

Exercise.

1. A representable functor is rigid.

2. If P is rigid and P̃ is representable, then P is representable.

Theorem 3.22 (Katz - Mazur). P is representable if and only if it is relatively representable and rigid.

Sketch of Proof. Start from 2 basic moduli problems:

• �naive level Γ(3)� over Z
[

1
3

]
.

• �Legendre moduli problem� (Γ(2) and choice of di�erential) over Z
[

1
2

]
.

Both have group action (GL2(F3) and GL2(F2) × {±1}). Given P is relatively representable and rigid, construct
one object by taking E/Y (3) - relative representability gives us a scheme over Y (3) and this has a GL2(F3) action.
Take inverse (this is �ne since P is rigid), and this gives an object E/S representing P on Ell/R[ 1

3 ]. Legendre gives
an object over R[ 1

2 ] similarly. By rigidity these agree over R
[

1
6

]
, so we get a representing object over R.
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3.8 General Level Structure

Fix N and a subgroup H ⊂ GL2(Z/NZ).

Fact 3.23. There exists a moduli problem PH on Ell/Z
[

1
N

]
such that if k is algebraic closed, E/k ∈ Obj

(
Ell/Z

[
1
N

])
:

PH(E/k) =
{
H−orbits of isomorphisms (Z/ZN)

2 ∼→ E[N ]
}
.

For H =

{(
1 0
0 1

)}
, this is Γ(N), E/S 7→ (pairs of sectionsP,Q ∈ E[S] generatingE[N ] in every fibre).

For H =

{(
∗ ∗
0 1

)}
, this is the Γ1(N).

For H =

{(
∗ ∗
0 ∗

)}
, it's Γ0(N).

Remark. If k is a �eld, E/k, then the image of PH(E/k) in PH(E/k) is
{
H−orbit of bases of E[N ]

(
k
)

in which image of Gal(k/k) lands inH
}
.

Proposition 3.24. PH is relative representable and �étale over Ell/Z
[

1
N

]
�. (This means: for all E/S ∈ Obj(Ell/Z

[
1
N

]
),

the functor T 7→ PH(E ×S T ) is represented by an étale S-scheme.)

Proof. For H = {1}, for E/S ∈ Obj(Ell/Z
[

1
N

]
), we can �nd an explicit S-scheme representing PH on Schemes over

S. It's an open subscheme of E[N ]×S E[N ] given by non-vanishing of Weil pairing.
For general H just take the quotient of this by H.

So it is easier to relatively represent PH than it is to de�ne it.

Proposition 3.25. PH is rigid on Ell/R
[

1
6

]
if and only if the preimage in SL2(Z) of H ∩ SL2(Z/NZ) contains no

elements of �nite order (i.e., has no elliptic points and does not contain −1).

Sketch of Proof. Over C this is routine. To prove general statement it su�ces to check it on objects E/k, where k
is algebraic closed. If k has characteristic 0, we can embed it into C.

We can show that, if k has �nite characteristic ≥ 5, E/k an elliptic curve and φ ∈ Aut(E), then the pair (E, φ)
lifts to characteristic 0. (c.f. somewhere in chapter VI of Deligne - Rapoport)

This gives a complete classi�cation of modular curves and their associated moduli problems.

Remark.

1. As in the case of Y0(N) for H non-rigid, we can still construct a Z
[

1
N

]
-scheme which is �the best approxima-

tion� to representing P̃H ; we have a map P̃H(S) → Y (S), which is surjective for S a �eld, and a bijection if
for S algebraic closed.

2. If Γ = preimage(H) ⊂ SL2(Z), then YPH
(C) is not quite Γ\H. It's a union of such things corresponding to

quotient (Z/NZ)∗/detH. In particular, our version of Y (N) is not geometrically connected. We can write

YPH
(C) more intrinsically as GL2(Q)\GL2(A)/(R>0 · SO2(R) · U) where U = preimage(H) ⊂ GL2(Ẑ) ⊂

GL2(Afin).
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4 Leftovers

4.1 Katz Modular Forms

Recall we de�ned, for E an elliptic curve over S,ωE/S = π∗(Ω
1
E/S).

Proposition 4.1. If S = YPH
for some H as before, E/S universal elliptic curve, then ωE/S is the �Katz Sheaf�

from Chapter 2.

Proof. Just unravel the de�nitions. We will show that both have the same pullback to H and the actions of Γ agree.
By de�nition, the pullback of ωKatz is C. The pullback of ωE/S is π∗(relative di�erentials on C/(Z + τZ)) =

C · (2πidz). But the isomorphism C/(Z+Zτ) ∼= C/(Z+γτZ) for γ ∈ SL2(Z) is multiplication by (cτ +d)−1 on C, so
it multiplies dz by this constant. So the action coincides with the one we de�ned in the construction of ωKatz.

De�nition 4.2. For Γ a torsion free congruent subgroup of level N , R a Z
[

1
N

]
-algebra, we de�ne KMK(Γ, R) =

H0(Y (Γ)×R,ωkE/Y (Γ)×R). (This is an R-module).

Concretely: A Katz Modular form of weight k over R is a rule attaching to each triple (E/S, α, ω) - where S is
a R-scheme, E/S an elliptic curve, α ∈ PH(E/S), ω a basis of Γ(E,Ω1

E/S) - an element of Γ(S,OS) such that

• compatible with base change in S

• Homogeneous of weight k in ω.

(C.f. Katz �P -adic properties of modular schemes and modular forms�, Springer LNM #330).
Fun thing: Over R = Z

[
1
6

]
, for any elliptic curve E/R and ω ∈ Ω1, there exists a unique short Weierstrass

equation such that ω = dx
y , and E4 (respectively E6) are the maps (E,ω) 7→ a4 coe�cient of this equation

(respectively a6).

4.2 Cups and the Tate curve

Consider the ring Z((q)) =
{∑∞

n=−N anq
n|an ∈ Z

}
. We'll de�ne an elliptic curve over this and a di�erential, such

that evaluating at this pair gives q-expansion of a Katz MF.

De�nition 4.3. Tate(q) = the elliptic curve y2 + ax = x3 + a4x + a6 where a4 = −
∑
n≥1

5n3qn

1−qn and a6 =

−
∑
n≥1

(7n5+5n3)/12·qn
1−qn . (Note a4, a6 ∈ Z[[q]]). The discriminant of this curve is exactly the q-expansion of

∆(weight 12 cusp form) in q + q2Z[[q]] ⊂ Z((q))∗.

Hence Tate(q) is an elliptic curve. Tate(q) is �the q-expansion of C/(Z + τZ)� = �C∗/qZ�.

Proposition 4.4. If τ ∈ H, then series de�ning Tate(q) converge at q = e2πiτ and de�ne a curve isomorphic to
C/(Z + τZ).

Convergence is easy, and we check if j(Tate(q)) is the q-expansion of j(τ).

Proposition 4.5. Let ⊕ denote the group law on Tate(q). There exists series X(u, q), Y (u, q) ∈ Z
[
u, u−1, (1− u)−1

]
[[q]]

such that (X(u, q), Y (u, q))⊕ (X(v, q), Y (v, q)) = (X(uv, q), Y (uv, q)). (Interpret X(u, q), Y (u, q) as ∞ if u = 1).

Proof. Take

X(u, q) =
u

(1− u)2
+
∑
d≥1

∑
m|d

m(um + u−m − 2

 qd

Y (u, q) =
u2

(1− u)3
+
∑
d≥1

∑
m|d

{
m(m− 1)

2
um − m(m+ 1)

2
u−m +m

} qd.
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Sneaky part, there exists a straightforward change of coordinates from Tate(q) to y2 = 4x3− g4(τ)x− g6(τ), which
is C/(Z + τZ) via (℘(z, τ), ℘′(z, τ)). Then X and Y are just ℘ and ℘′ as power series in u = e2πiz, q = e2πiτ .

So the identity (X(u, q), Y (u, q)) ⊕ (X(v, q), Y (v, q)) = (X(uv, q), Y (uv, q)) holds for all u, q in an open subset
of C× C, so it holds as an identity of power series.

Proposition 4.6. Cusps of YPH
↔ {PH level structures on Tate(q) over Z[[q

1
N , ζN ]], modulo automorphism q

1
N 7→

ζaNq
± 1

N }.
And we thus get an action of Gal(Q(µN )/Q).

Example. Y1(5).

Points of order 5 on Tate(q) over Z
[

1
5 , ζ5

]
[[q

1
5 ]] are (images of) qa/Nζbn , where a, b ∈ (Z/5Z)

2 \ {(0, 0)}.
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