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1 Introduction

1.1 Motivation

This course is about group presentations, 〈X|R〉 where X is the set of generators and R the set of relations which
are equations between words in A∗, with A = X ∪X−1.

Example. X = {x, y} and R = {x5 = 1, y2 = 1, y−1xy = x−1}. Usually write as
〈
x, y|x5 = y2 = 1, y−1xy = x−1

〉
.

A presentation 〈X|R〉 de�nes a group, which is roughly the �largest group� which is generated by X such that all
equations in R holds in G. In the above example we can show any group G = 〈x, y〉 with x5 = y2 = 1, y−1xy = x−1

has at most 10 elements, and dihedral group D10 is unique group of order 10. So we can say G ∼= D10 . The
advantage of this way of de�ning groups:

1. For many groups, it is the most compact de�nition, particularly useful for systematically enumerating small
groups.

2. Many groups from algebraic topology arises naturally in this form, so we need to study them.

Disadvantage: In general it is impossible to analyse a group by a presentation. For example we cannot decide
if 〈X|R〉 is �nite, trivial or even abelian. It has been proven that there are no algorithm to decide this. There
exist speci�c presentations 〈X|R〉 with X,R �nite for which we cannot decide whether an element g ∈ G, given as
w ∈ (X ∪X−1)∗ is the identity 1G (this is know as the word problem).

1.2 Preliminaries

Notation. • If G is a group, H ⊆ G then H is a subset of G. H ≤ G then H is a subgroup of G. H CG then
H is a normal subgroup of G.

• Ck is the cyclic group of order k.

• In�nite cyclic group is Z (under +)

• Sk is the symmetric group of degree k on {1, 2, . . . , k}

• Ak is the alternating group degree k

• H ≤ G, G = tHgi, so gi are right coset representative. Call {gi|i ∈ I} a right transversal of H in G.

• If H CG, {Hgi|i ∈ I} forms the quotient group G/H.

• Group homomorphism: θ : G→ H such that θ(g1g2) = θ(g1)θ(g2)

• Group monomorphism: If θ is injection if and only if ker(θ) = {1}

• Group epimorphism: if θ is surjection, im θ = H

• Group isomorphism: θ bijective

• Group endomorphism if G = H

• Group automorphism: isomorphism with G = H

• Aut(G) = {θ|θ : G→ G automorphism } is a group under composition

The isomorphism Theorem. 1. Let θ : G → H is a homomorphism and K = ker(θ). Then θ : G/K → im θ
de�ned by θ(gK) = θ(g) is an isomorphism. So G/K ∼= im θ

2. If M ≤ G,N CG then MN/N ∼= M/(N ∩M) (Recall: if A ≤ G and B ≤ G then AB not always a subgroup,
but it is if ACG or B CG and it is normal if ACG and B CG.

3. If M ≤ N CG with M CG then G/M
N/M

∼= G/N

Proof. 1. See Algebra II course
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2. De�ne θ : M → MN/N by θ(m) = mN . Then im θ = MN/N and ker(θ) = M ∩N . Then the result follows
from the 1st isomorphism theorem (part 1 of this theorem)

3. De�ne θ : G → G/N
N/M by θ(g) = (gM)(N/M) (i.e. G → G/M → G/M

N/M ). Then we have im θ = G/M
N/M and

ker θ = N . Then the result follows from the 1st isomorphism theorem.

Notation. (non-standard) If G is a group permutation of Ω (i.e., G ≤ Sym Ω). Given α ∈ Ω, g ∈ G then we write
the image of α under g as αg rather than g(α). This means that gh means g followed by h (not h then g)

Example. Ω = {1, 2, 3, 4}, g = (1, 2, 3) and h = (3, 4). Then 2g = 3, 3h = 4 so 2gh = (2g)h = 4. Note
gh = (1, 2, 4, 3) while hg = (1, 2, 3, 4).

1.3 Generators of Groups

Let A be a set. A word over A is a �nite string w = a1a2 . . . al with each ai ∈ A. The length of w is l = l(w) = |w|.
We allow l = 0, this is the empty word, which we denote by ε.

De�nition 1.1. Let X ⊆ G with G a group. We de�ne subgroup 〈X〉 of G generated by X in two ways:

1. 〈X〉 =intersection of all subgroups of G that contains X, i.e., 〈X〉 = ∩H≤G,X⊆HH

2. Let X−1 = {x−1|x ∈ X}. A = X ∪ X−1. We de�ne A∗ to be the set of all words over A. Elements of A∗

represent elements of G, it is closed under concatenation and inversion. So it is a subgroup of G. We de�ne
〈X〉 = A∗. The empty word represents 1G

Lemma 1.2. The two de�nition of 〈X〉 are equivalent

Proof. Let X ⊆ G. Let H1 and H2 be 〈X〉 according to de�nition 1. and 2.
If g ∈ H2, then g = a1a2 . . . al, l ≥ 0 ai ∈ X ∪X−1 . Then since subgroups are closed under multiplication and

inversion, g is contained in any H ≤ G with X ⊆ H. Hence g ∈ H1, i.e., H2 ⊆ H1.
But H2 is a subgroup of G containing X, so H1 ⊆ H2. Hence H1 = H2.

Example. 1. G = (Z,+) and X = {12, 18}. Then by de�nition 2, 〈X〉 = {12a+ 18b|a, b ∈ Z} = 〈6〉 = 6Z

2. G = S4, X = {a, b} with a = (1, 2, 3) and b = (2, 3, 4). Now a, b ∈ A4 so 〈X〉 ≤ A4 (by the 1st de�nition),
and ab = (1, 3)(2, 4) while ba = (1, 2)(3, 4) and abba = (1, 4)(2, 3). So {1, ab, ba, abba} ≤ 〈X〉 so 4| |〈X〉| and
3 = |a| | |〈X〉| so 12| |〈X〉| ,so 〈X〉 = A4.
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2 Free Groups

These are groups 〈X| 〉 with R = ∅ with no relations.
We de�ne them using their principal property. If V,W are vector spaces, V with basis B. Any map θ : B →W

uniquely determines a linear map θ′ : V → W with θ′(b) = θ(b)∀b ∈ B. Free groups have a similar property (but
all vector spaces have bases, but not all groups are free)

De�nition 2.1. Let F be a group and X ⊆ F . Then F is free on X if for any group G and any map θ : X → G
∃! homomorphism θ′ : F → G with θ′(x) = θ(x)∀x ∈ X, i.e the diagram

X
θ //

i

��

G

F
θ′

>>

commutes. I.e., θ has a unique extension θ′ : F → G. I.e. θ = θ′ where i : X → F is the insertion/inclusion map
de�ned by i(x) = x ∀x ∈ X

We will prove existence later, �rst we prove a few properties.

Proposition 2.2. Let F be free on X. Then F = 〈X〉 (i.e., X generates F )

Proof. Assume F is free on X and let H = 〈X〉 ≤ F .

X
θ //

i

��

H
j // F

F

θ′
>>

idF

77

Let θ : X → H, i : X → F be insertion maps (i.e., i(x) = θ(x) = x). Then there exists θ′ : F → H with θ′i = θ.
Let j : H → F be insertion map, then θ′j and idF are both extension of jθ : X → F . So by the uniqueness part of
the de�nition we have θ′j = idF . Since idF is surjective, we have j is surjective hence H = F

Proposition 2.3. Let F1 be free on X1 and F2 be free on X2. Then F1
∼= F2 if and only if |X1| = |X2|. (In

particular any two free groups on X are isomorphic)

Proof. �⇒�: Let G be any non-trivial �nite group (such as C2). The number of maps X1 → G is |G||X1|.
Since each map uniquely determines a homomorphism, we get |G||X1| = |hom(F1, G)|. Similarly we �nd
|G||X2| = |hom(F2, G)|. Now F1

∼= F2 ⇒ |hom(F1, G)| = |hom(F2, G)| (exercise show this). This means
|G||X1| = |G||X2| ⇒ |X1| = |X2|, which is clear if |Xi| are �nite. (In fact for in�nite cardinal numbers
2α = 2β ⇒ α = β is independent of the axioms of set theory). In fact it can be proved that for X in�nite,
F free on X implies |F | = |X| so result is true anyway. (proof omitted).

�⇐�: Assume |X1| = |X2| and let κ : X1 → X2 be a bijection.

X1
κ //

i1

��

X2
i2 // F2

F1

α

66

where i1, i2 are insertions. So i2κ extends to α : F1 → F2

X2
κ−1
//

i2

��

X1
i1 // F1

F2

β

66

so similarly, i1κ
−1 extends uniquely to β : F2 → F1. For x ∈ X1, βα(x) = βi2κ(x) = βκ(x) =

i1κκ
−1(x) = i1(x) = x. So βα : F1 → F2 extends identity map X1 → F1. So by uniqueness βα = idF1 .

Similarly we �nd αβ = idF2
. So α, β are isomorphism.
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We now prove existence of free groups:
F = 〈X| 〉 should be generated by X, so elements represented by strings in x, x−1, x ∈ X, i.e. elements of A∗

where A = X ∪X−1. All words should be distinct? Except we want xx−1 = x−1x = 1. Let X be any set, let X−1

be a set with |X| = |X−1| and X−1∩X = ∅, denote elements of X−1 by
{
x−1|x ∈ X

}
. De�ne (x−1)−1 = x ∀x ∈ X.

Let A = X ∪X−1. A word in A∗ is called reduced if it contains no subwords xx−1 or x−1x for x ∈ X. For example
X = {x, y}, xy−1xxy−1y−1 is reduced while xyx−1xyyx−1 is not

Proposition 2.4. For any set X, there exists a free group FX on X.

Proof. De�ne X−1 and A as above, and let FX be the set of reduced words in A∗. Make FX into as follows. Let
α, β ∈ FX . We de�ne αβ by concatenating α and β and deleting any strings xx−1 or x−1x in the middle.

Example. X = {x, y}, α = xyx−1 and β = x−1, then αβ = xyx−2. If α = xyx−1y−1 and β = yxyx then
αβ = xy2x. If α = xyx, β = x−1y−1x−1 then αβ = ε.

We have an identity element, ε. Given α, we get α−1 by reversing α and replacing every letter by its inverse.
Finally we need to show associativity. Let α, β, γ ∈ FX , let l = |α|,m = |β| and n = |γ|. When we multiply
αβ, let r be the length of su�x of α that is cancelled (could have r = 0). Loose pre�x of length r from β, so
|αβ| = l +m− 2r. Similarly let s be the length of su�x of β that is cancelled in βγ, then |βγ| = m+ n− 2s.

Case 1. r + s ≤ m. The cancelled pre�x and su�x of β do not intersect. Let α = ab−1, β = bcd and γ = d−1e,
where b, d are cancelled parts and |c| ≥ 0. So αβ = acd, (αβ)γ = ace. On the other hand βγ = bce, α(βγ) = ace
as required.

Case 2. r+s > m. Then the cancelled pre�x and su�x of β overlaps. So let α = ac−1b−1, β = bcd and γ = d−1c−1e.
Then we have αβ = ad and (αβ)γ = ac−1e. On the other hand βγ = be, α(βγ) = ac−1e as required.

So FX is a group. We now show that it is free on X. Let G be any group and θ : X → F a map. If θ′ : FX → G
is a homomorphism extending θ we must have θ′(x−1) = θ′(x)−1 ∀x ∈ X. We also must have θ′(a1a” . . . ak) =
θ′(a1) . . . θ′(ak)∀a1a2 . . . ak ∈ FX . So θ′ is unique. But de�ning θ′ like this, does de�ne a homomorphism θ′ : FX →
G which extends θ. Hence FX is free on X.

Notation. For a set X, FX denotes FX as de�ned in the above proof. (So any free group on X is isomorphic to FX
by Proposition 2.3)

De�nition 2.5. Let FX be the free group on X. Then |X| is called the rank of FX

Example. 1. If X = ∅, then FX = {ε} the trivial group.

2. X = {x}, then FX = {xn|n ∈ Z} ∼= Z, the in�nite cyclic group.

3. X = {x, y}, then FX is �big group� which is non-abelian.

Lemma 2.6. If F is free on X and θ : F → F ′ is an isomorphism, then F ′ is free on {θ(x)|x ∈ X}.

Proof. Easy exercise

Proposition 2.7. If X ⊆ G, then G is free on X if and only if G = 〈X〉 and all reduced words in (X ∪ X−1)∗

represent distinct elements of G.

Proof. �⇐�: De�ne θ : X → G by θ(x) = x. This extends uniquely to θ′ : FX → G. So G = 〈X〉 implies θ′ is
surjective and assumption on reduced words being distinct in G, implies θ′ is injective. Hence θ′ is an
isomorphism, so G is free on X.

�⇒� G = 〈X〉 by Proposition 2.2. By Proposition 2.3, all free groups on X are isomorphic, and there exist
an isomorphism θ : FX → G with θ(x) = x∀x ∈ X. So elements of FX , the reduced words in A∗, have
distinct images in G.

Proposition 2.8. Any group G is isomorphic to a quotient group of a free group.

Proof. Choose any set X ⊆ G with G = 〈X〉 (could even choose X = G). The map θ : X → G extends to θ′ :
FX → G. Now G = 〈X〉 implies θ′ is surjective. So by the �rst isomorphism theorem G = im(θ′) ∼= FX/ ker(θ′)
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De�nition 2.9. w = a1a2 . . . an ∈ A∗ is called cyclically reduced, if w is reduced and either n = 0 or ai 6= a−1
n .

Proposition 2.10. If F is a free group and 1 6= w ∈ F , then |w| =∞, i.e., F has no elements of �nite order. (F
is torsion free)

Proof. Let F = FX . Let w ∈ F , w 6= 1. Note if w is cyclically reduced then so is wn, (since an 6= a−1
1 ). Hence

wn 6= ε, so |w| =∞.
In general, we can write w = a1a2 . . . ar(ar+1 . . . al−r)a

−1
r . . . a−1

2 a−1
1 where l = |w| and ar+1 6= a−1

l−r. (Note the
whole of w can not cancel like this or w would not be reduced). Hence w = βαβ−1 with α cyclically reduced and
α 6= 1. Then wn = βαnβ−1 with αn cyclically reduced. Hence wn 6= 1, so |w| =∞.

Proposition 2.11. Let F be a free group. Let a, b ∈ F , then ab = ba if and only if ∃u ∈ F with a = uh, b = uk for
some h, k ∈ Z. (i.e., a, b commutes if and only if they are powers of a common element u)

Proof. �⇐�: Clear since ab = ba = uh+k

�⇒�: Let F = FX , a = a1a2 . . . al and b = b1b2 . . . bm. Proof by induction on l+m and without loss of generality
assume l ≤ m

If l = 0, then a = 1 so a = b0 and b = b1, so the result is true with u = b.
Hence we can assume that l > 0. Let r be the length of the su�x of a that cancels when calculating ab. So

0 ≤ r ≤ l and l(ab) = l+m−2r. Since ba = ab, we get l(ba) = l+m−2r, so also get cancellation length r in ba.

Case 1. r = 0, i.e., no cancellation. Here ab = a1 . . . alb1 . . . bm and ba = b1 . . . bma1 . . . al are equal as words.
Since l ≤ m, ai = bi for 1 ≤ i ≤ l. So a is a pre�x of b, hence let b = ac with l(c) = m − l. Since ab = ba,
we have b ∈ CF (a) = {x ∈ F |xa = ax} (the centraliser). Also a ∈ CF (a), since CF (a) is a subgroup of F , so
c = a−1b ∈ CF (a). Hence ac = ca. Since l(c) < l(b), we can use induction on ac to get ∃u such that a = uh, c = uk.
So b = ac = uh+k and we are done.

Case 2. r = l, i.e., the whole of a cancels is ab. So b = a−1c for some c with l(c) = m− l. Then we are back in case
1

Case 3. 0 < r < l. In this case we have ab = a1 . . . al−rbr+1 . . . bm = ba = b1 . . . bm−rar+1 . . . al. Since r < l, we
have a1 = b1 and bm = al. Since 0 < r, there is some cancellation, so al = b−1

1 and similarly bm = a−1
1 . Putting all

this together we get al = b−1
1 = a−1

1 = bm, i.e., a = a1αa
−1
1 and b = a1βa

−1
1 , where l(α) = l − 2 and l(β) = m− 2.

Now ab = ba⇒ a1αa
−1
1 a1βa

−1
1 = a1βa

−1
1 a1αa

−1
1 ⇒ αβ = βα. So by induction, we have that ∃u such that α = uh

and β = uk. Then a = a1u
ha−1

1 = (a1ua
−1
1 )h and b = (a1ua

−1
1 )k, and we are done using a1ua

−1
1
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3 Subgroups of Free Groups

The main result of this section is that subgroups of free groups are free. [Can easily deduce Proposition 2.10,2.11
directly from this]. There exists two algebraic proofs: Schreier and Nielsen. Really need them both for advance
work, but in this course we will just do Schreier's proof. Both are in Johnson's Book. There also exists proofs from
Algebraic Topology.

De�nition 3.1. A relation ≤ on a set A is a well ordering if it is a total ordering (∀a, b ∈ A, we have a < b,b < a
or a = b) such that each subset of A has a least element

Example. ≤ on N is well ordering, but ≤ on Z,Q are not.

Axiom. 1. Any set can be well ordered

2. Axiom of choice

3. Zorn's Lemma

These three axioms are all equivalent (using basis set theory) and independent of basic axioms of set theory.
Moth mathematicians assume them.

So we will assume our set A = X ∪ X−1 has a well ordering ≤. (In most of our examples X will usually be
�nite, so this is clearly true)

De�nition 3.2. We de�ne the lenlex ordering of A∗ as follows. Let a = a1 . . . al and b = b1 . . . bm in A∗. We say
a < b if either:

1. l < m

2. l = m and for some i < l we have aj = bj for j < i but ai+1 < bi+1.

Exercise. Check that the lenlex ordering is a well-ordering.

Note. The lex ordering (dictionary) is not a well ordering. A = {x, y} and x < y then {xky|k ≥ 0} has no least
element.

Lenlex has the following properties (exercise):

∀v, w ∈ A∗, u < w ⇒

{
vx < wx

xv < xw
∀x ∈ A (†)

Any well-ordering of A∗ that satis�es (†) can be used in the following theory.

De�nition 3.3. Let F be a group (not necessarily free) generated by X. Let E ≤ F and A = X ∪ X−1. Let
U ⊂ A∗ then U is called a Schreier transversal of E in F if it is a right transversal and it is pre�x-closed, i.e., if
a1a2 . . . al ∈ U ⇒ a1a2 . . . al−1 ∈ U .

So in particular ε ∈ U as representative of coset E. Also all words inU must be reduced, since otherwise we
would get two di�erent words representing the same group element (yxx−1 ∈ U ⇒ y ∈ U)

Proposition 3.4. Every E ≤ F has a Schreier transversal. We can de�ne one by choosing well-ordering of A∗

satisfying (†) and taking least element of each coset Eg as its representative in U .

Proof. De�ne U as in the statement. Let a1a2 . . . al ∈ U . If a1 . . . al−1 /∈ U then there exists b1b2 . . . bm ∈
Ea1a2 . . . al−1 with b1 . . . bm < a1 . . . al−1. By (†) b1 . . . bmal < a1 . . . al−1al contradicting a1a2 . . . al ∈ U

Example. Let F = FX and X = {x, y}. Let G = 〈g〉, be cyclic of order 6. By de�nition of free groups
∃θ : F → G with θ(x) = g2, θ(y) = g3. Now g = θ(yx−1) ∈ im(θ), so im(θ) = G. Take E = ker(θ). Take
F/E ∼= G ⇒ |F · E| = |G| = 6. Note Ea = Eb if and only if ab−1 ∈ E ⇒ θ(a) = θ(b). So a transversal consist
of 6 elements with distinct images under θ. Could choose U = {ε, x, y, x2, xy, x2y}, then under θ the elements are
1, g2, g3, g4, g5, g7 = g. This is a Schreier Transversal (but by guessing it worked). More systematically we can
compute U using Proposition 3.4 by considering θ(a) for increasing a under the ordering. A = {x, y, x−1, y−1} need
ordering on A, say x < x−1 < y < y−1. Using lenlex:

w ∈ A∗ ε x x−1 y y−1 x2 xy xy−1 x−2 x−1y
θ(w) 1 g2 g4 g3 g3 g4 g5 g5 g2 g

delete repeated θ(w) and get U = {ε, x, x−1, y, xy, x−1y}
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Let U be a Schreier transversal of E in F . For g ∈ E, let g be the unique element of Eg ∩ U . Now g ∈ Eg ⇒
gg−1 ∈ E (∗). For u ∈ U , x ∈ F we have uxx−1 is in the same coset as uxx−1 in the same coset as u. That is
uxx−1, u ∈ Eu ∩ U , so uxx−1 = u (∗∗). De�ne Z = {uxux−1|u ∈ U, x ∈ X}. By (∗), Z ⊆ E.

Lemma 3.5. Let Z be as de�ne above, then Z−1 = S where S = {ux−1ux−1
−1
|u ∈ U, x ∈ X}

Proof. Let g ∈ Z−1, then g = (uxux−1)−1 = uxx−1u−1. Let v ∈ ux ∈ U . By (∗∗) vx−1 = u⇒ g = vx−1vx−1
−1
∈

S.
Conversely, let g = ux−1ux−1

−1
∈ S. Then g−1 = ux−1xu−1, let v = ux−1,vx = u by (∗∗) so g = vxvx−1 ∈

Z−1.

Notation. For u, v ∈ A∗, u =F v means u, v de�ne same elements of G

Proposition 3.6. With the above notation E = 〈Z〉

Proof. Let h ∈ E so h = a1a2 . . . al with ai ∈ A. De�ne u0 = ε and ui = a1a2 . . . al for all 1 ≤ i ≤ l. So
h ∈ E ⇒ ul = h = ε. Now h =F (u0a1u

−1
1 )(u1a2u

−1
2 ) . . . (ul−1alu

−1
l ) since u0 = ul = ε. We have ui+1 = uiai

by de�nition of ui. So h =F (u0a1u0a1
−1)(u1a2u1a2

−1) . . . (ul−1alul−1al
−1) which (by Lemma 3.5) is a product of

elements of Z and Z−1, hence in (Z ∪ Z−1)∗

Example 3.7. With the above notation Z is called the set of Schreier generators of E (this depends on U)

Corollary 3.8. A subgroup of �nite index in a �nitely generated group is itself �nitely generated.

Proof. X, U are �nite, then |Z| = |X| · |U | hence Z is �nite.

Example. Going back to the previous example, we had U = {ε, x, x−1, y, xy, x−1y}. We now calculate Z.
θ(u) u ux uy ux uy uxux−1 uyuy−1

1 ε x y x y 1 1
g2 x x2 xy x−1 xy x3 1
g4 x−1 1 x−1y ε x−1y 1 1
g3 y yx y2 xy ε yxy−1x−1 y2

g5 xy xyx xy2 xy−1 x xyxy−1x xy2x−1

g x−1y x−1yx x−1y2 y x−1 x−1yxy−1 x−1y2x

To �nd ux, calculate θ(ux), �nd elements of U with same image under θ. For example θ(x2) = g4 = θ(x−1) and
x−1 ∈ U . Hence we have Z = {1, x3, yxy−1x−1, y2, xyxy−1x, xy2x−1, x−1yxy−1, x−1y2x}.

To express xy−1x−1y ∈ E as word in Z ∪ Z−1. We follow the proof of Proposition 3.6.(
u0 a1 u0a1

−1 = u−1
1

ε x x−1

)(
u1 a2 u−1

2

x y−1 y−1x−1

)(
u2 a3 u−1

3

xy x−1 y−1

)(
u3 a4 u−1

4

y y ε−1

)
= (xy2x−1)−1(yxy−1x−1)−1(y2)

We don't want 1 in our generating set. So de�ne Y = {uxux−1|u ∈ U, x ∈ X,ux 6= ux}. We still have

Y −1 = {ux−1ux−1
−1
|u ∈ Y, x ∈ X,ux−1 6= ux−1} We still have E = 〈Y 〉 since Y = Z \ {1}

For the remainder of the section let F be free on X and we assume F = FX . We will prove E is free on Y .

Lemma 3.9. Let uaua−1 ∈ Y ∪ Y −1 (with u ∈ U and a ∈ A = X ∪X−1). Then in the word uaua−1 the letter a
does not cancel.

Proof. Let u, ua ∈ U so they are reduced words. Hence if a cancels, it cancels with �nal letter of u or the �rst letter
of ua−1.

Case 1. Let u = a1a2 . . . al with al = a−1. Then ua = a1a2 . . . al−1 ∈ U by the pre�x closure condition. This means
ua = ua so uaua−1 /∈ Y ∪ Y −1. This is a contradiction.

Case 2. Let ua = a1 . . . al with al = a. Then uaa−1 = a1 . . . al−1 ∈ U . But uaa−1 = u by (∗∗) so uaa−1 = u⇒
ua = ua. This is again a contradiction.

Remark. By this lemma the words uaua−1 in Y are reduced as words, hence they are distinct, that is di�erent u, a
give di�erent words.
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Lemma 3.10. Let uaua−1, vbvb
−1 ∈ Y ∪Y −1 with uaua−1 6=F (vbvb

−1
)−1. Then in product uaua−1vbvb

−1
neither

of the underlined a or b cancels.

Proof. By the last lemma, a cannot cancel with u or ua−1, b not with b or vb
−1
. So for one of them to cancel:

Case 1. all of ua−1 would cancel with v or

Case 2. all of v would cancel with ua−1

We deal with Case 1. as Case 2. is similar. Let ua = a1 . . . al, v = b1 . . . bm. In Case 1. we have l ≤ m.
First suppose l < m, then ai = bi for 1 ≤ i ≤ l, so a cancels with bl+1, i.e., bl+1 = a−1. Hence uaa−1 =

a1 . . . albl+1 = b1 . . . blbl+1 ∈ U . So uaa−1 = u⇒ ua = ua. Contradiction as before.
Next suppose l = m. So ai = bi for 1 ≤ i ≤ l and ua = v, a = b−1. So vb = uab = uaa−1 = u. So

(uaua−1)−1 = uaa−1u−1 = vbvb
−1
, contradicting our assumption.

Corollary 3.11. Let bi = uiaiuiai
−1 ∈ Y ∪ Y −1 for 1 ≤ i ≤ l, where bi 6= b−1

i+1. Then in the product b1b2 . . . bl
none of the letters ai cancel, so b1b2 . . . bl 6=F 1.

Proof. This follows immediately.

Theorem 3.12 (Main Theorem). If F is free on X, E ≤ F and U a Schreier transversal of E in F then E is free on
the set Y as de�ned above. Furthermore if U,X are �nite, |U | = n and |X| = r, then |Y | = (r−1)n+1 = nr−(n−1).

Proof. We have E = 〈Y 〉 by Proposition 3.6. So by Proposition 2.7 it is enough to prove distinct words in Y ∪ Y −1

de�ne distinct elements of E.
So let b1 . . . bl, c1 . . . cm be distinct reduced words in Y ∪Y −1 with b1 . . . bl =F c1 . . . cm. So b1 . . . blc

−1
m . . . c−1

1 =F

1 by Corollary 3.11. Now b1 . . . blc
−1
m . . . c−1

1 is now reduced in Y ∪ Y −1. So we must have bl = cm, bl−1 = cm−1 etc.
and we get b1 . . . bl = c1 . . . cm (as words), which is a contradiction.

Now assume |U | = n and |X| = r are �nite. By the remark above, all elements of Y are distinct, so |Y | = nr− t
where t is the number of pairs (u, x) with ux =F ux. Let v = a1a2 . . . al ∈ U \ {ε}. If al = x ∈ X then
u = a1 . . . al−1 ∈ U and ux = v ∈ U so ux = ux. Otherwise al = x−1 ∈ X−1. Then ux = ux with u = v. So each
v ∈ U \ {ε} gives rise to a (u, x) with ux = ux. Conversely if ux = ux, uxux−1 =F 1 then x must cancel against
end of u, or beginning of ux. So this (u, x) arises in one of the two ways above.

So the pairs (u, x) with ux = ux are in 1-1 correspondence with U \ {ε}, so t = |U \ {ε}| = n − 1. Hence
|Y | = nr − (n− 1) = n(r − 1) + 1.

Example. Carrying on the previous example, we have |〈g〉| = 6, so n = 6, r = 2 and 5 elements of Z where trivial.
We had |Y | = 7

If |F : E| in�nite, is Y in�nite? No, you can take E = {1}, then |Y | = 0. Or a slightly less trivial example, let
X = {x, y} and E = 〈x〉, then |Y | = 1.

Proposition 3.13. Let F be free, E ≤ F, |F : E| = ∞ and suppose there exists {1} 6= N C F with N ≤ E. Then
Y is in�nite.

Proof. Let U be a Schreier Transversal of E in F . Let 1 6= w = a1 . . . al ∈ N ≤ E. For u ∈ U , then Euw =
Euwu−1u = Eu since uwu−1 ∈ N ≤ E. So uw = u 6= uw (as words), so uw /∈ U . Choose the least k such that
ua1 . . . ak /∈ U . So ua1 . . . ak−1 ∈ U but ua1 . . . ak /∈ U , since U is in�nite there exists 1 ≤ k ≤ l and an in�nite
subset V ⊆ U with ua1 . . . ak−1 ∈ U and ua1 . . . ak /∈ U for all u ∈ V . So let uk = ua1 . . . ak−1for u ∈ U then
{ukakukak−1|u ∈ V } is an in�nite subset of Y . Hence Y is in�nite.

Example. Let F be free on X = {x, y}. Let G = 〈g〉 in�nite cyclic. De�ne θ : F → G with θ(x) = θ(y) = g.So
im(θ) = G and let E = ker(θ). So |F : E| = |G| = ∞. Since θ(xi) = gi, i ∈ Z, we can take U = {xi|i ∈ Z}. So
ux = ux ∀u ∈ U . Then Y = {uyuy−1|u ∈ U} = {xiyx−i−1|i ∈ Z}.
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4 Presentation of Groups

De�nition 4.1. Let G = 〈X〉 and A = X ∪X−1. A relator of G is a word w ∈ A∗ with w =G 1.

So in free groups, relators are like xyxx−1y−1x−1

De�nition 4.2. A relation of G is an equation w1 =G w2 with w1, w2 ∈ A∗.

Both de�nition are quite related as w1 = w2 is a relation of G if and only if w1w
−1
2 is a relator of G

De�nition 4.3. Let R ⊆ G. The normal closure
〈
RG
〉
is the intersection of all normal subgroups of G that contain

R, i.e., the smallest normal subgroup of G that contains R.

Lemma 4.4. We have
〈
RG
〉

=
〈
g−1rg|g ∈ G, r ∈ R

〉
Proof. Denote H1 :=

〈
RG
〉
and H2 :=

〈
g−1rg|g ∈ G, r ∈ R

〉
.

We must have g−1rg ∈ N for any N CR with R ⊆ N . So H2 ≤ H1.
For the other way, we have H1 ≤ G, R ⊂ H2, from the de�nition g−1H2g = H2 ∀g ∈ G, so H2 C G. Hence

H1 ≤ H2.

De�nition 4.5. Let F = FX be the free group on a set X. Let R ⊆ F . Then the group de�ned by the presentation
〈X|R〉 is F/N with N =

〈
RF
〉
.

So elements of G = 〈X|R〉 are cosets Nw with w ∈ A∗ where A = X ∪X. Normally we just write w ∈ G not
wN . But note that w now has three meanings:

1. A word in A∗

2. An element of F

3. An element of G

So w1 =G w2 means w1, w2 are the same elements of G, i.e., w1N = w2N ⇐⇒ w1w
−1
2 ∈ N . For elements r ∈ R

we have r ∈ N , so r =G 1, hence elements of R are relators of G. They are called the de�ning relators of G. So we
can think of 〈X|R〉 as �the largest group� generated by X in which elements of R are relators.

Example. 1. Let X = {x, y} and R = {x4, y3, (xy)2}. We write 〈X|R〉 as
〈
x, y|x4, y3, (xy)2

〉
. We can also use

equivalent relations, as
〈
x, y|x4, y2 = y−1, xy = y−1x−1

〉
.

w1 = w” is a presentation is de�ned to be the same as writing w1w
−1
2

2. 〈X| 〉 = FX (i.e., R = ∅)

3.
〈
x|xk, k 6= 0

〉
= 〈x〉 /

〈
xk
〉 ∼= C|k|. The �nite cyclic group of order |k|.

Presentation is �nite if X,R are �nite

Proposition 4.6. All groups have presentations and �nite groups have �nite presentations.

Proof. Choose X ⊂ G with G = 〈X〉. Let F = FX be the free group of X. By the de�nition of free group θ : X → G
with θ(x) = x∀x ∈ X extends to θ′ : F → G. So G ∼= F/N where N = ker(θ). Choose R ⊂ N such that N = 〈R〉.
Then G = 〈X|R〉

If G is �nite, choose X �nite. Then |F ·N | = |G| =�nite so can choose R is �nite by Corollary 3.8.

Note. We have chosen R with N = 〈R〉, but we only need N =
〈
RG
〉
. So usually a smaller set R will work.

Fundamental Theorem of Presentation of Groups. Let G = 〈X|R〉,H any groups and θ : X → H a map. For
x ∈ X de�ne θ(x−1) by θ(x)−1. Suppose that for all r = a1 . . . al ∈ A∗ with r ∈ R, we have θ(a1)θ(a2) . . . θ(al) =G 1.
Then θ extends uniquely to a homomorphism θ′ : G→ H.

Proof. If θ extends at all then we must have θ(x−1) = θ(x)−1 and θ(a1 . . . al) = θ(a1) . . . θ(al), so θ
′ is unique is it

exists.
Let F be free on X. Then θ extends to ψ : F → H. The hypothesis on θ says ψ(r) =G 1 ∀r ∈ R, so R ⊂ N =

ker(ψ). Now N CG⇒
〈
RF
〉
≤ N , so ψ induces a well de�ned map θ′ : R/

〈
RF
〉
→ H by θ′

(〈
RF
〉
w
)

= ψ(w) with
w ∈ F . So θ′ extends θ as required.
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Note. The hypothesis on θ is also necessary for θ to extend to θ′ : G→ H (exercise)

In general we cannot say much about a group de�ned by 〈X|R〉.
A general approach is to manipulate the relators to get an upper bound on |G| and they use the Fundamental

Theorem to �nd an epimorphism θ : G → H and hence prove |G| ≥ |H|. If |H| is the same as the upper bound,
then θ is an isomorphism.

Example. Let G =
〈
x, y, |xn, y2, (xy)2

〉
with n > 1. Consider w ∈ A∗ with w ∈ G, so w is a string in x, x−1, y, y−1.

Now xn ∈ R implies x−1 =G xn−1, so we can replace any x−1 in w by xn−1. Similarly, we have y =G y−1 so replace
y−1 in y. Finally (xy)2 =G 1 means yx =G x−1y−1 =G xn−1y. So we can replace w by a word of the form xkyl

with k, l ≥ 0. Since xn =G 1 and y2 =G 1 we can assume 0 ≤ k < n and 0 ≤ l < 2. (This is a normal form for
group elements). So we have that |G| ≤ 2n.

For H we choose D2n, with is the rotations and re�ections of a regular n-gon. Let g = (1, 2, . . . , n) be the
rotation. Let h = (2, n)(3, n − 1), . . . be the re�ection �xing 1. We can see that gn = 1 and h2 = 1. We calculate
gh = (1, n)(2, n − 1)(3, n − 2) . . . , so (gh)2 = 1. Hence we can apply the Fundamental Theorem to θ : X → H
with θ(x) = g, θ(y) = h, hence θ extends to θ′ : G → H. Since g, h ∈ im(θ′) we have G = 〈g, h〉 ⊆ im(θ′), so
|G| ≥ |H| = 2n. Hence |G| = 2n, so θ′ is an isomorphism.

Proposition 4.7. Let G = 〈X〉 ,H ≤ G and S = ∪ri=1Hgi for some gi ∈ G and g1 = 1. If gia ∈ S ∀a ∈ A
(= X ∪X−1) then G = S. If we know |x| is �nite for all x ∈ X , then enough to assume gia ∈ S ∀a ∈ X.

Proof. Let g ∈ G , we want to prove g ∈ S. Let g = a1 . . . al, ai ∈ A. We use induction on l.
If l = 0 then g = 1 = g1 ∈ S.
If l > 0, by induction a1 . . . al−1 = hgi ∈ S for some g ∈ H, gi. By assumption gial = h′gj ∈ S, so g = hgial =

hh′gj ∈ S
If all |x| ∈ X have �nite order (xn = 1⇒ x−1 = xn−1) , we can write g = a1a2 . . . al with ai ∈ X

Example. G =
〈
x, y|x3, y3, (xy)2

〉
. Choose H = 〈y〉. We have A5 = 〈g, h〉 where g = (1, 2, 3), h = (2, 3, 4). Then

g3 = 1, h3 = 1, gh = (1, 3)(2, 4), hence (gh)2 = 1. De�ne θ : X → A4 by θ(x) = g and θ(y) = h. Then by the
Fundamental Theorem θ extends to θ : G→ A4. Now im(θ) = A4, so |G| ≥ 12.

We want to prove |G| = 12, i.e., |G ·H| = 4. So we want to �nd g1, g2, g3, g4 so we can apply the last proposition.
Since θ(H) = 〈(2, 3, 4)〉 = StabA4(1), θ(gi) should be coset representations of θ(H) in A4. We want 1θ(gi) = i, so we
can choose g1 = 1, g2 = x, g3 = xy, g4 = xy−1. So by Proposition 4.7, we want to prove that gix, giy ∈ S, 1 ≤ i ≤ 4
where S = ∪4

i=1Hgi. (Since x
3 = y3 = 1⇒ |x|, |y| are �nite)

gi x y

1 x ∈ Hx y ∈ H
x x2 = x−1 = yxy ∈ Hxy x ∈ Hxy
xy xyx = y−1 ∈ H xy2 = xy−1 ∈ Hxy−1

xy−1 xy−1x = y−1xy−1 ∈ Hxy−1 x ∈ Hx
So G = S, |G| ≤ 12, hence θ is an isomorphism and G ∼= A4

De�nition 4.8. The commutator is [x : y] := x−1y−1xy.

Note that [x, y] = 1 if and only if xy = yx.

Example. Let G = 〈x, y|[x, y]〉 = 〈x, y|xy = yx〉. Using yx = xy, we get G = {xayb|a, b ∈ Z} . We want to show
that xayb is normal form for group elements.

Let H ∼= Z2, free abelian of rank 2. Then H = 〈g〉 × 〈h〉 = {gahb|a, b ∈ Z} (Writing H multiplicatively). De�ne
θ : X → H by θ(x) = g, θ(y) = h. Now θ([x, y]) = g−1h−1gh = 1H so θ extends to θ : G→ H. And θ(xayb) = gahb.
Clearly bijection so isomorphism.

Similarly 〈x1, . . . , xn|[xi, xj ] : 1 ≤ i < j ≤ n〉 ∼= Zn (free abelian of rank n). This is also an example of a direct
product, for which we have:

Proposition 4.9. Let G = 〈X|R〉 , H = 〈Y |S〉 with X ∩ Y = ∅. Let [X,Y ] = {[x, y]|x ∈ X, y ∈ Y } and
T = R ∪ S ∪ [X,Y ]. De�ne F = 〈X ∪ Y |T 〉, then G×H ∼= K .

Proof. G×H = {(g, h)|g ∈ G, h ∈ H}. De�ne θ : X ∪ Y → G×H, θ(x) = (x, 1), θ(y) = (1, y). Let r = a1 . . . al ∈
T, ai ∈ X ∪ Y ∪X−1 ∪ Y −1. If r ∈ R, r =G 1 so θ(r) = (1, 1) = 1G×H . Similarly r ∈ S ⇒ θ(r) = 1G×H . If r ∈ [x, y]
then r = x−1y−1xy, x ∈ X, y ∈ Y so we get θ(r) = (x−1, 1)(1, y−1)(x, 1)(1, y) = (1, 1) = 1G×H . So θ extends to
θ : K → G×H by the Fundamental Theorem. It is clearly surjective since G = 〈X〉 and H = 〈Y 〉.
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It remains to show that ker(θ) = 1. Since xy = yx, x ∈ X, y ∈ Y any element of K can be written as
g = a1a2 . . . alb1 . . . bm with ai ∈ X ∪ X−1 and bi ∈ Y ∪ Y −1. Then θ(g) = (a1 . . . al, b1 . . . bm), so if g ∈ ker(θ)
then a1 . . . al =G 1 and b1 . . . bm =H 1. So a1 . . . al ∈

〈
RFX

〉
and b1 . . . bm ∈

〈
SFY

〉
, so both in

〈
TFX∪Y

〉
. So

a1 . . . al =K 1 =K b1 . . . bm.

4.1 Tietze Transformations

Some group presentation �clearly� isomorphic. For example
〈
x, y|x3, y2

〉 ∼= 〈
x, y|x2, y3

〉
or
〈
x, y|y = x2

〉 ∼= 〈x| 〉
(eliminate y). Tietze Transformation enable us to justify such manipulations of presentations.

Proposition 4.10. Let G = 〈X|R〉 = F/N , N −
〈
RF
〉
.

1. If r is a relator of G, then G = 〈X|R ∪ {r}〉

2. If y /∈ X and w ∈ A∗. Then G ∼=
〈
X ∪ {y}|R ∪ {yw−1}

〉
=: G′, where the isomorphism induces the identity

on X.

Proof. 1. If r ∈ R then r ∈ N by de�nition. So N =
〈
(R ∪ {r})F

〉
.

2. Since relators in R are also relators of G′. So the map θ : X → G′ with θ(x) = x∀x ∈ X satis�es θ(r) =G′ 1,
so by the Fundamental Theorem it extends to θ : G→ G′.

De�ne θ′ : X ∪ {y} → G by θ′(x) = x ∀x ∈ X and θ′(y) = w. Again θ′(r) =G 1∀r ∈ R, and θ′(yw−1) =
θ′(y)θ′(w−1) = ww−1 = 1 (since w is a word in (X ∪ X−1)∗). So θ′ maps relators of G′ to 1G. So by the
Fundamental Theorem, it extends to θ′ : G′ → G.

Look at θ ◦ θ′ : G′ → G′ and θ′ ◦ θ : G→ G, they both extends the identity map on generators X ∪ {y} of G′
and X of G. So by the uniqueness of the Fundamental Theorem, we have θθ′ = IG′ and θ

′θ = 1G, so both
isomorphism.

De�nition 4.11. We de�ne four types of Tietze Transformation on G = 〈X|R〉.

R+: Add a relator: If r is a relator of G, then replace 〈X|R〉 by 〈X|R ∪ {x}〉

R−: Remove a relator: If there exists r ∈ R with
〈
(R \ {r})G

〉
=
〈
RG
〉
, then replace 〈X|R〉 by 〈X|R \ {r}〉

X+: Add a new generator: For any w ∈ A∗, replace 〈X|R〉 by isomorphic group
〈
X ∪ {y}|R ∪ {yw−1}

〉
X−: Remove a generator: If there exists r ∈ R with r = yw−1 for some y ∈ X, such that w and all other

s ∈ R do not contain y or y−1, then replace G by isomorphic group 〈X \ {y}|R \ {r}〉.

This is mostly used in combinators.

Example. 1. Let G = 〈X|R ∪ {r}〉, r =G 1 ⇒ r−1 =G 1, so G =
〈
X|R ∪ {r, r−1}

〉
. Now r−1 =G 1 ⇒ r =G 1,

so r is redundant, so G =
〈
X|R ∪ {r−1}

〉
. Call these two moves R±, replace relator by inverse

2. Similarly G = 〈X|R ∪ {r}〉 =
〈
X|R ∪ {g−1rg}

〉
(since r = 1 ⇐⇒ g−1rg = 1 for any g ∈ G). So can use R±

to replace relator by conjugate. Often used for cyclic conjugates. Replace xyz by yzx (= x−1(xyz)x).
Whenever some generator y or y−1 appears just once in some relators we can use R± followed by X−1 to

eliminate y.

3.
〈
x, y, z|(xz)2, (yz)3, xyz

〉
. We can eliminate x using xyz =G 1 ⇐⇒ z = y−1x−1. Since x = y−1x−1 we have

(xz)2 = 1 ⇐⇒ (xy−1x−1)2 = 1

⇐⇒ xy−2x−1 = 1

⇐⇒ y−2 = 1

⇐⇒ y2 = 1

so can use R± to replace (xy)2 = 1 by y2 = 1. Similarly (yz)3 = 1 ⇐⇒ x3 = 1. So by R±, G =〈
x, y, z|y2, x3, zxy

〉
. Now we can apply X− to get G ∼=

〈
x, y|y2, x3

〉
Examples 1-3 were to illustrate how we use them, while Examples 4-5 are �real� examples.
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4. 〈x, y|xyxyx = yxyxy〉 ∼=X+ 〈x, y, a|xyxyx = yxyxy, a = xy〉, now use RX− to eliminate y = x−1a, so G ∼=〈
x, a|aax = x−1aaa

〉 ∼=X+

〈
x, a, b|a2x = x−1a3, b = xa2

〉
. Eliminate x = a2b byRX−, G ∼=

〈
a, b|b = b−1a5

〉
=〈

a, b|b2 = a5
〉
.

5. For l,m, n ≥ 1 de�ne D = (l,m, n) =
〈
x, y|xl, ym, (xy)n

〉
. (Note that D(2, 2, n) ∼= D2n). Introduce

a = xy then eliminate y = x−1a. So
〈
x, a|xl, x−1a)m, an

〉
. Replace x by x−1,

〈
x, a|x−l, (xa)m, an

〉
=〈

x, a|xl, (xa)m, an
〉

= D(l, n,m). We also have clearly D(l,m, n) ∼= D(m, l, n). Since (m,n) and (l,m) gen-
erate S3 on {l,m, n} we have D(l,m, n) ∼= D(l′,m′, n′). For any permutation l′,m′, n′ of l,m, n (so we can
assume l ≤ m ≤ n if we want to)

The following is a basic result, but less useful than it appears because is practice we might not know in whether
〈X|R〉 ∼= 〈Y |S〉. Therefore it does not enable you to decide this. (It has been proved to be undecidable in general)

Proposition 4.12. Let G ∼= 〈X|R〉 ∼= 〈Y |S〉. Then by using a sequence of Tietze Transformation, we can transform
〈X|R〉 to 〈Y |S〉.

Proof. G ∼= 〈X|R〉 ∼= 〈Y |S〉. Think of X,Y as subsets of G. Think of X,Y as subsets of G. G = 〈X〉 = 〈Y 〉, so
elements of X can be written as words in (Y ∪ Y −1)∗ and vice versa. Write this X = X(Y ), Y = Y (X), so

G ∼= 〈X|R〉
∼= 〈X|R(X)〉
∼= 〈X ∪ Y |R(X) ∪ {Y = Y (X)}〉 X+

= 〈X ∪ Y |R(X) ∪ {Y = Y (X)} ∪ {X = X(Y )}〉 R+

= 〈Y |R(X(Y )) ∪ {Y = Y (X(Y ))〉 R−

= 〈Y |R(X(Y )) ∪ {Y = Y (X(Y )) ∪ S(Y )〉 R+

= 〈Y |S(Y )〉 R−

4.1.1 A Presentation of symmetric group Sn

Sn acts on {1, 2, . . . , n}. Let τi = (i, i+ 1), for 1 ≤ i ≤ n− 1.

Lemma 4.13. Sn = 〈τi|1 ≤ i ≤ n− 1〉

Proof. Well known.

What are the relations? We have τ2
i = 1, (τiτi+1)3 = 1 since τiτi+1 = (i, i + 2, i + 1). Finally (τiτj)

2 = 1
(equivalently τiτj = τjτi) for |i− j| > 1.

Proposition 4.14. Let Gn = 〈X|R1 ∪R2 ∪R3〉 with X = {x1, . . . , xn−1}, R1 = {x2
i |1 ≤ i ≤ n − 1}, R2 =

{(xixi+1)3|1 ≤ i ≤ n− 2} and R3 = {(xixj)2|i < j, |j − i| > i}. Then Gn ∼= Sn with isomorphism xi 7→ τi.

Note. This presentation de�nes a Coxeter group. The general de�nition of them is
〈
x1, . . . , xn|x2

i , (xixj)
mij 1 ≤ i, j ≤ n

〉
with 2 ≤ mij ≤ ∞ and mij = mji. The case n = 2 gives the Dihedral groups. They include Weyl groups studied
in Lie Algebra. Out presentation for Sn is the Weyl group of type An−1.

Proof. By the Fundamental Theorem, the map θ : xi 7→ τi extends to a homomorphism θ : Gn → Sn, which is
surjective by Lemma 4.13. So |Gn| ≥ |Sn| = n!.

Claim: |Gn| ≤ n! (which will prove the result)
Use induction on n. The case n = 1, 2, 3 there is nothing to show (S3 =

〈
x1, x2|x2

1, x
2
2, (x1x2)3

〉
)

So assume |Gn| ≤ n! and we prove |Gn+1| ≤ (n + 1)!. De�ne H = 〈x2, . . . , xn〉 ≤ Gn+1. The relations of Gn
are satis�ed by generators of H (renumbered as x1, . . . , xn−1). So by induction |H| ≤ n!. So we want to prove
|G : H| ≤ n + 1. Note θ(H) ∼= Sn is the stabilizer of 1 in Sn+1. So if g0, . . . , gn coset representation we want
θ(g0), . . . , θ(gn) to map 1 to 1, 2, . . . , n+ 1. So we can choose θ(gi) = τ1 . . . τi. Then 1θ(gi) = 1τ1...τi = i+ 1. De�ne
g0 = 1, gi = x2x2 . . . xi, i.e., gi = gi−1xi. De�ne S = ∪ni=0Hgi, it is enough to prove S = Gn. So by Proposition 4.7
it is enough to prove gixj ∈ S ∀i, j.

Case 1. j > i+ 1 : We have gixj = xjgi ∈ S (since xj ∈ H)
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Case 2. j = i+ 1: We have gixj = gi+1 ∈ S

Case 3. j = i: We have gixj = gi−1 ∈ S

Case 4. j < i: We prove by induction of i− j that gixj = xj+1gi ∈ S since xj+1 ∈ H.

Base case: i−j = 1 (⇒ i ≥ 2 and j = i−1). gixj = gi−2xi−1xixi−1 = gi−2xixi−1xi = xigi−2xi−1xi = xigi = xj+1gi

Induction step: If i = j > 1 then gixj = gi−1xixj = gi−1xjxi = xj+1gi−1xi = xj+1gi .

So we can apply Proposition 4.7 to get Gn = S, hence |Gn : H| ≤ n + 1, hence |Gn| ≤ (n + 1)!. Hence θ is an
isomorphism.

4.1.2 Presentation of (Q,+)

The group (Q,+) is not �nitely generated. To see this let H = 〈g1, . . . , gk〉 ≤ (Q,+). Then gi = mi/ni for some
mi ∈ Z and ni ∈ Z>0. Elements of H all have denominators at most lcm(n1, . . . , nk), so we cannot have H = Q.

(Q,+) is generated by {1/n|n ∈ Z>0}. Also by {1/n!|n ∈ Z>0} since any m/n = m(n+ 1)! · 1/n!

Proposition 4.15. Let G = 〈xi(i ≥ Z>0)|xnn = xn−1(n > 1)〉. Then G ∼= (Q,+).

Note. G is multiplicative, while (Q,+) is additive

Proof. De�ne θ : {xi} → (Q,+) by θ(xn) = 1/n!. Then θ(xnn) = n/n! = 1/(n−1)! = θ(xn−1). So by the Fundamental
Theorem θ extends to homomorphism θ : G→ (Q,+) surjective, since (Q,+) is generated by {1/n!}.

We now need to prove ker(θ) = 1. Given generators xn, xm of G, n > m, xm is some power of xn so xnxm =
xmxn. So G is abelian. So for each g ∈ G, g = xk11 x

k2
2 . . . xknn for some n, ki ∈ Z. Since xjj = xj−1 for j > 1, we

can replace xjj by xj−1 and assume 0 ≤ kj < j for j > 1 (and kn 6= 0). So θ(g) = k1
1! + k2

2! + · · · + kn
n! . Suppose

1 6= g, θ(g) = 0 (i.e., g ∈ ker(θ)). So (n− 1)!
(
k1
1! + · · ·+ kn−1

(n−1)!

)
+ kn

n = m+ kn
n = 0 with m ∈ Z. But if n > 1 then

kn
n /∈ Z since 0 < kn < n. Hence n = 1, g = xk11 and θ(g) = k1 = 0, hence k1 = 0 and g = 1. So ker(θ) = 1.

4.2 Groups Acting on Sets (Recap)

We use right actions (as opposed to left actions used in Algebra II) For a group G acting on a set Ω, we write αg

for the action of g ∈ G on α ∈ Ω. We can de�ne an action as a homomorphism φ : G → Sym(Ω) where we write
αg instead of αφ(g) [φ(g) is a permutation of Ω]. The kernel of the action ker(φ) = {g ∈ G|αg = α ∀α ∈ Ω}. An
action is faithful if ker(φ) is trivial, if and only if, G ∼= im(φ). An action is transitive if there is a single orbit Ω,
i.e., ∀α, β ∈ Ω∃g ∈ G,αg = β.

Two actions φ1 : G → Sym(Ω1), φ2 : G → Sym(Ω2) are equivalent if there exist a bijection τ : Ω1 → Ω2 with
τ(α)φ2(g) = τ(αφ1(g))∀g ∈ G.

4.2.1 Coset Actions

Let G be a group, H ≤ G. Let Ω = {Hg : g ∈ G} be the set of distinct right cosets. De�ne action of G on Ω by
(Hk)g = Hkg (by right multiplication). So φ(g) : Hk → Hkg, check that φ(g), φ(g−1) are inverses of each other,

so φ(g) ∈ Sym(Ω). It is clearly a homomorphism. Given Hk1, Hk2 ∈ Ω, (Hk1)k
−1
1 k2 = Hk2, so it is transitive.

ker(φ) = {g ∈ G|Hkg = Hk ∀k ∈ G}
= {g ∈ G|kgk−1 ∈ H ∀k ∈ G}
= {g ∈ G|g ∈ k−1Hk ∀k ∈ G}
=

⋂
k∈G

k−1Hk

=: CoreG(H)

This is the largest normal subgroups of G contained in H. So H C G if and only if CoreG(H) = H. So we have
1 ≤ CoreG(H) ≤ H ≤

〈
HG

〉
≤ G.
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5 Coset Enumeration

(Todd - Coxeter 1930)
Given G = 〈X|R〉 with X,R �nite and a �nite set Y ≤ A∗ generating H = 〈Y 〉 ≤ G. Algorithm tries to prove

that |G : H| is �nite and to compute the coset action of G on the cosets of H. If |G : H| is in�nite it will not halt.
If |G : H| is �nite it will succeed but there is no upper bound on the time taken.

At any time we have a set Ω of positive, Ω = {i1, . . . , in} positive integers, which represent cosets of H in G. For
each i ∈ Ω there is an associated word. For each i ∈ Ω there is an associated word ai ∈ A∗, i ↪→ ai where i =coset
Hai. We always have 1 ∈ Ω, a1 = ε. So 1 = H. For i ∈ Ω, x ∈ A, ix may or may not be de�ned. If de�ned ix ∈ Ω.
(This means Haix = Haj where ix = j). We always have

(R1) ix = j if and only if jx−1 = i.

For a1a2 . . . ak ∈ A∗ with ai ∈ A. Then ia1 . . . ak is de�ned recursively to (ia1 . . . ak−1)ak provided everything is
de�ned.

(R2) If i ↪→ ai ∈ A∗ with i ∈ Ω, then 1ai is de�ned and equal to i.

If some ix is not de�ne then we can choose some j > 0, j /∈ Ω, replace Ω by Ω ∪ {j} and de�ne ix = j, jx−1 = i
and put aj = aix. So 1aj = 1aix = ix = j (Hence (R1) and (R2) remains true)

Example. Let G =
〈
x, y|x2, y3, xyxy

〉
and H = 〈xy〉.

1. We have a table with a single row for each generator of H. For each relator, we have a table with one row for
each elements of Ω. Start with Ω = {1}, 1 ↪→ ε.

x y

1 1

x x y y y x y x y

1 1 1 1 1 1

2. Now let Ω = {1, 2}, 2 ↪→ x. De�nitions 1x = 2, so 2x−1 = 1, 1y−1 = 2: Deduction 2y = 1 (from (a)), 2x = 1
(from (b)). (Note _ stands for, by de�nition)

x y

1 _ 2
(a)
= 1

x x y y y x y x y

1 2
(b)
= 1 1 2 1 1 2 1 2 1

2 1 2 2 1 2 2 1 2

3. Now let Ω = {1, 2, 3}, 3 ↪→ y. De�nitions: 1y = 3. Deductions: 3y = 2 (from (c)), 3x = 3 (from (d))

x y

1 _ 2
(a)
= 1

x x y y y x y x y

1 2
(b)
= 1 1 _ 3

(c)
= 2 1 1 2 1 2 1

2 1 2 2 1 3 2 2 1 3
(d)
= 3 2

3 3 3 3 2 1 3 ,3 3 2 1 3

Now ix is de�ned for all i ∈ Ω, x ∈ A. All tables are complete, so the process stops. We have shown that |G : H| = 3
with i → ia de�ning an action φ of G on Ω = {1, 2, 3} de�ned by x 7→ (1, 2), y 7→ (1, 2, 3). So φ : G → Sym(Ω),
hence im(φ) = Sym(3) which has order 6. Hence |G| ≥ 6. Since H = 〈xy〉 with (xy)2 = 1, |H| ≤ 2, hence |G| ≤ 6.
So |G| = 6.

We also have:

(R3) If i ↪→ ai, j ↪→ aj and ix = j, then Haix = Haj .
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Proposition 5.1. (R3) remains true during the process.

Proof. ix = j is either a de�nition or a deduction. If it is a de�nition then we de�ne aj so to make (R3) true.
So assume that it is a deduction, from a row of a table.

Case 1. From row k of relator x1x2 . . . xs, of a relator table.

x1 x2 . . . xt = x xt+1 . . . xs

k all de�ned i deduced ix = j j all de�ned k
Can assume by induction that

(R3) is true for all equations i′x′ = j′ that are know prior to deduction of ix = j. So Hakx1 . . . xt−1 = Hai,
Hajxt+1 . . . xs = Hak. So Hajxt+1 . . . xsx1 . . . xt−1 = Hai. Hence x1x2 . . . xs =G 1 ⇒ xt+1 . . . xsx1 . . . xt =G 1
(cyclic conjugate). So Haixt = Hajxt+1 . . . xsx1 . . . xt+1xt = Haj

Case 2. Deduction as above, but from a subgroup generator, so k = 1 and Hak = H. So x1x2 . . . xs ∈ H. As
Haix = Haixt = Hx1 . . . xt = Hx−1

s . . . x−1
t−1 = Haj , since x1x2 . . . xs ∈ H.

Theorem 5.2. Suppose the process terminates with H = 〈y〉 ≤ G = 〈X|R〉. Then there exists an action θ of G on
Ω with iθ(x) = ix = j ⇐⇒ ix = j. The action is equivalent to the coset action of G on right cosets of Ω, with
equivalence τ , with τ(i) = Hai for i ∈ Ω.

Proof. When the process stops all ix are de�ned. So de�ne θ(x) : Ω → Ω by iθ(x) = ix = ix, for all x ∈ A. Now
(R1) says θ(x−1) = θ(x)−1, so θ ∈ Sym(Ω). The fact that relators tables are full, says exactly that all relators r,
kθ(r) = k for all k ∈ Ω. So θ(r) is the identity and by the Fundamental Theorem θ extends to θ : G→ Sym(Ω).

De�ne τ : Ω→ {Hg : g ∈ Ω} by τ(i) = Hai with i ↪→ ai. Show that τ is a surjection. Let g ∈ G, g = x1x2 . . . xs
(for xi ∈ A) . 1g = 1x1x2 . . . xs = i for some i ∈ Ω. By (R3), Hg = Hai with i ↪→ ai. So τ(i) = Hai = Hg. So τ is
indeed a surjection.

Now to show τ is injective. Suppose τ(i) = τ(j) (i ↪→ ai, j ↪→ aj), then Hai = Haj , so aia
−1
j ∈ H = 〈y〉. So

aia
−1
j = y1 . . . yt with yi ∈ Y ∪ Y −1. From subgroups tables, 1yi = 1 ∀yi ∈ Y . So 1aia

−1
j = 1y1...yt = 1. Hence

1ai = 1aj ⇒ i = j by (R2).
By (R3) we have ix = j ⇒ Haix = Haj . Hence τ is an equivalence of actions.

Example. Let G =
〈
x, y|x3, y4, (xy)2

〉
= D(3, 4, 2) and H = 〈y〉, so we have one subgroup table

y

1 = 1

• Starting table of the relators:

x x x y y y y x y x y

1 1 1 1 1 1 1 1 1 1

• Next de�ne 1x = 2, 2x = 3

x x x y y y y x y x y

1 2 3 = 1 1 1 1 1 1 1 2 = 3 1 1
2 3 1 2 2 3 2 2 3 2
3 1 2 3 3 2 3 3 1 1 2 3

• Next de�ned 3y = 4 and 4y = 5

x x x y y y y x y x y

1 2 3 = 1 1 1 1 1 1 1 2 = 3 1 1
2 3 1 2 2 3 4 5 = 2 2 3 4 = 5 2
3 1 2 3 3 4 5 2 3 3 1 1 2 3
4 5 4 4 5 2 3 4 4 5 2 3 4
5 5 5 2 3 4 5 5 4 5

• Finally de�ne 5x = 6
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x x x y y y y x y x y

1 2 3 = 1 1 1 1 1 1 1 2 = 3 1 1
2 3 1 2 2 3 4 5 = 2 2 3 4 = 5 2
3 1 2 3 3 4 5 2 3 3 1 1 2 3
4 5 6 = 4 4 5 2 3 4 4 5 2 3 4
5 6 4 5 5 2 3 4 5 5 6 = 6 4 5
6 4 5 6 6 6 6 6 6 6 4 5 6 6

Then we are done as all tables are complete and all de�nition have been made. So |G : H| = 6 and since |H| ≤ 4,
we have |G| ≤ 24. We can also show |G| ≥ 24 by the map φ : G → S4 with φ(x) = (1, 2, 3), φ(y) = (1, 3, 2, 4) and
φ(xy) = (1, 4). This easily shows that im(φ) = S4 so |G| ≥ 24, hence G ∼= S4. So φ is an isomorphism.

Coincidences: Sometimes we get a deduction ix = j where we already know ix = k with k 6= j, (or kx = j for
k 6= i). This means coset Haj and Hak (respectively Hai, Hak) are equal. This is a deduction j = k.

If we �nd Haj = Hak with k > j, then we replace all k by j in tables which often leads to more coincidences.

Example. Let G =
〈
a, b|a−1ba = b3, b−1ab = a3

〉
and H = 〈a〉. Then the subgroup table is just

a

1 = 1

• Setting up the table:

a−1 b a b−1 b−1 b−1 b−1 a b−1 a−1 a−1 a−1

1 1 1 1 1 1 1 1

• De�ne 1b = 2

a−1 b a b−1 b−1 b−1 b−1 a b−1 a−1 a−1 a−1

1 1 2 1 2 1 1 1 1 1 1

2 2 2 1 1 2 2

• De�ned 1b−1 = 3

a−1 b a b−1 b−1 b−1 b−1 a b−1 a−1 a−1 a−1

1 1 2 1 3 2 1 1 3 = 3 1 1 1 1

2 2 2 1 1 2 2

3 3 1 1 2 1 3 3 1 1 3 3 3 3

• But we are deducing 2b = 1, but 3b = 1, so 2 = 3. Hence replace 3 by 2

a−1 b a b−1 b−1 b−1 b−1 a b−1 a−1 a−1 a−1

1 1 2 1 2 2 1 1 2 = 2 1 1 1 1

2 2 1 1 2 1 2 2 1 1 2 2 2 2

2 2 1 1 2 1 2 2 1 1 2 2 2 3

So we didn't need the last row, and the table is complete. We get |G : H| = 2 and b → (1, 2) and a → id.
Since |H : G| = 2 we have H C G, so b2 ∈ H = 〈a〉 .So b2a = ab2 (since H is abelian). Hence a−1ba = b3

implies a−1b2a = (a−1ba)2 = b6, but a−1b2a = b2, we get b6 = b2 and hence b4 = 1. By symmetry a4 = 1, so
|H| ≤ 4 and |G| ≤ 8. To prove |G| ≥ 8, let H be the multiplicative group of complex 2 × 2 matrices generated

by g =

(
0 1
−1 0

)
and h =

(
i 0
0 −i

)
. Then g2 = h2 = −I2 and g−1 =

(
0 −1
1 0

)
and h−1 =

(
−i 0
0 i

)
. We have

g−1hg =

(
0 i
i 0

)
g =

(
−i 0
0 i

)
= h3. Similarly h−1gh = g3. So we get φ : G → H, since |g| = 4 and h /∈ 〈g〉,

|H| > 4, since |H| | |G| |8 we must have |G| = |H| = 8, so θ is an isomorphism. This group is called the quaternion
Q8.

It can be shown that (R1),(R2),(R3) remain true after processing coincides. So Theorem 5.2 is still true.
We have not discussed how we can decide which new de�nition to make. By hand the natural choice is to �ll

small gaps in tables to get deductions. But this can result in long relations being ignored, which could be bad.
There are two main systematic strategies used in programming.

1. Choose the �rst i ∈ Ω for which ia is unde�ned for some a ∈ A = X ∪ X−1 and de�ne it. This means we
de�ne cosets Hai is order of increasing ai in the lenlex order.
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2. Go through relator tables in order �lling in gaps as you go (even for long gaps)

Generally 1. is better for work by hand. Also 2. leads to many more coincidences, but it is easier to program and
runs fast on computers for routine examples. Another advantage of 2. is that each row of each relator table only
needs to be scanned once while with one 1. need to keep revisiting row. It is important that strategy satis�es

(R4) ∀i ∈ Ω, a ∈ A, ia will eventually be de�ned.

(R4) is satis�ed with 1 but not necessarily with 2 so we must occasionally use 1 (xx−1, x−1x)

Theorem 5.3. If |G : H| is �nite and de�nition strategy satis�es (R4) then it will eventually �nish.

Proof. With a coincidence i = j, i > j meaning Hai = Haj , we eliminate larger number i, so numbers in Ω
representing Hai can only decrease so must eventually stabilise as Hak. From then on, k ∈ Ω and remains there.

Let Ω be the set of stabilised numbers in Ω. (Note: We have no way of knowing during the run whether a
number is in Ω. It is in Ω if it would not change any more however long the process ran.)

Case 1. Ω is �nite. Then once all elements that will ever be in Ω are in Ω, then Ω stabilise. By (R4) eventually
all ia are de�ned and in Ω, with i ∈ Ω, a ∈ X. At that point, Ω = Ω (since all elements of Ω can be reached by
de�nitions from cosets) and the process stops

Case 2. Ω is in�nite. It is still true that ia are eventually de�ned and in Ω for all i ∈ Ω, a ∈ A by (R4). (R1), (R2),
(R3) still all hold. So Theorem 5.2 applies to action of G on Ω, so this action is equivalent to coset action. Hence
|Ω| = |G : H| contradicting |G : H| �nite.
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6 Presentation of Subgroups

6.1 Digression

De�nition 6.1. For g, h ∈ G, we de�ne the commutator of g, h to be [g, h] = g−1h−1gh.

Note that [g, h] = 1 if and only if gh = hg. Also [g, h]−1 = [h, g].

De�nition 6.2. The Commutator Subgroup (orDerived Group) ofG denoted [G,G] (orG′) is the group 〈[g, h]|g, h ∈ G〉.
i.e., the subgroup of G generated by the commutators.

There exists G where not all elements of [G,G] are commutators, for example in the free group on a, b, c, d we
have [a, b][c, d] is not a commutator.

De�nition 6.3. A subgroup H of G is characteristic if α(H) = H ∀α ∈ Aut(G) (write HcharG)

Since for g ∈ G the map cg : G→ G de�ned by h 7→ g−1hg is in Aut(G), we have HcharG implies H CG.
Note that for α ∈ Aut(G) we have α([g, h]) = [α(g), α(h)]. So α permutes the set of commutators so [G,G]charG

(and hence [G,G] CG).
We have G/[G,G] is abelian since g, h ∈ G, [g, h] ∈ [G,G] so [g, h] = 1 in G/[G,G].

Theorem 6.4. For any N CG, we have G/N is abelian if and only if [G,G] ≤ N

Proof. We have

G/N abelian ⇐⇒ [gN, hN ] = 1 ∀g, h ∈ G
⇐⇒ [g, h] ∈ N ∀g, h ∈ G
⇐⇒ 〈[g, h]|g, h ∈ G〉 ≤ N
= [G,G]

Proposition 6.5. Let G = 〈X|R〉, then G/[G,G] ∼= 〈C|R ∪ C〉 where C = {[x, y]|x, y ∈ X}

Proof. Let F be free on X, N =
〈
RF
〉
,M =

〈
(R ∪ C)F

〉
. So G = F/N and let G = 〈X|R ∪ C〉 = F/M . Since

[x, y] ∈M ∀x, y ∈ X the generators of G all commutes. Hence G is abelian. By the third isomorphism theorem we
have

G = F/M ∼=
F/N

M/N
=

G

M/N

which is abelian. So [G,G] ≤M/N .
M =

〈
g−1kg|g ∈ H, k ∈ R ∪ C

〉
for k ∈ R we have g−1kg ∈ N . So M/N is generated by the elements g−1kgN ,

g ∈ F, k ∈ C. So g−1kg is a commutator, hence so is g−1kgN . So M/N is generated by commutators, hence
M/N ≤ [G,G].

Hence M/N = [G,G], and so G/[G,G] ∼= G/(M/N) ∼= G.

Example. If G =
〈
x, y|x2, y3, (xy)6

〉
, then G/[G,G] =

〈
x, y|x2, y3, (xy)6, [x, y]

〉
.

6.2 Presentation of subgroups

Let G = 〈X|R〉 , H = 〈Y 〉 with X,R,H, |G : H| all �nite. We describe the Reidemeister - Schreier algorithm to
derive a presentation of H. Recall, let U be a Schreier Transversal of H in G, u ∈ G, u =coset representation of u.
Then Z = {uxux−1|u ∈ U, x ∈ X,ux 6= ux} is a Schreier Generator of H.

This method gives presentation of H with generators of Z. A variant gives a presentation on user supplied
generating set Y , this is more complicated.

The method requires coset representation of G on right cosets of H. Theorem 5.2 says that coset enumeration
gives this. But in our �rst example, we just work it out without coset enumeration. We describe the process while
working through the example.
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Example. Let G =
〈
x, y|x2, y3, (xy)6

〉
= D(2, 3, 6). We de�ne H = [G : G], as we saw before G/H ∼=〈

x, y|x2, y3, (xy)6, xy = yx
〉
. InG/H the relator (xy)6 = x6y6 = 1, so it is redundant. SoG/H ∼=

〈
x, y|x2, y3, xy = yx

〉 ∼=
C2 ×C3

∼= C6 by Proposition 4.10. So |G : H| = 6. We will write down the coset action ( which is the same as the
regular representation of G/H).

De�ne θ : G → Sym(6) by θ(x) = (1, 2)(3, 4)(5, 6) and θ(y) = (1, 3, 5)(2, 4, 6). [We use the facts that |θ(x)| =
2, |θ(y)| = 3, θ(x) and θ(y) �xes no points, and the fact θ(x)θ(y) = θ(y)θ(x)] So we have θ(xy) = (1, 4, 5, 2, 3, 6),
θ(xy)4 = θ(y), θ(xy)5 = θ(x). So im(θ) = 〈θ(xy)〉, hence | im(θ)| = 6. Since it is abelian we have G/ ker(θ) ∼= im(θ),
so [G : G] ≤ ker(θ). Hence |G/H| = |G/ ker(θ)| = 6, so ker(θ) = H.

Exercise. Show θ is equivalent to coset representation on cosets of H

Write action of θ down as a table:
x y x−1 y−1

1 2 3 2 5
2 1 4 1 6
3 4 5 4 1
4 3 6 3 2
5 6 1 6 3
6 5 2 5 4

Scan the rows, and underline new numbers, regard the underline of numbers as de�nitions of these numbers.
(Its important to do this even if you have de�nitions already from coset enumerations, since otherwise might not
get Schreier transversal). So we have the de�nitions: 1x = 2, 1y = 3, 1y−1 = 5, 2y = 4 and 2y−1 = 6. We are also
going to underline (twice) the inverse of the de�nitions:

x y x−1 y−1

1 2 3 2 5
2 1 4 1 6

3 4 5 4 1

4 3 6 3 2

5 6 1 6 3

6 5 2 5 4
For the other entries, such as 2x = 1, we get associated Schreier generators. Things of the entries are of the

from ux = ux, Schreier generators uxux−1. Call these a, b, c, . . . so that uxux−1 = a implies ux = aux. So 2x = 1
becomes 2x = a · 1, with a a Schreier generator.

x y x−1 y−1

1 2 3 2 5
2 a1 4 1 6

3 b4 c5 4 1

4 d3 e6 3 2

5 f6 1 6 3

6 g5 2 5 4

So we have {a, b, c, d, e, f, g} = Z. Recall that Z−1 = {ux−1ux−1
−1
|u ∈ U, x ∈ X}, so we can �ll these in. For

example 2x = a1 implies 1x−1 = a−12.
x y x−1 y−1

1 2 3 a−12 5
2 a1 4 1 6

3 b4 c5 d−14 1

4 d3 e6 b−13 2

5 f6 1 g−16 c−13

6 g5 2 f−15 e−14
Now all entries are either underlined or have a letter.

Theorem 6.6. Let G = 〈X|R〉 = F/N with F free on X and N =
〈
RF
〉
. Let H = E/N ≤ G. Let U be a Schreier

Transversal of E in F (or equivalently of H in G, since we are using the same letters x ∈ X to denote elements of
G and F ). Then N =

〈
SE
〉
where S = {uwu−1|u ∈ U,w ∈ R} (so |S| = |G : H| × |R|}.

Proof. N =
〈
RF
〉
, with RF = {gwg−1|g ∈ F,w ∈ R}. Each g =F hu with h ∈ E, u ∈ U . So RF =

{h(uwu−1)h−1|h ∈ E,w ∈ R, u ∈ U} = SE . So N =
〈
RF
〉

=
〈
SE
〉
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Corollary 6.7. Let Y be the set of Schreier generators of H in G (or equivalently of E in F ). Then H ∼= 〈Y |S(Y )〉
where S(Y ) is the set S = {uwu−1|u ∈ U,w ∈ R}, but rewritten as words in (Y ∪ Y −1)∗.

Idea of Proof. E is free on Y by Theorem 3.12, and N =
〈
SE
〉
by the previous theorem. So 〈Y |S(Y )〉 is a

presentation of H = E/N . (Warning this is not a formal proof, because we've not justi�ed the change of generators
S to S(Y ). The correctness depends on U being a Schreier transversal, otherwise 〈Y |S(Y ) ∪ Y = X(Y (X))〉)

So looking at row u of relator table tracing it through using table gives us r
x x

1 2 a1
2 a1 a2
3 b4 bd3
4 d3 db4
5 f6 fg5
6 g6 gf6

relators from w = x2 are a, a, bd, db, fg, gf . If rows of table are cyclic conjugate then so are the resulting relators,
so only need one of them.

y y y

1 3 c5 c1
2 4 e6 e2

Note that the rest of the rows (3 to 6) are cyclic conjugates. The tracing for 1(xy)6 is as follows:
x y x y x y x

1 2 4 d3 dc5 dcf6 dcf2 dcfa1

y x y x y

defa1 dcfa3 dcfab4 dcfabe6 dcfabeg5
Note that all numbers arise in the above row, so all other rows gives cyclic conjugates of same relators. Usually

the resulting presentation of H can be simpli�ed

H = 〈a, b, c, e, d, f, g|a, bd, fg, c, e, dcfabeg〉
∼= 〈b, d, f, g|bd, fg, dfbg〉 eliminating relators on their own

∼=
〈
b, f |b−1fbf−1

〉
eliminating d, g using d = b−1, g = f−1

∼= 〈b, f |bf = fb〉
∼= Z2

So G = D(2, 3, 6) is in�nite, since [G : G] ∼= Z2 (and we say |G/[G : G]| = 6

Example. (Question 3 from 2011 Exam). Let G =
〈
a, b|a3, b5, (ab)2

〉
= D(3, 5, 2) and let H =

〈
b, ab−1ab2a−1

〉
.

• First we start with coset enumeration.

Subgroup Table:

b

1 = 1

a b−1 a b b a−1

1 2 5 6 = 5 2 1

Relator Tables:

a a a b b b b b a b a b

1 2 3 = 1 1 1 1 1 1 1 1 2 = 3 1 1

2 3 1 2 2 3 4 6 5 2 2 3 4 5 = 2

3 1 2 3 3 4 6 5 2 3 3 1 1 2 3

4 5 6 = 4 4 6 5 2 3 4 4 5 2 3 4

5 6 4 5 5 2 3 4 = 6 5 5 6 5 6 5

6 4 5 6 6 5 2 3 4 6 6 4 6 4 6

And the Table of De�nitions and Deductions we made on the way:

De�nitions 1a = 2, 2a = 3 3b = 4, 4a = 5 5a = 6
Deductions 1b = 1 3a = 1, 2b = 3 5b = 2 6a = 4,6b = 5,4b = 6
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• Now we make a table to de�ne U and Y

a b a−1 b−1

1 2 t1 v−13 t−11
2 3 u3 1 x−15

3 v1 4 2 u−12

4 5 w6 y−16 3

5 6 x2 4 z−16

6 y4 z5 5 w−14

Call the Schreier generators, t, u, v, w, x, y, z.

• Now we trace the relators:

a a a

1 2 3 v1
4 5 6 y4

(No need to do 2, 3 as they appear in �rst row, and no need to do 5, 6 as they

appear in the second row)

b b b b b

1 t1 t21 t31 t41 t51
2 u3 u4 uw6 uwz5 uwzx2

(No need to do 3, 4, 5, 6 as they appear in the second

row)

a b a b

1 2 u3 uv1 uvt1
2 3 4 5 x2
5 6 z5 z6 z25
6 y4 yw6 ywy4 (yw)26

(No need to do 3, as 3a appears in the �rst row. 4a appears

in the second row, so ignore 4 as well)

Hence we have that

H ∼=
〈
t, u, v, w, x, y|v, y, t5, uvwzx, uvt, x, z2, (yw)2

〉
∼=

〈
t, u, w, z|t5, uwz, ut, z2, w2

〉
∼=

〈
t, w, z|t5, t−1wz, z2, w2

〉
∼=

〈
t, w|t5, w2, (w−1t)2

〉
∼=

〈
t, w|t5, w2, (wt)2

〉
∼= D(5, 2, 2)
∼= D10

So |H| = 10, and since |G : H| = 6 we have |G| = 60, hence D(2, 3, 5) is �nite. In fact D(2, 3, 5) ∼= A5
∼= PSL2(5).

Example. An example of computing presentation on given generators of subgroups (not examinable)
Let G =

〈
x, y|, x3, y5, (xy)2

〉
, and H =

〈
xy, x−1y−1xyx

〉
. Label generators of H, a = xy, b = x−1y−1xyx. For

this, keep a, b in tables while doing coset enumeration.
Generators:

x y x−1 y−1 x y x

1 2 = a1 1 3 4 = b4 b3 b1
Relators:

x x x y y y y y

1 2 3 = 1 1 b−14 b−13 b−15 = a−12 1

2 3 1 2 2 a1 ab−14 ab−13 ab−15 2

3 1 2 3 3 5 ba−12 b1 4 3

4 b4 b24 b34 4 3 5 ba−12 b1 4

5 ab−15 (ab−1)25 (ab−1)35 5 ba−12 b1 4 3 5

22



x y x y

1 2 a1 a2 a2 = 1

2 3 5 = ab−15 2

3 1 = b−14 4 3

4 b4 b3 b1 4

5 ab−15 2 3 5

De�nitions and Deductions:
De�nitions 1x = 2, 2x = 3 3y−1 = 4 3y = 5
Deductions 3x = 1,2y = a1 4x = b4, 1y = b−14 5y = ba−12,5x = ab−15
relators a2 = 1 b3 = 1, (ab−1)3

So we have H =
〈
a, b|a2, b3, (ab−1)3

〉 ∼= 〈a, b|a2, b3, (ab)3
〉

= D(2, 3, 3) which has order 12. So |G| = 60.
Dealing with coincidence with this method is much harder and has additional technicalities.

Proposition 6.8. Let G = 〈X|R〉 with X,R �nite and |R| < |X|, then G/[G,G] is in�nite and hence so is G.

Proof. Let C = 〈t〉 ,|t| = ∞ be the in�nite cyclic group. Consider a map θ : X → C, let X = {x1, . . . , xm},
θ(xi) = tλi for some λi ∈ Z. By the Fundamental Theorem, θ extends to θ : G → C if θ(r) = 1∀r ∈ R. Note
that θ(r) = 1∀r ∈ R if and only if the associated system of homogeneous linear equation in λ1, . . . , λn as solution
(for example if r = x2x

−1
1 x2

3x
3
2x
−1
1 then θ(r) = t−2λ1+4λ2+2λ3 , so θ(r) = 1 if and only if −2λ1 + 4λ2 + 2λ3 = 0).

If |X| < |R|, then we have fewer equations than variables, so by Linear Algebra, there exists a non-zero solutions
λ1, . . . , λm ∈ Q. Multiply by a constant to get a solution λi ∈ Z. So there exists a non-trivial homomorphism
θ : G → C with im(θ) ≤ C, so im(θ) is in�nite. So G/ ker(θ) is in�nite and abelian, hence [G,G] ≤ ker(θ), so
G/[G,G] is in�nite.

Lemma 6.9. Let H ≤ G, Ω = {Hg|g ∈ G}, coset action of G on Ω. Then for any g ∈ G, Hk ∈ Ω we have
(Hk)g = Hk if and only if g ∈ H. That is StabG(Hk) = H.

Proof. We have (Hk)g = Hk, if and only if, kgk−1 ∈ H, if and only if, g ∈ k−1Hk = H = Hkg since H CG.

Theorem 6.10. Let G = 〈x1, . . . , xr|wm1
1 , wm2

2 , . . . , wms
s 〉 where

∑s
i=1

1
mi
≤ r − 1. Assume also that there is a

group P and a homomorphism G→ P in which |θ(wi)| = mi for 1 ≤ i ≤ s. Then G is in�nite.

Proof. Assume im(θ) = P . If P is in�nite then G is clearly in�nite, so assume P is �nite
Let H = ker(θ) so |G : H| = n is �nite. Apply Reidemeister - Schreier to get H = 〈E|S(Y )〉, where |E| =

(r − 1)n + 1 by Theorem 3.12. |S(Y )| = |G : H||R| = ns, so |S(Y )| > |E|. By we can eliminate cyclic conjugates
form S(Y ). Consider row c for the relator table for wmi

i

wi . . . wi . . . wi

c = c1 v2c2 . . . vmi
cmi

vc1
so v is a relator. Since |θ(wi)| = mi by assumption, θ(wli) 6= 1 for l < mi, so w

l
i /∈ H for 1 ≤ l < mi . So by

Lemma 6.9, for any coset cj we have c
wl

i
j 6= cj for 1 ≤ l < mi. So in the row for c, the coset numbers c1, c2, . . . , cmi

are all di�erent, so these mi rows just give cyclic conjugates of relator v for c1. So we only need to keep n/mi of
relators from wmi

i . So can reduce to presentation of H with (r − 1)n + 1 generators n
∑s
i=1

1
mi

relators which by
assumption is less than n(r − 1). So by Proposition 6.8, we have H/[H,H] is in�nite, so G is in�nite.

Example. Let G = D(2, 4, 5) =
〈
x, y|x2, y4, (xy)5

〉
. We have 1

2 + 1
4 + 1

5 < 1, so to prove in�nite we need to
�nd θ : G → P . Can look for permutations, a = (1, 2), b = (2, 3, 4, 5) then ab = (1, 3, 4, 5, 2). So can take
P = 〈(1, 2), (2, 3, 4, 5)〉 = S5

Let G =
〈
x, y, z, |x3, y3, z3, (xy)3, (yz)3, (xz)3

〉
,then

∑
1
mi

= 2 ≤ 3 − 1. So for P , take P = 〈a, b, c〉 where
a = (1, 2, 3), b = (4, 5, 6) and c = (7, 8, 9). So G is in�nite.

6.3 The groups D(l,m, n)

The groups D(l,m, n) =
〈
x, y|xl, ym, (xy)n

〉
. Assume 2 ≤ l ≤ m ≤ n. Let G =

〈
a, b, c|a2, b2, c2, (ab)l, (bc)m, (ac)n

〉
.

The subgroup 〈ab, bc〉 has index 2 in G and is isomorphic to D(l,m, n) (easy proof with Reidemeister - Schreier). G
is a 3 generators Coxetor group and can be studied as re�ection groups. Take the triangular tessellation of �plane�
(Euclidean, elliptic or hyperbolic) using triangles with angles π/l, π/m, π/n. Then a, b, c are re�ections in sides of some
�xed triangle. It can be proved that group generated by a, b, c is isomorphic to group G de�ned by presentation.
The three cases are:
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Elliptic Case When 1/l + 1/m + 1/n > 1. The only cases are (2, 2, n) = D2n; (2, 3, 3) = A4; (2, 3, 4) = S4 and
(2, 3, 5) = A5. So they are all �nite. The plane is the surface of a sphere, so the tessellation is �nite. (For
picture look at Triangle Groups)

Euclidean Case When 1/l+ 1/m+ 1/n = 1. This is the �normal� plane and the only cases are (3, 3, 3), (2, 4, 4) and
(2, 3, 6). The groups act regularly (transitive, trivial stabiliser) on triangles

Hyperbolic Case When 1/l + 1/m + 1/n < 1. The plane is the hyperbolic plane.

So it is not hard to prove (using some hyperbolic geometry) that D(l,m, n) is in�nite if and only if 1/l+1/m+1/n ≤ 1.
But we will prove this algebraically. We have already considered all 1/l + 1/m + 1/n > 1 cases as examples.

Theorem 6.11. D(l,m, n) is in�nite when 1/l + 1/m + 1/n ≤ 1.

Proof. By Theorem 6.10, it is enough to �nd a group P containing elements x, y with |x| = l, |y| = m and |xy| = n.
We can always �nd �nite permutation with these orders. For example, with l = 5,m = 7and n = 9 we can take
x = (1, 2, 3, 4, 5), y = (3, 4, 5, 6, 7, 8, 9) then xy = (1, 2, 4, 6, 7, 8, 9, 3, 5). It is hard to describe in general this process.

In fact we construct P as a quotient group of matrices. Let K be a �eld of characteristic not 2. Let SL2(K)
be as usual the multiplicative group of 2 × 2 invertible matrices with entries in K and determinant 1. Let Z =

{
(

1 0
0 1

)
,

(
−1 0
0 −1

)
}, note 1 6= −1 since char(K) 6= 2. Then Z C SL2(K) (in fact Z is the centre of SL2(K).

De�ne PSL2(K) = SL2(K)/Z.

Lemma 6.12.

(
−1 0
0 −1

)
is the only element of order 2 in SL2(K)

Proof. Let

(
a b
c d

)
= A with ord(A) = 2. Then A2 = I implies a2 + bc = bc + d2 = 1, so b(a + d) = c(a + d) = 0

hence either b = c = 0 or a + d = 0. If a + d = 0, then d = −a, but det(A) = ab − bc = 1 implies −a2 − bc = 1
contradicting a2 + bc = 1 (using 1 6= −1). So b = c = 0 and hence a2 = 1 = d2, hence either a = d = 1 or
a = d = −1

Lemma 6.13. If A ∈ SL2(K) with ord(A) = 2r for some r ≥ 1 then order of AZ in PSL2(K) is r

Proof. Since ord(A) = 2r then ord(Ar) = 2. So Ar =

(
−1 0
0 −1

)
∈ Z and As /∈ Z for 1 ≤ s < r, so the result

follows.

Let A =

(
a b
c d

)
∈ S, then Tr(A) = a + d and the characteristic polynomial of A = (a − x)(d − x) − bc =

x2 − (a+ d)x+ (ad− bc) = x2 − Tr(A) + 1. So when Tr(A) 6= ±2 we have distinct eigenvalues.

Lemma 6.14. Let A,B ∈ S and Tr(A) = Tr(B) 6= ±2. Then ord(A) = ord(B)

Proof. Now Tr(A) = Tr(B) implies A and B have the same characteristic polynomial and eigenvalues (possibly in
an extension �eld L of K) are distinct, so by Linear Algebra, A,B are similar, i.e., there exists P ∈ SL2(L) such
that P−1AP = B. So A,B are conjugate in SL2(L). So ord(A) = ord(B).

Lemma 6.15. For all l,m, n ≥ 2 and assume that K contains primitive (2l)th, (2m)th and (2n)th root of unity.
Then there exists A,B ∈ S with ord(A) = 2l, ord(B) = 2m and ord(AB) = 2n.

Proof. Let λ, µ be primitive (2l)th and (2m)th roots of unity respective. Since 2l, 2m ≥ 4 we have λ+ λ′ 6= ±2 and

µ+ µ−1 6= ±2. (Note λ root of unity and λ+ λ−1 = ±2 then λ = ±1). So let A =

(
λ 0
1 λ−1

)
and B =

(
µ α
0 µ−1

)
for some α. Then Tr(A) = λ + λ−1, so by Lemma 6.14 ord(A) = 2l. Similarly ord(B) = 2m for any α ∈ K. Now

AB =

(
λµ λα
µ α+ µ−1λ−1

)
. Let ν be a primitive (2n)th root of unity. By Lemma 6.14 if Tr(AB) = ν + ν−1, then

ord(AB) = 2n. So we just choose α = ν + ν−1 − λµ− λ−1µ−1.

Now by Lemma 6.13, in PSL2(K) element AZ,BZ,ABZ = (AZ)(BZ) have orders l,m, n. So we have the
required group P and Theorem 6.11 follows from Theorem 6.10.
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If we choose K = C, then 〈AZ,BZ〉 will usually be in�nite. Can we �nd a �nite group P with elements α, β.

Theorem 6.16. Let l,m, n ≥ 2, then there exists a �nite group P , with α, β ∈ P and |α| = l, |β| = m, |αβ| = n.

Proof. To prove this we just need a �nite �eld K, such that charK 6= 2 and containing primitive (2l)th, (2m)th and
(2n)th root of unity. Recall that for each prime power q = pn, there exists a unique �nite �eld Fq of order q with
characteristic p, and the multiplicative group Fq \ {0} is cyclic of order q − 1. So Fq will have the required roots of
unity if and only if 2l, 2m, 2n divides q− 1. By Theorem of Dirichlet (from Number Theory), there exists in�nitely
many primes p ≡ 1 mod 2lmn. But we don't actually need this theorem, if we choose any odd prime p, coprime
to 2lmn and let e be the order of p in U(2lmn) (unit group), then pe ≡ 1 mod 2lmn. So choose q = pe.
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7 Baumslaq - Solitar Groups

Let G(m,n) =
〈
x, y|y−1xmy = xn

〉
, m,n 6= 0. G(2, 3) was the �rst example (1962) of a �nitely generated non-

Hop�an group, i.e., there exists 1 6= N C G with G/N ∼= G. Easy to �nd non-�nitely generated example. The
groups with m = 1 have an easier structure. So we will consider those �rst. Note that the case m = n = 1 is the
free abelian group, so we assume n > 1.

Consider G = (1, n) =
〈
x, y|y−1xy = xn

〉
. De�ne xr = y−rxyr for any r ∈ Z (so x0 = x and x1 = xn).

Lemma 7.1. We have xnr = xr+1 for all r ∈ Z. More generally xn
k

r = xr+k, k ≥ 0.

Proof. xnr = (y−rxyr)n = y−rxnyr = y−ry−1xyyr = xr+1.
Second statement is by induction on k. So xr = xn

r

. But not x−1 = yxy−1 is not a power of x.

Let N = 〈xr|r ∈ Z〉 .

Corollary 7.2. N is abelian.

Proof. If s > r, then xs is a power of xr, so [xr, xs] = 1.

Corollary 7.3. N =
〈
xG
〉
CG

Proof. Recall
〈
xG
〉

=
〈
g−1xg|g ∈ G

〉
. For any r, xr = y−rxyr ∈

〈
xG
〉
, so N = 〈xr〉 ≤

〈
xG
〉
.

For the other direction, we need to prove that for all g ∈ G, we have g−1xg is a product of the xr . Write g as
a word in x±1, y±1. We do a prove by induction on length of the word.

If Length is zero, then g is the identity, so g−1xg = x = x0

Let g = wa with a ∈ {x±1,y±1}. Then g−1xg = a−1(w−1xw)a , which by induction is a−1(xr1 . . . xrk)a. If
a = x±1 then a−1xra = xr for all r, hence g

−1xg = w−1xw and we are done. If a = y±1, then y−1xry = xr+1 and
yxey

−1 = xr−1 , so we still get g−1xg = product of xr.

Now G/N = G/
〈
xG
〉
, which is what we get if we add relator x to presentation of G. That is G/

〈
xG
〉 ∼=〈

x, y|y−1xy = xn, x = 1
〉 ∼= 〈y| 〉 in�nite cyclic. So we haveN is abelian (but not �nitely generated) and G/N in�nite

cyclic, so G is metabelian group. We need a norm form for group elements. Using xry = yxr+1, xry
−1 = y−1xr−1

we can move y, y−1 to the left of a word to get in the form g = ykx±1
r1 x

±1
r2 . . . . Since xs is a power of xr for each

s > r, each xri is a power of xr with r = min ri. So we get g = ykxsr for some s ∈ Z. Since xnr = xr+1 we can
assume that n - s.

Example. Let n = 3, g = yxyxy−1 = y x0y︸︷︷︸ x0y︸︷︷︸ = yy x1y
−1︸ ︷︷ ︸x−1 = yyy−1x0x−1 = yx4

−1.

Proposition 7.4. Each g ∈ G has a unique expression as ykxsr with k, r, s ∈ Z and n - s.

Proof. Let H = GL2(Q) (= multiplicative group of 2× 2 invertible matrices with entries in Q)

De�ne θ : {x, y} → H by θ(x) =

(
1 0
1 1

)
and θ(y) =

(
n 0
0 1

)
. Then

θ(y−1xy) =

(
1/n 0
0 1

)(
1 0
1 1

)(
n 0
0 1

)
=

(
1/n 0
1 1

)(
n 0
0 1

)
=

(
1 0
n 1

)
= θ(x)n

So by the Fundamental Theorem, θ extends to a homomorphism θ : G→ H.
Now

θ(xr) = θ(y−rxyr)

=

(
n−r 0

0 1

)(
1 0
1 1

)(
nr 0
0 1

)
=

(
1 0
nr 1

)
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So

θ(ykxsr) =

(
n 0
0 1

)k (
1 0
nr 1

)s
=

(
nk 0
0 1

)(
1 0
snr 1

)
=

(
nk 0
snr 1

)
So for distinct r, k, s with s - n, the distinct elements ykxsr have distinct images under θ.

Note θ(N) is generated by θ(xr) =

{(
1 0
nr 1

)
|r ∈ Z

}
=

{(
1 0
snr 1

)
|r, s ∈ Z

}
which is isomorphic to the

subgroup {snr|s ∈ Z, r ∈ Z} of (Q,+), which is the set of rationals a
b such that primes dividing b are those dividing

n.
Now we move onto the general case G(m,n) with m,n ≥ 2. We still have θ : G → GL2(Q) de�ned by

θ(x) =

(
1 0
1 1

)
, θ(y) =

(
n/m 0
0 1

)
, but θ is not a monomorphism.

Digression HNN (Higman, Neumann, Neumann)extensions

Let H = 〈X|R〉 be a group and 〈z1, . . . , zk〉 , 〈z′1, . . . , z′k〉 be isomorphic subgroups of H with isomorphic zi 7→ x′i.
The associated HNN extension is G =

〈
X, y|R, y−1ziy = z′i

〉
. It can be proved for example that: The natural map

H → G de�ned by X → X is a monomorphism.
G(m,n) is HNN extension, z1 = xm, z′1 = xn so 〈z1〉 , 〈z′1〉 are both in�nite cyclic, and H = 〈x|〉. HNN are used

in proof of unsolvability of word problem for group presentations. Also used for constructing examples with strange
properties. Such as in�nite groups in which all non-identity elements are conjugate.

We look for a normal form for group elements in G(m,n). (This generalises easily to arbitrary HNN extensions).
We still use xmy = yxn and xny−1 = y−1xm to move y, y−1 to the left whenever possible. In a subword xky, we
write k = t + mu with 0 ≤ t < m. Then xky = xt+muy = xtyxnu. Similarly for xky−1 we can write k = t + nu
with 0 ≤ t < n and get xky−1 = xty−1xmu. So doing this as much as possible brings the word into the form
g = xt1yu1 . . . xtryurxv where:

1. ti, ui, v, r ∈ Z and r > 0

2. ti 6= 0 for all i > 1 and t1 = 0 if r = 0

3. ui 6= 0 for all i

4. ui > 0 then 0 ≤ ti < m

5. ui < 0 then 0 ≤ ti < n

Note that 1. ,2. and 3. we could do in any groups, while 4. and 5. we can impose using substitutions above arising
from group relators. We conjecture that this is a normal form for group elements.

Theorem 7.5. Each g ∈ G has unique expression satisfying 1. -5. above.

Remark. This method of proof can be used in general to prove that a conjectured normal form for a group really
is a normal form. Useful if there is no representation of the group that can be used. We construct a representation
as group of permutations of set of normal forms, which will be equivalent to regular group action.

Proof. Let Ω be the set of words satisfying 1. -5. We construct an action of G on Ω . First want an action of
generators which should correspond to multiplying on the right. So for α ∈ Ω, a ∈ {x±1, y±1} we want αa to be the
normal form of αa.
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For α = xt1yu1 . . . xv as above, let β = xt1yu1 . . . xtr−1yur−1 or β = ε is r ≤ 1. Let t = tr, u = ur (with t = u = 0
if r = 0). So α = βxtyuxv, write v = am+ b, 0 ≤ b < m, and v = cn+ d,0 ≤ d < n, then we de�ne

αx = βxtyuxv+1

αx
−1

= βxtyuxv−1

αy =


βxtyuxbyxan b 6= 0

βxtyu+1xan b = 0, u 6= −1

βxt+an b = 0, u = −1

α−y =


βxtyuxdy−1xcm d 6= 0

βxtyu−1xcm d = 0, u 6= 1

βxt+cm d = 0, u = 1

We de�ned maps θ(a) : Ω → Ω for a ∈ {x±1, y±1}. To prove θ(a) ∈ Sym(Ω) (that is θ(a) is a bijection), we
prove that θ(x), θ(x−1) and θ(y), θ(y−1) are inverse maps. This is clear in the case θ(x), θ(x−1). So we prove

θ(y)θ(y−1) = IΩ, i.e., (αy)y
−1

= α ∀α ∈ Ω. (The proof for (αy
−1

)y = α is similar). Consider 3 cases for αy

Case 1. This is Case 3 for (αy)y
−1

. We get (αy)y
−1

= βxtyuxb+am = α.

Case 2. This is Case 2 for (αy)y
−1

(or Case 3 if u = 0 with r = t = 0). In either case we have (αy)y
−1

= βxtyuxam =
α.

Case 3. If t 6= 0 this is Case 1 for (αy)y
−1

. Then we have (αy)y
−1

= βxty−1xam = α. If t = 0, then r = 1 so

α = y−1xam. Hence αy = xan and so (αy)y
−1

= y−1xam = α.

So we have that (αy)y
−1

= α in all cases (similarly for (αy
−1

)y = α). So θ(a) ∈ Sym(Ω) for a ∈ {x±1, y±1}. To
use the Fundamental Theorem to prove θ extends to an action on Ω, i.e., θ : G → Sym(Ω), we have to check
θ(y)−1θ(x)mθ(y) = θ(x)n, equivalently θ(x)mθ(y) = θ(y)θ(x)n. So we must check αx

my = αyx
n ∀α ∈ Ω . Again

split into the three cases for αy

Case 1. α = βxtyuxam+b. So αx
m

= βxtyux(a+1)m+b, so we are still in Case 1 for αx
my. Hence αx

my =
βxtyuxbyx(a+1)n = αyx

n

.

Case 2. α = βxtyuxam. So αx
m

= βxtyux(a+1)m and we are still in Case 2. Hence αx
my = βxtyu+1x(a+1)n = αyx

n

Case 3. α = βxty−1xam. So ax
m

= βxty−1x(a+1)m and we are still in Case 1. Hence αx
my = βxt+(a+1)n = αyx

n

.

So by the Fundamental Theorem, we do have an action of G on Ω. Let α be a normal form word. Then it is easy
to see that applying the group element α represented by α to ε ∈ Ω, we get εα = α . So distinct element α, β ∈ Ω
have distinct images under θ (since εα 6= β = εβ) we must have α 6=G β and we are done.

Same kind of proof can be used more generally to get normal form for HNN extensions.
Now let G = G(2, 3) =

〈
x, y|y−1x2y = x3

〉
and r = x−1y−1xyx−1y−1xyx−1 = [x, y]2x−1. We want to put r into

normal form. x−1y−1 = x2x−3y−1 = x2y−1x−2. So

r = x−1y−1xyx−1y−1xyx−1

= x2y−1x−1yx−1y−1xyx−1

= x2y−1xyx−4y−1xyx−1

= x2y−1xyx2y−1x−3yx−1

= x2y−1xyx2y−1xyx−7

De�nition 7.6. A group G is non-Hop�an if there exists 1 6= N CG such that G/N ∼= G

Theorem 7.7. G(2, 3) is non-Hop�an. (In general G(m,n) is non-Hop�an if and only if there exists primes p, q
with p|m,q|n and p - n, q - m)
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Proof. Let G = G(2, 3), r = [x, y]2x−1 = x2y−1xyx2y−1xyx−7 6= ε. So r 6=G 1. Let N =
〈
rG
〉
,so N 6= 1. To get

presentation of G/N , we just add r as extra relation to G. So

G/N ∼=
〈
x, y|y−1x2y = x3, x = [x, y]2

〉
∼=

〈
x, y, w|y−1x2y = x3, x = w2, w = [x, y]

〉
∼=

〈
y, w|y−1w4y = w6, w = [w2, y]︸ ︷︷ ︸

w=w−2y−1w2y

〉
∼=

〈
y, w|y−1w4y = w6, y−1w2y = w3

〉
∼=

〈
y, w, |y−1w2y = w3

〉
∼= G

since y−1w2y = w3 implies the relation y−1w4y = w6.
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8 The Burnside Problem

Burnside 1902: Given a �nitely generated group G with all elements having �nite order (i.e. G a torsion group), is
G �nite? (Certainly true for Abelian groups by the Fundamental Theorem of Finitely Generated Abelian Groups)

The general answer is no: In 1964 an example was given by Gringorchuk
Harder question is: Given a �nitely generated group G with all element having �nite order, and there is an

upper bound on the order, equivalently assume there exists n such that gn = 1 for all g ∈ G. Then is G �nite?
The answer is no for large enough n (n ≥ 8000?). The answer is yes for n = 2, 3, 4, 6. So there are still a lot of

n which is unknown for.
For large enough primes p, there exists Tarski Monsters: G = 〈x, y〉 with G in�nite and gp = 1 for all g ∈ G

and only subgroups of G are 〈g〉 for g ∈ G.

De�nition 8.1. We de�ne the Burnside Group B(r, n) as follows: B(r, n) = 〈x1, . . . , xr|wn = 1∀w ∈ A∗〉

The above question is now for which r, n is B(r, n) �nite. Not known for B(2, 5).
Restricted Burnside Problem: Is there a largest �nite group G with r generators and gn = 1∀g ∈ G. Equivalently

does B(r, n) have largest �nite quotient.
The answer is Yes, done by Zelmanov (1990?), there exists largest �nite quotient RB(r, n). In particular

|RB(2, 5)| = 534, |RB(3, 5)| = 52282 and |RB(2, 7)| = 720416.

Theorem 8.2. B(r, 2) is abelian of order 2r

Proof. Let G = B(r, 2), g, h ∈ G. Consider (gh)2 = ghgh = 1 but g2h2 = gghh = 1. So we get gh = hg and G is
abelian.

So G =
〈
x1, . . . , xr|x2

i , [xi, xj ]
〉 ∼= 〈x1〉 × · · · × 〈xr〉 ∼= Cr2 (by Proposition 4.9)

Cauchy's Theorem. If G is a �nite group p||G| with p prime, then G has an element of order p

Proof. Let S = {(x1, . . . , xp)|xi ∈ G, x1x2 . . . xp = 1}. Since xp = (x1 . . . xp−1)−1, we can choose x1, . . . , xp−1

arbitrarily so |S| = |G|p−1. Hence p||S|. Note (x1, . . . , xp) ∈ S implies (x2, x3, . . . , xp, x1) ∈ S. So we have an
action of cyclic group 〈g〉 = Cp on S with g · (x1, . . . , xp) = (x2, . . . , xp, x1). So orbit of action has size 1 or p (since
p is prime). Now an orbit of size 1 will be (x, x, . . . , x), xp = 1. There exists at least one of these x = 1. But since
p||S| we have p|number of orbit of size 1. So there exists x 6= 1 with xp = 1.

Theorem 8.3. B(r, 3) is �nite of order at most 33r−1

Proof. Induction on r.
For r = 1, we clearly have |B(1, 3)| = 3 = 331−1

Let r > 1. Note for g, h ∈ G = B(r, 3) we have (gh)3 = 1 implies ghg = h−1g−1h−1. Let H = 〈x1, . . . , xr−1〉 ≤
G. By induction, we know H is �nite with |H| ≤ 33r−2

. For any g = G let g = u1z
±1u2 . . . z

±1um with ui ∈ H and
z = xr (so z

3 = 1). Do this with the smallest m. If we had zuz we can turn that into u−1zu−1 which reduces m.
So we have that z and z−1 must alternate in the word. Note also that zuz−1vz = zuzzvz = u−1z−1u−1v−1z−1v−1

reduces m. So we have m ≤ 3 and hence G is �nite. Also uz−1vzw → uz−1vz−1z−1w → uv−1zv−1z−1w, so
elements of G are

• g = u1 (we have |H| of them)

• g = u1x
±1u2 (we have 2|H|2 of them)

• g = u1zu2z
−1u3 (we have |H|3 of them)

So |G| ≤ |H|+ 2|H|2 + |H|3. By Cauchy's Theorem, we have |H| = 3m for some m. So |G| ≤ 3m + 2 · 32m + 33m <

33m+1. But |G| is also a power of 3, so |G| ≤ 33m. By induction m ≤ 3r−2 so |G| ≤ 33r−1

.

In fact |B(r, 3)| = 3m(r) where m(r) = r+
(
r
2

)
+
(
r
3

)
= O(r3). The bounds agree for |B(1, 3)| = 3 and |B(2, 3)| =

33 . But |B(3, 3)| ≤ 39 when in fact |B(3, 3)| = 37.
Let G be a group, de�ne lower central series γi(G) as follows: γ1(G) = G and γr+1(G) = [G, γr(G)]. G is of

nilpotent class C if γC+1(G) = 1 (γC(G) 6= 1), so note that Class 1 means abelian. [Note G �nite and G nilpotent
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is the same as all Sylow subgroups normal). B(r, 3) is nilpotent of class 3. |γ2(G)| = 3(r
2)+(r

3), |γ3(G)| = 3(r
3) and

γ4(G) = 1.
We can also de�ne the derived series of G as follows, G(0) = G and G(r+1) = [G(r), G(r)]. We have G(r) ≤

γ(r+1)(G) for all r ≥ 0. G is soluble/solvable of derived length r if G(r+1) = 1 and G(r) 6= 1. Nilpotent groups are
soluble.

The groups B(r, 4) are �nite, order 2k(r) for some k(r). No know formula known fro k(r). WE have k(1) =
4, k(2) = 12, k(3) = 69, k(4) = 422 and k(5) = 2728. B(r, 4) is nilpotent and soluble but its derived length tends to
∞ as r tends to ∞.

Theorem 8.4. B(r, 4) is �nite for all r ≥ 1

This will follow from:

Theorem 8.5. Let G = 〈K, z〉 with K ≤ G, K �nite, z2 ∈ K and g4 = 1 for all g ∈ G. Then G is �nite.

Proof of Theorem8.4 (using Theorem 8.5). We do this by induction on r.
For r = 1, we have |B(1, 4)| = 4
Let r > 1, G = 〈x1, . . . , xr〉, let H = 〈x1, . . . , xr−1〉then H is �nite by induction. So let L =

〈
H,x2

r

〉
. Then

applying Theorem 8.5 with K = H and z = xr , we have L is �nite. Then apply Theorem 8.5 again to K = L and
z = xr to get that G is �nite.

Proof of Theorem 8.5. Since z2 ∈ K, we have z−2 ∈ K, since z−1 = zz−2 with z−2 ∈ K, we see that in a word we
can replace powers of z by z0 or z1 times an element of K. So for any g ∈ G we have g = u0zu1z . . . um−1zum with
ui ∈ K and u1, . . . , um−1 6= 1. Do this with m as small as possible.

Since (uix)4 = 1 for 1 ≤ i ≤ m−1 we have zuiz = u−1
i z−1u−1

i z−1u−1
i = u−1

i zu′zu−1
i for some u′ ∈ K. This does

not reduces m, but it replaces ui−1 by ui−1u
−1
i . Also g = . . . ui−1zuiz · · · = . . . ui−1u

−1
i zu′z . . . . So if ui−1 = ui

then we reduce m.
If m ≥ 3, we can replace um−2 by element in the set Um−2 = {um−2, um−2u

−1
m−1}. Since um−1 6= 1, elements of

Um−2 are distinct and non-trivial, since otherwise we could reduce m.
Similarly if m ≥ 4, we can replace um−3 by elements in the set Um−3 = {um−3, um−3t

−1, t ∈ Um−2}. All such
elements are distinct, since t are distinct and non-trivial so |Um−3| = 1 + |Um−2| = 2. None are trivial or we could
reduce m.

So by induction if m ≥ i + 1, we can replace um−i by any elements of Um−i = {um−i, um−it−1, t ∈ Um−i+1}.
By induction the elements are distinct and non-trivial. So |Um−i| = i.

So i = |Um−i| ≤ |K| − 1, putting i = m − 1, gives m ≤ |K|. So we have a bound on m. Hence G is �nite as

we get |G| ≤
∑|K|+i
i=0 |K|i, since there are at most |K|i+1 words with m = i. Using Geometric Series argument, we

have |G| ≤ |K||K|+2.

By working harder and using proven properties of Um−i, we can get |G| ≤ |K||K| when |K| ≥ 4. This gives a

very bad inaccurate bound on |B(r, 4)|, e.g., |B(2, 4)| ≤ (44)(44) = 22048 but |B(2, 4)| = 212.
B(2, 6) is �nite, but the proof is longer and works by induction by splitting z6 into square and a cube. Note

for n = 5, we cannot split up, zuz = u−1z−1u−1z−1u−1z−1u−1 which increases number of z, so no techniques for
reducing word length.

8.1 The Grigorchuk Group

First example of an in�nite, �nitely generated group in which all elements have a �nite order. All elements have
order 2k but exists such elements for all k. (So it doesn't prove any B(r, n) in�nite)
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Let T be in�nite rooted binary tree

◦ layer 0

•l •r layer 1 :21vertices

•ll •lr •rl •rr layer 2 :22vertices

•lll •llr •lrl •lrr layer 3 :22vertices

...

layern : 2nvertices

At every vertex label v, there is a copy Tv of T rotted at v.
An automorphism of T is a permutation of vertices that maps edges to edges. It must �x root vertex since this

has just two neighbours, all other have three. So it must �x the set {l, r} of neighbours of roots, i.e. �xes the set
of vertices at level 1 - so either �xes l and r or interchange them. By easy induction it �xes the set of vertices at
layer n for all n ≥ 0. Let idT be the identity map of T and πT interchanges the corresponding vertices in Tl and Tr

•

• oo // •
• aa ==• aa ==• •

i.e. πT = (l, r)(ll, rl)(lr, rr)(lll, rll) . . .
The group G to be constructed is de�ned as G = 〈a, b, c, d〉 with a = πT , b, c, d all �x l and r so can be de�ned

by specifying their actions on Tl and Tr which is as follows:
Tl Tr

b aTl
cTr

c aTl
dTr

d ITl
bTr

This is a recursive de�nition. More explicitly

• b
•b

•πTl
•c

•πTl
•d

•ITl
•b

•πTl

. . .

. . .

• c
•c

•πTl
•d

•ITl
•b

•πTl
•c

•πTl

. . .

. . .
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• d
•d

•ITl
•b

•πTl
•c

•πTl
•d

•ITl

. . .

. . .

So the recursive de�nition allows us to calculate actions of b, c, d on any vertex. Clearly a2 = 1. Since for b, c, d
all vertices lie in a subtree Tv, which action is aTv or idTv we must have b2 = c2 = d2 = 1. Furthermore these
actions of (b, cd) on Tv are (π, π, I), (π, I, π) or (I, π, π), we must have bc = d on all such subtrees. So bc = d, in
fact {1, b, c, d} is a Klein 4 groups and G = 〈a, b, c〉.

Consider aba: Tr → Tl →
a
Tl → Tr, so aba acts as aTr

on Tr.

action on Tl action on Tr image under φ

b a c (a, c)
c a d (a, d)
d id b (id, b)
aba c a (c, a)
aca d a (d, a)
ada b id (b, id)

Lemma 8.6. Let H = 〈b, c, d, aba, aca, ada〉 ,then |G : H| = 2. In fact H is the stabiliser Gl of l and r

Proof. Clearly H ≤ Gl, a /∈ Gl so a /∈ H, hence |G : H| > 1. So it is enough to prove G = H ∪ Ha. We use
Proposition 4.7. So G = 〈a, b, c〉 and S = H ∪Ha, g1 = 1, g2 = a

a b c

g1 a ∈ Ha b ∈ H c ∈ H
g2 1 ∈ H ab = (aba)a ∈ Ha ac = (aca)a ∈ Ha

So S = G.

De�ne a homomorphism φ : H → G×G by φ(h) = (action of h on Tl, action of h on Tr).

Proposition 8.7. G is in�nite

Proof. Let ρ1, ρ2 be projections of G×G onto its direct factors, then a, b, c, d ∈ im(ρ1 ◦ φ) (and also in im(ρ2 ◦ φ)).
If G was �nite, then im(ρ1 ◦ φ) ≥ |G|, but domain ρ1 ◦ φ = H and |H| < |G| which is a contradiction.

Proposition 8.8. Every g ∈ G has �nite order (a power of 2)

Proof. Let g ∈ G. Write g as a word of length k, so g = g1 . . . gk with gi ∈ {a, b, c, d}. We use induction on k
k = 0: g = 1 which is �ne
k = 1, then g = a, b, c or d and g2 = 1
k > 1: If bc is a subword, we can replace by d, similarly bd is replaced by c and cd by b. So a, and a letter in

{b, c, d} alternate in word. Since conjugate elements have same order, if g1 = gk then |g| = |g2 . . . gk−1| which is a
power of 2 by induction, so we can assume g1 6= gk. If for example g1 = b and gk = c, then bgb = g2 . . . gk−1d which
is shorter, hence we can assume a is at one end and b, c or d at the other, and by conjugating by a, we can assume
g1 = a. So g = ax1ax2 . . . axn where k = 2n and xi ∈ {b, c, d}.

Case 1. n is even: g = (ax1a)x2(ax3a)x4 . . . (axn−1a)xn. So g ∈ h. A product of generators of H, of length n, so
φ(g) = (w1, w2) where wi are words of length n < k = 2n. So by induction |w1|, |w2| are powers of 2, and hence so
|φ(g)|. But φ is clearly injective, so |g| is a power of 2.

Case 2. n is odd: (g /∈ H), then we have g2 = (ax1a)a2(ax3a)x4 . . . (axna)x1(ax2) . . . (axn−1a)xn. So each xi and
each axia occurs once in product. Hence |g2| = 4n with 2n bracketed terms in H, φ(g2) = (g1, g2), g1, g2 ∈ G, with
|g1| = |g2| = 2n. So cannot immediately apply induction to g1, g2. So we get three more cases
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1. If some xi = d, then φ(xi) = (1, b) and φ(axia) = (b, 1) so there is a 1 in words for g1, g2. So |g1|, |g2| < 2n by
induction have order power of 2, hence so does g2, hence so does g.

2. If some xi = c, then φ(xi) = (a, d) and φ(axia) = (d, a). So both g1, g2 involve a d and by case 2.1 we have
|g1|, |g2| are power of 2, so is g

3. All xi = b, in which case φ(xi) = (a, c), φ(axia) = (c, a) and by case 2.2 we have |g1||g2| are a power of 2, and
hence so is |g|

Example. Let g = ab, g2 = (aba)b, so φ(g2) = (c, a)(a, c) = (ca, ac)

g2 = •
ca ac

We have (ca)2 = c(aca) and φ((ca)2) = (a, d)(d, a)(ad, da), φ(ac)2 = (da, ad) so

g4 = •

(ca)2 (ca)2

= •

• •
ad da da ad

Finally φ(ad2) = φ((ada)d) = (b, 1)(1, b) = (b, b) = φ((da)2

g8 = •

• •
ad da da ad

= •

• •

• • • •
b b b b b b b b

Since b2 = 1, we have g16 = 1, so |g| = 16. Note b ∈ H, φ(b) = (a, c).

Theorem 8.9. G has elements of order 2nfor all n ≥ 0.

Proof. Let g = ab, let x = g2, φ(x) = (ca, ac). Let K =
〈
xG
〉

=
〈
g−1xg|g ∈ G

〉
. So xc = cxc ∈ K,φ(xc) = φ(cxc) =

(a, d)(ca, ac)(a, d) = (ac, dab).
xxc ∈ K, φ(xxc) = (ca, ac)(ac, dab) = (1, x). Conjugating by a we get (x, 1) ∈ K. Hence for all g ∈ G we have

h = •
g g′

∈ H

for some g′.
h−1xh = •

g−1xg 1

∈ K

, this is true for all g ∈ G. Since K =
〈
g−1xg|g ∈ G

〉
, we have

•
K 1

≤ K

and
•

• 1 ≤ K

K 1
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and
•

• 1

• 1

K 1

≤ K

etc.
We now prove K has elements of order 2n for all n ≥ 1. This is true for n = 0, 1, 2, 3 (|x| = 8). For induction,

let h ∈ K with |h| = 2n. By above
h = •

• 1

• 1

• 1

h 1

∈ K

, we saw that
g8 = •

• ?

• ?

• ?

a ?(c)

so
g8hg8 = •

• 1

• 1

• 1

• 1

1 h

so
(hg8)2 = hg8hg8 = •

• 1

• 1

• 1

• 1

h h

Since |h| = 2n by assumption, so |(hg8)| = 2n, so |hg8| = 2n+1 completing the induction.

Let G = 〈X〉, X �nite. Let g = a1a2 . . . an with ai ∈ A∗ = (X ∪X−1)∗. For g ∈ G, de�ne length of |g| to be
the minimum n with g = a1 . . . an, i.e., the length of the shortest word for g (it depends on X). De�ne the growth
function λG,X : Z≥0 → Z≥0 by λG,X(n) = |{g ∈ G||g| ≤ n}| (i.e., the ball of radius n around 1).

For free group of rank k, |x| = k, λGk
(n) = 1 + 2k +

∑n
i=2(2k)(2k − 1)i−1 = O((2k − 1)n), its an exponential

function of n. So G has exponential growth (this property is independent of X)
Let G = 〈g1, . . . , gk|[gi, gj ] = 1〉, free abelian group of rank k. Then λG,X(n) = O(nk), polynomial in n. We say

G has polynomial growth (again this property is independent of X)

Theorem 8.10 (Hard (Gromov) ). Let G be �nitely generated, G has polynomial growth if and only if there exists
H ≤ G with |G : H| �nite and H nilpotent.

Grigorchuk's group was the �rst example with intermediate growth, that is λG,X less than all polynomial in n,
but less than all exponential functions in n.

35


	Introduction
	Motivation
	Preliminaries
	Generators of Groups

	Free Groups
	Subgroups of Free Groups
	Presentation of Groups
	Tietze Transformations
	A Presentation of symmetric group Sn
	Presentation of (Q,+)

	Groups Acting on Sets (Recap)
	Coset Actions


	Coset Enumeration
	Presentation of Subgroups
	Digression
	Presentation of subgroups
	The groups D(l,m,n)

	Baumslaq - Solitar Groups
	The Burnside Problem
	The Grigorchuk Group


