Projective Resolutions for Smooth G-modules

Katerina Hristova

University of Warwick

ALSPAG, Noncommutative and Non-Associative Algebraic Structures in Physics and Geometry, 1 September 2017

For a locally compact totally disconnected group G which acts on a simplicial complex \mathcal{X} we investigate the following:

- the projective dimension of the category of smooth representations of *G*,
- explicit projective resolutions for each smooth G-module V,
- explicit finitely generated projective resolutions for each smooth *G*-module *V*.

過 ト イヨ ト イヨト

A representation (π, V) of G over \mathbb{F} is called *smooth* if for all $v \in V$ there exists a compact open subgroup K_v of G such that $\pi(k)v = v$ for all $k \in K_v$.

Denote by $\mathcal{M}(G)$ the category of all smooth representations of G. It is abelian and has enough projectives.

Theorem (Rumynin, H.)

Let G be a locally compact totally disconnected group. Suppose G acts on a simplicial complex $\mathcal{X} = (\mathcal{X}_n)$ such that its geometric realisation $|\mathcal{X}|$ is contractible of dimension n. Suppose further that the stabiliser G_x of any $x \in \mathcal{X}_k$ is open and compact. Then

proj. dim $(\mathcal{M}(G)) \leq n$.

- $SL_n(\mathbb{K})$, where \mathbb{K} is a non-archimedean local field, with the action on its Bruhat-Tits building \mathcal{BT} .
- Stac-Moody groups with the action on the Davis realisation D of their buildings.

・ 同 ト ・ 三 ト ・ 三 ト

For $V \in \mathcal{M}(G)$ the resolution looks like

$$0 \to X_n \otimes V \xrightarrow{d_n} X_{n-1} \otimes V \xrightarrow{d_{n-1}} \dots \xrightarrow{d_1} X_0 \otimes V \to V \to 0, \qquad (1)$$

where the X_i 's are the \mathbb{F} -vector spaces formally spanned by the elements of $\mathcal{X}_{(i)}$, the set of non-degenerate simplices in \mathcal{X}_i .

Problem: Even if V is f.g., the modules in (1) do not have to be f.g.

伺下 イヨト イヨト

Fix a locally compact totally disconnected group G which acts on a simplicial complex $\mathcal{X} = (\mathcal{X}_n)$. New objects are needed:

- an equivariant cosheaf on \mathcal{X} is a cosheaf $\mathcal{C} = (\mathcal{C}_x)$ of vector spaces on \mathcal{X} with additional data: a linear map $\mathbf{g}_x : \mathcal{C}_x \to \mathcal{C}_{\mathbf{g}x}$ for all $\mathbf{g} \in G$ and any simplex x, such that:
 - (i) $\mathbf{g}_{\mathbf{h}x} \circ \mathbf{h}_x = (\mathbf{g}\mathbf{h})_x$ for any $\mathbf{g}, \mathbf{h} \in G$ and a simplex x.

(ii) C_x is a smooth representation of the simplex stabiliser G_x for any simplex x.

(iii) The square
$$\begin{array}{c} \mathcal{C}_{x} & \xrightarrow{\mathbf{g}_{x}} & \mathcal{C}_{\mathbf{g}x} \\ & \downarrow^{\mathcal{C}(f,x)} & \downarrow^{\mathcal{C}(\mathbf{g}f,\mathbf{g}x)} \text{ is commutative for all } \mathbf{g} \in G, \\ & \mathcal{C}_{\mathcal{X}(f)x} \xrightarrow{\mathbf{g}_{\mathcal{X}(f)x}} & \mathcal{C}_{\mathcal{X}(\mathbf{g}f)\mathbf{g}x} \end{array}$$

simplices $x \in \mathcal{X}_n$ and nondecreasing maps $f : [m] \rightarrow [n]$.

▲撮 ▶ ▲ 注 ▶ ▲ 注 ▶ … 注

A system of subgroups \mathcal{G} of G acting on \mathcal{X} is a datum assigning a subgroup \mathcal{G}_{x} of the simplex stabiliser \mathcal{G}_{x} to each simplex $x \in \mathcal{X}_{n}$ such that $\mathbf{g}\mathcal{G}_{x}\mathbf{g}^{-1} = \mathcal{G}_{\mathbf{g}x}$ for all $\mathbf{g} \in G$ and $x \in \mathcal{X}_{n}$.

We call the system

- open if each \mathcal{G}_{x} is open in \mathcal{G}_{x} ,
- compact if each \mathcal{G}_{x} is compact,
- contravariant if for simplices x and y, such that $x \subseteq y$ we have $\mathcal{G}_x \subseteq \mathcal{G}_y$.

Suppose we are given a compact open subgroup \mathcal{G}_x for each vertex $x \in \mathcal{X}_0$ such that

(1)
$$\mathcal{G}_{\mathbf{g}_{X}} = \mathbf{g}\mathcal{G}_{X}\mathbf{g}^{-1}$$
 for all $\mathbf{g} \in G$, $x \in \mathcal{X}_{0}$ and

(2) $\mathcal{G}_{x}\mathcal{G}_{y} = \mathcal{G}_{y}\mathcal{G}_{x}$ if x and y are adjacent.

We can extend this to a compact open contravariant system of subgroups by defining:

$$\mathcal{G}_{x} := \mathcal{G}_{\mathcal{X}(f_{0}^{n})x} \mathcal{G}_{\mathcal{X}(f_{1}^{n})x} \cdots \mathcal{G}_{\mathcal{X}(f_{n}^{n})x} \text{ for all } x \in \mathcal{X}_{n}.$$

A system obtained by this construction is called *an exquisite system*.

Given a contravariant system of subgroups \mathcal{G} on G and $V \in \mathcal{M}(G)$ we define an equivariant cosheaf $\underbrace{\mathcal{V}^{\mathcal{G}}}_{x} = V^{\mathcal{G}_{x}}$ on $\mathcal{X} = (\mathcal{X}_{n})$ by

$$V^{\mathcal{G}_x} \coloneqq \{ v \in V \mid \mathbf{g} \cdot v = v \text{ for all } \mathbf{g} \in \mathcal{G}_x \}.$$

We call a finitely generated projective resolution of the form $C_{\bullet}(\mathcal{X}, \bigvee_{\sim}^{\mathcal{G}})$ a Schneider-Stuhler resolution.

Theorem (Rumynin, H.)

Let G be a locally compact totally disconnected group which acts smoothly on a tree \mathcal{T} such that $\mathcal{T}_{(k)}$, for k = 0, 1, has finitely many G-orbits. Then for an admissible $V \in \mathcal{M}(G)$ which is generated by invariants $V^{\mathcal{G}_x}$ for some $x \in \mathcal{T}_0$ and \mathcal{G} a geodesic exquisite system of subgroups, the following complex

$$0 \to C_1(\mathcal{T}, \underbrace{V^{\mathcal{G}}}_{\sim}) \xrightarrow{d_1} C_0(\mathcal{T}, \underbrace{V^{\mathcal{G}}}_{\sim}) \xrightarrow{w} V$$

is a Schneider-Stuhler resolution.

Conjecture (Rumynin, H.)

Let G be a locally compact totally disconnected group which acts smoothly on a simplicial set \mathcal{X}_{\bullet} of dimension n. Suppose that a face of a non-degenerate simplex in \mathcal{X}_{\bullet} is non-degenerate and $|\mathcal{X}|$ admits a CAT(0)-metric such that the faces are geodesic. Then for $V \in \mathcal{M}(G)$ with same assumptions as in Theorem 1 and \mathcal{G} a geodesic exquisite system of subgroups, the following complex

$$0 \to C_n(\mathcal{X}_{\bullet}, \overset{V\mathcal{G}}{\underset{\sim}{\sim}}) \xrightarrow{d_n} C_{n-1}(\mathcal{X}_{\bullet}, \overset{V\mathcal{G}}{\underset{\sim}{\sim}}) \xrightarrow{d_{n-1}} \dots \xrightarrow{d_1} C_0(\mathcal{X}_{\bullet}, \overset{V\mathcal{G}}{\underset{\sim}{\sim}}) \xrightarrow{w} V$$

is a Schneider-Stuhler resolution.