Bruhat-Tits Buildings

Katerina Hristova

University of Warwick

FRG Kac-Moody groups and L-functions, 27 October 2016

Katerina Hristova (University of Warwick)

Let (W, S) be a Coxeter system, where S is a set indexed by $\mathcal{I} = \{1, ..., n\}$. So W is of the form

$$W = \langle s_1, ..., s_n | (s_i)^2 = 1, (s_i s_j)^{m_{i,j}} = 1 \rangle$$
 for $m_{i,j} \ge 2$ when $i \ne j$.

For $S' \subseteq S$ we can define a group $W' = \langle S' \rangle$. Then (W', S') is in fact a Coxeter system and W' is called a *special subgroup* of W.

To every Coxeter system we can associate a simplicial complex $\Sigma(W, S)$ defined as follows:

Let \mathcal{P} be the set of all special cosets in W. Then the pair (\mathcal{P}, \leq) is a partially ordered set with \leq being the opposite of the inclusion relation. Simplices in $\Sigma(W, S)$ are given by chains in this poset.

Figure: The Coxeter complex for the group A_3

★ ∃ ►

Figure: The Coxeter complex for the group B_3

3 → 4 3

Chamber complex

A *chamber complex* is a simplicial complex such that all maximal simplices have the same dimension and every pair of such simplices can be connected by a gallery.

The maximal dimension simplices are called *chambers*.

Two chambers C and C' are called *adjacent* if they intersect in a codimension 1 face.

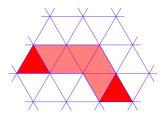


Figure: \tilde{A}_2

Every Coxeter complex is a chamber complex:

- All maximal simplices have the same dimension they are the singletons {w}, w ∈ W. These are the chambers. The singleton {1} is called the fundamental chamber.
- Every two chambers can be connected by a gallery.

Chamber complexes can be labelled by a set.

In particular, for a chamber complex C and a set \mathcal{I} , there exists a map $\lambda : \mathcal{I} \to C$ such that λ assigns an element of \mathcal{I} to each vertex of a chamber C.

▶ ▲ 国 ▶ ▲ 国 ▶

Defintion

A building Δ is a simplicial complex, which can be expressed as the union of subcomplexes Σ called *aparments* such that the following conditions are satisfied:

- (B0) Each apartment is a Coxeter complex.
- (B1) For every two simplices $\sigma, \tau \in \Delta$ there exists an apartment Σ containing both of them.
- (B2) If Σ and Σ' are apartments both containing τ and σ , then there exists and isomorphism $\phi : \Sigma \to \Sigma'$ which fixes τ and σ pointwise.

If A is a collection of subcomplexes satisfying the conditions above, then A is called *a system of apartments*.

A union of a system of apartments is again a system of apartments, therefore for every building Δ we can choose a maximal system of apartments, which is called *the complete system of apartments*.

- Every two apartments are isomorphic.
- Δ is a chamber complex.
- Δ is labellable. Moreover, the isomorphisms in the axiom (B2) can be chosen as label-preserving.

There exists a Coxeter matrix M associated to Δ . Choose a labelling of Δ by a set \mathcal{I} we can write a Coxeter matrix $M_{\Sigma} = (m_{i,j}), i, j \in \mathcal{I}$ for every apartment Σ in the following way:

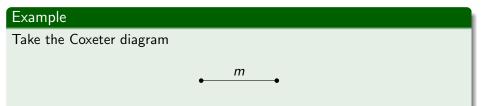
$$m_{i,j} = \operatorname{diam}(\operatorname{lk}_{\Sigma} A),$$

where A is any simplex in Σ of type $\mathcal{I} - \{i, j\}$. The result follows as all apartments are isomorphic.

(本部) ・ モト・モト 三日

Reconstructing buildings form Coxeter diagrams

Having a Coxeter matrix associated to $\Delta,$ we can talk about a Coxeter diagram associated to $\Delta.$



- For m = 2, every apartment is a quadrilateral.
- For m = 3, every apartment is a hexagon.
- For m = ∞, every apartment is a line and Δ is a tree with no endpoints. In fact, there is a result which states that every building of this type is a tree.

- it is a p + 1-regular tree.
- vertices are equivalence classes of \mathcal{O} -lattices [Λ] in \mathbb{Q}_p^2 .
- there is an edge between 2 vertices [Λ] and [Λ'] if $\pi\Lambda' \subsetneq \Lambda \subsetneq \Lambda'$.

Let us fix some notation:

- Δ a thick building.
- (Σ, C) respectively the fundamental apartment and the fundamental chamber of Δ.
- G a group which acts strongly transitively on Δ by type-preserving automorphisms.
- W a group acting on Σ by type-preserving automorphisms.
- S a set of reflections through the codim 1 faces of C. Note: (W, S) is a Coxeter system and Σ ≃ Σ(W, S).
- λ canonical labelling of $\Sigma(W, S)$ with S as the set of labels.

• Also take the following subgroups of G:

We immediately spot the following properties of B, N and T:

•
$$T \lhd N$$
.

- $W \cong N/T$.
- $T = B \cap N$.

• • = • • = •

Let $ch(\Delta)$ denote the set of chambers of Δ . Then we see that we have a set isomorphism:

 $\operatorname{ch}(\Delta) \cong G/B$ by $gC \mapsto gB$

★週 ▶ ★ 恵 ▶ ★ 恵 ▶ …

How does the adjacency of chambers transfer on the right?

Lemma

Two chambers gB and g'B are s-adjacent if and only if $g^{-1}g' \in P_s$, where P_s is the stabiliser of the face of gC of type $S - \{s\}$.

Voila: we have the chamber complex of Δ described only by a group-theoretic property!

The stabiliser P_s of a face of C of type $S - \{s\}$ can be written explicitly in terms of B:

$$P_s = B \cup BsB = B < s > B$$

In fact this can be generalised:

Lemma

The stabiliser $P_{S'}$ of a face of C of type S - S' has the form:

$$P_{S'} = B < S' > B = BW'B$$

There is a poset isomorphism between the set of subsets of S and the partially ordered set of subgroups of the form P'_S given by the obvious map.

In particular, this implies that Δ , as a poset, is isomorphic to the set of cosets of the P'_S 's.

▶ ▲ 唐 ▶ ▲ 唐 ▶ …

Need:

(BN1) $BwB \cdot BsB \subseteq BwB \cup BwsB$ for any $w \in W$ and $s \in S$. (BN2) $s^{-1}Bs \nsubseteq B$ for any $s \in S$.

Both axioms hold! In fact, (BN2) is saying in a group theoretic language that Δ is thick.

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思