REPRESENTATIONS OF COMPLETE KAC-MOODY GROUPS

KATERINA HRISTOVA, JOINT WITH DMITRIY RUMYNIN MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK

KAC-MOODY GROUPS

Let A be a generalised Cartan matrix. To any field \mathbb{K} and a root datum \mathcal{D} of type A one can combinatorially associate a Kac-Moody group $G_{\mathcal{D}}(\mathbb{K})$. A few topologies can be put on $G_{\mathcal{D}}(\mathbb{K})$. Taking completions, we obtain different types of **complete Kac-Moody groups**:

- Carbone-Garland completion G^{cg} with respect to the weight topology,
- Caprace-Rémy completion G^{cr} with respect to the building topology,
- Ronan-Rémy completion G^{rr} ,
- Capdeboscq-Rumynin completion G^{car} by putting a local pro-p topology,

which are connected by a sequence of continuous open homomorphisms:

$$G^{car} \rightarrow G^{cr} \rightarrow G^{cg} \rightarrow G^{rr}$$
.

Kac-Moody groups have (B, N)-pairs and Bruhat-Tits buildings. There are also **topological groups of Kac-Moody type** - a more general class of groups with a generalised (B, N)-pair structure, which resemble complete Kac-Moody groups [1].

SMOOTH REPRESENTATIONS

Throughout G is a locally compact totally disconnected topological group and $\mathbb F$ is a field of characteristic zero. We call a pair (π, V) a **smooth representation** of G if:

- (1) V is a vector space over $\mathbb F$ and $\pi:G\to \operatorname{Aut}_{\mathbb F}(V)$ is a homomorphism,
- (2) For every $v \in V$, there exists a compact open subgroup $K_v \leq G$, such that $\pi(k)v = v$, for all $k \in K_v$.

Smooth representations of a locally compact totally disconnected group form a category - $\mathcal{M}(G)$. It has some particularly nice properties:

- $\mathcal{M}(G)$ is abelian.
- $\mathcal{M}(G)$ has enough projectives.
- $\mathcal{M}(G)$ is Noetherian.

In particular, for each object in $\mathcal{M}(G)$ we can construct a projective resolution.

PROJECTIVE DIMENSION

Theorem 1. [1] Let G be a locally compact totally disconnected group acting on an n-dimensional simplicial complex (set) \mathcal{X}_{\bullet} with contractible geometric realisation $|\mathcal{X}|$. Suppose the stabilisers of non-degenerate simplices are compact and open in G. Then

$$\operatorname{proj.dim}(\mathcal{M}(G)) \leq n.$$

Let $(\pi, V) \in \mathcal{Ob}(\mathcal{M}(G))$. The explicit projective resolution of V looks like:

$$X_n \otimes V \to X_{n-1} \otimes V \to \cdots \to X_0 \otimes V \to V \to 0$$

with

$$X_k \stackrel{\cong}{\longleftarrow} \sum_{x \in \mathcal{X}_{(k)}(G)} \mathbb{F}G \underset{\mathbb{F}G_x}{\otimes} \mathbb{F}[x], \quad \alpha[g \cdot x] \longleftrightarrow g \otimes \alpha[x],$$

where X_k is the \mathbb{F} -space spanned by non-degenerate k-simplices, $\mathbb{F}[x]$ is the space spanned by the non-degenerate k-simplex x and $G_x \leq G$ is the stabiliser of x.

Corollary 2. [1] If G is a complete Kac-Moody group or a topological group of Kac-Moody type, then

proj. dim
$$\mathcal{M}(G) \le \sup_{J \in \mathcal{S}ph(S)} |J|$$
.

EQUIVARIANT COSHEAVES

For a locally compact totally disconnected group G acting on a simplicial set \mathcal{X}_{\bullet} we can form another interesting category - $Csh_G(\mathcal{X}_{\bullet})$, the category of **G-equivariant cosheaves on** \mathcal{X}_{\bullet} .

Definition 3. A G-equivariant cosheaf is a cosheaf C with an additional data: a linear map $g_x = g(C)_x : C_x \to C_{gx}$, for any $g \in G$ and any simplex x. This data satisfies three axioms:

- (1) $g_{hx} \circ h_x = (gh)_x$ for any $g, h \in G$ and a simplex x.
- (2) C_x is a smooth representation of G_x for any simplex x.
- (3) The square $\bigcup \mathcal{C}(f,x)$ $\bigcup \mathcal{C}(gf,gx)$ commutes, for all $\mathcal{C}_{\mathcal{X}(f)x} \xrightarrow{g_{\mathcal{X}(f)x}} \mathcal{C}_{\mathcal{X}(gf)gx}$

 $g \in G$, simplices $x \in \mathcal{X}_n$ and

nondecreasing maps $f:[m] \rightarrow [n]$.

LOCALIZATION

We have two functors:

$$\mathcal{L}: \mathcal{M}(G) \to \mathrm{Csh}_G(\mathcal{X}_{\bullet}), \ (\pi, V) \mapsto \underline{V}$$

and

$$\mathcal{H}: \mathrm{Csh}_G(\mathcal{X}_{\bullet}) \to \mathcal{M}(G), \ \mathcal{C} \mapsto H_0(\mathcal{X}_{\bullet}, \mathcal{C}).$$

Theorem 4. [1] Let Σ be a class of morphisms f in $Csh_G(\mathcal{X}_{\bullet})$, such that $\mathcal{H}(f)$ is an isomorphism. If $|\mathcal{X}|$ is connected, then

$$\mathcal{H}[\Sigma^{-1}]: \operatorname{Csh}_G(\mathcal{X}_{\bullet})[\Sigma^{-1}] \to \mathcal{M}(G)$$

is an equivalence of categories, where $\mathcal{H}[\Sigma^{-1}]$ is the functor induced from \mathcal{H} on the category of left fractions $\mathrm{Csh}_G(\mathcal{X}_{\bullet})[\Sigma^{-1}]$.

Conjecture 5. There is a quotient of categories

$$H_*: \mathcal{SM}(G) \to D^{co}(\mathcal{M}(G)),$$

where $D^{co}(\)$ is the coderived category and $\mathcal{SM}(G)$ is the category of simplicial representations of G.

HOMOLOGICAL DUALITY

The space of all locally constant, compactly supported functions $f:G\to \mathbb{F}$ with respect to the convolution product is an \mathbb{F} -algebra \mathscr{H}_G , called **the Hecke algebra of G**. An \mathscr{H}_G -module (M,\cdot) is called **smooth** if $\mathscr{H}_G\cdot M=M$. Denote the category of smooth \mathscr{H}_G -modules by $\mathscr{M}(\mathscr{H})$. There is an **equivalence** of categories:

$$\mathcal{M}(G) \cong \mathcal{M}(\mathscr{H}_G).$$

Theorem 6. [1] \mathcal{H}_G is a dualising bimodule.

Conjecture 7. [1] Let G be a topological group of Kac-Moody type with B compact open. For a simple module $M \in \mathcal{M}(G)^B$, its dual M^{\vee} is a simple module in $\mathcal{M}(G)^B$. Furthermore, when viewed as $\mathcal{H}_{B\backslash G/B}$ -bimodules, M and M^{\vee} are twists of each other under the Iwahori-Matsumoto involution, where $\mathcal{M}(G)^B$ is the full subcategory of $\mathcal{M}(G)$ consisting of smooth representations generated by their B-invariants and $\mathcal{H}_{B\backslash G/B}$ is the subalgebra of \mathcal{H}_G consisting of B-biinvariant functions.

REFERENCES

[1] K. Hristova, D. Rumynin, Kac-Moody groups and Cosheaves on Davis building, preprint, arXiv:1704.07880.