Equi-homogeneity

A.M. Henderson, E.J. Olson, J.C. Robinson, and N. Sharples

May 27, 2014

Abstract

In this paper we XYZ

1 Introduction

Let (X, d_X) be a metric space.

We adopt the notation $B_{\delta}(x)$ for the closed ball of radius δ with centre $x \in X$, and for brevity we refer to closed balls of radius δ as δ -balls.

1.1 Box-counting dimension

Throughout this paper we will use two quantities to describe the geometry of a set $F \subset X$: for each $\delta > 0$ we denote

- the minimum number of δ -balls with centres in F such that F is contained in their union by $N(F, \delta)$, and
- the maximum number of disjoint δ -balls with centres in F by $N'(F, \delta)$.

We say that $F \subset X$ is totally bounded if for all $\delta > 0$ the quantity $N(F, \delta) < \infty$, which is to say that F can be covered in finitely many balls of any radius. These apparently distinct quantities are in fact very closely related:

Lemma 1.1. Let $F \subset X$ be totally bounded. For all $\delta > 0$

$$N(F, 2\delta) \le N'(F, 2\delta) \le N(F, \delta).$$
(1)

Proof. Let $x_1, \ldots, x_{N'(F,\delta)} \in F$ be the centres of disjoint δ -balls. As each δ -ball $B_{\delta}(y)$ can cover at most one of the x_i , to cover F we need at least as many δ -balls are there are x_i , hence $N(F, \delta) \geq N'(F, \delta)$, which is the first inequality of (1).

Next, with the same points $\{x_i\}$ observe that for each $x \in F$ the distance $d_X(x, x_i) \leq 2\delta$ for some $i = 1, \ldots, N'(F, \delta)$, otherwise the additional closed ball $B_{\delta}(x)$ would be disjoint from each of the $B_{\delta}(x_i)$. Consequently, the balls $B_{2\delta}(x_i)$ cover the set F, hence $N(F, \delta) \leq N'(F, 2\delta)$, which is the second inequality of (1).

The familiar box-counting dimensions encode the scaling of these quantities as $\delta \to 0$.

Definition 1.2. For a totally bounded set $F \subset X$ the lower and upper boxcounting dimensions are defined by

$$\dim_{LB} F = \liminf_{\delta \to 0+} \frac{\log N(F, \delta)}{-\log \delta},$$
(2)

and
$$\dim_B F = \limsup_{\delta \to 0+} \frac{\log N(F, \delta)}{-\log \delta}$$
 (3)

respectively.

In light of the inequalities (1), replacing $N(F, \delta)$ with $N'(F, \delta)$ in the above gives an equivalent definition. The box-counting dimensions essentially capture the exponent $s \in \mathbb{R}^+$ for which $N(F, \delta) \sim \delta^{-s}$. More precisely, it follows from Definition 1.2 that for all $\delta_0 > 0$ and any $\varepsilon > 0$ there exists a constant $C \ge 1$ such that

$$C^{-1}\delta^{-\dim_{LB}F+\varepsilon} \le N(F,\delta) \le C\delta^{-\dim_{B}F-\varepsilon} \qquad \forall \ 0 < \delta \le \delta_0.$$
(4)

For some bounded sets F the bounds (4) also hold for $\varepsilon = 0$ giving precise control of the growth of $N(F, \delta)$. We distinguish this class of sets in the following definition:

Definition 1.3. We say that a bounded set $F \subset X$ attains its lower boxcounting dimension if for all $\delta_0 > 0$ there exists a positive constant $C \leq 0$ such that

$$N(F,\delta) \ge C\delta^{-\dim_{LB}F} \qquad for \ all \quad 0 < \delta < \delta_0.$$

Similarly, we say that F attains its upper box-counting dimension if for all $\delta_0 > 0$ there exists a constant $C \ge 1$ such that

$$N(F,\delta) \le C\delta^{-\dim_B F} \qquad \qquad \text{for all} \quad 0 < \delta < \delta_0$$

We remark that a similar distinction is made with regard to the Hausdorff dimension of sets: recall that the Hausdorff measures are a one-parameter family of measures, denoted \mathcal{H}^s with parameter $s \in \mathbb{R}^+$, and that for each set $F \subset \mathbb{R}^n$ there exists a value dim_H $F \in \mathbb{R}^+$, called the Hausdorff dimension of F, such that

$$\mathcal{H}^{s}(F) = \begin{cases} \infty & s < \dim_{H} F \\ 0 & s > \dim_{H} F. \end{cases}$$

For a set F to have Hausdorff dimension d it is sufficient, but not necessary, for the Hausdorff measure with parameter d to satisfy $0 < \mathcal{H}^d(F) < \infty$. Sets with this property are sometimes called d-sets (see, for example, [4] pp.32) and are distinguished as they have many convenient properties. For example, the Hausdorff dimension product formula $\dim_H (F \times G) \ge \dim_H F + \dim_H G$ was first proved for sets F and G in this restricted class (see Besicovitch & Moran [2]) before being extended to hold for all sets (see Howroyd [6]).

1.2 Homogeneity and the Assouad dimension

The Assouad dimension is a less familiar notion of dimension, in which we are concerned with 'local' coverings of a set F: for more details see Assouad [1], Bouligand [3], Luukkainen [8] Olson [9], or Robinson [13].

Definition 1.4. A set $F \subset X$ is s-homogeneous if for all $\delta_0 > 0$ there exists a constant C > 0 such that

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le C \left(\delta/\rho\right)^{s} \quad \forall \ \delta, \rho \quad with \quad 0 < \rho < \delta \le \delta_{0}.$$
(5)

Note that we do not require F to be bounded in order to be *s*-homogeneous, but minimally require each intersection $B_{\delta}(x) \cap F$ to be totally bounded. This trivially holds if X has *totally bounded balls*, which is to say that every ball $B_{\delta}(x) \subset X$ is totally bounded (for example, in Euclidean space $X = \mathbb{R}^n$).

The following technical lemma gives a relationship between the minimal size of covers of the set $B_{\delta}(x) \cap F$ for different length-scales, which will use in many of the subsequent proofs.

Lemma 1.5. Let $F \subset X$. For all $\delta, \rho, r > 0$ and each $x \in F$

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right) \leq N\left(B_{\delta}\left(x\right)\cap F,r\right)\sup_{x\in F}N\left(B_{r}\left(x\right)\cap F,\rho\right)$$

$$(6)$$

Proof. The only non-trivial case occurs when $\rho < r < \delta$. Further, if $M := N(B_{\delta}(x) \cap F, r) = \infty$ then there is nothing to prove. Assume that $M < \infty$ and let $x_1, \ldots, x_M \in F$ be the centres of the *r*-balls $B_r(x_j)$ that cover $B_{\delta}(x) \cap F$. Clearly

$$B_{\delta}(x) \cap F \subset \bigcup_{j=1}^{M} B_r(x_j) \cap F$$

 \mathbf{SO}

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right) \leq \sum_{j=1}^{M} N\left(B_{r}\left(x_{j}\right)\cap F,\rho\right)$$
$$\leq M \sup_{x\in F} N\left(B_{r}\left(x\right)\cap F,\rho\right)$$

which is precisely (6).

It will be useful to observe that in some cases s-homogeneity is equivalent to (5) holding only for some δ_0 , which is easier to check.

Lemma 1.6. If $F \subset X$ is totally bounded or X has totally bounded balls then $F \subset X$ is s-homogeneous if and only if there exist constants $C, \delta_1 > 0$ such that

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le C(\delta/\rho)^{s} \qquad \forall \ \delta, \rho \quad with \quad 0 < \rho < \delta \le \delta_{1}.$$
(7)

Proof. The 'if' direction is immediate from the definition of s-homogeneity. To prove the converse we let $\delta_0 > 0$ and $x \in F$ be arbitrary. If $\delta_0 \leq \delta_1$ then there is nothing to prove, so we assume that $\delta_0 > \delta_1$. Suppose δ, ρ lie in the range $0 < \rho < \delta_1 < \delta \leq \delta_0$. From Lemma 1.5 with $r = \delta_1$ we obtain

$$N(B_{\delta}(x) \cap F, \rho) \leq N(B_{\delta}(x) \cap F, \delta_{1}) \sup_{x \in F} N(B_{\delta_{1}}(x) \cap F, \rho)$$

$$\leq N(B_{\delta}(x) \cap F, \delta_{1}) C(\delta_{1}/\rho)^{s}$$

$$\leq N(B_{\delta}(x) \cap F, \delta_{1}) C(\delta/\rho)^{s}$$
(8)

which follows from (7) and the fact that $\delta > \delta_1$.

Now, if X has totally bounded balls then it follows from (8) that for $0 < \rho < \delta_1 < \delta \leq \delta_0$

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right) \leq N\left(B_{\delta_{0}}\left(0\right),\delta_{1}\right)C\left(\delta/\rho\right)^{s},$$

and trivially for $\delta_1 \leq \rho < \delta \leq \delta_0$ that

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right) \leq N\left(B_{\delta}\left(x\right),\rho\right) \leq N\left(B_{\delta_{0}}\left(x\right),\delta_{1}\right) \leq N\left(B_{\delta_{0}}\left(0\right),\delta_{1}\right)\left(\delta/\rho\right)^{s}$$

as $\delta/\rho > 1$. Consequently, with $C_{\delta_0} = N(B_{\delta_0}(0), \delta_1) \max(C, 1)$ we obtain

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F,\rho\right) \le C_{\delta_{0}}\left(\delta/\rho\right)^{s} \qquad \forall \ \delta,\rho \quad \text{with} \quad 0 < \rho < \delta \le \delta_{0},$$

which, as $\delta_0 > 0$ was arbitrary, is precisely that F is s-homogeneous.

Next, if $F \subset X$ is totally bounded then it follows from (8) that for $0 < \rho < \delta_1 < \delta \leq \delta_0$

$$N(B_{\delta}(x) \cap F, \rho) \leq N(F, \delta_1) C(\delta/\rho)^s$$

and again for $\delta_1 \leq \rho < \delta \leq \delta_0$ that

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right)\leq N\left(F,\delta_{1}\right)\left(\delta/\rho\right)^{s}$$

Consequently, the constant $C' = N(F, \delta_1) \max(C, 1)$ is sufficient to extend (7) to all $0 < \rho < \delta \leq \delta_0$, so we conclude that F is s-homogeneous.

Corollary 1.7. If $F \subset X$ is totally bounded then F is s-homogeneous if and only if there exists a constant C such that

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, \rho\right) \le C\left(\delta/\rho\right)^{s} \qquad \forall \, \delta, \rho \quad with \quad 0 < \rho < \delta.$$

Proof. The 'if' direction is immediate from the definition. Conversely, we see in the above proof that the constant C' does not depend upon the upper bound δ_0 , so the inequality is valid for all ρ, δ satisfying $0 < \rho < \delta$.

Definition 1.8. The Assound dimension of a set $F \subset X$ is defined by

$$\dim_A F := \inf \left\{ s \in \mathbb{R}^+ : F \text{ is } s \text{-homogeneous} \right\}$$

It is known that for a bounded set $F \subset \mathbb{R}^n$ the three notions of dimension that we have now introduced satisfy

$$\dim_{LB} F \le \dim_B F \le \dim_A F \tag{9}$$

(see, for example, Lemma 9.6 in Robinson [13]). The inequality (9) also holds for totally bounded subsets in general metric spaces.

Lemma 1.9. If $F \subset X$ is totally bounded then $\dim_B F \leq \dim_A F$.

Proof. Let $s > \dim_A F$ and let $x_1, \ldots, x_{N(F,1)}$ be the centres of balls of radius 1 that form a cover of F. For all $\rho < 1$

$$N(F,\rho) \le \sum_{j=1}^{N(F,1)} N(B_1(x_j) \cap F,\rho) \le N(F,1) \sup_{x \in F} N(B_1(x) \cap F,\rho) \le N(F,1) C(1/\rho)^s$$

for some C > 0, hence $\dim_B F \leq s$. As $s > \dim_A F$ was arbitrary we conclude that $\dim_B F \leq \dim_A F$.

An interesting example is given by the compact countable set $F_{\alpha} := \{n^{-\alpha}\}_{n \in \mathbb{N}} \cup \{0\} \subset \mathbb{R}$ with $\alpha > 0$ for which

$$\dim_{LB} F_{\alpha} = \dim_{B} F_{\alpha} = (1 + \alpha)^{-1}$$

but
$$\dim_{A} F_{\alpha} = 1.$$

(see Olson [9] and Example 13.4 in Robinson [12]).

2 Equi-homogeneity

From Definition 1.4 we see that homogeneity encodes the *maximum* size of a local optimal cover at a particular length-scale. However, the *minimal* size of a local optimal cover is not captured by homogeneity, and indeed this minimum size can scale very differently, as the following example illustrates:

Example 2.1. For each $\alpha > 0$ the set $F_{\alpha} := \{n^{-\alpha}\}_{n \in \mathbb{N}} \cup \{0\}$ has Assouad dimension equal to 1, so for all $\varepsilon > 0$

$$\sup_{x \in F_{\alpha}} N(B_{\delta}(x) \cap F_{\alpha}, \rho) \left(\delta/\rho\right)^{-(1-\varepsilon)}$$

is unbounded on δ, ρ with $0 < \rho < \delta$.

On the other hand $1 \in F_{\alpha}$ is an isolated point so

$$\inf_{x \in F_{\alpha}} N(B_{\delta}(x) \cap F_{\alpha}, \rho) = 1$$

for all δ, ρ with $0 < \rho < \delta < 1 - 2^{-\alpha}$ as $B_{\delta}(1) \cap F_{\alpha} = \{1\}$ for such δ and this isolated point can be covered by a single ball of any radius.

For a totally bounded set the maximal and minimal sizes of local optimal covers can be estimated using the following relationships.

Lemma 2.2. For a totally bounded set $F \subset X$ and δ, ρ satisfying $0 < \rho < \delta$

$$\inf_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le \frac{N(F, \rho)}{N(F, 4\delta)}$$
(10)

and
$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \ge \frac{N(F, \rho)}{N(F, \delta)}.$$
 (11)

Proof. Let $x_1, \ldots, x_{N(F,\delta)} \in F$ be the centres of δ -balls that form a cover of F. Clearly,

$$N\left(F,\rho\right) \leq \sum_{j=1}^{N(F,\delta)} N\left(B_{\delta}\left(x_{j}\right) \cap F,\rho\right) \leq N\left(F,\delta\right) \sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F,\rho\right),$$

which is (11).

Next, let δ, ρ satisfy $0 < \rho < \delta$ and let $x_1, \ldots, x_{N'(F,4\delta)} \in F$ be the centres of disjoint 4δ -balls. Observe that an arbitrary ρ -ball $B_{\rho}(z)$ intersects at most one of the balls $B_{\delta}(x_i)$: indeed, if there exist $x, y \in B_{\rho}(z)$ with $x \in B_{\delta}(x_i)$ and $y \in B_{\delta}(x_j)$ with $i \neq j$ then

$$d_X(x_i, x_j) \le d_X(x_i, x) + d_X(x, z) + d_X(z, y) + d_X(y, x_j) \le 2\delta + 2\rho \le 4\delta$$

and so $x_i \in B_{4\delta}(x_j)$, which is a contradiction. Consequently, as F contains the union $\bigcup_{j=1}^{N'(F,4\delta)} B_{\delta}(x_j) \cap F$, it follows that

$$N(F,\rho) \geq \sum_{j=1}^{N'(F,4\delta)} N(B_{\delta}(x_j) \cap F,\rho)$$

$$\geq N'(F,4\delta) \inf_{x \in F} N(B_{\delta}(x) \cap F,\rho),$$

$$\geq N(F,4\delta) \inf_{x \in F} N(B_{\delta}(x) \cap F,\rho)$$

from (1), which is precisely (10).

We now define equi-homogeneous sets to be those sets for which the range of the number of sets required in the local covers is uniformly bounded at all length-scales.

Definition 2.3. We say that a set $F \subset X$ is equi-homogeneous if for all $\delta_0 > 0$ there exist constants $M \ge 1$ and $c_1, c_2 > 0$ such that

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le M \inf_{x \in F} N(B_{c_1\delta}(x) \cap F, c_2\rho)$$
(12)

for all δ, ρ with $0 < \rho < \delta \leq \delta_0$.

Note that as $N(B_{\delta}(x) \cap F, \rho)$ increases with δ and decreases with ρ , by replacing the c_i with 1 if necessary we can assume without loss of generality that $c_2 \leq 1 \leq c_1$ in (12).

2.1 Equivalent definitions

As with the definition of homogeneity, for a large class of sets it is sufficient that (12) holds only for some δ_0 .

Lemma 2.4. If $F \subset X$ is totally bounded or X has totally bounded balls then F is equi-homogeneous if and only if there exist constants $M \ge 1$ and $c_1, c_2, \delta_1 > 0$ such that

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, \rho\right) \le M \inf_{x \in F} N\left(B_{c_{1}\delta}\left(x\right) \cap F, c_{2}\rho\right)$$

for all ρ, δ satisfying $0 < \rho < \delta \leq \delta_1$.

Proof. The proof is substantially the same as that of Lemma 1.6.

Again, if F is totally bounded then we can find $M \ge 1$ such that (12) holds for all ρ, δ with $0 < \rho < \delta$.

In normed spaces with totally bounded balls (such as Euclidean space) there is an even more elementary formulation that does not require the constants c_1, c_2 .

Lemma 2.5. Let X be a normed space with totally bounded balls. A set $F \subset X$ is equi-homogeneous if and only if there exists constants $M \ge 1$, $\delta_1 \ge 1$ such that

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le M \inf_{x \in F} N(B_{\delta}(x) \cap F, \rho)$$
(13)

for all ρ, δ with $0 < \rho < \delta \leq \delta_1$.

Proof. The 'if' direction follows immediately from Lemma 2.4. To prove the converse fix $\delta_0 > 0$ and let $M \ge 1$ and $c_1, c_2 > 0$ with $c_2 \le 1 \le c_1$ be such that

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, \rho\right) \le M \inf_{x \in F} N\left(B_{c_{1}\delta}\left(x\right) \cap F, c_{2}\rho\right)$$

for all $0 < \rho < \delta \leq \delta_0$.

First, observe that replacing δ by δ/c_1 we can assume that

$$\sup_{x \in F} N(B_{\delta/c_1}(x) \cap F, \rho) \le M \inf_{x \in F} N(B_{\delta}(x) \cap F, c_2\rho)$$
(14)

for all δ, ρ with $0 < \rho < \delta/c_1$, $\delta \le c_1 \delta_0$. Note that if $\rho \ge \delta/c_1$ then the above inequality holds trivially, since the left-hand side is 1 and the right-hand side is at least $M \ge 1$; so in fact (14) holds for all $0 < \rho < \delta \le \delta_1 := c_1 \delta_0$.

Now, it follows from (6) with $r = \delta/c_1$ that

$$N\left(B_{\delta}\left(x\right)\cap F,\rho\right) \leq N\left(B_{\delta}\left(x\right),\delta/c_{1}\right)\sup_{x\in F}N\left(B_{\delta/c_{1}}\left(x\right)\cap F,\rho\right)$$

for all $x \in F$, so setting $N_1 := N(B_{\delta}(x), \delta/c_1) = N(B_1(0), 1/c_1)$, which follows as X is a normed space, we obtain

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, \rho\right) \le N_{1} \sup_{x \in F} N\left(B_{\delta/c_{1}}\left(x\right) \cap F, \rho\right).$$
(15)

It also follows from (6) that for any r > 0

$$N(B_{\delta}(x) \cap F, c_{2}\rho) \leq N(B_{\delta}(x) \cap F, r) \sup_{x \in F} N(B_{r}(x) \cap F, c_{2}\rho)$$
$$\leq N(B_{\delta}(x) \cap F, r) \sup_{x \in F} N(B_{r}(x), c_{2}\rho)$$
$$= N(B_{\delta}(x) \cap F, r) N(B_{r}(0), c_{2}\rho)$$

so taking $r = \rho$, setting $N_2 = N(B_{\rho}(0), c_2\rho) = N(B_1(0), c_2)$, which again follows as X is a normed space, and taking the infimum over $x \in F$ we obtain

$$\inf_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, c_{2}\rho\right) \leq \inf_{x \in F} N\left(B_{\delta}\left(x\right) \cap F, \rho\right) N_{2}.$$
(16)

It follows from (14), (15) and (16) that for all ρ, δ with $0 < \rho < \delta \leq \delta_1$

$$\sup_{x \in F} N\left(B_{\delta}\left(x\right) \cap F,\rho\right) \le M \frac{N_{1}}{N_{2}} \inf_{x \in F} N\left(B_{\delta}\left(x\right) \cap F,\rho\right)$$

so we conclude from Lemma 2.5 that F is equi-homogeneous.

In [11] the authors demonstrate that for reasonable choices of product metric, the product of two equi-homogeneous sets is also equi-homogeneous.

We will demonstrate that this notion of equi-homogeneity is not overly restrictive: it is enjoyed, at least, by all self-similar sets that satisfy the Moran open set condition.

Self-similar sets are a much studied and canonical class of fractal sets. A (contracting) similarity is a map $f_i : \mathbb{R}^d \to \mathbb{R}^d$ of the form

$$f_i(x) = \sigma_i O_i x + \beta_i,$$

where $\sigma_i \in (0,1)$, $\beta_i \in \mathbb{R}^d$, and $O_i \in O(d)$, the set of all $d \times d$ orthogonal matrices. Given a family $\{f_i\}_{i=1}^n$ of similarities, there exists a unique set F, known as the attractor of this family, such that

$$F = \bigcup_{i=1}^{n} f_i(F).$$
(17)

(See Falconer [4], for example.)

These sets are easier to analyse when we impose some separation properties, i.e. we insist that (in some sense) the images of the f_i do not overlap. The simplest such property is the Moran open-set condition: there exists an open set U such that $F \subset \overline{U}$, $f_i(U) \subseteq U$, and

$$f_i(U) \cap f_j(U) = \emptyset$$
 when $i \neq j$.

Lemma 2.6. Self-similar sets that satisfy the Moran open-set condition are equi-homogeneous.

Proof. Let $\mathcal{I} = \{1, \ldots, n\}$, define $\mathcal{I}^* = \bigcup_{n=1}^{\infty} \mathcal{I}^n$, and for $\alpha = (i_1, \ldots, i_n) \in \mathcal{I}$ let

$$f_{\alpha} = f_{i_1} \circ \cdots \circ f_{i_n}, \quad O_{\alpha} = O_{i_1} \cdots O_{i_n} \text{ and } \sigma_{\alpha} = \sigma_{i_1} \cdots \sigma_{i_n}.$$

For $n \geq 2$ we denote (i_1, \ldots, i_{n-1}) by α' . Let $\sigma_{\min} = \min\{\sigma_i : i \in \mathcal{I}\}$ and $\eta = \operatorname{diam}(\overline{U})$. For $\delta \leq \sigma_{\min}\eta$ define

$$S_{\delta} = \{ \alpha \in \mathcal{I} : \sigma_{\alpha} \eta < \delta \le \sigma_{\alpha'} \eta \}.$$

Note that $n \geq 2$ for any $\alpha \in S_{\delta}$. Moreover, for $\alpha, \beta \in S_{\delta}$ we have

$$f_{\alpha}(U) \cap f_{\beta}(U) = \emptyset$$
 when $\alpha \neq \beta$. (18)

This follows from the open set condition as we now show.

Write

$$\alpha = (i_1, \dots, i_n)$$
 and $\beta = (j_1, \dots, j_m)$

and assume without loss of generality that $m \leq n$. Let k be the smallest integer such that $i_k \neq j_k$. Such a k exists because if not, then $\alpha \neq \beta$ would imply m < n

and consequently that $\sigma_{\alpha'} \leq \sigma_{\beta}$. This would imply that $\delta \leq \sigma_{\alpha'}\eta < \sigma_{\beta}\eta < \delta$, which is a contradiction. If k = 1 then $i_1 \neq j_1$ and the open set condition implies that

$$f_{\alpha}(U) \cap f_{\beta}(U) \subseteq f_{i_1}(U) \cap f_{j_1}(U) = \emptyset.$$

If k > 1 define $\gamma = (i_1, \ldots, i_{k-1})$ and again

$$f_{\alpha}(U) \cap f_{\beta}(U) \subseteq f_{\gamma} \circ f_{i_k}(U) \cap f_{\gamma} \circ f_{j_k}(U) = f_{\gamma}(\emptyset) = \emptyset.$$

Thus we have shown that (18) holds.

We next claim that

$$F = \bigcup_{\alpha \in S_{\delta}} f_{\alpha}(F) \quad \text{where} \quad f_{\alpha}(x) = \sigma_{\alpha} O_{\alpha}(x) + f_{\alpha}(0).$$
(19)

This follows from (17) and induction. Given $x \in F$ choose $i_1 \in \mathcal{I}$ such that $x \in f_{i_1}(F)$. Assume that $x \in f_{i_1} \circ \cdots \circ f_{i_k}(F)$; then $f_{i_k}^{-1} \circ \cdots \circ f_{i_1}^{-1}(x) \in F$ implies that we can choose $i_{k+1} \in \mathcal{I}$ such that $f_{i_k}^{-1} \circ \cdots \circ f_{i_1}^{-1}(x) \in f_{i_{k+1}}(F)$. It follows that $x \in f_{i_1} \circ \cdots \circ f_{i_{k+1}}(F)$. Given the sequence i_k chosen above, there is exactly one choice of n such that $\alpha = (i_1, \cdots, i_n)$ satisfies $\sigma_{\alpha}\eta < \delta \leq \sigma_{\alpha'}\eta$. We conclude that $x \in f_{\alpha}(F)$ for some $\alpha \in S_{\delta}$, which completes the proof of the claim.

We now use (18) and (19) to show that F is equi-homogeneous. Let $x \in F$ be arbitrary. Then $x \in f_{\alpha}(F)$ for some $\alpha \in S_{\delta}$ and consequently

$$\operatorname{diam}(f_{\alpha}(F)) = \sigma_{\alpha} \operatorname{diam}(F) \le \sigma_{\alpha} \eta < \delta,$$

which implies that $f_{\alpha}(F) \subseteq B_{\delta}(x)$. It follows that

$$B_{\delta}(x) \cap F = B_{\delta}(x) \cap \bigcup_{\beta \in S_{\delta}} f_{\beta}(F) \supseteq B_{\delta}(x) \cap f_{\alpha}(F) = f_{\alpha}(F).$$

Therefore

$$N(B_{\delta}(x) \cap F, \rho) \ge N(f_{\alpha}(F), \rho) = N(F, \rho/\sigma_{\alpha}) \ge N(F, c_1\rho/\delta)$$

where $c_1 = \eta / \sigma_{\min}$ implies that

$$\inf_{x \in F} N(B_{\delta}(x) \cap F, \rho) \ge N(F, c_1 \rho / \delta).$$

Now let $A_{\delta} = \{ \alpha \in S_{\delta} : B_{\delta}(x) \cap f_{\alpha}(\overline{U}) \neq \emptyset \}$. Then $\alpha \in A_{\delta}$ implies that

$$f_{\alpha}(\overline{U}) \subseteq B_{\delta + \operatorname{diam} f_{\alpha}(\overline{U})}(x) \subseteq B_{2\delta}(x).$$

Therefore by (18) we obtain

$$\lambda(B_{2\delta}(x)) \ge \lambda\Big(\bigcup_{\alpha \in A_{\delta}} f_{\alpha}(U)\Big) = \sum_{\alpha \in A_{\delta}} \lambda\big(f_{\alpha}(U)\big)$$
$$= \lambda(U) \sum_{\alpha \in A_{\delta}} (\sigma_{a})^{d} \ge \lambda(U) (\delta/c_{1})^{d} \operatorname{card}(A_{\delta})$$

where λ is the *d*-dimensional Lebesgue measure. Consequently

$$N(B_{\delta}(x) \cap F, \rho) \leq \sum_{\alpha \in A_{\delta}} N(f_{\alpha}(F), \rho) = \sum_{\alpha \in A_{\delta}} N(F, \rho/\sigma_{\alpha})$$
$$\leq \operatorname{card}(A_{\delta})N(F, \eta\rho/\delta) \leq MN(F, \eta\rho/\delta)$$

where $M = (2c_1\eta)^d \lambda(B_1(x))/\lambda(U)$. It follows that

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le MN(F, \eta \rho/\delta),$$

which completes the proof of the theorem.

2.2 Equi-homogeneity and the Assouad dimension

For equi-homogeneous sets F we obtain from (10) an upper bound for the maximal size of the local coverings $\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho)$ in terms of the minimum number of sets required to cover F. In fact, with this bound we can precisely find the Assouad dimension of equi-homogeneous sets provided that their box-counting dimensions are suitably 'well behaved', which is the content of the following theorem.

Theorem 2.7. If a totally bounded set $F \subset X$ is equi-homogeneous, F attains both its upper and lower box-counting dimensions, and $\dim_{LB} F = \dim_B F$, then $\dim_A F = \dim_B F = \dim_{LB} F$.

Proof. As F attains both its upper and lower box-counting dimensions and these dimensions are equal it is clear from Definition 1.3 that there exists a constant $C \geq 1$ and a $\delta_0 > 0$ such that

$$\frac{1}{C}\delta^{-\dim_B F} \le N(F,\delta) \le C\delta^{-\dim_B F} \qquad \forall 0 < \delta \le \delta_0.$$
 (20)

Next, as F is equi-homogeneous there exist $M \ge 1$ and $c_1, c_2 > 0$ with $c_2 \le 1 \le c_1$ such that for all δ, ρ with $0 < \rho < \delta \le \delta_0$

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \le M \inf_{x \in F} N(B_{c_1\delta}(x) \cap F, c_2\rho).$$

As $0 < c_2 \rho < c_1 \delta$ we can apply Lemma 2.2 to obtain

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \leq M \frac{N(F, c_2 \rho)}{N(F, 4c_1 \delta)} \leq M C^2 \frac{(c_2 \rho)^{-\dim_B F}}{(4c_1 \delta)^{-\dim_B F}}$$
$$= M C^2 \left(4c_1/c_2\right)^{\dim_B F} \left(\delta/\rho\right)^{\dim_B F}$$

from (20), so the set F is $(\dim_B F)$ -homogeneous. Consequently, $\dim_A F \leq \dim_B F$, but from (9) the Assouad dimension dominates the upper box-counting dimension so we obtain the equality $\dim_A F = \dim_B F$.

Note that our notion of equi-homogeneous is related to, but distinctly different from, the coincidence of the Assouad dimension with the minimal dimension number $\dim_{\text{LA}}(F)$ defined by Larman in [7] as as the supremum over all s for which there exists constants c and $\delta_0 > 0$ such that

$$\inf_{x \in f} N(B_{\delta}(x) \cap F, \rho) \ge c(\delta/\rho)^s \quad \text{for all} \quad 0 < \rho < \delta \le \delta_0.$$

Corollary 2.11 of Fraser [5] shows that self-similar sets F that satisfy the open-set condition also satisfy $\dim_A(F) = \dim_{LA}(F)$. Given that we have just shown that such sets are equi-homogeneous, this raises the possibility that equi-homogeneity is equivalent to the condition $\dim_A(F) = \dim_{LA}(F)$.

10

However, the generalised Cantor sets that we will construct in Section 3 are equi-homogeneous but have minimal dimension numbers that differ from their Assouad dimensions, and we now give a simple example of a set that satisfies $\dim_A(F) = \dim_{LA}(F)$ but that is not equi-homogeneous. Taken together these two examples demonstrate that the notion of equi-homogeneity is entirely distinct from the coincidence of these two dimensions.

Proposition 2.8. Let $F = \{0, 1\} \cup \{2^{-n} : n \in \mathbb{N}\}$. Then

$$\dim_{\mathcal{A}}(F) = \dim_{\mathcal{LA}}(F) = 0$$

but F is not equi-homogeneous.

Proof. Let $\delta = 1/2$. Then

$$B_{\delta}(1) \cap F = \{1\}$$
 implies that $\inf_{x \in F} N(B_{\delta}(x) \cap F, \rho) = 1.$

for every $\rho > 0$. On the other hand, for $0 < \rho < 1/4$, let K be chosen so that

$$2^{-K-1} \le \rho < 2^{-K}.$$

Then $K \geq 2$ and

$$B_{\delta}(0) \cap F \supseteq \{ 2^{-n} : n = 2, \dots, K \}$$

Moreover $2^{-n+1} - 2^{-n} = 2^{-n} \ge 2^{-K} > \rho$ for $n \le K$ implies that at least one set of diameter ρ is required to cover each of the K - 1 points above. Therefore

$$\sup_{x \in F} N(B_{\delta}(x) \cap F, \rho) \ge K - 1 \ge \frac{\log(1/\rho)}{\log 2} - 2$$

This shows there is no value for M independent of ρ that could appear in Definition 2.3 for this set, and so F is not equi-homogeneous.

Clearly $\dim_{LA}(F) = 0$. The equality $\dim_A(F) = 0$ is stated as Fact 4.3 in Olson [9] without proof. We include the proof here and remark that the logarithmic terms that occur in the course of the argument can also be used to show that F does not 'attain' its box-counting dimension (in the sense of Definition 1.3).

Let $x \in [0, 1]$ and $0 < \rho < \delta < 1/4$. Define

$$G = \{ 2^{-n} : \max(0, x - \delta) < 2^{-n} \le \rho \}$$

and

$$H = \{ 2^{-n} : \max(\rho, x - \delta) < 2^{-n} < \min(x + \delta, 1) \}.$$

Then $B_{\delta}(x) \cap F \subseteq \{0, 1\} \cup G \cup H$. Now depending on ρ , x, and δ it may happen that either or both of the sets H and G are empty. As covering an empty set is trivial, we need only consider the cases when these sets are non-empty.

If $G \neq \emptyset$ then $x - \delta < \rho$, and it follows that

$$N(G,\rho) \le \frac{\rho - \max(0, x - \delta)}{\rho} + 1 \le 2.$$
 (21)

Similarly if $H \neq \emptyset$ then

$$N(H,\rho) \le \frac{1}{\log 2} \log \left\{ \frac{\min(x+\delta,1)}{\max(\rho,x-\delta)} \right\} + 1.$$

If $x + \delta \ge 1$ then $x - \delta \ge 1 - 2\delta \ge 1/2$. Thus $N(H, \rho) \le 2$. If $x - \delta \le \rho$ then $x + \delta \le \rho + 2\delta < 3\delta < 1$. Thus $N(H, \rho) \le (\log 2)^{-1} \log(3\delta/\rho) + 1$. Otherwise, $\rho + \delta < x < 1 - \delta$. On this interval $x \mapsto \log \{(x + \delta)/(x - \delta)\}$ is a decreasing function. Therefore, in general,

$$N(H,\rho) \le 2\log(\delta/\rho) + 3. \tag{22}$$

Combining (21) with (22) we obtain

$$N(B_{\delta}(x) \cap F, \rho) \le 2\log(\delta/\rho) + 7$$

Since for every s > 0 there exists C > 0 such that

$$2\log(\delta/\rho) + 7 \le C(\delta/\rho)^s$$
 for every $0 < \rho < \delta < 1/4$,

taking $\delta_0 = 1/4$ in Lemma 1.6 shows that $\dim_A(F) = 0$.

References

- P. Assouad. Étude d'une dimension métrique liée à la possibilité de plogements dans ℝⁿ. C.R. Acad. Paris Sér. A-B 288 (1979), A731– A734.
- [2] A. Besicovitch and P.A.P. Moran. The Measure of Product and Cylinder Sets. J. Lond. Math. Soc., 20:110–120, 1945.
- G. Bouligand. Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. 52 (1928), 320–344, 361–376.
- [4] K. Falconer. Fractal Geometry. John Wiley and Sons, England, Second edition, 2003.
- [5] J.M. Fraser. Assouad type dimensions and homogeneity of fractals, arXiv:1301.2934v1, *Trans. Amer. Math. Soc.*, to appear.
- [6] J.D. Howroyd. On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure. Proc. Lon. Mat. Soc., 70, 1995.
- [7] D.G. Larman. A new theory of dimension. Proc. London Math. Soc. 17, 178–192.
- [8] J. Luukkainen. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35 (1998), 23–76.
- [9] E.J. Olson. Bouligand dimension and almost Lipschitz embeddings. Pacific J. Math., 202, 2002, 459–474.
- [10] E.J. Olson and J.C. Robinson. A simple example concerning the upper box-counting dimension of a Cartesian product. Submitted.
- [11] E.J. Olson, J.C. Robinson and N. Sharples. Equi-homogeneity, generalised Cantor sets, and the dimension of products. In preparation.

- [12] J.C. Robinson. Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2001.
- [13] J.C. Robinson. Dimensions, embeddings, and attractors. Cambridge University Press, 2011.
- [14] J.C. Robinson and N. Sharples. Strict inequality in the box-counting dimension product formulas. *Real Analysis Exchange*, 38(1), 2013.