Equi-homogeneity

A.M. Henderson, E.J. Olson, J.C. Robinson, and N. Sharples

May 27, 2014

Abstract

In this paper we XYZ

1 Introduction

Let $\left(X, \mathrm{~d}_{X}\right)$ be a metric space.
We adopt the notation $B_{\delta}(x)$ for the closed ball of radius δ with centre $x \in X$, and for brevity we refer to closed balls of radius δ as δ-balls.

1.1 Box-counting dimension

Throughout this paper we will use two quantities to describe the geometry of a set $F \subset X$: for each $\delta>0$ we denote

- the minimum number of δ-balls with centres in F such that F is contained in their union by $N(F, \delta)$, and
- the maximum number of disjoint δ-balls with centres in F by $N^{\prime}(F, \delta)$.

We say that $F \subset X$ is totally bounded if for all $\delta>0$ the quantity $N(F, \delta)<\infty$, which is to say that F can be covered in finitely many balls of any radius.

These apparently distinct quantities are in fact very closely related:
Lemma 1.1. Let $F \subset X$ be totally bounded. For all $\delta>0$

$$
\begin{equation*}
N(F, 2 \delta) \leq N^{\prime}(F, 2 \delta) \leq N(F, \delta) \tag{1}
\end{equation*}
$$

Proof. Let $x_{1}, \ldots, x_{N^{\prime}(F, \delta)} \in F$ be the centres of disjoint δ-balls. As each δ-ball $B_{\delta}(y)$ can cover at most one of the x_{i}, to cover F we need at least as many δ-balls are there are x_{i}, hence $N(F, \delta) \geq N^{\prime}(F, \delta)$, which is the first inequality of (1).

Next, with the same points $\left\{x_{i}\right\}$ observe that for each $x \in F$ the distance $\mathrm{d}_{X}\left(x, x_{i}\right) \leq 2 \delta$ for some $i=1, \ldots, N^{\prime}(F, \delta)$, otherwise the additional closed ball $B_{\delta}(x)$ would be disjoint from each of the $B_{\delta}\left(x_{i}\right)$. Consequently, the balls $B_{2 \delta}\left(x_{i}\right)$ cover the set F, hence $N(F, \delta) \leq N^{\prime}(F, 2 \delta)$, which is the second inequality of (1).

The familiar box-counting dimensions encode the scaling of these quantities as $\delta \rightarrow 0$.

Definition 1.2. For a totally bounded set $F \subset X$ the lower and upper boxcounting dimensions are defined by

$$
\begin{align*}
\operatorname{dim}_{L B} F & =\liminf _{\delta \rightarrow 0+} \frac{\log N(F, \delta)}{-\log \delta}, \tag{2}\\
\text { and } \quad \operatorname{dim}_{B} F & =\limsup _{\delta \rightarrow 0+} \frac{\log N(F, \delta)}{-\log \delta} \tag{3}
\end{align*}
$$

respectively.
In light of the inequalities (1), replacing $N(F, \delta)$ with $N^{\prime}(F, \delta)$ in the above gives an equivalent definition. The box-counting dimensions essentially capture the exponent $s \in \mathbb{R}^{+}$for which $N(F, \delta) \sim \delta^{-s}$. More precisely, it follows from Definition 1.2 that for all $\delta_{0}>0$ and any $\varepsilon>0$ there exists a constant $C \geq 1$ such that

$$
\begin{equation*}
C^{-1} \delta^{-\operatorname{dim}_{L B} F+\varepsilon} \leq N(F, \delta) \leq C \delta^{-\operatorname{dim}_{B} F-\varepsilon} \quad \forall 0<\delta \leq \delta_{0} \tag{4}
\end{equation*}
$$

For some bounded sets F the bounds (4) also hold for $\varepsilon=0$ giving precise control of the growth of $N(F, \delta)$. We distinguish this class of sets in the following definition:

Definition 1.3. We say that a bounded set $F \subset X$ attains its lower boxcounting dimension if for all $\delta_{0}>0$ there exists a positive constant $C \leq 0$ such that

$$
N(F, \delta) \geq C \delta^{-\operatorname{dim}_{L B} F} \quad \text { for all } \quad 0<\delta<\delta_{0}
$$

Similarly, we say that F attains its upper box-counting dimension if for all $\delta_{0}>0$ there exists a constant $C \geq 1$ such that

$$
N(F, \delta) \leq C \delta^{-\operatorname{dim}_{B} F} \quad \text { for all } \quad 0<\delta<\delta_{0}
$$

We remark that a similar distinction is made with regard to the Hausdorff dimension of sets: recall that the Hausdorff measures are a one-parameter family of measures, denoted \mathcal{H}^{s} with parameter $s \in \mathbb{R}^{+}$, and that for each set $F \subset \mathbb{R}^{n}$ there exists a value $\operatorname{dim}_{H} F \in \mathbb{R}^{+}$, called the Hausdorff dimension of F, such that

$$
\mathcal{H}^{s}(F)= \begin{cases}\infty & s<\operatorname{dim}_{H} F \\ 0 & s>\operatorname{dim}_{H} F\end{cases}
$$

For a set F to have Hausdorff dimension d it is sufficient, but not necessary, for the Hausdorff measure with parameter d to satisfy $0<\mathcal{H}^{d}(F)<\infty$. Sets with this property are sometimes called d-sets (see, for example, [4] pp.32) and are distinguished as they have many convenient properties. For example, the Hausdorff dimension product formula $\operatorname{dim}_{H}(F \times G) \geq \operatorname{dim}_{H} F+\operatorname{dim}_{H} G$ was first proved for sets F and G in this restricted class (see Besicovitch \& Moran [2]) before being extended to hold for all sets (see Howroyd [6]).

1.2 Homogeneity and the Assouad dimension

The Assouad dimension is a less familiar notion of dimension, in which we are concerned with 'local' coverings of a set F : for more details see Assouad [1], Bouligand [3], Luukkainen [8] Olson [9], or Robinson [13].

Definition 1.4. A set $F \subset X$ is s-homogeneous if for all $\delta_{0}>0$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq C(\delta / \rho)^{s} \quad \forall \delta, \rho \quad \text { with } \quad 0<\rho<\delta \leq \delta_{0} \tag{5}
\end{equation*}
$$

Note that we do not require F to be bounded in order to be s-homogeneous, but minimally require each intersection $B_{\delta}(x) \cap F$ to be totally bounded. This trivially holds if X has totally bounded balls, which is to say that every ball $B_{\delta}(x) \subset X$ is totally bounded (for example, in Euclidean space $X=\mathbb{R}^{n}$).

The following technical lemma gives a relationship between the minimal size of covers of the set $B_{\delta}(x) \cap F$ for different length-scales, which will use in many of the subsequent proofs.

Lemma 1.5. Let $F \subset X$. For all $\delta, \rho, r>0$ and each $x \in F$

$$
\begin{equation*}
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(B_{\delta}(x) \cap F, r\right) \sup _{x \in F} N\left(B_{r}(x) \cap F, \rho\right) \tag{6}
\end{equation*}
$$

Proof. The only non-trivial case occurs when $\rho<r<\delta$. Further, if $M:=$ $N\left(B_{\delta}(x) \cap F, r\right)=\infty$ then there is nothing to prove. Assume that $M<\infty$ and let $x_{1}, \ldots, x_{M} \in F$ be the centres of the r-balls $B_{r}\left(x_{j}\right)$ that cover $B_{\delta}(x) \cap F$. Clearly

$$
B_{\delta}(x) \cap F \subset \bigcup_{j=1}^{M} B_{r}\left(x_{j}\right) \cap F
$$

so

$$
\begin{aligned}
N\left(B_{\delta}(x) \cap F, \rho\right) & \leq \sum_{j=1}^{M} N\left(B_{r}\left(x_{j}\right) \cap F, \rho\right) \\
& \leq M \sup _{x \in F} N\left(B_{r}(x) \cap F, \rho\right)
\end{aligned}
$$

which is precisely (6).
It will be useful to observe that in some cases s-homogeneity is equivalent to (5) holding only for some δ_{0}, which is easier to check.
Lemma 1.6. If $F \subset X$ is totally bounded or X has totally bounded balls then $F \subset X$ is s-homogeneous if and only if there exist constants $C, \delta_{1}>0$ such that

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq C(\delta / \rho)^{s} \quad \forall \delta, \rho \quad \text { with } \quad 0<\rho<\delta \leq \delta_{1} \tag{7}
\end{equation*}
$$

Proof. The 'if' direction is immediate from the definition of s-homogeneity. To prove the converse we let $\delta_{0}>0$ and $x \in F$ be arbitrary. If $\delta_{0} \leq \delta_{1}$ then there is nothing to prove, so we assume that $\delta_{0}>\delta_{1}$. Suppose δ, ρ lie in the range $0<\rho<\delta_{1}<\delta \leq \delta_{0}$. From Lemma 1.5 with $r=\delta_{1}$ we obtain

$$
\begin{align*}
N\left(B_{\delta}(x) \cap F, \rho\right) & \leq N\left(B_{\delta}(x) \cap F, \delta_{1}\right) \sup _{x \in F} N\left(B_{\delta_{1}}(x) \cap F, \rho\right) \\
& \leq N\left(B_{\delta}(x) \cap F, \delta_{1}\right) C\left(\delta_{1} / \rho\right)^{s} \\
& \leq N\left(B_{\delta}(x) \cap F, \delta_{1}\right) C(\delta / \rho)^{s} \tag{8}
\end{align*}
$$

which follows from (7) and the fact that $\delta>\delta_{1}$.
Now, if X has totally bounded balls then it follows from (8) that for $0<$ $\rho<\delta_{1}<\delta \leq \delta_{0}$

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(B_{\delta_{0}}(0), \delta_{1}\right) C(\delta / \rho)^{s},
$$

and trivially for $\delta_{1} \leq \rho<\delta \leq \delta_{0}$ that

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(B_{\delta}(x), \rho\right) \leq N\left(B_{\delta_{0}}(x), \delta_{1}\right) \leq N\left(B_{\delta_{0}}(0), \delta_{1}\right)(\delta / \rho)^{s}
$$

as $\delta / \rho>1$. Consequently, with $C_{\delta_{0}}=N\left(B_{\delta_{0}}(0), \delta_{1}\right) \max (C, 1)$ we obtain

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq C_{\delta_{0}}(\delta / \rho)^{s} \quad \forall \delta, \rho \quad \text { with } \quad 0<\rho<\delta \leq \delta_{0},
$$

which, as $\delta_{0}>0$ was arbitrary, is precisely that F is s-homogeneous.
Next, if $F \subset X$ is totally bounded then it follows from (8) that for $0<\rho<$ $\delta_{1}<\delta \leq \delta_{0}$

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(F, \delta_{1}\right) C(\delta / \rho)^{s},
$$

and again for $\delta_{1} \leq \rho<\delta \leq \delta_{0}$ that

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(F, \delta_{1}\right)(\delta / \rho)^{s}
$$

Consequently, the constant $C^{\prime}=N\left(F, \delta_{1}\right) \max (C, 1)$ is sufficient to extend (7) to all $0<\rho<\delta \leq \delta_{0}$, so we conclude that F is s-homogeneous.

Corollary 1.7. If $F \subset X$ is totally bounded then F is s-homogeneous if and only if there exists a constant C such that

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq C(\delta / \rho)^{s} \quad \forall \delta, \rho \quad \text { with } \quad 0<\rho<\delta .
$$

Proof. The 'if' direction is immediate from the definition. Conversely, we see in the above proof that the constant C^{\prime} does not depend upon the upper bound δ_{0}, so the inequality is valid for all ρ, δ satisfying $0<\rho<\delta$.

Definition 1.8. The Assouad dimension of a set $F \subset X$ is defined by

$$
\operatorname{dim}_{A} F:=\inf \left\{s \in \mathbb{R}^{+}: F \text { is s-homogeneous }\right\}
$$

It is known that for a bounded set $F \subset \mathbb{R}^{n}$ the three notions of dimension that we have now introduced satisfy

$$
\begin{equation*}
\operatorname{dim}_{L B} F \leq \operatorname{dim}_{B} F \leq \operatorname{dim}_{A} F \tag{9}
\end{equation*}
$$

(see, for example, Lemma 9.6 in Robinson [13]). The inequality (9) also holds for totally bounded subsets in general metric spaces.

Lemma 1.9. If $F \subset X$ is totally bounded then $\operatorname{dim}_{B} F \leq \operatorname{dim}_{A} F$.

Proof. Let $s>\operatorname{dim}_{A} F$ and let $x_{1}, \ldots, x_{N(F, 1)}$ be the centres of balls of radius 1 that form a cover of F. For all $\rho<1$

$$
\begin{aligned}
N(F, \rho) & \leq \sum_{j=1}^{N(F, 1)} N\left(B_{1}\left(x_{j}\right) \cap F, \rho\right) \leq N(F, 1) \sup _{x \in F} N\left(B_{1}(x) \cap F, \rho\right) \\
& \leq N(F, 1) C(1 / \rho)^{s}
\end{aligned}
$$

for some $C>0$, hence $\operatorname{dim}_{B} F \leq s$. As $s>\operatorname{dim}_{A} F$ was arbitrary we conclude that $\operatorname{dim}_{B} F \leq \operatorname{dim}_{A} F$.

An interesting example is given by the compact countable set $F_{\alpha}:=\left\{n^{-\alpha}\right\}_{n \in \mathbb{N}} \cup$ $\{0\} \subset \mathbb{R}$ with $\alpha>0$ for which

$$
\begin{aligned}
\operatorname{dim}_{L B} F_{\alpha} & =\operatorname{dim}_{B} F_{\alpha}=(1+\alpha)^{-1} \\
\text { but } \quad \operatorname{dim}_{A} F_{\alpha} & =1 .
\end{aligned}
$$

(see Olson [9] and Example 13.4 in Robinson [12]).

2 Equi-homogeneity

From Definition 1.4 we see that homogeneity encodes the maximum size of a local optimal cover at a particular length-scale. However, the minimal size of a local optimal cover is not captured by homogeneity, and indeed this minimum size can scale very differently, as the following example illustrates:

Example 2.1. For each $\alpha>0$ the set $F_{\alpha}:=\left\{n^{-\alpha}\right\}_{n \in \mathbb{N}} \cup\{0\}$ has Assouad dimension equal to 1 , so for all $\varepsilon>0$

$$
\sup _{x \in F_{\alpha}} N\left(B_{\delta}(x) \cap F_{\alpha}, \rho\right)(\delta / \rho)^{-(1-\varepsilon)}
$$

is unbounded on δ, ρ with $0<\rho<\delta$.
On the other hand $1 \in F_{\alpha}$ is an isolated point so

$$
\inf _{x \in F_{\alpha}} N\left(B_{\delta}(x) \cap F_{\alpha}, \rho\right)=1
$$

for all δ, ρ with $0<\rho<\delta<1-2^{-\alpha}$ as $B_{\delta}(1) \cap F_{\alpha}=\{1\}$ for such δ and this isolated point can be covered by a single ball of any radius.

For a totally bounded set the maximal and minimal sizes of local optimal covers can be estimated using the following relationships.

Lemma 2.2. For a totally bounded set $F \subset X$ and δ, ρ satisfying $0<\rho<\delta$

$$
\begin{align*}
\inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) & \leq \frac{N(F, \rho)}{N(F, 4 \delta)} \tag{10}\\
\text { and } \quad \sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) & \geq \frac{N(F, \rho)}{N(F, \delta)} . \tag{11}
\end{align*}
$$

Proof. Let $x_{1}, \ldots, x_{N(F, \delta)} \in F$ be the centres of δ-balls that form a cover of F. Clearly,

$$
N(F, \rho) \leq \sum_{j=1}^{N(F, \delta)} N\left(B_{\delta}\left(x_{j}\right) \cap F, \rho\right) \leq N(F, \delta) \sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right),
$$

which is (11).
Next, let δ, ρ satisfy $0<\rho<\delta$ and let $x_{1}, \ldots, x_{N^{\prime}(F, 4 \delta)} \in F$ be the centres of disjoint 4δ-balls. Observe that an arbitrary ρ-ball $B_{\rho}(z)$ intersects at most one of the balls $B_{\delta}\left(x_{i}\right):$ indeed, if there exist $x, y \in B_{\rho}(z)$ with $x \in B_{\delta}\left(x_{i}\right)$ and $y \in B_{\delta}\left(x_{j}\right)$ with $i \neq j$ then

$$
\mathrm{d}_{X}\left(x_{i}, x_{j}\right) \leq \mathrm{d}_{X}\left(x_{i}, x\right)+\mathrm{d}_{X}(x, z)+\mathrm{d}_{X}(z, y)+\mathrm{d}_{X}\left(y, x_{j}\right) \leq 2 \delta+2 \rho \leq 4 \delta
$$

and so $x_{i} \in B_{4 \delta}\left(x_{j}\right)$, which is a contradiction. Consequently, as F contains the union $\bigcup_{j=1}^{N^{\prime}(F, 4 \delta)} B_{\delta}\left(x_{j}\right) \cap F$, it follows that

$$
\begin{aligned}
N(F, \rho) & \geq \sum_{j=1}^{N^{\prime}(F, 4 \delta)} N\left(B_{\delta}\left(x_{j}\right) \cap F, \rho\right) \\
& \geq N^{\prime}(F, 4 \delta) \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \\
& \geq N(F, 4 \delta) \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right)
\end{aligned}
$$

from (1), which is precisely (10).
We now define equi-homogeneous sets to be those sets for which the range of the number of sets required in the local covers is uniformly bounded at all length-scales.

Definition 2.3. We say that a set $F \subset X$ is equi-homogeneous if for all $\delta_{0}>0$ there exist constants $M \geq 1$ and $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{c_{1} \delta}(x) \cap F, c_{2} \rho\right) \tag{12}
\end{equation*}
$$

for all δ, ρ with $0<\rho<\delta \leq \delta_{0}$.
Note that as $N\left(B_{\delta}(x) \cap F, \rho\right)$ increases with δ and decreases with ρ, by replacing the c_{i} with 1 if necessary we can assume without loss of generality that $c_{2} \leq 1 \leq c_{1}$ in (12).

2.1 Equivalent definitions

As with the definition of homogeneity, for a large class of sets it is sufficient that (12) holds only for some δ_{0}.

Lemma 2.4. If $F \subset X$ is totally bounded or X has totally bounded balls then F is equi-homogeneous if and only if there exist constants $M \geq 1$ and $c_{1}, c_{2}, \delta_{1}>0$ such that

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{c_{1} \delta}(x) \cap F, c_{2} \rho\right)
$$

for all ρ, δ satisfying $0<\rho<\delta \leq \delta_{1}$.

Proof. The proof is substantially the same as that of Lemma 1.6.
Again, if F is totally bounded then we can find $M \geq 1$ such that (12) holds for all ρ, δ with $0<\rho<\delta$.

In normed spaces with totally bounded balls (such as Euclidean space) there is an even more elementary formulation that does not require the constants c_{1}, c_{2}.
Lemma 2.5. Let X be a normed space with totally bounded balls. A set $F \subset X$ is equi-homogeneous if and only if there exists constants $M \geq 1, \delta_{1} \geq 1$ such that

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \tag{13}
\end{equation*}
$$

for all ρ, δ with $0<\rho<\delta \leq \delta_{1}$.
Proof. The 'if' direction follows immediately from Lemma 2.4. To prove the converse fix $\delta_{0}>0$ and let $M \geq 1$ and $c_{1}, c_{2}>0$ with $c_{2} \leq 1 \leq c_{1}$ be such that

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{c_{1} \delta}(x) \cap F, c_{2} \rho\right)
$$

for all $0<\rho<\delta \leq \delta_{0}$.
First, observe that replacing δ by δ / c_{1} we can assume that

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta / c_{1}}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{\delta}(x) \cap F, c_{2} \rho\right) \tag{14}
\end{equation*}
$$

for all δ, ρ with $0<\rho<\delta / c_{1}, \delta \leq c_{1} \delta_{0}$. Note that if $\rho \geq \delta / c_{1}$ then the above inequality holds trivially, since the left-hand side is 1 and the right-hand side is at least $M \geq 1$; so in fact (14) holds for all $0<\rho<\delta \leq \delta_{1}:=c_{1} \delta_{0}$.

Now, it follows from (6) with $r=\delta / c_{1}$ that

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq N\left(B_{\delta}(x), \delta / c_{1}\right) \sup _{x \in F} N\left(B_{\delta / c_{1}}(x) \cap F, \rho\right)
$$

for all $x \in F$, so setting $N_{1}:=N\left(B_{\delta}(x), \delta / c_{1}\right)=N\left(B_{1}(0), 1 / c_{1}\right)$, which follows as X is a normed space, we obtain

$$
\begin{equation*}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq N_{1} \sup _{x \in F} N\left(B_{\delta / c_{1}}(x) \cap F, \rho\right) . \tag{15}
\end{equation*}
$$

It also follows from (6) that for any $r>0$

$$
\begin{aligned}
N\left(B_{\delta}(x) \cap F, c_{2} \rho\right) & \leq N\left(B_{\delta}(x) \cap F, r\right) \sup _{x \in F} N\left(B_{r}(x) \cap F, c_{2} \rho\right) \\
& \leq N\left(B_{\delta}(x) \cap F, r\right) \sup _{x \in F} N\left(B_{r}(x), c_{2} \rho\right) \\
& =N\left(B_{\delta}(x) \cap F, r\right) N\left(B_{r}(0), c_{2} \rho\right)
\end{aligned}
$$

so taking $r=\rho$, setting $N_{2}=N\left(B_{\rho}(0), c_{2} \rho\right)=N\left(B_{1}(0), c_{2}\right)$, which again follows as X is a normed space, and taking the infimum over $x \in F$ we obtain

$$
\begin{equation*}
\inf _{x \in F} N\left(B_{\delta}(x) \cap F, c_{2} \rho\right) \leq \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) N_{2} \tag{16}
\end{equation*}
$$

It follows from (14), (15) and (16) that for all ρ, δ with $0<\rho<\delta \leq \delta_{1}$

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \frac{N_{1}}{N_{2}} \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right)
$$

so we conclude from Lemma 2.5 that F is equi-homogeneous.
In [11] the authors demonstrate that for reasonable choices of product metric, the product of two equi-homogeneous sets is also equi-homogeneous.

We will demonstrate that this notion of equi-homogeneity is not overly restrictive: it is enjoyed, at least, by all self-similar sets that satisfy the Moran open set condition.

Self-similar sets are a much studied and canonical class of fractal sets. A (contracting) similarity is a map $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ of the form

$$
f_{i}(x)=\sigma_{i} O_{i} x+\beta_{i},
$$

where $\sigma_{i} \in(0,1), \beta_{i} \in \mathbb{R}^{d}$, and $O_{i} \in O(d)$, the set of all $d \times d$ orthogonal matrices. Given a family $\left\{f_{i}\right\}_{i=1}^{n}$ of similarities, there exists a unique set F, known as the attractor of this family, such that

$$
\begin{equation*}
F=\bigcup_{i=1}^{n} f_{i}(F) \tag{17}
\end{equation*}
$$

(See Falconer [4], for example.)
These sets are easier to analyse when we impose some separation properties, i.e. we insist that (in some sense) the images of the f_{i} do not overlap. The simplest such property is the Moran open-set condition: there exists an open set U such that $F \subset \bar{U}, f_{i}(U) \subseteq U$, and

$$
f_{i}(U) \cap f_{j}(U)=\varnothing \quad \text { when } \quad i \neq j .
$$

Lemma 2.6. Self-similar sets that satisfy the Moran open-set condition are equi-homogeneous.

Proof. Let $\mathcal{I}=\{1, \ldots, n\}$, define $\mathcal{I}^{*}=\bigcup_{n=1}^{\infty} \mathcal{I}^{n}$, and for $\alpha=\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}$ let

$$
f_{\alpha}=f_{i_{1}} \circ \cdots \circ f_{i_{n}}, \quad O_{\alpha}=O_{i_{1}} \cdots O_{i_{n}} \quad \text { and } \quad \sigma_{\alpha}=\sigma_{i_{1}} \cdots \sigma_{i_{n}}
$$

For $n \geq 2$ we denote $\left(i_{1}, \ldots, i_{n-1}\right)$ by α^{\prime}. Let $\sigma_{\text {min }}=\min \left\{\sigma_{i}: i \in \mathcal{I}\right\}$ and $\eta=\operatorname{diam}(\bar{U})$. For $\delta \leq \sigma_{\min } \eta$ define

$$
S_{\delta}=\left\{\alpha \in \mathcal{I}: \sigma_{\alpha} \eta<\delta \leq \sigma_{\alpha^{\prime}} \eta\right\}
$$

Note that $n \geq 2$ for any $\alpha \in S_{\delta}$. Moreover, for $\alpha, \beta \in S_{\delta}$ we have

$$
\begin{equation*}
f_{\alpha}(U) \cap f_{\beta}(U)=\varnothing \quad \text { when } \quad \alpha \neq \beta \tag{18}
\end{equation*}
$$

This follows from the open set condition as we now show.
Write

$$
\alpha=\left(i_{1}, \ldots, i_{n}\right) \quad \text { and } \quad \beta=\left(j_{1}, \ldots, j_{m}\right)
$$

and assume without loss of generality that $m \leq n$. Let k be the smallest integer such that $i_{k} \neq j_{k}$. Such a k exists because if not, then $\alpha \neq \beta$ would imply $m<n$
and consequently that $\sigma_{\alpha^{\prime}} \leq \sigma_{\beta}$. This would imply that $\delta \leq \sigma_{\alpha^{\prime}} \eta<\sigma_{\beta} \eta<\delta$, which is a contradiction. If $k=1$ then $i_{1} \neq j_{1}$ and the open set condition implies that

$$
f_{\alpha}(U) \cap f_{\beta}(U) \subseteq f_{i_{1}}(U) \cap f_{j_{1}}(U)=\varnothing
$$

If $k>1$ define $\gamma=\left(i_{1}, \ldots, i_{k-1}\right)$ and again

$$
f_{\alpha}(U) \cap f_{\beta}(U) \subseteq f_{\gamma} \circ f_{i_{k}}(U) \cap f_{\gamma} \circ f_{j_{k}}(U)=f_{\gamma}(\varnothing)=\varnothing .
$$

Thus we have shown that (18) holds.
We next claim that

$$
\begin{equation*}
F=\bigcup_{\alpha \in S_{\delta}} f_{\alpha}(F) \quad \text { where } \quad f_{\alpha}(x)=\sigma_{\alpha} O_{\alpha}(x)+f_{\alpha}(0) . \tag{19}
\end{equation*}
$$

This follows from (17) and induction. Given $x \in F$ choose $i_{1} \in \mathcal{I}$ such that $x \in f_{i_{1}}(F)$. Assume that $x \in f_{i_{1}} \circ \cdots \circ f_{i_{k}}(F)$; then $f_{i_{k}}^{-1} \circ \cdots \circ f_{i_{1}}^{-1}(x) \in F$ implies that we can choose $i_{k+1} \in \mathcal{I}$ such that $f_{i_{k}}^{-1} \circ \cdots \circ f_{i_{1}}^{-1}(x) \in f_{i_{k+1}}(F)$. It follows that $x \in f_{i_{1}} \circ \cdots \circ f_{i_{k+1}}(F)$. Given the sequence i_{k} chosen above, there is exactly one choice of n such that $\alpha=\left(i_{1}, \cdots, i_{n}\right)$ satisfies $\sigma_{\alpha} \eta<\delta \leq \sigma_{\alpha^{\prime}} \eta$. We conclude that $x \in f_{\alpha}(F)$ for some $\alpha \in S_{\delta}$, which completes the proof of the claim.

We now use (18) and (19) to show that F is equi-homogeneous. Let $x \in F$ be arbitrary. Then $x \in f_{\alpha}(F)$ for some $\alpha \in S_{\delta}$ and consequently

$$
\operatorname{diam}\left(f_{\alpha}(F)\right)=\sigma_{\alpha} \operatorname{diam}(F) \leq \sigma_{\alpha} \eta<\delta,
$$

which implies that $f_{\alpha}(F) \subseteq B_{\delta}(x)$. It follows that

$$
B_{\delta}(x) \cap F=B_{\delta}(x) \cap \bigcup_{\beta \in S_{\delta}} f_{\beta}(F) \supseteq B_{\delta}(x) \cap f_{\alpha}(F)=f_{\alpha}(F) .
$$

Therefore

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \geq N\left(f_{\alpha}(F), \rho\right)=N\left(F, \rho / \sigma_{\alpha}\right) \geq N\left(F, c_{1} \rho / \delta\right)
$$

where $c_{1}=\eta / \sigma_{\text {min }}$ implies that

$$
\inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \geq N\left(F, c_{1} \rho / \delta\right)
$$

Now let $A_{\delta}=\left\{\alpha \in S_{\delta}: B_{\delta}(x) \cap f_{\alpha}(\bar{U}) \neq \varnothing\right\}$. Then $\alpha \in A_{\delta}$ implies that

$$
f_{\alpha}(\bar{U}) \subseteq B_{\delta+\operatorname{diam} f_{\alpha}(\bar{U})}(x) \subseteq B_{2 \delta}(x)
$$

Therefore by (18) we obtain

$$
\begin{aligned}
\lambda\left(B_{2 \delta}(x)\right) & \geq \lambda\left(\bigcup_{\alpha \in A_{\delta}} f_{\alpha}(U)\right)=\sum_{\alpha \in A_{\delta}} \lambda\left(f_{\alpha}(U)\right) \\
& =\lambda(U) \sum_{\alpha \in A_{\delta}}\left(\sigma_{a}\right)^{d} \geq \lambda(U)\left(\delta / c_{1}\right)^{d} \operatorname{card}\left(A_{\delta}\right)
\end{aligned}
$$

where λ is the d-dimensional Lebesgue measure. Consequently

$$
\begin{aligned}
N\left(B_{\delta}(x) \cap F, \rho\right) & \leq \sum_{\alpha \in A_{\delta}} N\left(f_{\alpha}(F), \rho\right)=\sum_{\alpha \in A_{\delta}} N\left(F, \rho / \sigma_{\alpha}\right) \\
& \leq \operatorname{card}\left(A_{\delta}\right) N(F, \eta \rho / \delta) \leq M N(F, \eta \rho / \delta)
\end{aligned}
$$

where $M=\left(2 c_{1} \eta\right)^{d} \lambda\left(B_{1}(x)\right) / \lambda(U)$. It follows that

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M N(F, \eta \rho / \delta),
$$

which completes the proof of the theorem.

2.2 Equi-homogeneity and the Assouad dimension

For equi-homogeneous sets F we obtain from (10) an upper bound for the maximal size of the local coverings $\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right)$ in terms of the minimum number of sets required to cover F. In fact, with this bound we can precisely find the Assouad dimension of equi-homogeneous sets provided that their boxcounting dimensions are suitably 'well behaved', which is the content of the following theorem.
Theorem 2.7. If a totally bounded set $F \subset X$ is equi-homogeneous, F attains both its upper and lower box-counting dimensions, and $\operatorname{dim}_{L B} F=\operatorname{dim}_{B} F$, then $\operatorname{dim}_{A} F=\operatorname{dim}_{B} F=\operatorname{dim}_{L B} F$.

Proof. As F attains both its upper and lower box-counting dimensions and these dimensions are equal it is clear from Definition 1.3 that there exists a constant $C \geq 1$ and a $\delta_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{C} \delta^{-\operatorname{dim}_{B} F} \leq N(F, \delta) \leq C \delta^{-\operatorname{dim}_{B} F} \quad \forall 0<\delta \leq \delta_{0} \tag{20}
\end{equation*}
$$

Next, as F is equi-homogeneous there exist $M \geq 1$ and $c_{1}, c_{2}>0$ with $c_{2} \leq 1 \leq c_{1}$ such that for all δ, ρ with $0<\rho<\delta \leq \delta_{0}$

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \inf _{x \in F} N\left(B_{c_{1} \delta}(x) \cap F, c_{2} \rho\right) .
$$

As $0<c_{2} \rho<c_{1} \delta$ we can apply Lemma 2.2 to obtain

$$
\begin{aligned}
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \leq M \frac{N\left(F, c_{2} \rho\right)}{N\left(F, 4 c_{1} \delta\right)} & \leq M C^{2} \frac{\left(c_{2} \rho\right)^{-\operatorname{dim}_{B} F}}{\left(4 c_{1} \delta\right)^{-\operatorname{dim}_{B} F}} \\
& =M C^{2}\left(4 c_{1} / c_{2}\right)^{\operatorname{dim}_{B} F}(\delta / \rho)^{\operatorname{dim}_{B} F}
\end{aligned}
$$

from (20), so the set F is $\left(\operatorname{dim}_{B} F\right)$-homogeneous. Consequently, $\operatorname{dim}_{A} F \leq$ $\operatorname{dim}_{B} F$, but from (9) the Assouad dimension dominates the upper box-counting dimension so we obtain the equality $\operatorname{dim}_{A} F=\operatorname{dim}_{B} F$.

Note that our notion of equi-homogeneous is related to, but distinctly different from, the coincidence of the Assouad dimension with the minimal dimension number $\operatorname{dim}_{\mathrm{LA}}(F)$ defined by Larman in [7] as as the supremum over all s for which there exists constants c and $\delta_{0}>0$ such that

$$
\inf _{x \in f} N\left(B_{\delta}(x) \cap F, \rho\right) \geq c(\delta / \rho)^{s} \quad \text { for all } \quad 0<\rho<\delta \leq \delta_{0}
$$

Corollary 2.11 of Fraser [5] shows that self-similar sets F that satisfy the open-set condition also satisfy $\operatorname{dim}_{\mathrm{A}}(F)=\operatorname{dim}_{\mathrm{LA}}(F)$. Given that we have just shown that such sets are equi-homogeneous, this raises the possibility that equi-homogeneity is equivalent to the condition $\operatorname{dim}_{\mathrm{A}}(F)=\operatorname{dim}_{\mathrm{LA}}(F)$.

However, the generalised Cantor sets that we will construct in Section 3 are equi-homogeneous but have minimal dimension numbers that differ from their Assouad dimensions, and we now give a simple example of a set that satisfies $\operatorname{dim}_{\mathrm{A}}(F)=\operatorname{dim}_{\mathrm{LA}}(F)$ but that is not equi-homogeneous. Taken together these two examples demonstrate that the notion of equi-homogeneity is entirely distinct from the coincidence of these two dimensions.

Proposition 2.8. Let $F=\{0,1\} \cup\left\{2^{-n}: n \in \mathbb{N}\right\}$. Then

$$
\operatorname{dim}_{\mathrm{A}}(F)=\operatorname{dim}_{\mathrm{LA}}(F)=0
$$

but F is not equi-homogeneous.
Proof. Let $\delta=1 / 2$. Then

$$
B_{\delta}(1) \cap F=\{1\} \quad \text { implies that } \quad \inf _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right)=1 .
$$

for every $\rho>0$. On the other hand, for $0<\rho<1 / 4$, let K be chosen so that

$$
2^{-K-1} \leq \rho<2^{-K}
$$

Then $K \geq 2$ and

$$
B_{\delta}(0) \cap F \supseteq\left\{2^{-n}: n=2, \ldots, K\right\} .
$$

Moreover $2^{-n+1}-2^{-n}=2^{-n} \geq 2^{-K}>\rho$ for $n \leq K$ implies that at least one set of diameter ρ is required to cover each of the $K-1$ points above. Therefore

$$
\sup _{x \in F} N\left(B_{\delta}(x) \cap F, \rho\right) \geq K-1 \geq \frac{\log (1 / \rho)}{\log 2}-2
$$

This shows there is no value for M independent of ρ that could appear in Definition 2.3 for this set, and so F is not equi-homogeneous.

Clearly $\operatorname{dim}_{\text {LA }}(F)=0$. The equality $\operatorname{dim}_{\mathrm{A}}(F)=0$ is stated as Fact 4.3 in Olson [9] without proof. We include the proof here and remark that the logarithmic terms that occur in the course of the argument can also be used to show that F does not 'attain' its box-counting dimension (in the sense of Definition 1.3).

Let $x \in[0,1]$ and $0<\rho<\delta<1 / 4$. Define

$$
G=\left\{2^{-n}: \max (0, x-\delta)<2^{-n} \leq \rho\right\}
$$

and

$$
H=\left\{2^{-n}: \max (\rho, x-\delta)<2^{-n}<\min (x+\delta, 1)\right\} .
$$

Then $B_{\delta}(x) \cap F \subseteq\{0,1\} \cup G \cup H$. Now depending on ρ, x, and δ it may happen that either or both of the sets H and G are empty. As covering an empty set is trivial, we need only consider the cases when these sets are non-empty.

If $G \neq \varnothing$ then $x-\delta<\rho$, and it follows that

$$
\begin{equation*}
N(G, \rho) \leq \frac{\rho-\max (0, x-\delta)}{\rho}+1 \leq 2 \tag{21}
\end{equation*}
$$

Similarly if $H \neq \varnothing$ then

$$
N(H, \rho) \leq \frac{1}{\log 2} \log \left\{\frac{\min (x+\delta, 1)}{\max (\rho, x-\delta)}\right\}+1 .
$$

If $x+\delta \geq 1$ then $x-\delta \geq 1-2 \delta \geq 1 / 2$. Thus $N(H, \rho) \leq 2$. If $x-\delta \leq \rho$ then $x+\delta \leq \rho+2 \delta<3 \delta<1$. Thus $N(H, \rho) \leq(\log 2)^{-1} \log (3 \delta / \rho)+1$. Otherwise, $\rho+\delta<x<1-\delta$. On this interval $x \mapsto \log \{(x+\delta) /(x-\delta)\}$ is a decreasing function. Therefore, in general,

$$
\begin{equation*}
N(H, \rho) \leq 2 \log (\delta / \rho)+3 \tag{22}
\end{equation*}
$$

Combining (21) with (22) we obtain

$$
N\left(B_{\delta}(x) \cap F, \rho\right) \leq 2 \log (\delta / \rho)+7
$$

Since for every $s>0$ there exists $C>0$ such that

$$
2 \log (\delta / \rho)+7 \leq C(\delta / \rho)^{s} \quad \text { for every } \quad 0<\rho<\delta<1 / 4
$$

taking $\delta_{0}=1 / 4$ in Lemma 1.6 shows that $\operatorname{dim}_{\mathrm{A}}(F)=0$.

References

[1] P. Assouad. Étude d'une dimension métrique liée à la possibilité de plogements dans \mathbb{R}^{n}. C.R. Acad. Paris Sér. A-B 288 (1979), A731A734.
[2] A. Besicovitch and P.A.P. Moran. The Measure of Product and Cylinder Sets. J. Lond. Math. Soc., 20:110-120, 1945.
[3] G. Bouligand. Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. 52 (1928), 320-344, 361-376.
[4] K. Falconer. Fractal Geometry. John Wiley and Sons, England, Second edition, 2003.
[5] J.M. Fraser. Assouad type dimensions and homogeneity of fractals, arXiv:1301.2934v1, Trans. Amer. Math. Soc., to appear.
[6] J.D. Howroyd. On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure. Proc. Lon. Mat. Soc., 70, 1995.
[7] D.G. Larman. A new theory of dimension. Proc. London Math. Soc. 17, 178-192.
[8] J. Luukkainen. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35 (1998), 23-76.
[9] E.J. Olson. Bouligand dimension and almost Lipschitz embeddings. Pacific J. Math., 202, 2002, 459-474.
[10] E.J. Olson and J.C. Robinson. A simple example concerning the upper box-counting dimension of a Cartesian product. Submitted.
[11] E.J. Olson, J.C. Robinson and N. Sharples. Equi-homogeneity, generalised Cantor sets, and the dimension of products. In preparation.
[12] J.C. Robinson. Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2001.
[13] J.C. Robinson. Dimensions, embeddings, and attractors. Cambridge University Press, 2011.
[14] J.C. Robinson and N. Sharples. Strict inequality in the box-counting dimension product formulas. Real Analysis Exchange, 38(1), 2013.

