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Abstract

In this paper we XYZ

1 Introduction

Let (X,dX) be a metric space.
We adopt the notation Bδ (x) for the closed ball of radius δ with centre

x ∈ X, and for brevity we refer to closed balls of radius δ as δ-balls.

1.1 Box-counting dimension

Throughout this paper we will use two quantities to describe the geometry of a
set F ⊂ X: for each δ > 0 we denote

• the minimum number of δ-balls with centres in F such that F is contained
in their union by N (F, δ), and

• the maximum number of disjoint δ-balls with centres in F by N ′ (F, δ).

We say that F ⊂ X is totally bounded if for all δ > 0 the quantity N (F, δ) <∞,
which is to say that F can be covered in finitely many balls of any radius.

These apparently distinct quantities are in fact very closely related:

Lemma 1.1. Let F ⊂ X be totally bounded. For all δ > 0

N (F, 2δ) ≤ N ′ (F, 2δ) ≤ N (F, δ) . (1)

Proof. Let x1, . . . , xN ′(F,δ) ∈ F be the centres of disjoint δ-balls. As each δ-ball
Bδ (y) can cover at most one of the xi, to cover F we need at least as many
δ-balls are there are xi, hence N (F, δ) ≥ N ′ (F, δ), which is the first inequality
of (1).

Next, with the same points {xi} observe that for each x ∈ F the distance
dX (x, xi) ≤ 2δ for some i = 1, . . . , N ′ (F, δ), otherwise the additional closed
ball Bδ (x) would be disjoint from each of the Bδ (xi). Consequently, the balls
B2δ (xi) cover the set F , hence N (F, δ) ≤ N ′ (F, 2δ), which is the second in-
equality of (1).

The familiar box-counting dimensions encode the scaling of these quantities
as δ → 0.
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Definition 1.2. For a totally bounded set F ⊂ X the lower and upper box-
counting dimensions are defined by

dimLB F = lim inf
δ→0+

logN (F, δ)

− log δ
, (2)

and dimB F = lim sup
δ→0+

logN (F, δ)

− log δ
(3)

respectively.

In light of the inequalities (1), replacing N (F, δ) with N ′ (F, δ) in the above
gives an equivalent definition. The box-counting dimensions essentially capture
the exponent s ∈ R+ for which N(F, δ) ∼ δ−s. More precisely, it follows from
Definition 1.2 that for all δ0 > 0 and any ε > 0 there exists a constant C ≥ 1
such that

C−1δ− dimLB F+ε ≤ N(F, δ) ≤ Cδ− dimB F−ε ∀ 0 < δ ≤ δ0. (4)

For some bounded sets F the bounds (4) also hold for ε = 0 giving precise
control of the growth of N(F, δ). We distinguish this class of sets in the following
definition:

Definition 1.3. We say that a bounded set F ⊂ X attains its lower box-
counting dimension if for all δ0 > 0 there exists a positive constant C ≤ 0
such that

N(F, δ) ≥ Cδ− dimLB F for all 0 < δ < δ0.

Similarly, we say that F attains its upper box-counting dimension if for all
δ0 > 0 there exists a constant C ≥ 1 such that

N(F, δ) ≤ Cδ− dimB F for all 0 < δ < δ0.

We remark that a similar distinction is made with regard to the Hausdorff
dimension of sets: recall that the Hausdorff measures are a one-parameter family
of measures, denoted Hs with parameter s ∈ R+, and that for each set F ⊂ Rn
there exists a value dimH F ∈ R+, called the Hausdorff dimension of F , such
that

Hs (F ) =

{
∞ s < dimH F

0 s > dimH F.

For a set F to have Hausdorff dimension d it is sufficient, but not necessary,
for the Hausdorff measure with parameter d to satisfy 0 < Hd (F ) < ∞. Sets
with this property are sometimes called d-sets (see, for example, [4] pp.32) and
are distinguished as they have many convenient properties. For example, the
Hausdorff dimension product formula dimH (F ×G) ≥ dimH F + dimH G was
first proved for sets F and G in this restricted class (see Besicovitch & Moran
[2]) before being extended to hold for all sets (see Howroyd [6]).

1.2 Homogeneity and the Assouad dimension

The Assouad dimension is a less familiar notion of dimension, in which we are
concerned with ‘local’ coverings of a set F : for more details see Assouad [1],
Bouligand [3], Luukkainen [8] Olson [9], or Robinson [13].
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Definition 1.4. A set F ⊂ X is s-homogeneous if for all δ0 > 0 there exists a
constant C > 0 such that

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤ C (δ/ρ)
s ∀ δ, ρ with 0 < ρ < δ ≤ δ0. (5)

Note that we do not require F to be bounded in order to be s-homogeneous,
but minimally require each intersection Bδ (x)∩ F to be totally bounded. This
trivially holds if X has totally bounded balls, which is to say that every ball
Bδ (x) ⊂ X is totally bounded (for example, in Euclidean space X = Rn).

The following technical lemma gives a relationship between the minimal size
of covers of the set Bδ (x)∩F for different length-scales, which will use in many
of the subsequent proofs.

Lemma 1.5. Let F ⊂ X. For all δ, ρ, r > 0 and each x ∈ F

N (Bδ (x) ∩ F, ρ) ≤ N (Bδ (x) ∩ F, r) sup
x∈F

N (Br (x) ∩ F, ρ) (6)

Proof. The only non-trivial case occurs when ρ < r < δ. Further, if M :=
N (Bδ (x) ∩ F, r) =∞ then there is nothing to prove. Assume that M <∞ and
let x1, . . . , xM ∈ F be the centres of the r-balls Br (xj) that cover Bδ (x) ∩ F .
Clearly

Bδ (x) ∩ F ⊂
M⋃
j=1

Br (xj) ∩ F

so

N (Bδ (x) ∩ F, ρ) ≤
M∑
j=1

N (Br (xj) ∩ F, ρ)

≤M sup
x∈F

N (Br (x) ∩ F, ρ)

which is precisely (6).

It will be useful to observe that in some cases s-homogeneity is equivalent
to (5) holding only for some δ0, which is easier to check.

Lemma 1.6. If F ⊂ X is totally bounded or X has totally bounded balls then
F ⊂ X is s-homogeneous if and only if there exist constants C, δ1 > 0 such that

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤ C (δ/ρ)
s ∀ δ, ρ with 0 < ρ < δ ≤ δ1. (7)

Proof. The ‘if’ direction is immediate from the definition of s-homogeneity. To
prove the converse we let δ0 > 0 and x ∈ F be arbitrary. If δ0 ≤ δ1 then there
is nothing to prove, so we assume that δ0 > δ1. Suppose δ, ρ lie in the range
0 < ρ < δ1 < δ ≤ δ0. From Lemma 1.5 with r = δ1 we obtain

N (Bδ (x) ∩ F, ρ) ≤ N (Bδ (x) ∩ F, δ1) sup
x∈F

N (Bδ1 (x) ∩ F, ρ)

≤ N (Bδ (x) ∩ F, δ1)C (δ1/ρ)
s

≤ N (Bδ (x) ∩ F, δ1)C (δ/ρ)
s

(8)
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which follows from (7) and the fact that δ > δ1.
Now, if X has totally bounded balls then it follows from (8) that for 0 <

ρ < δ1 < δ ≤ δ0

N (Bδ (x) ∩ F, ρ) ≤ N (Bδ0 (0) , δ1)C (δ/ρ)
s
,

and trivially for δ1 ≤ ρ < δ ≤ δ0 that

N (Bδ (x) ∩ F, ρ) ≤ N (Bδ (x) , ρ) ≤ N (Bδ0 (x) , δ1) ≤ N (Bδ0 (0) , δ1) (δ/ρ)
s

as δ/ρ > 1. Consequently, with Cδ0 = N (Bδ0 (0) , δ1) max (C, 1) we obtain

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤ Cδ0 (δ/ρ)
s ∀ δ, ρ with 0 < ρ < δ ≤ δ0,

which, as δ0 > 0 was arbitrary, is precisely that F is s-homogeneous.
Next, if F ⊂ X is totally bounded then it follows from (8) that for 0 < ρ <

δ1 < δ ≤ δ0

N (Bδ (x) ∩ F, ρ) ≤ N (F, δ1)C (δ/ρ)
s
,

and again for δ1 ≤ ρ < δ ≤ δ0 that

N (Bδ (x) ∩ F, ρ) ≤ N (F, δ1) (δ/ρ)
s
.

Consequently, the constant C ′ = N (F, δ1) max (C, 1) is sufficient to extend (7)
to all 0 < ρ < δ ≤ δ0, so we conclude that F is s-homogeneous.

Corollary 1.7. If F ⊂ X is totally bounded then F is s-homogeneous if and
only if there exists a constant C such that

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤ C (δ/ρ)
s ∀ δ, ρ with 0 < ρ < δ.

Proof. The ‘if’ direction is immediate from the definition. Conversely, we see in
the above proof that the constant C ′ does not depend upon the upper bound
δ0, so the inequality is valid for all ρ, δ satisfying 0 < ρ < δ.

Definition 1.8. The Assouad dimension of a set F ⊂ X is defined by

dimA F := inf
{
s ∈ R+ : F is s-homogeneous

}
It is known that for a bounded set F ⊂ Rn the three notions of dimension

that we have now introduced satisfy

dimLB F ≤ dimB F ≤ dimA F (9)

(see, for example, Lemma 9.6 in Robinson [13]). The inequality (9) also holds
for totally bounded subsets in general metric spaces.

Lemma 1.9. If F ⊂ X is totally bounded then dimB F ≤ dimA F .
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Proof. Let s > dimA F and let x1, . . . , xN(F,1) be the centres of balls of radius
1 that form a cover of F . For all ρ < 1

N (F, ρ) ≤
N(F,1)∑
j=1

N (B1 (xj) ∩ F, ρ) ≤ N (F, 1) sup
x∈F

N (B1 (x) ∩ F, ρ)

≤ N (F, 1)C (1/ρ)
s

for some C > 0, hence dimB F ≤ s. As s > dimA F was arbitrary we conclude
that dimB F ≤ dimA F .

An interesting example is given by the compact countable set Fα := {n−α}n∈N∪
{0} ⊂ R with α > 0 for which

dimLB Fα = dimB Fα = (1 + α)
−1

but dimA Fα = 1.

(see Olson [9] and Example 13.4 in Robinson [12]).

2 Equi-homogeneity

From Definition 1.4 we see that homogeneity encodes the maximum size of a
local optimal cover at a particular length-scale. However, the minimal size of a
local optimal cover is not captured by homogeneity, and indeed this minimum
size can scale very differently, as the following example illustrates:

Example 2.1. For each α > 0 the set Fα := {n−α}n∈N ∪ {0} has Assouad
dimension equal to 1, so for all ε > 0

sup
x∈Fα

N(Bδ (x) ∩ Fα, ρ) (δ/ρ)
−(1−ε)

is unbounded on δ, ρ with 0 < ρ < δ.
On the other hand 1 ∈ Fα is an isolated point so

inf
x∈Fα

N(Bδ (x) ∩ Fα, ρ) = 1

for all δ, ρ with 0 < ρ < δ < 1 − 2−α as Bδ (1) ∩ Fα = {1} for such δ and this
isolated point can be covered by a single ball of any radius.

For a totally bounded set the maximal and minimal sizes of local optimal
covers can be estimated using the following relationships.

Lemma 2.2. For a totally bounded set F ⊂ X and δ, ρ satisfying 0 < ρ < δ

inf
x∈F

N(Bδ (x) ∩ F, ρ) ≤ N(F, ρ)

N(F, 4δ)
(10)

and sup
x∈F

N(Bδ (x) ∩ F, ρ) ≥ N(F, ρ)

N(F, δ)
. (11)
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Proof. Let x1, . . . , xN(F,δ) ∈ F be the centres of δ-balls that form a cover of F .
Clearly,

N (F, ρ) ≤
N(F,δ)∑
j=1

N (Bδ (xj) ∩ F, ρ) ≤ N (F, δ) sup
x∈F

N (Bδ (x) ∩ F, ρ) ,

which is (11).
Next, let δ, ρ satisfy 0 < ρ < δ and let x1, . . . , xN ′(F,4δ) ∈ F be the centres

of disjoint 4δ-balls. Observe that an arbitrary ρ-ball Bρ (z) intersects at most
one of the balls Bδ (xi): indeed, if there exist x, y ∈ Bρ (z) with x ∈ Bδ (xi) and
y ∈ Bδ (xj) with i 6= j then

dX (xi, xj) ≤ dX (xi, x) + dX (x, z) + dX (z, y) + dX (y, xj) ≤ 2δ + 2ρ ≤ 4δ

and so xi ∈ B4δ (xj), which is a contradiction. Consequently, as F contains the

union
⋃N ′(F,4δ)
j=1 Bδ (xj) ∩ F , it follows that

N (F, ρ) ≥
N ′(F,4δ)∑
j=1

N (Bδ (xj) ∩ F, ρ)

≥ N ′ (F, 4δ) inf
x∈F

N (Bδ (x) ∩ F, ρ) ,

≥ N (F, 4δ) inf
x∈F

N (Bδ (x) ∩ F, ρ)

from (1), which is precisely (10).

We now define equi-homogeneous sets to be those sets for which the range
of the number of sets required in the local covers is uniformly bounded at all
length-scales.

Definition 2.3. We say that a set F ⊂ X is equi-homogeneous if for all δ0 > 0
there exist constants M ≥ 1 and c1, c2 > 0 such that

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤M inf
x∈F

N(Bc1δ (x) ∩ F, c2ρ) (12)

for all δ, ρ with 0 < ρ < δ ≤ δ0.

Note that as N (Bδ (x) ∩ F, ρ) increases with δ and decreases with ρ, by
replacing the ci with 1 if necessary we can assume without loss of generality
that c2 ≤ 1 ≤ c1 in (12).

2.1 Equivalent definitions

As with the definition of homogeneity, for a large class of sets it is sufficient that
(12) holds only for some δ0.

Lemma 2.4. If F ⊂ X is totally bounded or X has totally bounded balls then F
is equi-homogeneous if and only if there exist constants M ≥ 1 and c1, c2, δ1 > 0
such that

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤M inf
x∈F

N (Bc1δ (x) ∩ F, c2ρ)

for all ρ, δ satisfying 0 < ρ < δ ≤ δ1.
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Proof. The proof is substantially the same as that of Lemma 1.6.

Again, if F is totally bounded then we can find M ≥ 1 such that (12) holds
for all ρ, δ with 0 < ρ < δ.

In normed spaces with totally bounded balls (such as Euclidean space) there
is an even more elementary formulation that does not require the constants
c1, c2.

Lemma 2.5. Let X be a normed space with totally bounded balls. A set F ⊂ X
is equi-homogeneous if and only if there exists constants M ≥ 1, δ1 ≥ 1 such
that

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤M inf
x∈F

N(Bδ (x) ∩ F, ρ) (13)

for all ρ, δ with 0 < ρ < δ ≤ δ1.

Proof. The ‘if’ direction follows immediately from Lemma 2.4. To prove the
converse fix δ0 > 0 and let M ≥ 1 and c1, c2 > 0 with c2 ≤ 1 ≤ c1 be such that

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤M inf
x∈F

N (Bc1δ (x) ∩ F, c2ρ)

for all 0 < ρ < δ ≤ δ0.
First, observe that replacing δ by δ/c1 we can assume that

sup
x∈F

N(Bδ/c1 (x) ∩ F, ρ) ≤M inf
x∈F

N(Bδ (x) ∩ F, c2ρ) (14)

for all δ, ρ with 0 < ρ < δ/c1, δ ≤ c1δ0. Note that if ρ ≥ δ/c1 then the above
inequality holds trivially, since the left-hand side is 1 and the right-hand side is
at least M ≥ 1; so in fact (14) holds for all 0 < ρ < δ ≤ δ1 := c1δ0.

Now, it follows from (6) with r = δ/c1 that

N (Bδ (x) ∩ F, ρ) ≤ N (Bδ (x) , δ/c1) sup
x∈F

N
(
Bδ/c1 (x) ∩ F, ρ

)
for all x ∈ F , so settingN1 := N (Bδ (x) , δ/c1) = N (B1 (0) , 1/c1), which follows
as X is a normed space, we obtain

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤ N1 sup
x∈F

N
(
Bδ/c1 (x) ∩ F, ρ

)
. (15)

It also follows from (6) that for any r > 0

N (Bδ (x) ∩ F, c2ρ) ≤ N (Bδ (x) ∩ F, r) sup
x∈F

N (Br (x) ∩ F, c2ρ)

≤ N (Bδ (x) ∩ F, r) sup
x∈F

N (Br (x) , c2ρ)

= N (Bδ (x) ∩ F, r)N (Br (0) , c2ρ)

so taking r = ρ, setting N2 = N (Bρ (0) , c2ρ) = N (B1 (0) , c2), which again
follows as X is a normed space, and taking the infimum over x ∈ F we obtain

inf
x∈F

N (Bδ (x) ∩ F, c2ρ) ≤ inf
x∈F

N (Bδ (x) ∩ F, ρ)N2. (16)
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It follows from (14), (15) and (16) that for all ρ, δ with 0 < ρ < δ ≤ δ1

sup
x∈F

N (Bδ (x) ∩ F, ρ) ≤MN1

N2
inf
x∈F

N (Bδ (x) ∩ F, ρ)

so we conclude from Lemma 2.5 that F is equi-homogeneous.

In [11] the authors demonstrate that for reasonable choices of product metric,
the product of two equi-homogeneous sets is also equi-homogeneous.

We will demonstrate that this notion of equi-homogeneity is not overly re-
strictive: it is enjoyed, at least, by all self-similar sets that satisfy the Moran
open set condition.

Self-similar sets are a much studied and canonical class of fractal sets. A
(contracting) similarity is a map fi : Rd → Rd of the form

fi(x) = σiOix+ βi,

where σi ∈ (0, 1), βi ∈ Rd, and Oi ∈ O(d), the set of all d × d orthogonal
matrices. Given a family {fi}ni=1 of similarities, there exists a unique set F ,
known as the attractor of this family, such that

F =

n⋃
i=1

fi(F ). (17)

(See Falconer [4], for example.)
These sets are easier to analyse when we impose some separation properties,

i.e. we insist that (in some sense) the images of the fi do not overlap. The
simplest such property is the Moran open-set condition: there exists an open
set U such that F ⊂ U , fi(U) ⊆ U , and

fi(U) ∩ fj(U) = ∅ when i 6= j.

Lemma 2.6. Self-similar sets that satisfy the Moran open-set condition are
equi-homogeneous.

Proof. Let I = {1, . . . , n}, define I∗ =
⋃∞
n=1 In, and for α = (i1, . . . , in) ∈ I

let
fα = fi1 ◦ · · · ◦ fin , Oα = Oi1 · · ·Oin and σα = σi1 · · ·σin .

For n ≥ 2 we denote (i1, . . . , in−1) by α′. Let σmin = min{σi : i ∈ I } and
η = diam(U). For δ ≤ σminη define

Sδ = {α ∈ I : σαη < δ ≤ σα′η }.

Note that n ≥ 2 for any α ∈ Sδ. Moreover, for α, β ∈ Sδ we have

fα(U) ∩ fβ(U) = ∅ when α 6= β. (18)

This follows from the open set condition as we now show.
Write

α = (i1, . . . , in) and β = (j1, . . . , jm)

and assume without loss of generality that m ≤ n. Let k be the smallest integer
such that ik 6= jk. Such a k exists because if not, then α 6= β would imply m < n
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and consequently that σα′ ≤ σβ . This would imply that δ ≤ σα′η < σβη < δ,
which is a contradiction. If k = 1 then i1 6= j1 and the open set condition
implies that

fα(U) ∩ fβ(U) ⊆ fi1(U) ∩ fj1(U) = ∅.
If k > 1 define γ = (i1, . . . , ik−1) and again

fα(U) ∩ fβ(U) ⊆ fγ ◦ fik(U) ∩ fγ ◦ fjk(U) = fγ(∅) = ∅.

Thus we have shown that (18) holds.
We next claim that

F =
⋃
α∈Sδ

fα(F ) where fα(x) = σαOα(x) + fα(0). (19)

This follows from (17) and induction. Given x ∈ F choose i1 ∈ I such that
x ∈ fi1(F ). Assume that x ∈ fi1 ◦ · · · ◦ fik(F ); then f−1ik ◦ · · · ◦ f

−1
i1

(x) ∈ F

implies that we can choose ik+1 ∈ I such that f−1ik ◦ · · · ◦ f
−1
i1

(x) ∈ fik+1
(F ). It

follows that x ∈ fi1 ◦ · · · ◦ fik+1
(F ). Given the sequence ik chosen above, there

is exactly one choice of n such that α = (i1, · · · , in) satisfies σαη < δ ≤ σα′η.
We conclude that x ∈ fα(F ) for some α ∈ Sδ, which completes the proof of the
claim.

We now use (18) and (19) to show that F is equi-homogeneous. Let x ∈ F
be arbitrary. Then x ∈ fα(F ) for some α ∈ Sδ and consequently

diam(fα(F )) = σαdiam(F ) ≤ σαη < δ,

which implies that fα(F ) ⊆ Bδ(x). It follows that

Bδ(x) ∩ F = Bδ(x) ∩
⋃
β∈Sδ

fβ(F ) ⊇ Bδ(x) ∩ fα(F ) = fα(F ).

Therefore

N(Bδ(x) ∩ F, ρ) ≥ N(fα(F ), ρ) = N(F, ρ/σα) ≥ N(F, c1ρ/δ)

where c1 = η/σmin implies that

inf
x∈F

N(Bδ(x) ∩ F, ρ) ≥ N(F, c1ρ/δ).

Now let Aδ = {α ∈ Sδ : Bδ(x) ∩ fα(U) 6= ∅ }. Then α ∈ Aδ implies that

fα(U) ⊆ Bδ+diamfα(U)(x) ⊆ B2δ(x).

Therefore by (18) we obtain

λ(B2δ(x)) ≥ λ
( ⋃
α∈Aδ

fα(U)
)

=
∑
α∈Aδ

λ
(
fα(U)

)
= λ(U)

∑
α∈Aδ

(σa)d ≥ λ(U)(δ/c1)dcard(Aδ)

where λ is the d-dimensional Lebesgue measure. Consequently

N(Bδ(x) ∩ F, ρ) ≤
∑
α∈Aδ

N
(
fα(F ), ρ

)
=
∑
α∈Aδ

N(F, ρ/σα)

≤ card(Aδ)N(F, ηρ/δ) ≤MN(F, ηρ/δ)
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where M = (2c1η)dλ(B1(x))/λ(U). It follows that

sup
x∈F

N(Bδ(x) ∩ F, ρ) ≤MN(F, ηρ/δ),

which completes the proof of the theorem.

2.2 Equi-homogeneity and the Assouad dimension

For equi-homogeneous sets F we obtain from (10) an upper bound for the maxi-
mal size of the local coverings supx∈F N(Bδ (x) ∩ F, ρ) in terms of the minimum
number of sets required to cover F . In fact, with this bound we can precisely
find the Assouad dimension of equi-homogeneous sets provided that their box-
counting dimensions are suitably ‘well behaved’, which is the content of the
following theorem.

Theorem 2.7. If a totally bounded set F ⊂ X is equi-homogeneous, F attains
both its upper and lower box-counting dimensions, and dimLB F = dimB F , then
dimA F = dimB F = dimLB F .

Proof. As F attains both its upper and lower box-counting dimensions and these
dimensions are equal it is clear from Definition 1.3 that there exists a constant
C ≥ 1 and a δ0 > 0 such that

1

C
δ− dimB F ≤ N(F, δ) ≤ Cδ− dimB F ∀0 < δ ≤ δ0. (20)

Next, as F is equi-homogeneous there exist M ≥ 1 and c1, c2 > 0 with
c2 ≤ 1 ≤ c1 such that for all δ, ρ with 0 < ρ < δ ≤ δ0

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤M inf
x∈F

N(Bc1δ (x) ∩ F, c2ρ) .

As 0 < c2ρ < c1δ we can apply Lemma 2.2 to obtain

sup
x∈F

N(Bδ (x) ∩ F, ρ) ≤M N(F, c2ρ)

N(F, 4c1δ)
≤MC2 (c2ρ)

− dimB F

(4c1δ)
− dimB F

= MC2 (4c1/c2)
dimB F (δ/ρ)

dimB F

from (20), so the set F is (dimB F )-homogeneous. Consequently, dimA F ≤
dimB F , but from (9) the Assouad dimension dominates the upper box-counting
dimension so we obtain the equality dimA F = dimB F .

Note that our notion of equi-homogeneous is related to, but distinctly differ-
ent from, the coincidence of the Assouad dimension with the minimal dimension
number dimLA(F ) defined by Larman in [7] as as the supremum over all s for
which there exists constants c and δ0 > 0 such that

inf
x∈f

N(Bδ(x) ∩ F, ρ) ≥ c(δ/ρ)s for all 0 < ρ < δ ≤ δ0.

Corollary 2.11 of Fraser [5] shows that self-similar sets F that satisfy the open-set
condition also satisfy dimA(F ) = dimLA(F ). Given that we have just shown that
such sets are equi-homogeneous, this raises the possibility that equi-homogeneity
is equivalent to the condition dimA(F ) = dimLA(F ).
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However, the generalised Cantor sets that we will construct in Section 3 are
equi-homogeneous but have minimal dimension numbers that differ from their
Assouad dimensions, and we now give a simple example of a set that satis-
fies dimA(F ) = dimLA(F ) but that is not equi-homogeneous. Taken together
these two examples demonstrate that the notion of equi-homogeneity is entirely
distinct from the coincidence of these two dimensions.

Proposition 2.8. Let F = {0, 1} ∪ { 2−n : n ∈ N }. Then

dimA(F ) = dimLA(F ) = 0

but F is not equi-homogeneous.

Proof. Let δ = 1/2. Then

Bδ(1) ∩ F = {1} implies that inf
x∈F

N(Bδ(x) ∩ F, ρ) = 1.

for every ρ > 0. On the other hand, for 0 < ρ < 1/4, let K be chosen so that

2−K−1 ≤ ρ < 2−K .

Then K ≥ 2 and
Bδ(0) ∩ F ⊇ { 2−n : n = 2, . . . ,K }.

Moreover 2−n+1 − 2−n = 2−n ≥ 2−K > ρ for n ≤ K implies that at least one
set of diameter ρ is required to cover each of the K − 1 points above. Therefore

sup
x∈F

N(Bδ(x) ∩ F, ρ) ≥ K − 1 ≥ log(1/ρ)

log 2
− 2.

This shows there is no value for M independent of ρ that could appear in
Definition 2.3 for this set, and so F is not equi-homogeneous.

Clearly dimLA(F ) = 0. The equality dimA(F ) = 0 is stated as Fact 4.3
in Olson [9] without proof. We include the proof here and remark that the
logarithmic terms that occur in the course of the argument can also be used
to show that F does not ‘attain’ its box-counting dimension (in the sense of
Definition 1.3).

Let x ∈ [0, 1] and 0 < ρ < δ < 1/4. Define

G = { 2−n : max(0, x− δ) < 2−n ≤ ρ }

and
H = { 2−n : max(ρ, x− δ) < 2−n < min(x+ δ, 1) }.

Then Bδ(x)∩F ⊆ {0, 1}∪G∪H. Now depending on ρ, x, and δ it may happen
that either or both of the sets H and G are empty. As covering an empty set is
trivial, we need only consider the cases when these sets are non-empty.

If G 6= ∅ then x− δ < ρ, and it follows that

N(G, ρ) ≤ ρ−max(0, x− δ)
ρ

+ 1 ≤ 2. (21)

Similarly if H 6= ∅ then

N(H, ρ) ≤ 1

log 2
log

{
min(x+ δ, 1)

max(ρ, x− δ)

}
+ 1.
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If x + δ ≥ 1 then x − δ ≥ 1 − 2δ ≥ 1/2. Thus N(H, ρ) ≤ 2. If x − δ ≤ ρ then
x + δ ≤ ρ + 2δ < 3δ < 1. Thus N(H, ρ) ≤ (log 2)−1 log(3δ/ρ) + 1. Otherwise,
ρ + δ < x < 1 − δ. On this interval x 7→ log

{
(x + δ)/(x − δ)

}
is a decreasing

function. Therefore, in general,

N(H, ρ) ≤ 2 log(δ/ρ) + 3. (22)

Combining (21) with (22) we obtain

N(Bδ(x) ∩ F, ρ) ≤ 2 log(δ/ρ) + 7

Since for every s > 0 there exists C > 0 such that

2 log(δ/ρ) + 7 ≤ C(δ/ρ)s for every 0 < ρ < δ < 1/4,

taking δ0 = 1/4 in Lemma 1.6 shows that dimA(F ) = 0.
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