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1 Introduction.

Let x = (x1, . . . , xn) denote a point in R
n, and dx = dx1 dx2 · · · dxn denote the volume element in

R
n. Let u(x, t) : G → R

n be a time-dependent vector field defined on an open subset Ĝ of x-t-space
with components ui, i = 1, . . . , n. G will be called a domain for brevity, though we do not assume
that Ĝ is connected. Domains in x-space will be denoted G, in x-t-space they will be denoted Ĝ.

A vector field u(x, t) which is C1 in x on an x-t-domain Ĝ is divergence free if it satisfies the
differential equation

div u =
∂ui

∂xi

= 0. (1.1)

Here and throughout this paper we use the summation convention. There is also another charac-
terization of divergence free vector fields that does not involve derivatives. We say that a scalar
or vector-valued function v(x, t) on Ĝ belongs to class N on Ĝ if and only if v ≡ 0 outside a
suitable compact subset of this region. The functions of this class, thus vanish on a boundary strip
of Ĝ. The alternative characterization is as follows. A field u(x, t) which is C1 in x on Ĝ is called
divergence free on Ĝ if

∫∫

Ĝ

ui

∂h

∂xi

dxdt = 0, (1.2)

for any function h(x, t) of class N in Ĝ that is C1 in x on Ĝ. The equivalence of (1.1) and (1.2)
is a consquence of Gauss’ Theorem (which is applicable because h ∈ N in Ĝ) and because of the
fundamental lemma of the calculus of variations. If we introduce the scalar product of two vector
fields v(x, t) and w(x, t) on Ĝ as

∫∫

Ĝ

viwi dxdt,

we can say that “a field u which is C1 in x is divergence-free in Ĝ” means that u is orthogonal in
Ĝ to the gradient of a function of class N that is C1 in x. 1.

1The formulation of these terms in x-t-space rather than just in x-space is advantageous for our problem. Appli-
cations of Hilbert space theory can be found in the following works: O. Nikodym, Sur un théorème de M.S. Zaremba

1



The following counterpart of this fact is of interest here. A vector field h′ : Ĝ → R
n which is

continuous in x is a gradient field (that is, h′

i = ∂h/∂xi for some h : Ĝ → R that is C1 in x), if and

only if h′ is orthogonal to every divergence-free vector field that is C1 in x in Ĝ.
Necessity is once more a consequence of the Integral Theorem. Sufficiency is obtained as follows.

By considering w(x, t) = ϕ(t)ω(x) with scalar ϕ we reduce to the corresponding claim for x-regions
G. Thus, assume

∫

G

wih
′

i dx = 0 (1.3)

for any smooth divergence-free field w(x) of class N in G. The claim follows if we can show that
the circulation of the field h′

∫

C

h′

i dxi =

∫

C

h′

s ds, (1.4)

vanishes along every closed path C in G. It is easy to see that this needs to be shown only
for continuously curved paths without self-intersections. We will obtain this vanishing through a
suitable choice of fields w. For any given small ε > 0, there is a vector field w(x) which is smooth
and divergence-free in G and which has the following properties: w is non-zero only in a closed tube
around C of thickness < ε. On any plane tube section that cuts C orthogonally, the vector w forms
an angle < ε with the normal direction (i.e. the direction of C in the section). The sectional flow of
w, which is independent of the exact shape of the section because w is divergence-free, is equal to
1. This fact suffices to prove that the circulation along C vanishes. We consider such a field w(x)
for fixed (but sufficiently small) ε. If we let dF denote the hypersurface element on these tube
sections and if we choose the arc length s along C as the parameter transverse to the sections, we
can write the volume element dx in the tube as ρ(x) dF ds, where we assume ρ to be continuous
in a neighborhood of C and equal to 1 on C. Then

∫

h′

iwi dx =

∫

h′

w|w|ρ dF ds.

If we replace the component h′

w by the component h′

s taken at the intersection of C with the section,
|w(x)| by the component ws(x) taken in a direction normal to dF and ρ by 1, then the right-hand
side integral becomes

∫

h′

s

[
∫

ws dF

]

ds =

∫

h′

s ds,

i.e. the circulation. Based upon the properties of the field w noted above, we can meanwhile easily
prove that that the error introduced by these approximations goes to zero with ε. The claim is
proven.

The basic equations of Navier-Stokes equations for the movement of a homogeneous, incom-
pressible liquid are

∂ui

∂t
+ uα

∂ui

∂xα

= −
∂p

∂xi

+ µ
∂2ui

∂xβ∂xβ

, (1.5)

where µ is a positive constant, namely the kinematic viscosity coefficient and

div u = 0.

concernant les fonctions harmoniques. J. Math. pur appl., Paris, Sér. IX, 12 (1933), 95–109; J. Leray, Sur le
mouvement d’un liquide visqueux emplissant l’espace. Acta math., Uppsala 63 (1934), 193–248; H. Weyl, The
method of orthogonal projection in potential theory. Duke math J. 7 (1940), 411–444.
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Let u(x, t), p(x, t) be a solution in an x-t-region Ĝ which we assume to be continuous along with
all the occurring derivatives ut, ux, uxx. We now introduce a new time-dependent vector field
a = a(x, t) which is divergence-free in Ĝ. The only requirements on a are that is of class N in Ĝ
and sufficiently smooth: a and the derivatives at, ax, axx should be continuous in Ĝ. Since a ∈ N
in G and

uα

∂ui

∂xα

=
∂uiuα

∂xα

,

we have the identities
∫∫

Ĝ

ai

∂ui

∂t
dxdt = −

∫∫

Ĝ

∂ai

∂t
ui dxdt,

∫∫

Ĝ

aiuα

∂ui

∂xα

dxdt = −

∫∫

Ĝ

∂ai

∂xα

uαui dxdt,

∫∫

Ĝ

ai

∂2ui

∂xβ∂xβ

dxdt = −

∫∫

Ĝ

∂ai

∂xβ

∂ui

∂xβ

dxdt =

∫∫

Ĝ

∂2ai

∂xβ∂xβ

dxdt.

Since div a = 0 and a ∈ N , we also have
∫∫

Ĝ

ai

∂p

∂xi

dxdt = 0.

Therefore, we find that the field u(x, t) satisfies the following condition

∫∫

Ĝ

∂ai

∂t
ui dxdt +

∫∫

Ĝ

∂ai

∂xα

uαui dxdt + µ

∫∫

Ĝ

∂2ai

∂xβ∂xβ

ui dxdt = 0, (1.6)

for any sufficiently smooth field a(x, t) on Ĝ with the properties

div a = 0 in Ĝ, a ∈ N in Ĝ. (1.7)

In addition, we need to take into account that u is divergence-free, that is,
∫∫

Ĝ

∂h

∂xi

ui dxdt = 0, h ∈ N in Ĝ. (1.8)

These identities hold for sufficiently smooth functions in the respective classes. We have thus
reduced the basic equations to the form of equations between linear functional operators of arbitrary
fields and functions a and h. The essential part of this is that the unknown field u on which these
operators depend occurs without any derivatives.

We still need to convince ourselves that we may revert from equations (1.6) and (1.8) to the
differential form (1.5) of the equations if we restrict ourselves to sufficiently smooth solutions u. We
already know that under this assumption (1.8) implies div u = 0 in Ĝ. For a sufficiently smooth u,
we may undo all the integrations-by-parts. It then follows that

∫∫

Ĝ

ai

{

∂ui

∂t
+ uα

∂ui

∂xα

− µ
∂2ui

∂xβ∂xβ

}

dxdt

holds for every sufficiently smooth field a(x, t) of the form (1.7). Using the theorem proved above,
we may conclude that the term in curly braces is the gradient of a uniquely determined function
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p(x, t). Thus, the differential equations of motion (1.5) must hold in Ĝ. We see that this integral
form of the equations exactly expresses the physical demand that the pressure be unique.

It is natural to build the general mathematical theory on the integral form of the equations.
But then it is appropriate to rid ourselves of the artificial restriction to smooth solution fields u.
The occurrence of the quadratic forms

∫

uiui dx,

∫

∂ui

∂xβ

∂ui

∂xβ

dx

in the energy equation leads us to base the problem on a Hilbert space of vector fields. It is a
methodical advantage that in this broader framework the problem of regularity of solutions u can
be entirely separated from the problem of existence.2

The common initial value problem of the basic equations of hydrodynamics is the following. We
need to find the solution u(x, t) in a prescribed, moving region G(t) (t > 0) of x-space, while u(0)
in G(0) is prescribed (together with a suitably formulated condition of continuous continuation for
t → 0) and the boundary values at the boundary of G(t), t > 0 are also given (with a suitably
formulated sense of continuation). J. Leray dedicated three sizable works to this problem in the
early 1930s3. These inquiries had already forced Leray to use the methods of Hilbert space and
the integral interpretation of the equations in three dimensions4. In his works, Leray solved the
question of existence for all t > 0 in the following cases, a) G =

�
2 under the added condition of

finite kinetic energy, b) G is a fixed oval with zero boundary values, c) G =
�

3 under the added
condition of finite kinetic energy. The remarkable analysis that Leray dedicates to the question of
regularity point to a strange difference between the dimensions n = 2 and n > 2. If G is the entire
plane, the proof of infinite differentiability is successful, but the methods that one should view as
natural fail for n > 3. Even for arbitrary smoothness of all prescribed data, the proof of smoothness
of the solution did not work out. The other strange thing is the failure of the uniqueness proof in
three dimensions. These questions are still not answered satisfactorily. It is hard to believe that
the initial value problem of viscous liquids for n = 3 should have more than one solution, and
more attention should be paid to the settling of the uniqueness question. However, recent research
indicates that for nonlinear partial differential problems the number of independent variables has
significant influence on the local properties of solutions.

The present work is dedicated to the initial value problem with the integral form of the equations
viewed as their primary form. We leave aside the questions of regularity and uniqueness. We hope
to come back to these things as well as to the proof of the energy equation (which is easy in our
context) in later memoranda. The main point of this work is that the construction of approximate
solutions (that takes such broad space in Leray’s work) may be replaced by a simpler process,
applicable to a much broader classes of partial differential problems. We also hope to come back
to this issue later. This method enables the solution of the initial value problem for all t > 0
in substantial generality. However, in this article what matters more to us is the exposition of
the basic method, rather than the generality of the results. We restrict ourselves to the case that

2Compare the treatment of quadratic variation and linear differential problems by methods of Hilbert spaces in
R. Courant and D. Hilbert, Methoden der mathematischen Physik, Volume 2, Berlin 1937, Chapter VII.

3J. Leray, a) Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose
l’Hydrodyamique. J.Math.pur.appl. Paris, Sér. IX 12 (1933) 1–82; b) Essay sur les mouvements plans d’un liquide
visqueux que limitent des parois. c) loc. cit. in footnote 1.

4A long while before this, C.W. Oseen had based his well-known hydrodynamic inquiries on a form of the basic
equations that is free of second derivatives. However, he only succeeded in proving existence for sufficiently small
times. Cf. his work Hydrodynamik (Leipzig 1927)
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the x-region G is fixed in time, but otherwise completely arbitrary, and where u has vanishing
boundary values. The boundary condition will be defined in terms of Hilbert space–broad enough
to guarantee solvability, and narrow enough to guarantee the uniqueness of the solution, at least in
two dimensions5. In pure existence theory, the space dimension n will not play any role.

2 The function space H
′. Solutions of class H

′.

We define the class H with respect to an x-t-region Ĝ to mean the space of all measurable functions
f : Ĝ → R with finite norm

∫∫

Ĝ

f2 dxdt.

H is a real Hilbert space. We will mean weak and strong convergence in with respect to this norm
in what follows. Recall that a sequence of functions f ∈ H converges weakly if first, the norms of
all f remain below a fixed value and second, if

∫∫

Ĝ

fg dxdt →

∫∫

Ĝ

f∗g dxdt

holds for any fixed function g ∈ H . While maintaining the first condition, the second one may be
weakened to the effect that the sequence of numbers

∫∫

Ĝ

fg dxdt

converges for any fixed g in a set that is strongly dense in H . Then there exists one, and essentially
only one weak limit function f∗ in Ĝ. Here we have used an x-t-region. We will also use the same
terms for a purely spatial x-region G. In this case, we will base our considerations on the norm

∫

G

f2 dx.

We remind the reader of that a sequence of functions with uniformly bounded norms is weakly
compact (F. Riesz’s Theorem). The following criterion for strong convergence, used extensively by
Leray, will also be necessary here. For a sequence of functions that converges weakly in Ĝ to a limit
function f∗, we have

lim

∫∫

Ĝ

f2 dxdt >

∫∫

Ĝ

(f∗)2 dxdt,

where equality holds if and only if f → f∗ in the strong sense. All these notions transfer to vector
fields u, v on Ĝ if we use the scalar product

∫∫

Ĝ

uivi dxdt

and the corresponding norm.

5If G is the entire x-space, the boundary condition thus phrased becomes the condition of finite kinetic energy
and finite dissipation integral.

The phrasing of the boundary condition is suggested by the work of R. Courant and D. Hilbert, Methoden der
mathematischen Physik, Vol. 2, Berlin 1937, Chap. VII, 1, 3rd section.

5



Lemma 2.1 If the vector fields u(x, t) converge weakly in Ĝ to a limit field u∗(x, t), then

lim

∫∫

Ĝ

uiui dxdt >

∫∫

Ĝ

u∗

i u
∗

i dxdt.

Equality holds if and only if the convergence in Ĝ is strong.

Like Leray, we need generalized (purely spatial) derivatives of functions f(x, t) and fields u(x, t).

Definition 2.1 A function f : Ĝ → R belongs to the space H ′ if and only if it has the following
properties: f belongs to H in Ĝ, and there exist n functions denoted f′,i in H such that

∫∫

Ĝ

hf′,i dxdt = −

∫∫

Ĝ

∂h

∂xi

f dxdt, i = 1, 2, . . . , n, (2.1)

for every function h(x, t) which is continuous in Ĝ along with its derivatives and which belongs to
class N .

The class H ′ obviously contains any f that is C1 in x such that f and all ∂f/∂xi belong to
H in Ĝ. For such an f , we have ∂f/∂xi = f′,i. This follows from the integral theorem and the

demand that h must belong to N , that is that h vanishes outside a certain compact subset of Ĝ.
Obviously, generalized derivatives f′i in G are uniquely determined except for the values on an x-t
set of measure zero in the case of f ∈ H ′.

Lemma 2.2 If a sequence of functions in H ′ converge weakly to f∗ and for all f in the sequence
the expressions

∫∫

Ĝ

f2 dxdt +

∫∫

Ĝ

f′if′i dxdt

are uniformly bounded, then f∗ also belongs to H ′ in Ĝ and every x-derivative f′i converges weakly
to the corresponding x-derivative f∗

′i.

Proof Every f satisfies (2.1), where h is an arbitrary admissible function. The right hand sides
converge to

−

∫∫

Ĝ

∂h

∂xi

f∗ dxdt.

For a fixed h and i, the left hand sides converge along the sequence of the f ’s. The set of admissible
functions h is strongly dense in the Hilbert space H . Thus, for any fixed i the sequence of the f′i

is weakly convergent. If we let f∗

i denote the limit function, then from (2.1), we conclude that

∫∫

Ĝ

hf∗

i dxdt = −

∫∫

Ĝ

∂h

∂xi

f∗ dxdt

holds for any admissible h and i. By Definition 2.1, f∗ belongs to H ′ in Ĝ, and because of uniquness
of the x-derivative, we have f∗

i = f∗
′i. �

We say a vector field is of class H ′ in Ĝ if this is the case for all components. There are no
derivatives on u in the integral form of the basic equations (1.6)–(1.8). However, it is practical to
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make a weak differentiability assumption like membership in the class H ′ on the solutions u. We
may then write for the friction term in (1.6)

µ

∫∫

Ĝ

∂2ai

∂xβ∂xβ

ui dx dt = −µ

∫∫

Ĝ

∂ai

∂xβ

ui,β dx dt. (2.2)

Definition 2.2 A field u : Ĝ → R
n is a solution of class H ′ of the basic equations of hydrodynamics

if it satisfies the following conditions:

a) u ∈ H ′ in Ĝ.

b) Vanishing divergence: any function h which is of class N in Ĝ and C1 in x satisfies the relation
(1.8).

c) Equations of motion: any field a(x, t) that is of class N in Ĝ, divergence-free and continuous
along with its derivatives at, ax, axx satisfies the relation (1.6).

Observe that under the condition a) the term in the basic equations (1.6) which is nonlinear in
u is a valid Lebesgue integral for any admissible field a. This is already the case if u ∈ H in Ĝ.
The condition of incompressibility (b) is equivalent with

div u ≡ ui,i = 0

for a.e. (x, t) ∈ Ĝ because of assumption (a).
We will define all integrands in the basic equations (1.6) outside of Ĝ to be zero. The integrals

can then be extended over all x-t-space. With this convention, the following theorem, which we
would like to prove here even though it is not needed in this paper, holds:

Theorem 2.1 A solution of class H ′ satisfies the equation
∫

t=τ

aiui dx =

∫ ∫

t<τ

∂ai

∂t
ui dxdt +

∫ ∫

t<τ

∂ai

∂xα

uαui dxdt − µ

∫ ∫

t<τ

∂ai

∂xβ

ui,β dx dt (2.3)

for a.e. value of τ .

Proof Observe that h(t)a(x, t) is also an admissible field if h(t) is an arbitrary C1 function of t.
If we replace a by ha in equation (1.6), which we abbreviate as,

∫ ∫

K[a, u] dxdt =

∫

∞

−∞

{
∫

t=τ

K[a, u]

}

dτ = 0,

it follows that the equation

∫

∞

−∞

h(τ)

{
∫

t=τ

K dx

}

dτ +

∫

∞

−∞

h′(τ)

{
∫

t=τ

aiui dx

}

dτ = 0 (2.4)

is also satisfied. The terms in curly braces are Lebesgue-integrable functions of τ on −∞ < τ < ∞
that vanish for all large |τ |. The validity of (2.4) for abritray h(τ) with continuous h′(τ) is equivalent
to the fact that

∫

t=τ

aiui dx =

∫ t

−∞

{
∫

t fixed

K dx

}

dt =

∫ ∫

t<τ

K dx dt
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for a.e. τ . �

In (2.3), the left hand side is defined for just a.e. τ , while the right hand side is an absolutely
continuous function of τ . In fact, one can prove that a solution of class H ′ in Ĝ can be changed on a
set of x-t measure zero such that the new u satisfies (2.3) without exception, i.e. for any admissible
a and any τ . But we will not elaborate further on this here.

3 The no-slip boundary condition. The initial value problem

The cross sections t = const of the x-t-region Ĝ are x-regions G(t). By using only terms of the
Hilbert space, we need to get as close as possible to the boundary condition that a function g(x, t)
and a field u(x, t) vanish on the boundary of G(t) for all t. This can be achieved by obtaining g
from functions of class N in Ĝ through a limit process. In doing so, it is necessary to use sufficiently
effective bounds on the spatial x-derivatives (but not on the t-derivatives) of the approximating
functions, so that the “vanishing” remains intact along the boundaries of the x-regions G(t). We
express the boundary condition by membership in the following function class H ′(N).

Definition 3.1 A function g(x, t) is said to be of class H ′(N) in Ĝ if it is the weak limit of a
sequence of functions γ(x, t), which are C1 in x, belong to N in Ĝ, and for which the expressions

∫∫

Ĝ

γ2 dx dt +

∫∫

Ĝ

γ′iγ′i dx dt (3.1)

are uniformly bounded.6

It follows from Lemma 2.2 that for a given x-t-region G the class H ′(N) is contained in the
class H ′.

Lemma 3.1 Let Ĝ by a cylinder set x ⊂ G, 0 < t < T . Let g(x, t) be the weak limit in Ĝ of
a sequence of functions γ(x, t), C1 in x, that are of the following kind. For each γ there is a
compact subset of the x-region G such that γ vanishes for x outside that set. The integrals (3.1)
are uniformly bounded for γ in the sequence. Then g belongs to H ′(N). 7

Proof Observe the difference between the class of γ admissible in this lemma and the narrower
class of γ of Definition 3.1. Membership of γ in N in the x-t-region Ĝ in the present case requires
that γ vanishes sufficiently close to t = 0 and t = T . But since only x-derivatives occur in (3.1),
this difference is inconsequential. If we replace the present γ by functions ϕ(t)γ(x, t), where ϕ is
continuous in (0, T ) and

ϕ =

{

0 for 0 < t < ε, T − ε < t < T,
1 for 2ε < t < T − 2ε,

6Cf. Courant-Hilbert, l.c. footnote 5, p. 218. The definition of the boundary condition of vanishing given there
is only seemingly stronger than ours. By S. Saks’ Theorem the sequence of arithmetic means of a weakly convergent
sequence has a strongly convergent subsequence. It follows from this theorem and from Lemma 2.2 that for any g in
H′(N), there exists a sequence of functions γ of the above-mentioned kind such that

γ → g, γ′i → g′i

holds in the strong sense.
7If G is R

n, the class H′(N) coincides with the class H′. In this case the admissible γ are strongly dense in the
function space H′ in the sense of the norm (3.1).
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and otherwise 0 < ϕ < 1 (ε → 0), then Definition 3.1 applies to the new γ̃ = ϕγ. Thus g belongs
to H ′(N). �

Lemma 3.2 The relations
∫∫

Ĝ

g′if dx dt = −

∫∫

Ĝ

gf′i dx dt (i = 1, 2, . . . , n)

are satisfied by any f of class H ′ in Ĝ and any g of class H ′(N) in Ĝ.

Proof By Definition 2.1, the relations hold for any specified f and for any γ that is C1 in x and of
class N in Ĝ. By Definition 3.1, g is a weak limit of a sequence of such γ with uniformly bounded
integrals (3.1). In addition to γ → g, we also have γ′i → g′i weakly in Ĝ by Lemma 2.2. The
relations that hold for f , γ thus also hold for f , g. �

To facilitate a more convenient form of the initial condition, we also introduce the class H(N).
In doing so, we restrict ourselves to x-space and vector fields u(x) that are defined in an x-region
G. If we only consider functions f(x) that belong to both the classes H and N , then it is clear that
the strong closure of these sets of functions is identical to H . The same is true of vector fields in
G. However, a difference arises if we restrict ourselves to divergence-free fields in G.

Definition 3.2 A divergence-free vector field in G of class H is said to be of class H(N) if it is a
weak limit of C2, divergence-free vector fields that belong to N .8

One easily proves the following: If the field u(x) is divergence-free and of class H(N) and if the
function ϕ(x) is of class H ′, then

∫

G

uiϕ′i dx = 0.

Membership of a divergence-free field in H(N) obviously replaces the boundary condition of van-
ishing on the normal component.

We may now state the existence theorem for the hydrodynamic initial value problem.

Theorem 3.1 (Existence theorem) Let G be an open subset of R
n. Let the field U(x) be divergence-

free in G and of class H(N), but otherwise arbitrary. Then there is a field u(x, t) defined for all
t > 0 in G with the following properties:

A. In any x-t-cylinder region x ⊂ G, 0 < t < T , u is a solution of class H ′ of the basic equations
of hydrodynamics (cf. Definition 2.2).

B. “Vanishing of the boundary values” for t > 0: u belongs to H ′(N) in every cylinder regions.

C. Initial condition: As t → 0, u(·, t) → U strongly.

8By Saks’ Theorem, it is then also the strong limit of just these vector fields.
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4 Simplification of the problem. The approximation proce-

dure.

To construct solutions of the initial value problem for an x-region G constant in time, we start with
the equation

∫

G

aiui dx

∣

∣

∣

∣

t=τ ′

−

∫

G

aiui

∣

∣

∣

∣

t=τ

= (4.1)

∫ τ ′

τ

∫

G

∂ai

∂t
ui dx dt +

∫ τ ′

τ

∫

G

∂ai

∂xα

uαui dx dt + µ

∫ τ ′

τ

∫

G

∂2ai

∂xβ∂xβ

u dx dt.

Lemma 4.1 Assume u : G × (0,∞) → R
n belongs to class H in every cylinder set x ⊂ G,

0 < t < T . Let it satisfy equation (4.1) for all τ ′ > τ > 0 and for any C2 vector field a such that

a = a(x), div a = 0 in G, a ∈ N in G. (4.2)

Then u satisfies the basic equation (1.6) for the semi-infinite cylinder Ĝ: x ⊂ G, t > 0 and for any
field admissible there (c.f condition (c) in the definition 2.2 of a weak solution).

Proof If we write (4.1) in the abbreviated form

f(τ ′) − f(τ) =

∫ τ ′

τ

g(t),

we see that the equation
∫

∞

0

ϕ′(t)f(t) dt +

∫

∞

0

ϕ(t)g(t) dt = 0

must be satisfied for any ϕ that is continuously differentiable in (0,∞) and which vanishes for all
sufficiently small and large t. If we once more write the equation out in full, we recognize that
equation (1.6) is satisfied in the semi-infinite cylinder by any field a = ϕ(t)a(x), where a(x) is a
C2 vector field satisfying (4.2), and ϕ(t) is one of the arbitrary functions permitted above. But
now any a(x, t) permitted by condition (c) in the definition 2.2 of a solution may be approximated
in the semi-infinite cylinder Ĝ by sums of fields of such special shape that in the basic equation
(1.6) integration and limit may be interchanged. For example, one could always arrange that the
convergence of the fields and their derivatives up to a prescribed order in Ĝ is uniform and that
the approximating fields all vanish outside a fixed compact subset of Ĝ.

It is thereby clear that a field u(x, t) which satisfies (4.1) to the extent specified in the lemma,
and which is further divergence-free and which belongs to class H ′ in any cylinder section satisfies
the full scope of the definition 2.2 of a solution on any cylinder section. �

The following lemma yields an even better basic equation.

Lemma 4.2 There is a sequence aν of C2, linearly independent vector fields in G satisfying (4.2),

a = aν(x), div aν = 0 in G, aν ∈ N in G, (4.3)

with the following property. An arbitrary C2 vector field field in G of the form (4.2) is the uniform
limit in G of a sequence of finite linear combinations of the field aν(x), with uniform convergence
of the derivatives up to second order in G. For a given a(x), only such linear combinations occur
in this approximation that have the value zero outside a certain compact subset of G which only
depends on a.

10



Based on this Lemma, it is clear that a vector field u(x, t) which is of class H in each cylinder
section and which satisfies the basic equation (4.1) for all τ ′ > τ > 0 and for any field aν of the
dense sequence automatically satisfies (4.1) for all vector fields a admitted above. In summary, the
basic equations (1.6) can be replaced by the equations (4.1) with (4.3).

Equations (4.1) and (4.3) yield an affine coordinate representation of the basic equations of
hydrodynamics in the space of divergence-free vector fields. The affine system of coordinate vectors
(4.3) can be transformed into an orthogonal system in the sense of the bilinear form

∫

G

viwi dx

through a simple linear transformation. We may also assume that the sequence (4.3) verifies the
condition

∫

G

aλ
i aν

i dx = δλ,ν . (4.4)

Lemma 4.3 The orthonormal system aν(x) is complete in the space of divergence-free fields U(x)
of class H(N) in G.

The proof results from Definition 3.2 and Lemma 4.2.

The Approximation Procedure. The kth approximation step consists simply of considering
only the first k equations of the infinitely many basic equations (4.1), (4.3),

a = aν(x) (ν = 1, 2, . . . , k) (4.5)

and trying to solve those through the ansatz

u = uk(x, t) =

k
∑

ν=1

λν(t)aν(x), (4.6)

with scalar factors λν = λk
ν to be determined. This ansatz is automatically divergence-free and

satisfies the non-slip boundary condition because of (4.3). That is,

div uk = 0 in G, uk ∈ N in G. (4.7)

Since only differentiable λ(t) need to be considered and since the admissible fields a do not depend
on t, the first k equations (4.1) may be written in the form

∫

G

ai

∂ui

∂t
dx =

∫

G

∂ai

∂xα

uαui dx + µ

∫

G

∂2ai

∂xβ∂xβ

ui dx. (4.8)

By orthonormality (4.4), the k equations (4.8), (4.5) together with (4.6) yield a system of ordinary
differential equations

dλν

dt
= Fν(λ1, . . . , λk) (ν = 1, 2, . . . , k) (4.9)

for the λ, in which the right hand sides Fν = F k
ν are polynomials in λ with constant coefficients.

The equations (4.5), (4.6), and (4.8), or the equivalent equations (4.9), share with the strict hydro-
dynamic equations the important property that for their solutions, the energy equation

d

dt

1

2

∫

G

uiui dx = −µ

∫

G

∂ui

∂xβ

∂ui

∂xβ

dx (4.10)
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holds. Namely, since the equations (4.8) hold for all fields (4.5), they also hold for their linear
combinations (4.6) u = uk. The energy equation follows in the usual way (and without difficulties
at the boundary) since because of (4.7)

∫

G

∂ui

∂xα

uαui dx =

∫

G

∂K

∂xα

uα dx = 0,

(

K =
1

2
uiui

)

and
∫

G

∂2ui

∂xβ∂xβ

ui dx = −

∫

G

∂ui

∂xβ

∂ui

∂xβ

dx (u = uk).

It follows from (4.10) that

∫

G

uiui dx = λ2

1 + · · · + λ2

k (u = uk)

never increases. From this we conclude that any solution of the differential system (4.9) begun at
t = 0 exists for all t > 0.

The approximation procedure may very easily be interpreted formally in the following manner.
We think of both sides of the Navie-Stokes differential equations and the solution u formally as if
they were expanded in the orthonormal system of the fields aν : u = λνaν . We then obtain purely
formally a system of infinitely many differential equations of first order for the infinitely many scalar
Fourier coefficients λ. Our kth step then simply consists of only considering the first k of these
equations and setting all unknowns with indices ν > k to zero. The way in which we subsequently
prove our existence theorem simultaneously yields a statement regarding the convergence properties
of this simplest and most natural approximation method.

We choose the initial values of the λν(t) at t = 0 to be the Fourier coefficients of the expansion
of the given field U(x) in the aν . While the solutions λ(t) in the kth step generally depend on
k, these initial values are independent of them. By the assumption that U ∈ H(N) and by the
completeness lemma 4.3, we have

uk(·, 0) → U(·) strongly (k → ∞). (4.11)

5 Proof of the Existence Theorem.

We summarize the properties of the sequence of vector fields which we will need in the following:

a) Each uk is C2 in Ĝ and divergence-free for x ⊂ G, t > 0.

b) uk(x, t) vanishes if x lies outside a compact subset of the x-region G that only depends on k.

c) uk(x, t) satisfies the equation (4.8) (t > 0) and the equation (4.1) (τ ′ > τ > 0) in the k cases
(4.3) (ν = 1, 2, . . . , k).

d) The integrals
∫

G

uiui dx,

∫

0

∫

G

∂ui

∂xβ

∂ui

∂xβ

dxdt, (u = uk(x, t))

are bounded independent of k, t, and T .
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e) The initial values uk(x, 0) satisfy the limit relationship (4.11).

Observe that the uniform bound, 5(d) above, follows immediately from the time-integrated
energy equation (4.10) and (4.11).

First step. Each field aν(x) is continuous in G and different from zero only in a compact subset
of G. If we apply the first half of (d) to the right hand side of (4.8) (a = aν) by estimating the
term linear in u = uk by means of the Schwarz Inequality and the term quadratic in u by means
of an absolute bound for the derivatives of a, we obtain the following: The right hand side of (4.8)
(a = aν , u = uk, k > ν) is uniformly bounded for fixed ν for all k and t. The same is true of the
left hand side

d

dt

∫

G

aiui dx.

For fixed ν, the functions of time
∫

G

aν
i (x)uk

i (x, t) dx

satisfy a Lipschitz condition for all t > 0 that is independent of k. Furthermore, they remain
uniformly bounded for all t and k. So by a well-known selection (compactness) theorem there exists
for an arbitary, fixed ν a sequence of integers k′ such that

lim
k′

→∞

∫

G

aν
i (x)uk

i (x, t) dx (5.1)

exists for any t > 0, in fact uniformly so in any finite t-interval. The sequence of k′ depends on
the index ν, but we may pick the sequence belonging to the index ν + 1 as a subsequence of the
previous one. By means of a diagonal argument we may then form a fixed sequence of integers
(which we will once again label as k′) for which the limit statement above holds properly for any
fixed ν = 1, 2, . . .. In the sequel, we will operate on this sequence of k′.

Second step. We will now prove that the sequence of fields uk′

(x, t) converges weakly in the
x-region G for each fixed t > 0. For the purposes of our proof, we now fix an arbitrary value t0 of t
and observe that by the first half of 5(d) the sequence of these fields (t = t0) is weakly compact in
G. The claim will be proven when we show the sequence has a unique weak limit. Suppose u∗(x, t0)
is a weak limit and k′′ a subsequence of the k′ (this subsequence will depend on t0) such that

lim
k′′→∞

∫

G

wi(x)uk′′

i (x, t0) dx =

∫

G

wi(x)u∗

i (x, t0) dx

for each vector field w(x) of class H . In the case w = aν , the value of the right hand side is already
fixed by the limit (5.1). If u∗ and u∗∗ are two weak limits and if v is their difference, then

∫

G

aν
i vi dx = 0

for each ν. By Definition 3.2 the fields u∗, u∗∗ and thus also v belong to class H(N). However, by
Lemma 4.3 the fields aν span H(N). From this we conclude

∫

G

vivi dx = 0

and thus the claim.
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Consequently, there is a field u∗ which is well-defined in G for all t > 0 such that

lim
k′→∞

∫

G

wi(x)uk′

i (x, t) dx =

∫

G

wi(x)u∗

i (x, t) dx (5.2)

for each field w(x) (w ∈ H) and for each t > 0. The field u∗ satisfies condition (B) of the existence
theorem 3.1 at the end of Section 3. This follows from (b) and the second half of 5(d) by applying
Lemma 3.1. One easily proves that uk′

→ u∗ also holds weakly in x and t (0 < t < T ).
Third step. Here we prove that u∗(x, t) satisfies condition (A) of the existence theorem. In each

cylinder region x ⊂G, 0 < t < T , u∗ belongs to class H ′, which is, as we remarked, a superclass of
H ′(N) (and because of (B)) it also belongs to the latter class). By the arguments in the first half
of Section 4 we only need to show that u∗ satisfies the equations (4.1) for every a = aν and for all
τ ′ > τ > 0. By c), u = u∗ satifies these equations for the same τ, τ ′ and for the first k′ fields aν .
We now fix τ , τ ′ and the index ν and pass to the limit k′ → ∞. It is clear that on the left hand
side of (4.1) u may be replaced by u∗. The same is true of the third integral on the right hand side
(the first one is zero). Consider that in

∫ τ ′

τ

[
∫

G

wi(x)uk′

i (x, t) dx

]

dt

the inner integral is a uniformly bounded function with respect to k′ because of the first half of d)
and that we may apply Lebesgue’s bounded convergence theorem to the outer t-integral. It requires
some deeper thoughts that make use of the second half of d) to see that we may also interchange
the limit k′ → ∞ and the integration in the second integral on the right hand side of (4.1). For
this, we need the following lemma which we will prove later.

Lemma 5.1 Consider a sequence of functions fk(x, t) which are C1 in x for x ⊂ G, 0 < t < T
and have the following properties. For each fixed t, fk belongs to class N . For each fixed t, the
fk(x, t) converge weakly in G to a function f∗(x, t). The integrals

∫

G

f2(x, t) dx,

∫ T

0

∫

G

f′if′i dx dt (f = fk)

remain uniformly bounded with respect to t and k. Then the fk converge strongly to f∗ on the
x-t-region x ⊂ QG, 0 < t < T , where Q is an arbitrary finite cuboid in x-space. In particular, the
assertion holds for G itself if G is bounded.

We see that because of (a), (b), (d) and the result of the second step, the assumptions of the
lemma are satisfied for the components of the sequence of fields uk′

(x, t) for an arbitrary fixed T .
Thus, it follows that

∫ T

0

∫

QG

(ui − u∗

i )(ui − u∗

i ) dx dt (u = uk′

)

goes to zero for k′ → ∞ if Q is an arbitry finite cuboid of x-space. We can thus justify passing to
the limit in the second integral on the right hand side of (4.1) (a = aν , ν fixed). Recall that the
factor a of the integrand vanishes outside a fixed compact subset C of G. If we choose Q ⊃ C and
T > τ ′, then for the integral

∫ τ ′

τ

∫

QG

(ai,α)(uα) dx dt (a = aν , u = uk′

)
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we have the following stuation. The first factor converges weakly in the area of integration to
ai,αu∗

α, while the second one converges strongly to u∗

i . As is well-known, this suffices for passage
to the limit under the integral sign. We have thus shown that the field u∗ satisfies the equations
(4.1) for any field aν(x) and for all positive τ , τ ′. The condition A) of the existence theorem is thus
verified except for the freedom from divergence. This latter property, however, is trivially true,
even for any fixed t > 0.

To complete the proof of the existence theorem, we only need to show that the initial condition
C) is also satisfied. From the energy equation (4.10) follows

1

2

∫

G

uiui dx|0 =
1

2

∫

G

uiui dx|T +

∫ T

0

∫

G

∂ui

∂xβ

∂ui

∂xβ

dx dt (5.3)

for each field u of our sequence. The left hand side tends to

1

2

∫

G

UiUi dx

for k′ → ∞ because of (4.11). For t = T , the fields converge weakly to u∗ in G. In an x-t-cylinder
set, we have

uk′

i,β → u∗

i,β

weakly because of Lemma 2.2 and (d). By applying Lemma 2.1, (5.3) implies the inequality

1

2

∫

G

UiUi dx >
1

2

∫

G

u∗

i u
∗

i dx|T + µ

∫ T

0

∫

G

u∗

i,βu∗

i,β dx dt

for an arbitrary T > 0. In particular,

lim
t→0

∫

G

u∗

i u
∗

i dx 6

∫

G

UiUi dx.

If we once again apply Lemma 2.1 to this last inequality, we recognize that the initial condition (C)
is satisfied, which is what we wanted to show.

We will not go into detail on the question of strong convergence for a fixed t.

6 Proof of Lemma 5.1

The lemma is closely related to Rellich’s Compactness Theorem and has a similar proof.9.
Let us note from the start that the lemma, just like Rellich’s Theorem, need not hold for G

itself if G is infinite. A counterexample is given by the case where G is R
n and

fk(x, t) = f(x1 + k, x2, . . . , xn)

9Cf. Courant-Hilbert, l.c. footnote 5, p. 218. In Rellich’s Theorem, the boundedness of the x-integrals of
the squares of the derivatives is assumed. Our boundedness assumption merely concerns the x-t-integral and is thus
better adapted to the state of affairs in our problem.

Leray proves and uses a lemma even closer to Rellich’s Theorem l.c. Footnote 1, p. 214, Lemma 2, which, like this
theorem, only works with the x-integral. Our convergence proof is more direct.
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with f belonging to H ′ and N in G. In this case, f∗ = 0, but there is no strong covnergence to
zero10.

The proof of Lemma 5.1 arises from Friedrichs’ Inequality: Let Q be a finite cuboid in R
n. For

any given ε > 0, there exists a finite number of fixed functions ων(x) which belong to H in Q such
that the inequality

∫

Q

f2 dx 6
∑

ν

[
∫

Q

fων dx

]2

+ ε

∫

Q

f′if′i dx

is satisfied by any function f(x) belonging to H ′ in Q11. For the proof of Lemma 5.1, we first note
that for fixed t the functions fk(x, t) of the lemma are C1 in G and of class N . If we define the
functions to be zero outside G, then this statement remains valid if we relate it to the entire x-space
instead of to G. In particular, any of the functions on any finite cuboid Q of x-space belongs to
the class H ′. The extension of the functions and the last statement were made possible by the
assumption of membership in class N . This is however the only place where this assumption is
used. We now fix a cuboid Q and an arbitrary number ε > 0 and pick the finitely many auxiliary
functions ων(x) such that Friedrichs’ Inequality holds in Q. We apply it to the functions

f(x, t) = fk(x, t) − f l(x, t), (6.1)

which surely belong to H ′ in Q, for fixed t. By integration in t, we conclude that all the functions
(6.1) satisfy the inequality

∫ T

0

∫

Q

f2 dx dt 6
∑

ν

∫ T

0

[
∫

Q

fων dx

]2

dt + ε

∫ T

0

∫

Q

f′if′i dx dt. (6.2)

By assumption (weak convergence for fixed t), we have

lim
k→∞,l→∞

∫

Q

fων dx = 0

for each fixed t. Moreover, because of the boundedness assumption (first half), the function of t
∫

Q

(fk − f l)ων dx

remains uniformly bounded w.r.t. k, l. Thus the first term on the right hand side in (6.2) tends
to zero for k → ∞, l → ∞. By assumption, the factor of ε for the functions (6.1) remains below a
fixed bound. But

limk→∞,l→∞

∫ T

0

∫

Q

(fk − f l)2 dx dt 6 cε

implies strong convergence of our sequence in the x-t-region x ⊂ Q, 0 < t < T , since ε was arbitrary.
We easily obtain that the limit function is the function f∗(x, t) mentioned in the statement of the
lemma. Thus, Lemma 5.1 is proven.

10We may only conclude the strong convergence of the approximate fields u(x, t) to u∗(x, t) in the cylinder sections
if G is bounded. However, strong convergence is clearly true for arbitrary G. Leray deduced it for his approximations
in the case where G is the entire x-space using complicated estimates of the distribution of energy over G. We hope
to come back to the stronger convergence properties of our approximations at some later date.

11The ων may be assumed to be orthogonal in Q. The inequality then represents an estimate of the difference in
Bessel’s inequality. You may find the proof of the inequality in Courant-Hilbert, l.c. footnonte 5, p. 218, Chap.
VII, §3, Section 1. We may easily convince ourselves that the proof that is given there in 2 dimensions also works in
n dimensions. Friedrichs’ Inequality does not hold for arbitrary bounded regions.
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