Comment by "sup" on http://dxdy.ru/topic80156-60.html (translated by S.Chernyshenko)

Re: on Navier-Stokes equation D 21.01.2014, 21:43	
Заслуженный участник	It looks like I constructed a counter-example for the abstract theorem by Otelbaev. The space is l_2 . Opertaor A is $Ae_i = e_i$ for $i < 50$ $Ae_i = ie_i$ for $i \ge 50$ Now the bilinear operator L . It is nonzero only in two-dimensional cells $L(e_{2n}, e_{2n+1}) = 1/n(e_{2n} + e_{2n+1})$, for $n \ge 25$ Checking the conditions. Y3. With something to spare: 50. y2. $(e_i, L(e_i, e_i)) = 0$ for $i \ge 50$. For eigenvectors $u \ c \ \lambda = 1$ it is also 0, since for them $L(u, u) = 0$ y4. $L(e, u) = 0$ for the eigenvectors $e \ c \ \lambda = 1$ also trivially 0. y1. $(Ax, x) \ge (x, x)$ obviously. Estimate for the operator L $\ L(u, v)\ ^2 = \sum u_{2n}^2 v_{2n+1}^2 / n^2 \le C(\sum u_n^2/n) (\sum v_n^2/n)$ Now we consider elements $u_n = -n(e_{2n} + e_{2n+1})$. Their norms are obviously increasing. Let $\theta = -1$. Then the negative θ -norms of all these elements are equal to a constant. And $f_n = u_n + L(u_n, u_n) = 0$.

Post by KrgUser on <u>http://dxdy.ru/topic80156-90.html</u> (translated by S.Chernyshenko)

I work in Euro-Asian University, and asked Mukhtarbai Otelbaevich about the counterexample. His reply is below:

The counter-example is correct. The theorem should be corrected by adding the condition: There exists $\delta > 0$ and a family of orthogonal projectors P_1, P_2, \ldots, P_N , commuting with the operator A, strongly converging to a unit operator and such that if $||u + P_N L(P_N u, P_N u)|| \leq \delta$, then $||u|| \leq \frac{1}{2}$.

For the parabolic abstract equation and the system of the Navier-Stokes equations (after it is reduced to integral form) this condition is satisfied.

Otelbaev is thankful, and will refer to the post in the English translation of his paper.