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Chapter 11

The Dynamics of Billiard Flows
in Rational Polygons

J. Smillie

Billiard systems provide classic examples of simple mechanical systems.
Among such systems the simplest are those that model the motion of a single
particle in a region P of the plane. The trajectory of a particle in P is defined
by requiring that the particle move in a straight line and at constant velocity
in the interior of P and, when it hits the boundary of P at a point where the
boundary is a smooth curve, the particle should reflect off of the boundary so
that the angle of incidence is equal to the angle of reflection. If the trajectory
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hits a corner then there may be no good physical principal which selects
one particular continuation. In this case the continuation of the trajectory is
undefined.

In §2 we will explain how billiard trajectories are projections of orbits of a
“geodesic flow” or “billiard flow” on a suitably defined tangent bundle. Thus
the behavior of these trajectories is tied to the dynamics of the billiard flow.

Trajectories in planar billiard tables exhibit a wide range of behaviors. Two
trajectories which are nearby but not parallel tend to diverge. Trajectories
which are nearby and parallel remain parallel until they hit the boundary of
P. Two features of the boundary may lead to divergence of nearby parallel
trajectories: curvature and corners. The article by Bunimovich in this volume
discusses the effects of curvature on planar billiard dynamics. If the sides of P
are straight segments then curvature does not play a role. In this case nearby
parallel trajectories can only diverge if they hit the boundary on opposite sides
of a vertex. Regions with straight sides are called polygonal billiard tables.
In this article we will consider the dynamics of billiard flows on polygonal
tables.

The most familiar and best understood example of a planar polygonal bil-
liard table is the square. The analysis of the dynamical properties of the
billiard flow for the square dates to 1913 ([KS] see also [FK] and [HW]).
The square has a number of properties that distinguish it from the general
polygonal table. One key feature of the square is that each trajectory travels
in only finitely many directions. This behavior is a characteristic feature of
the class of rational billiards, where a polygonal billiard table with connected
boundary is rational if each vertex angle has angular measure which is a ra-
tional multiple of 7. In this article we will focus on the dynamics of billiard
flows on rational polygons. For a discussion of general polygonal billiards
see the survey articles by Tabachnikov [Ta] and Gutkin [Gu3].

There are several reasons for studying rational billiards. The dynamics of
rational billiard tables are simple enough so that a theory can be developed
yet they are sufficiently complex that many open questions remain. We will
see in §6 that the study of rational billiard dynamics leads to the study of
certain flows on moduli spaces which are themselves objects of great dy-
namical interest. Finally the fact that rational billiards are more complicated
than “integrable” systems and yet not fully “chaotic” has led physicists to
consider them as test cases for questions relating quantum dynamics to clas-
sical dynamics [cf BR]. While this leads to interesting question for future
mathematical investigation, in this article we will deal exclusively with the
“classical dynamics” of billiard tables.

The main questions that we will consider involve the distribution of billiard
trajectories. Here are three specific questions.
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(1) If we fix a table and fix a an initial direction of travel, what are the possible
behaviors of the trajectories and how does this behavior depend on the
initial position?

(2) How does the answer to question (1) change as we vary the direction?

(3) How does the answer to question (2) depend on the table?

§1. Two Examples

To give the flavor of rational billiard dynamics we will consider two exam-
ples, the square and the “divided rectangle”, where the divided rectangle is
the table obtained from the square by introducing a vertical reflective barrier
in the center of the square which divides the square into two rectangles con-
nected by an opening at the bottom (see figure). In fact the divided rectangle
gives us a one parameter family of tables to consider, since we can adjust the
length of the barrier. The billiard flow for the divided rectangle is easier to
analyze than billiard flows on general rational tables, yet it exhibits many of
the features seen in billiard flows on typical tables.

In the square, if two trajectories are parallel and start close together then they
remain close together for all time, even if they hit the boundary on opposite
sides of a vertex. This is an unusual feature for a rational polygon and accounts
for some of the special properties of billiard trajectories in the square. It is no
longer true in the divided rectangle, as we can see by considering two nearby
parallel trajectories one of which hits the central barrier near its tip and one
of which does not.

| > S

>

N
i
i

YA\
i
W
i

0
0

)
)?(
¥

VA,
(i
e
‘\‘l’

,,
!

N
i
e,

&V
|

)




Chapter 11. The Dynamics of Billiard Flows in Rational Polygons 363

In both of our examples the trajectories with rational slope have special
properties. In the square, a trajectory with rational slope is periodic and the
period is independent of the starting point. In the divided rectangle it is still
true that all trajectories with rational slope are periodic but the period of the
trajectory may depend on the initial point. In the square, each trajectory with
irrational slope is dense. In contrast we can find trajectories in the divided
rectangle with irrational slope which are not dense in the table (see Fig. 1).
The first example of such behavior for polygonal tables was discovered by
Galperin [Ga].

A dense orbit “fills up the table” but we can ask more specifically about the
rate at which it fills up the table. We say that an orbit is uniformly distributed
if the amount of time that it spends in a region is proportional to the area of
the region. A trajectory which is uniformly distributed is necessarily dense. If
the direction of the flow is irrational then every orbit in the square is not only
dense but uniformly distributed. This is not the case for the divided rectangle;
for certain barrier lengths there are orbits with irrational slope which are dense
in the table but spend more time on the left of the barrier than on the right.
It is not easy to illustrate this behavior with a computer picture but Fig. 2,
which shows an e-dense orbit which spends more time in the left half of
the table than the right, is meant to be suggestive. At the end of §2 we will
explain how the existence of dense but not uniformly distributed trajectories
follows from an early theorem of Veech.

We say that a polygonal table has the dichotomy property if all non-singular
orbits are closed or are uniformly distributed. The divided rectangle does not
have this property (at least for most lengths of the gap) and there are reasons
to think that this property is quite rare. Nevertheless we will see in §7 that
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there are in fact some interesting examples other than the square where the
dichotomy property holds.

§2. Formal Properties of the Billiard Flow

In this section we will relate billiard trajectories to orbits of a billiard flow
on an appropriately defined tangent bundle. We will investigate an invariant
foliation on this tangent bundle and describe a technique from [ZK] which
allows us to reduce questions about billiards to questions about the geodesic
flow on certain singular surfaces.

We begin with some basic observations about billiard flows. Let P be a
polygon in the plane which, for the moment, we do not assume to be rational.
We will describe the construction of a “geodesic flow” or “billiard flow”
on the unit tangent bundle to P whose orbits project to billiard trajectories
on P which travel at unit speed. Let S' be the unit circle in R? and let
T(R*) = R? x S' be the unit tangent bundle of R2. The geodesic flow on
T (R?) induces a partially defined flow on P x S! C T(R?) where orbits
fail to have continuations when they hit the boundary of P. We would like
trajectories to reflect off the boundary, and the simplest way to achieve this
is to identify certain inward and outward pointing vectors at points of the
boundary of P. If ¢; is an edge of P and p; : S' — S' represents the
reflection through e; then we identify (p, v) with (p, p;(v)) for each p € e;.
We define the tangent bundle of P, T(P), to be P x §'/ ~ where ~ is
the equivalence relation generated by identifying (p, v) with (p, p;(v)) as
above. At the vertex p where the edge ¢; meets the edge ¢; we identify (p, v)
with (p, y(v)) for all y in the group generated by p; and p;. Away from the
vertices we can define a billiard flow on 7' (P) whose trajectories project to
billiard trajectories on P. This flow is continuous where it is defined.

The geodesic flow on R? has a number of special properties, some of which
are reflected in properties of billiard flows. Two tangent vectors (p, v) and
(p',v) in T(R?) are parallel if v = v'. The relation of being parallel gives
an equivalence relation on 7' (R?) which is preserved by the geodesic flow.
The equivalence classes of this relation are copies of R? which we can think
of as leaves of a “parallel foliation” of T (R?). Thus the geodesic flow on R2
can be decomposed as a family of “directional flows”, one for each direction
v € S'. We can view each of these directional flows as a flow on R2.

There is a related foliation of 7 (P) which has corresponding properties.
The parallel foliation of T (R?) induces a foliation of P x S'. When two
parallel billiard trajectories reflect off of the same edge they remain parallel.
This implies that the identifications used to create the tangent bundle 7 (P)
in fact preserve the leaves of the parallel foliation. Thus there is a natural
induced “parallel” foliation of T (P) where leaves of this new foliation are
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obtained by gluing together the leaves of the parallel foliation of P x S'.
Two points (p, v) and (p’, v') are in the same leaf of this new foliation if
there is some sequence of edges e;,, ..., e; so that v’ = p; o...0p; (v). Let
I' C O(2) be the group generated by the reflections in sides. The leaves of
the foliation correspond to points in the orbit space S'/I".

The properties of the parallel foliation of T (P) depend on the cardinality
of I'. When P is a rational table then I" is finite. In this case the “leaf space”
S'/I is an interval and the leaves of the foliation are closed surfaces. We
will assume from now on that the polygon P is rational. Denote the interval
S'/I" by I. For each § € S! let M, be the surface corresponding to 6. Since
the surfaces My are invariant, the billiard flow on T (P) decomposes into a
family of directional flows on the surfaces Mj.

The surfaces M, are constructed from copies of P which are glued along
their edges by isometries. Since each surface M, is constructed by gluing
together copies of P according to the same pattern all such surfaces can be
identified with a single surface P. (If @ corresponds to an endpoint of / this
is not quite true but this is a minor point which we will ignore.) The surface
P appears in [FK] in the case of the square. The general case was considered
in [ZK] see also [RB].

Since the surface P is built by gluing together polygons by isometries it
has a natural metric space structure (cf [KS]). At points of P corresponding
to interior points of P or to edges of P the surface is locally isometric
to R2. In particular there is a natural notion of parallel translation along
paths which do not run through the vertices. The behavior at vertices is more
complicated. Consider the following situation. Let p; ... p, be vertices in
polygons P, ... P,. Let 6, be the vertex angle at p;. Glue these polygons
together in a cyclic pattern so that all vertices p; are identified with a single
point p. We say that the resulting space has a “cone type singularity” at p
and we define the cone angle at p to be 6 = )_ 6;. If the cone angle is equal
to 27 then the resulting surface is locally isometric to R? at p. We can think
of such points as a “removable singularities”. Removable singularities arise
at points in P corresponding to vertices in P with vertex angles of the form
n/n. We call points of P at which the cone angle is not equal to 27 vertices
of P.

When we construct the surface M, we are gluing together a finite number
of copies of P each with a vector field on it. We perform the gluing so that
the vector fields match along the edges of the polygons (though they may
not match at the vertices). Since we can identify M, with P we can think
of these vector fields as vector fields on P. The vector fields that arise in
this manner are precisely the “parallel vector fields” on P. A parallel vector
field has the property that the vectors at any two points are parallel translates
of one another. Thus we can think of the directional flows as the family of

366 J. Smillie

(partially defined) flows generated by the collection of parallel vector fields
on the single surface P.

The fact that P has a parallel vector field implies that the cone angles are
multiples of 2. The vector field can be extended to a point p if and only
if the cone angle at p is equal to 27 which is to say that the singularity is
removable. _

Any two parallel vector fields on P commute. The fact that the billiard flow
leaves invariant a decomposition of T (P) into surfaces and on each surface
there is a pair of commuting vector fields is reminiscent of the properties
of integrable flows on manifolds (cf Chapter 6 §1 of this volume). There is
an important distinction between typical billiard flows on P and integrable
flows which is related to the existence vertices. In the case of integrable flows
the invariant surface is a torus, that is to say a surface of genus one. In the
rational billiard case the presence of vertices allows the possibility that the
surface can have genus greater than one.

The Gauss-Bonnet theorem shows that the surface P has genus one precisely
when all the singular points are removable. In this case the analogy with
integrable systems is complete and such polygonal billiard tables are called
integrable. Richens and Berry [RB] have introduced the term quasi-integrable
for the more typical case when the genus of P is greater than one.

The list of integrable tables is short. The square is integrable as are rect-
angles. The only other integrable polygons are the triangle with angles w /4,
m/4 and /2, the equilateral triangle and the triangle with angles /6, /3
and /4. When P is the divided rectangle then P has two vertices each with
cone angle 4. This surface has genus 2 so this example is not integrable.
It is nevertheless related to the torus as it can be viewed geometrically as a
branched double cover of the torus.

The surfaces P belong to an interesting class of geometric objects called
translation surfaces that we will define using a characterization due to Veech.
Say that we have a surface M with a specified finite set X C M. A translation
structure on M is given by an atlas of charts in M — X taking their values in
R? so that the change of coordinate functions are restrictions of translations
of R2. This atlas of charts induces a Riemannian metric on M — X and we
impose the requirement that M is the metric completion of M — X with respect
to this Riemannian metric. In this case we will say that M is a surface with a
translation structure or we will say that M is a translation surface. To see that
P has a translation structure we let ¥ be the set of vertices and we choose a
pair of perpendicular parallel vector fields on P. Take as a system of charts
diffeomorphisms ¢; : U; — R? which take these parallel vector fields to the
vector fields 9, and 3, in R%.

There is a geometric structure closely related to a translation structure where
the change of coordinate functions are allowed to have the form v > +v +
c. These structures are called admissible .7 structures by Veech or half-
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integral translation structures in [GJ2] and they arise in the study of quadratic
differentials [EG].

The surfaces P provide examples of translation surfaces but there are many
translation surfaces that do not arise from polygons via this construction.
For any translation structure the geodesic flow decomposes into a family
of “directional flows”, one for each direction in the unit circle. When the
translation structure does come from a rational billiard table this geodesic flow
is the same as the billiard flow we have defined. Even when the translation
structure does not arise from a billiard table this geodesic flow still constitutes
an interesting dynamical systems. Our questions (1), (2) and (3) are still
relevant. We can add two questions to our list:

(4) What behaviors are generic for translation structures?
(5) To what extent is the dynamical behavior of billiard tables like the dy-
namical behavior of translation structures?

§3. The Flow in a Fixed Direction

In this section we survey some results which describe the flow on a trans-
lation surface in a fixed direction. A useful technique in studying these flows
is to consider the first return map to a transverse interval. Let / denote an
interval in the surface M transverse to the flow. Let p be a point in /. The
forward trajectory of p will either return to / or hit a vertex. The set of points
in I for which forward trajectories hit vertices is finite. These points divide
the interval I into subintervals I; ... I;. The restriction of the first return map
to one of these intervals is an orientation preserving isometry. In particular
the first return map is an interval exchange transformation. (See Chapter 4,
Section 2 of this volume.)

Criteria for the minimality of interval exchange transformations lead to
criteria for the minimality of directional flows. To describe one such criterion
we will introduce some terminology. We will call a geodesic segment which
starts at a vertex and ends at a vertex but contains no vertices in its interior
a vertex connection or when no confusion will arise simply an edge. These
are sometimes called saddle connections in the literature. A vertex connection
has a well defined direction.

Theorem 3.1. [ZK], [BKM]. If there are no vertex connections in direction
v then the flow in direction v is minimal.

If we are given a transverse interval I then there are two ways in which
the directional flow could fail to be minimal. First there could be a set of
trajectories which never hit /. In this case the union of these trajectories is
a manifold with non-empty boundary and the boundary consists of vertex
connections. Second it might be the case that all trajectories hit I but that the
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first return map is not minimal. In this case the Keane criterion for minimality
of interval exchange transformations (Ch. 4, Theorem 2.1) shows that there
must be a vertex connection. The paper of Amoux [Al] provides a good
reference for the relations between flows on surfaces and interval exchange
transformations.

The measure theoretic behavior of interval exchange transformations is more
subtle than the topological behavior. Examples of Keane [K] and Keynes and
Newton [KN] show that it is possible for an interval exchange transformation
to be minimal but not ergodic. On the other hand there are some strong
limitations:

Theorem 3.2. [Ka], [V2]. There is a constant N depending only on the poly-
gon so that for each minimal direction there are at most N ergodic invariant
measures for the directional flow.

If there is only one ergodic component for a directional flow then that flow
is uniquely ergodic. When the flow is uniquely ergodic all non-singular orbits
are uniformly distributed. Of course when the flow is uniquely ergodic it is
ergodic with respect to the natural Lebesgue measure.

Criteria for the unique ergodicity of interval exchange transformations lead
to criteria for the unique ergodicity of directional flows. The criteria for de-
termining unique ergodicity are more complicated than those for determin-
ing minimality. One approach is through a kind of renormalization operator.
Renormalization operators occur in many areas of dynamical systems. These
operators are maps defined on spaces of dynamical systems. Typically they
act by replacing a map by an iterate of the original map restricted to a smaller
domain and rescaling the domain.

For an interval exchange transformation defined on an interval / the induced
map on a subinterval I; C I is again an interval exchange transformation
so it is natural to consider renormalization operators on the space of interval
exchange transformations. Rauzy induction provides one such method. Rauzy
induction gives a map .72 from the space of interval exchanges to itself and a
finite partition of this space. Let o denote an interval exchange transformation.
By considering the partition element containing .22"(«) we assign to o a
symbol sequence. In the simplest case when there are only two intervals Rauzy
induction corresponds to the continued fraction algorithm. In the general case
one can give a criterion for unique ergodicity of « in terms of the symbol
sequence of «. (See [Ke], [Ra] of [V2].)

Unique ergodicity is not the only property about the distribution of orbits
of an interval exchange transformation that can be deduced from information
about Rauzy expansion. If an interval exchange transformation is uniquely er-
godic then for any continuous function f on I and any point p the Birkhoff
sums along the orbit of p converge to the integral of f. Zorich gives con-
nections between the Lyapunov exponents of the Rauzy induction map and
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the rate of convergence of Birkhoff sums. See [Z1], [Z2], [Z3] and the joint
paper with Kontsevich [KZ].

As an example of these methods we will consider the interval exchange
associated with the divided rectangle. Let us start by considering a degenerate
case when the gap has length zero and the central barrier, B, completely
separates the two halves of the table. In this case P consists of two disjoint
tori. The points which map to B in these two tori correspond to two circles
which we denote by S; and Sy corresponding to the left and right chambers.
The first return maps on these circles are rotations which we denote by 7.
Reflection through the center barrier defines a symmetry of this system which
interchanges the two chambers and interchanges S, and Sg. Let p denote this
involution. The maps p and 7, commute. Now let us consider the case when
the size of the gap is positive. This has the effect of “coupling” the billiard
flows in the two chambers. The points in the circles which correspond to
the gap give us two intervals I, C S, and Ix C Sg. These intervals are
interchanged by the reflection. The first return map is described as follows. If
p is not in Iz or I; then p returns to t5(p). If p is in Iy or I, then p returns
to p(t9(p)) and hence it jumps to the other circle. The resulting dynamical
system can be viewed as a skew product built over a rotation of the circle
with a two point fiber. A precise criterion for unique ergodicity of such maps
was given by Veech in [V1]. In particular this criterion can be used to show
that there are minimal non-ergodic directional flows for most values of the
gap length.

§4. Billiard Techniques: Minimality and Closed Orbits

It might appear from the previous section that the study of polygonal bil-
liards is another form of the study of interval exchange transformations. If
we focus only on the flow in a fixed direction then this is largely true. The
distinction between the areas appears when we ask not what behavior can oc-
cur for various directional flows (our question 1) but rather what behavior is
typical (our question 2). Three of the significant problems are to understand
the set of directions in which the flow is minimal, the set of directions in
which we have periodic billiard orbits and the set of directions in which the
flow is uniquely ergodic.

The first result concerns minimal directions.

Theorem 4.1. [ZK]. The set of directions for which the directional flow is
not minimal is countable.

As we have seen in §3 this involves showing that there are only countably
many vertex connections. This follows from the fact that there can be at
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most one vertex connection in each relative homotopy class of paths between
vertices. This result is valid for all translation structures.

The second question we consider is whether closed billiard trajectories exist.
We might ask whether (as in the result of [ZK]) we can use the association
between curves and homotopy classes to construct closed trajectories. We
might imagine picking a homotopically nontrivial curve on the surface M
and shrinking it to obtain a curve of minimal length. This can be done and
the resulting curve will be a geodesic in the sense of metric spaces, that is to
say that locally it will minimize distance between points. When M is the torus
the resulting curve will be a periodic trajectory. When M has genus greater
than one the resulting curve will usually not be a periodic trajectory. Typically
the geodesic will consist of a sequence of geodesic segments running between
vertices so that no two successive segments travel in the same direction.

Despite the fact that this “variational” argument does not work the following
theorem of Masur shows that periodic billiard trajectories do exist.

Theorem 4.2. [M2]. There is a periodic trajectory on every translation
surface.

We will discuss the proof of this result in a moment but we first give a
sophisticated extension of this result which is also due to Masur. The most
important invariant of a closed orbit is its length. We can ask about the
number of families of closed trajectories of length less than N. In the case
of the square this question reduces to the question of counting points in the
plane with pairs of relatively prime integers as coordinates. The number of
such points is asymptotic to ¢cN? where ¢ = w/¢(2) = 6/m. There is a
corresponding asymptotic expression for periodic billiard trajectories in the
square or any integrable polygon.

Theorem 4.3. [M3]. For any translation surface there are constants 0 <
¢1 < c; such that the number of closed geodesics of length less than N is
bounded below by c;N? and bounded above by c,N*.

We will sketch a proof of Theorem 4.2 which shows the usefulness of cer-
tain techniques that play an important role in much of the theory of rational
billiards and general translation structures. The argument we sketch here fol-
lows the logic of Masur’s original proof but it replaces the Teichmiiller space
techniques with techniques based on the geometry of translation structures.
A good reference for the techniques we use is [MS1].

We begin by observing that there is a geometric criterion for the existence
of a closed geodesic. Let us call a a subset of M isometric to the product of
a circle and an interval a cylinder. If we fix the genus of M, the number of
vertices and the area then the only way for a translation structure on M to have
large diameter is for M to contain a long cylinder (that is to say a cylinder
where the interval factor is long). (See [MS1] for the simple proof.) If M
contains a cylinder then it contains a family of periodic billiard trajectories.
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Let M be a surface with a translation structure of area one with no closed
billiard trajectories. If M has diameter larger than some constant D then it
contains a periodic trajectory and we are done. The important observation is
that we can vary the translation structure on M to produce a family of new
metrics and apply the geometric argument above to any of these translation
structures, not just the original translation structure. We think of a translation
structure as being given by an atlas of charts {¢;} where ¢; : U; - R*. If
we are given a linear map « : R?> — R? we can use it to construct a new
atlas of charts {¢; o a}. Let us denote by a(M) the new translation structure
on M. If we take @ € SL(2, R) then a(M) also has area 1. If « € SO (2, R)
then the new translation structure has the same metric as the original one. In
general, however, the metric geometry of the new translation structure will be
different from the original metric even though the underlying affine structure
is the same. A given curve is a periodic trajectory if it does not contain
vertices and if it maps to a straight line in any coordinate chart ¢; : U — R2.
This is a property of the affine geometry of M which is independent of the
metric geometry of M. So if a curve is a periodic trajectory for a(M) it is
also a periodic trajectory for M. Of course the diameter of M does depend
on the metric. So our hypothesis on M implies that D bounds the diameters
of all the translation structures o (M).

Our next objective is to choose a linear transformation which will allow us
to exploit this bound on diameter. Let e, be the shortest edge in M. We can
change the translation structure (and hence the metric) to make e, as short
as we wish at the expense of making perpendicular directions longer. Choose
the translation structure so that e; has length less than some constant C; to
be determined later. Let «; (M) denote this translation structure. Choose a
second edge e, disjoint from e;. Since the diameter of the surface «,(M)
is bounded by hypothesis, we can assume that the length of e, is bounded
above by some constant, D. We then change the translation structure to get
a new translation structure o, (M) with respect to which e, is shorter than
some constant C,. We can continue until we run out of disjoint edges. Since
the number of disjoint edges in M is bounded above by some constant n we
can construct disjoint edges e, ..., e,. Let € > 0 be given. We can choose
constants Cy, ..., C, so that each edge ey, ..., e, has length less than € with
respect to the final translation structure, «, (M). We will work backwards from
C, to C,. Let C, = €. The last change in the translation structure decreases
the length of some edge by a factor of D/C,. It can increase the length of any
other curve by at most this factor. If we choose C,_, to be sufficiently small
we can insure that even after performing the last alteration of the translation
structure the edge e, still has length less than €. Continuing in this way we
determine constants C; K C; K C3 K ...C, = €.

A maximal collection of disjoint edges in M partition M into a collection
of triangles and the number of triangles (say m) depends only on the topology
of M. Choose € so that a triangle for which all edges have length less than €
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has area less than 1/m. Since all edges have length less than € with respect to
the translation structure «, (M), the total area of «,,(M) is less than one. This
contradicts our original assumption that M (and therefore o, (M)) has area
one. We conclude that it is not possible for all metrics affinely equivalent to
our initial metric M to have bounded diameter. This contradiction proves the
existence of a closed trajectory.

An analysis of this argument gives something that Masur’s original ar-
gument did not give. It produces an explicit upper bound on the length of
shortest trajectory.

§5. Billiard Techniques: Unique Ergodicity

In the preceding proof we saw the utility of changing the translation struc-
ture and hence the Riemannian metric on a surface while preserving the affine
structure. In this section we will show that this technique is also useful in
analyzing the ergodic properties of the directional flows.

We will begin by describing a method of changing the translation structure
on a surface that gives an analog of Rauzy induction. Let us fix a surface M
with a translation structure and consider the directional flow in the vertical
direction. To analyze this flow via the methods of interval exchanges we
choose a transverse interval which we can take to be horizontal and of length
one. The first return map to this interval is an interval exchange. The method
of Rauzy induction involves considering a sequence of subintervals I > I; D
I,... and the sequence of first return maps to these intervals. At each stage
we rescale the interval I, and its subintervals by multiplying its length by
An so that its has the same length as /. Now we can achieve the rescaling
directly by changing the translation structure so that we multiply the lengths
in the horizontal direction by A,. To preserve the area of the surface M we
can rescale in the vertical direction by multiplying by (A,)~!. We can think
of the vertical rescaling as changing the speed of the flow so that the average
return time remains constant. Let M, denote this new translation surface.

Let us define
e 0
8 = ( 0 e—r)

Then g, is a one-parameter subgroup of SL(2, R) and the surfaces M, are just
the surfaces g, (M) where t, = logA,. (In the literature g, is often defined
with a different normalization.)

As we will see there is a criterion for unique ergodicity of the vertical flow
on M in terms of the geometry of the surfaces g, (M) for t > 0. We call the
parametrized collection of translation structures, {g,(M)}, a ray of translation
structures. A ray of translation structures is divergent if for any € > 0 there
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isa T so that for ¢ > T the translation surface g,(M) has a vertex connection
of length less than €. If a ray is not divergent then it is recurrent.

We will give two examples of the behavior of rays. Assume that the verti-
cal flow is not minimal. As we have seen this implies that M has a vertical
vertex connection. If the length of this vertex connection in M is C then
the length of this vertex connection with respect to the metric corresponding
to the translation structure g,(M) is e™'C. In particular this ray of transla-
tion structures is divergent. Let us consider a second example. Take M to
be the torus. Let L be a linear map with integral entries which induces an
automorphism of M. Assume that L is hyperbolic with eigenvalues A and
17! satisfying A > 1 > A™! > 0. Now assume that the translation structure
on M is chosen so that the expanding eigenvector of L is horizontal and the
contracting eigenvector of L is vertical. In this case the map L induces an iso-
morphism of translation structures between M and g, (M) where t, = log A.
It follows that g,(M) is isometric to g, (M) for any t. We can summarize
by saying that, unlike the first case, the geometric invariants of g,(M) are
periodic functions of 1. When M has genus greater than one then this peri-
odic behavior occurs precisely when the horizontal and vertical foliations of
M arise from a pseudo-Anosov diffeomorphism.

Theorem 5.1. [M4]. If the vertical flow is not uniquely ergodic then the ray
g:(M) is divergent.

If the vertical flow is minimal but not uniquely ergodic then instead of
having a single edge get short as t — oo, as in our first example, there will
be a sequence of different edges so that the first edge gets short and then as
it starts to lengthen a second edge gets short and so on.

To deal with flows in directions other than the vertical we can rotate the
translation structure to make the direction vertical and then apply the above
criterion. Let

_ ( cos 6 sin0>
rg = .
—sinf cosf

If the flow in direction /2 — 6 is not uniquely ergodic then by Masur’s
criterion the ray g,ro(M) is divergent. This test for non-unique ergodicity
plays a key role in the following:

Theorem 5.2. [KMS]. For each translation surface the set of directions for
‘which the flow fails to be uniquely ergodic has measure zero.

We will discuss the proof of this result after giving a corollary to the
theorem and an improvement of the result. Recall that the billiard flow on
T (P) is never ergodic when P is irrational. Using the previous result and the
technique of approximating non-rational tables by rational tables leads to:

Corollary 5.3. [KMS]. There exist (non-rational) polygonal billiard tables
Sfor which the billiard flow is ergodic on T (P).

374 J. Smillie

The earlier theorem was improved by Masur to show:

Theorem 5.4. [M4)]. The Hausdorff dimension of the set of directions for
which the flow is not uniquely ergodic is at most 1/2.

An exposition of the proof of the Theorem 5.2 is contained in [A]. The
published proofs rely on a criterion for unique ergodicity which is not as
powerful as Masur’s criterion (Theorem 5.1). Using theorem 5.1 allows the
proof to be simplified somewhat.

We will not describe the proof of Theorem 5.2 here but we will explain
how questions about the geometry of translation structures arise in the proof.
Let M be a surface with a translation structure. For almost every 8 we must
show that the ray g,rq(M) is not divergent as t — oo. The technique of the
proof is to show that for ¢ large and € small the set of 6 values for which
g:ro(M) has a segment of length less than € has small measure. Fix ¢ large
and assume that for some 6 the surface g,ro(M) has a short edge. Call it e.
Now as the translation structure changes we can keep track of the length of
e with respect to the translation structure g,ro(M) as a function of 6. The
interval of 6 values for which the length of e is greater than € is much larger
than the interval for which it has length less than €. The problem is that
making the shortest curve longer does not rule out the possibility that some
other curve may have gotten shorter in the process. This problem does not
arise when M is the torus. In the case of the torus when one curve is short all
curves that cross it are long. When M has higher genus though it is possible to
have many short curves simultaneously. The solution is to focus on a certain
class of curves which behave like curves in the torus. These curves have the
property that they are short but not crossed by other short curves.

§6. Dynamics on Moduli Spaces

We have seen how questions about billiard dynamics in rational polygons
lead to the study of certain translation structures. In this section we will
consider the collection of all translation structures and not restrict ourselves
to those arising from polygons. If we identify “geometrically equivalent”
translation structures on a given surface then the set of these equivalence
classes of structures forms a “moduli space”. These moduli spaces possess
some interesting and useful geometric structures. The operation of changing
the translation structure by elements of SL(2, R) gives a group action of
SL(2,R) on each moduli space. We have seen in the previous section how
the dynamical properties of the billiard flow on M translate into geometric
properties of the various translation structures a(M) for « € SL(2, R). We
will see that the investigation of dynamical properties of the group action on
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moduli space leads to results about the dynamics of billiard flows for general
translation structures as well as to some seemingly unrelated results.

Moduli spaces of translation structures also arise in the theory of quadratic
differentials and Teichmiiller space. The moduli spaces we will describe are
called strata because they appear in a stratification of the unit tangent bundle
to Teichmiiller space. The flow g, defined in §5 is called the Teichmiiller flow
in this context. For those familiar with Teichmiiller space this connection is a
source of insight and inspiration. Those not familiar with Teichmiiller space
methods should not be discouraged. The moduli spaces that we consider can
be constructed with no reference to complex analysis (cf. [MS1], [V4] and
[V6]) and furthermore none of the theorems discussed in this survey require
complex methods for their proofs. Whether or not one chooses to use complex
methods there is no reason not to use the terminology which arises from the
study of Teichmiiller space.

Let us say that two translation surfaces M and M’ are topologically equiv-
alent if the surfaces M and M’ are homeomorphic and the number and cone
angles of the vertices correspond. (In this survey we are not considering half-
integral structures. If we were to do so then there would be an additional
piece of data.) Let f : M — M’ be a homeomorphism of translation struc-
tures that takes vertices to vertices. If f is a smooth map we can think of the
derivative as a map from R? to R?. We say that f is affine if the derivative is
constant. We say that an affine diffeomorphism f is an equivalence of trans-
lation structures if the derivative is the identity map. When such an f exists
we say that the translation surfaces M and M’ are geometrically equivalent.
For a fixed translation surface M let us denote by .45(M) the moduli space
of translation structures topologically equivalent to M with area one. We will
call this moduli space a stratum. The question of precisely which strata are
non-empty is answered in [MS2].

The construction of moduli spaces, that is to say the definition of a topol-
ogy and other structure for the sets defined above, is rather involved. We will
limit ourselves to a description of the construction in the simplest case, that
o~f the surface of genus one. Let T be a torus with a translation structure. Let
T denote the universal cover of T. The translation structure gives a canonical
way to identify T with R2. The covering group acts by translation so we can
identify it with a lattice A C R?. The moduli space we want to construct
can be identified with the space of lattices in R?. To build this space we
introduce some additional structure. Let us call a translation structure on T
together with a choice of a basis of m;(T) a marked translation structure.
A marked translation structure gives rise to a lattice in R? together with a
choice of a basis, v and w. Viewing the pair of vectors as a matrix [vw] we
can identify the set of marked translation structures with GL(2, R). Now to
construct the space of translation structures we analyze the effect of changing
the marking on the space of marked translation structures. The mapping class
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group of the torus can be identified with the group GL(2,Z). This group
acts transitively on the sets of markings. Thus the space of translation struc-
tures can be identified with GL(2, R)/GL(2, Z). If we restrict ourselves to
translation structures that give the torus area 1 then appropriate moduli space
is SL(2,R)/SL(2,Z). The natural action of SL(2, R) is the action by left
multiplication. The moduli space for the torus has a smooth finite measure
which is invariant under the action of SL(2, R).

The construction of other moduli spaces is somewhat more complicated but
it follows the outlines of this construction (see [V4] or [MS1]). As in the
case of the torus there is an action of SL(2, R) on the moduli space and a
finite smooth measure u defined on the moduli space invariant under this
action. The orbits of the SL(2, R) action are affinely equivalent translation
surfaces. Unlike the case of the torus the action of SL(2, R) is not transitive.
A second distinction between the higher genus moduli spaces and that of the
torus is that the higher genus moduli spaces are not connected in general, but
have a finite number of components. This phenomenon was first discovered
by Rauzy in the context of interval exchanges.

The moduli space for the torus can be identified with the unit tangent
bundle of the modular surface. The Teichmiiller flow g, is just the geodesic
flow on the modular surface (though with our normalization of g,, geodesics
travel at twice the usual speed). This geodesic flow is one of the classic
examples in dynamical systems. (See Chapter 7 section 5 of this volume for
a discussion.) A number of authors have described interesting connections
between the geodesic flow on the modular surface and continued fraction
expansions. One very elegant way of making this connection is described by
Amoux in [A3] where he uses the fact that each point in SL(2, R)/SL(2, Z)
can be interpreted as a flow on the torus. It is a classic result that the geodesic
flow for the modular surface is ergodic. The corresponding ergodicity results
for the higher genus moduli spaces were proved in general by Veech (certain
important cases were established in [M1] and [Re]).

Theorem 6.1. [V4]. The flow g, is ergodic on each component of each
stratum.

The flow g, is uniformly hyperbolic in the genus one case. In the higher
genus case it is non-uniformly hyperbolic with respect to the natural measure
w (see [V4] and [KZ]). (For a discussion of non-uniform hyperbolicity see Ch.
7 section 2.8 of this volume) This is a key ingredient in a result of Veech which
counts closed orbits for the flow g,. As we have seen in §5, closed orbits of the
Teichmiiller flow on .Z#4(M) correspond to pseudo-Anosov diffeomorphisms
with prescribed numbers and types of singular points. Let N(¢) denote the
number of primitive conjugacy classes of pseudo-Anosov diffeomorphisms
with the same singularities as M.
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Theorem 6.2. [V4].

lim inf

11— 00

log N (¢
Og—t(——226g—6+2n

where g is the genus of M and n is the number of singular points.

A corollary to this theorem is the existence of pseudo-Anosov diffeomor-
phisms of all possible topological types (that is to say all possible patterns of
topological data) [see MS2].

Considering the SL(2, R) action on moduli space also leads to information
about “generic” translation structures.

Theorem 6.3. [MS1]. For each component of each higher genus moduli
space there is a § > 0 so that for almost every translation surface M in
moduli space the set of directions for which the flow is not ergodic has positive
Hausdorff dimension.

The ergodicity of the flow g, implies that the Hausdorff dimension of the set
of non-ergodic directions is constant almost everywhere on each component
of each stratum.

Theorem 6.3 shows that there are translation structures of all possible topo-
logical types with large sets of non-ergodic directions. The result does not
show that there are polygonal billiard tables with this property because the
set of translation structures arising from polygonal billiard tables has measure
zero in the space translation structures. On the other hand it would certainly
be interesting to know to what extent rational billiard tables behave like
“generic” translation structures.

Every interval exchange transformation arises as the first return map for
some translation structure. Thus the Theorem 6.3 has implications for interval
exchange transformations.

Corollary 6.4. [MS1]. Consider the simplex of interval exchange transfor-
mations with a given irreducible permutation not equivalent to a rotation. The
subset of the simplex corresponding to not ergodic interval exchange transfor-
mations has codimension strictly less than one.

§7. The Lattice Examples of Veech

While the results we have described in this survey give a great deal of
information about general billiard flows they do not in general allow us to
say, for a given polygon and a given direction, what the behavior of the
directional flow is. In this section we will focus on polygons where such a
precise description of the dynamics is possible.
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Let us return to a discussion of the billiard flow for the square. In this
case each directional flow has one of two types of behavior and we have a
straightforward criterion for deciding which type of behavior occurs. If the
slope of the direction is rational then all non-singular orbits are closed. If the
slope of the direction is irrational then all non-singular orbits are uniformly
distributed. Recall that polygonal tables which have only these two types of
behavior are said to have the dichotomy property. In this section we will
consider polygons where the “dichotomy property” holds and where there is
an explicit description of which directions have which behavior.

The list of such “well behaved” tables starts with the integrable polygons.
These are precisely the polygons P for which P is the torus. The list of well
behaved polygons was extended by Gutkin in his construction of “almost
integrable” billiard tables [Gul]. This class of polygons includes the regular
hexagon and it includes polygons all of whose sides are horizontal or vertical
and for which the coordinates of vertices are all rational. This list of well
behaved polygons was extended by Veech. Veech showed that the list contains
not just the regular polygons with 3, 4 and 6 sides but every regular polygon.

To describe Veech’s result more precisely let us introduce some terminology.
If M is a translation surface let I" (M) be the group of affine automorphisms
of M. That is to say that I" consists of homeomorphisms of M which take
singularities to singularities and are differentiable with constant derivative
away from the singularities. If we consider only orientation preserving maps
then the derivative of such a map is an element of SL(2, R). The derivative
gives a homeomorphism D from I to SL(2, R). We say that M has the lattice
property if the image of I is a lattice in SL(2, R). We say that a polygon P
has the lattice property if the translation surface P has the lattice property.

Any polygon that tiles the plane by reflection has the lattice property because
P is the torus, T, and I'(T) = SL(2, Z) which is a lattice in SL(2, R). For
the almost integrable polygons P the surface P is not the torus but it is a
branched cover of the torus where the branch points have rational coordinates.
In this case DI" is commensurable to SL(2, Z). Veech’s examples also have
the lattice property but they differ from the previous examples in that the
group I” is not commensurable to SL(2, Z). In this sense Veech’s examples
represent a significant new phenomenon in the study of polygonal tables.

Theorem 7.1. [VS5], [V7]. The regular n-gon has the lattice property. A right
triangle with one angle of the form 1 /n has the lattice property. An isosceles
triangle with smallest angle of the form 2m /n has the lattice property.

The statement that lattice polygons have easily described dynamics is con-
tained in the following theorem.

Theorem 7.2. [VS5]. Lattice examples have the dichotomy property. Further-
more the directions in which all orbits are closed are just the directions fixed
by parabolic elements of DI.
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When DI is commensurable to SL(2, Z) the directions fixed by parabolics
are just the rational directions. When DI is not commensurable to SL(2, Z)
these directions are mostly not rational [B]. In addition to identifying direc-
tions of closed trajectories it is also possible to analyze the growth rate of
closed trajectories (cf. Theorem 4.3).

Theorem 7.3. [VS5]. For any lattice surface there is a constant ¢ such that
the number of closed geodesics of length less than N is asymptotic to cN>.

Furthermore it is possible, as in the case of the torus, to compute precisely
the constants ¢ that arise (see [V5], [V7] and [G]2]).

We have seen that the properties of the billiard flow on M are captured in
the behavior of the orbit of M in moduli space under the SL(2, R) action. This
orbit is parametrized by SL(2,R)/I". When I' is a lattice this space has a
special structure which is very much like the structure of SL(2, R)/SL(2, Z).
In particular we can identify it with the tangent space to a complete hyperbolic
surface of finite area. Any such surface decomposes into a compact piece and
a finite number of “cusps”. According to Masur’s criterion divergent rays
correspond to geodesics which eventually remain in a single cusp. Geodesics
that remain in a single cusp have a very special form and these correspond to
translation structures all of whose vertical trajectories are periodic. It is in this
way that the dichotomy property follows from the structure of the SL(2, R)
orbit.

Veech’s discovery raises the question of whether it will be possible to
describe explicitly the dynamics of the billiard flow for other rational tables.
An initial question to ask is: Which polygon’s have the lattice property?
Ward [W] and Vorobets[Vo2] discovered some additional examples among
rational triangles and proved that certain specific triangles do not have the
lattice property. Kenyon and Smillie [KS] show that among right triangles
the examples of Veech are the only ones that have the lattice property. They
also analyze a large number, (10'"), of acute rational triangles and show that
other than Veech’s examples only three of these triangles have the lattice
property.

There are many open questions related to the description of the billiard flow
in explicit rational polygons. If the dynamical behavior of typical translation
structures can be taken as a guide to the dynamical behavior of typical rational
billiards we would expect that most tables possess non-ergodic directions. On
the other hand it seems that no one has yet constructed a single example of
a non-ergodic direction in an acute triangle.

It would be very interesting to know about the structure orbits of the
SL(2,R) action on moduli space. Is there some analog of Ratner’s solu-
tion of Raghunathan’s conjecture (cf. article by Dani in this volume) which
would characterize orbit closures?

As we mentioned in the introduction, rational billiards have been considered
as test cases for questions involving quantum chaos in part because their
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dynamics is close to the dynamics of integrable systems. As we have seen the
dynamics of the lattice examples are particularly well behaved. This motivates
the following question of Sinai: Do rational polygons with the lattice property
have distinctive quantum mechanical behavior?
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