MA475 Example Sheet 5 9 March 2020

- 1. Verify the Riemann-Hurwitz formula for the map $f(z) = z^4 + z^{-4}$ from \mathbb{C}_{∞} to itself.
- 2. Say that we have a non-constant meromorphic function $f : R \to S$ between compact Riemann surfaces. Show that the genus of S cannot be larger than the genus of R. If both surfaces have genus one show that f is a covering map. If both surfaces have the same genus and it is 2 or more show that f is a holomorphic equivalence.
- 3. Define the divisor of a meromorphic function on a Riemann surface R to be the function from $R \to \mathbb{Z}$ which assigns to each point the order of the zero or pole at that point. Define the degree of a divisor to be the sum of the non-zero values of this function.
 - (a) Show that two meromorphic functions with the same divisor differ by multiplication by a non-zero complex number.
 - (b) Show that the degree of a divisor on a compact Riemann surface is zero.
- 4. Let \wp be the Weierstrass \wp -function with respect to a lattice $\Lambda \subset \mathbb{C}$. Say that $\wp(z) = z^{-2} + \lambda z^2 + \mu z^4 + O(z^6)$. Compute the value of λ and μ in terms of Λ .
- 5. Let \wp be the Weierstrass \wp -function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp''(z) = 6\wp(z)^2 + A$ for some constant A. Show that there are at least three points and at most five points in \mathbb{C}/Λ at which \wp' is not locally injective.